JP2009083977A - Swing prevention control method and swing prevention control system for crane - Google Patents

Swing prevention control method and swing prevention control system for crane Download PDF

Info

Publication number
JP2009083977A
JP2009083977A JP2007254381A JP2007254381A JP2009083977A JP 2009083977 A JP2009083977 A JP 2009083977A JP 2007254381 A JP2007254381 A JP 2007254381A JP 2007254381 A JP2007254381 A JP 2007254381A JP 2009083977 A JP2009083977 A JP 2009083977A
Authority
JP
Japan
Prior art keywords
section
jib
acceleration
turning
suspended load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007254381A
Other languages
Japanese (ja)
Other versions
JP4572224B2 (en
Inventor
Yasuhiro Iwakura
康弘 岩倉
Shoichi Ichihara
正一 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAITO DENKI KK
Original Assignee
DAITO DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAITO DENKI KK filed Critical DAITO DENKI KK
Priority to JP2007254381A priority Critical patent/JP4572224B2/en
Publication of JP2009083977A publication Critical patent/JP2009083977A/en
Application granted granted Critical
Publication of JP4572224B2 publication Critical patent/JP4572224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a swing prevention control method and a swing prevention control system for a crane, excellent in effect of suppressing swing of a suspended cargo at a turning end point, including swing in a radial direction. <P>SOLUTION: A jib is turned at a constant turning radius, in the order of an acceleration section, a constant speed section, and a deceleration section. Operating times of the acceleration section and the deceleration section are the same, and are set to be approximately the integral multiple of a cycle To of pendular movement of the suspended cargo. A time difference from an end point of the acceleration section to a point of the first maximum swing displacement by oscillation in the radial direction of the suspended cargo generated by a centrifugal force is "(Δ/2)*To", and an operating time of the constant speed section is set to be "(n+Δ)*To" (n: an integer of 0 or more). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、クレーンの旋回時に生ずる吊荷の振れを止める振れ止め制御方法および振れ止め制御システムに関する。   The present invention relates to an anti-sway control method and an anti-sway control system for stopping a swing of a suspended load that occurs when a crane turns.

ワイヤにより吊荷を吊り下げた状態でクレーンを旋回させると振子運動により吊荷に振れが生じ、特に、大型のタワークレーンをダム工事で用いる場合、旋回半径や吊長は大きく設定されることが多いために前記振れの度合いも大きなものとなり、旋回終了時点でこの振れを抑えるクレーン操作は、オペレータにとって熟練した技術を要する。   If the crane is swung while the suspended load is suspended by a wire, the suspended load will swing due to the pendulum movement. Especially when a large tower crane is used for dam construction, the turning radius and the suspended length may be set large. Since the amount of vibration is large, the degree of the vibration becomes large, and the crane operation for suppressing the vibration at the end of the turn requires a skill that is skilled for the operator.

この問題を課題とした従来技術の一例として特許文献1が挙げられる。特許文献1に記載の技術は、同文献の段落[0007]に記載されるように、加速開始時のワイヤの吊り長さに基づく振子運動の周期と、加速終了時のワイヤの吊り長さに基づく振子運動の周期との平均値の略整数倍の時間の間、ブームを加速しながら旋回させ、加速終了後は等速で移動させることにより、ワイヤの上支点と吊荷とを等速で移動させて吊荷の振れを抑制し、段落[0009]に記載されるように、減速開始時のワイヤの吊り長さに基づく振子運動の周期と、減速終了時のワイヤの吊り長さに基づく振子運動の周期との平均値の略整数倍の時間の間、ブームを減速しながら旋回させ、減速終了後に停止させることにより、吊荷を振れることなく目的地点に停止させるものである。
特許第3241591号公報
Patent document 1 is mentioned as an example of the prior art which made this problem a subject. As described in paragraph [0007] of the same document, the technique described in Patent Document 1 is based on the period of the pendulum motion based on the suspension length of the wire at the start of acceleration and the suspension length of the wire at the end of acceleration. By rotating the boom while accelerating it for a time that is approximately an integral multiple of the average value of the period of the pendulum motion based on it, and moving it at a constant speed after the end of acceleration, the upper fulcrum of the wire and the suspended load are moved at a constant speed. As described in paragraph [0009], the movement of the suspended load is suppressed, and based on the period of the pendulum movement based on the suspension length of the wire at the start of deceleration and the suspension length of the wire at the end of deceleration, as described in paragraph [0009]. The boom is rotated while decelerating for a time that is approximately an integral multiple of the average value of the period of the pendulum movement, and is stopped after the deceleration is completed, so that the suspended load is stopped at the destination without swinging.
Japanese Patent No. 3224191

クレーンを旋回させると吊荷には遠心力が作用するため、吊荷の振れは円周方向の振れに半径方向の振れが合成されたものとなり、吊荷は略楕円状の軌跡を描いて移動する。   When the crane is turned, centrifugal force is applied to the suspended load. Therefore, the swing of the suspended load is a combination of the circumferential deflection and the radial deflection, and the suspended load moves in a substantially elliptical path. To do.

しかしながら、前記特許文献1の技術は、吊荷に作用する遠心力、つまり半径方向の振れの問題は考慮しておらず、円周方向の速度変化即ち加速度のみに着目してなされた技術であり、クレーンが旋回して吊荷に半径方向の振れが生じた場合には、特許文献1の技術では目的地点で所定の振れの抑制効果が期待できないおそれがある。   However, the technique of Patent Document 1 does not consider the centrifugal force acting on the suspended load, that is, the problem of radial deflection, and is a technique that focuses on only the circumferential speed change, that is, acceleration. When the crane turns and radial swing occurs in the suspended load, the technique of Patent Document 1 may not be able to expect a predetermined swing suppression effect at the destination point.

本発明はこのような問題を解決するために創作されたものであり、半径方向の振れも考慮され、旋回終了地点における吊荷の振れの抑制効果に優れたクレーンの振れ止め制御方法および振れ止め制御システムを提供することを目的としている。   The present invention was created in order to solve such a problem. A crane steady-state control method and a steady rest that are excellent in the effect of suppressing the swing of a suspended load at a turning end point in consideration of radial deflection. It aims to provide a control system.

本発明は、前記課題を解決するため、ジブを旋回させてワイヤで吊った吊荷を運搬するクレーンにおいて、ジブを旋回半径一定として加速区間、等速区間、減速区間の順で旋回させ、加速区間および減速区間の運転時間を、互いに同一の時間であって、吊荷の振子運動の周期Toの略整数倍に設定するとともに、加速区間の終了時点から、遠心力により生じる吊荷の半径方向の振動で最初の最大振れ変位になるまでの時間差を「(Δ/2)・To」として、等速区間の運転時間を「(n+Δ)・To」(n:0以上の整数)に設定することにより、停止地点における吊荷の振れを止めることを特徴とするクレーンの振れ止め制御方法とした。   In order to solve the above-mentioned problems, the present invention is a crane for carrying a suspended load that is revolved by turning a jib and hung with a wire. The operation time of the section and the deceleration section is the same time as each other, and is set to a substantially integer multiple of the period To of the suspended load's pendulum motion, and the radial direction of the suspended load caused by centrifugal force from the end of the acceleration section The time difference until the first maximum deflection displacement due to the vibration of is set to “(Δ / 2) · To”, and the operation time in the constant velocity section is set to “(n + Δ) · To” (n: integer greater than or equal to 0) Thus, the crane steady-state control method is characterized in that the suspension of suspended loads at the stop point is stopped.

また本発明は、ジブを旋回させてワイヤで吊った吊荷を運搬するクレーンにおいて、ジブを旋回半径一定として加速区間、等速区間、減速区間の順で旋回させ、加速区間および減速区間の運転時間を、互いに同一の時間であって、吊荷の振子運動の周期Toの略整数倍に設定するとともに、加速区間の終了時点から、遠心力により生じる吊荷の半径方向の振動で最初の最大振れ変位になるまでの時間差を「(Δ/2)・To」として、等速区間の運転時間を「(n+Δ)・To」(n:0以上の整数)に設定する演算部を有することを特徴とするクレーンの振れ止め制御システムとした。   The present invention also relates to a crane for turning a jib and transporting a suspended load suspended by a wire, and turning the jib in the order of an acceleration section, a constant speed section, and a deceleration section with a constant turning radius to operate the acceleration section and the deceleration section. The time is set to be an integer multiple of the period To of the pendulum motion of the suspended load, which is the same time as each other, and from the end of the acceleration section, the first maximum of the radial vibration of the suspended load caused by the centrifugal force It has a calculation unit that sets the time difference until the deflection displacement to “(Δ / 2) · To” and sets the operation time in the constant velocity section to “(n + Δ) · To” (n: an integer of 0 or more). The feature was a crane steady rest control system.

以上の振れ止め制御方法および振れ止め制御システムによれば、加速区間および減速区間の運転時間を吊荷の振子運動の周期Toの略整数倍に設定することで、先ず円周方向の振れが抑制される。
また、加速時の遠心力により吊荷には半径方向の振動が発生し、加速区間の終了時点での半径方向変位と、等速区間において最初に訪れる半径方向外側の最大振れ幅の半径方向変位との間に時間差(Δ/2)・Toが発生する。そこで、等速区間の運転時間として、加速区間が終了した直後の時間差(Δ/2)・Toと、これと対称的に設けた減速区間の開始直前の時間差(Δ/2)・Toとを加えた時間差Δ・Toを最小とし、これに適宜に周期Toの略整数倍を加えた時間、すなわちtp=(n+Δ)・Toに設定する。減速区間の加速度は加速区間のそれと同一に設定されるから、減速区間の間に時間差(Δ/2)・Toの分の振れが打ち消され、吊荷が停止したときに半径方向の振れが抑えられる。
According to the above-described steady-rest control method and steady-state control system, first, circumferential run-out is suppressed by setting the operation time of the acceleration section and the deceleration section to be approximately an integral multiple of the period To of the pendulum motion of the suspended load. Is done.
In addition, the suspended load generates radial vibrations due to the centrifugal force during acceleration, and the radial displacement at the end of the acceleration section and the radial displacement of the maximum outer deflection width that is first visited in the constant speed section. A time difference (Δ / 2) · To occurs between Therefore, as the operation time of the constant speed section, the time difference (Δ / 2) · To immediately after the acceleration section ends, and the time difference (Δ / 2) · To immediately before the start of the deceleration section provided symmetrically therewith The added time difference Δ · To is minimized, and a time obtained by adding a substantially integer multiple of the period To to this, ie, tp = (n + Δ) · To is set. Since the acceleration in the deceleration zone is set to be the same as that in the acceleration zone, the runout for the time difference (Δ / 2) · To is canceled during the deceleration zone, and the radial runout is suppressed when the suspended load stops. It is done.

本発明によれば、旋回終了地点における吊荷の振れの抑制効果に優れ、クレーンの運搬サイクルタイムの短縮化が図れる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the suppression effect of the swing of the hanging load in the turning completion point, and can shorten the conveyance cycle time of a crane.

以下、本発明をダム工事におけるタワークレーンに適用した形態について説明する。図1、図2は共にダム周辺をコンクリート打設する際のタワークレーンおよび付帯設備の配置例を示しており、図1は側面図、図2は平面図である。先ず、タワークレーン3の動作の概略を説明すると、バンカ線1上をトランスファーカ2により運ばれる生コンクリートは、タワークレーン3のジブ4の先端からワイヤ5を介して吊り下げられたバケット6(吊荷)に移載される。   Hereinafter, the form which applied this invention to the tower crane in dam construction is demonstrated. FIGS. 1 and 2 both show an example of the arrangement of a tower crane and ancillary equipment when placing concrete around the dam. FIG. 1 is a side view and FIG. 2 is a plan view. First, the outline of the operation of the tower crane 3 will be described. The ready-mixed concrete carried on the bunker line 1 by the transferer 2 is a bucket 6 (hanging) suspended from the tip of the jib 4 of the tower crane 3 via a wire 5. Transferred).

移載完了後、ワイヤ5を数メートル等、所定量巻き上げてバケット6を上昇させ、これをA地点とする。このバケット6の上昇位置を一定とし、つまりワイヤ5の長さを一定とし、A地点を旋回開始地点としてジブ4を旋回させ、ダム堤体7の上方に位置するB地点を旋回終了地点とする。A地点からB地点までの旋回半径Rは一定である。なお、図1では施工初期段階のダム堤体7を実線で示しており、次第に形成されていく様を仮想線で示している。   After the transfer is completed, the wire 5 is wound up by a predetermined amount, such as several meters, and the bucket 6 is raised, and this is designated as point A. The ascending position of the bucket 6 is made constant, that is, the length of the wire 5 is made constant, the jib 4 is turned with the point A as the turning start point, and the point B located above the dam body 7 is set as the turning end point. . The turning radius R from point A to point B is constant. In FIG. 1, the dam dam body 7 at the initial stage of construction is shown by a solid line, and the dam body 7 gradually formed is shown by a virtual line.

そして、例えばB地点からワイヤ5を巻き下げてバケット6を降下させ、ダム堤体7のコンクリート打設現場に設けたホッパ8に生コンクリートを移載する。ホッパ8への移載完了後は以上の動作と逆となり、ワイヤ5を巻き上げ、空となったバケット6をB地点からA地点まで移動させ、ワイヤ5を巻き下げてバケット6をトランスファーカ2からの移載箇所まで降下させる。以上のタワークレーン3の動作サイクルにおいて、本発明は、旋回終了直後のB地点およびA地点におけるバケット6の振れを抑制することを目的とするものである。   Then, for example, the wire 5 is wound down from the point B to lower the bucket 6, and the ready-mixed concrete is transferred to the hopper 8 provided at the concrete placing site of the dam dam body 7. After the transfer to the hopper 8 is completed, the operation is reversed, the wire 5 is wound up, the empty bucket 6 is moved from the point B to the point A, the wire 5 is lowered and the bucket 6 is moved from the transfer car 2 Lower to the transfer location. In the operation cycle of the tower crane 3 described above, an object of the present invention is to suppress the swing of the bucket 6 at the point B and the point A immediately after the end of turning.

図3は本発明に係る振れ止め制御システムの構成ブロック図であり、振れ止め制御システムは、以下に記す各検出手段、演算部17、出力制御部18を備える。   FIG. 3 is a block diagram showing the configuration of the steadying control system according to the present invention. The steadying control system includes the following detection means, a calculation unit 17, and an output control unit 18.

「ジブ4の起伏角度φ、旋回半径Rの検出手段」
ジブ4の起伏角度φを検出するセンサとして、ジブ4の根元に磁気スケール等からなる角度検出器11が取り付けられ、その出力信号は演算部17に出力される。演算部17では、予め入力されたジブ4の長さと角度検出器11の出力信号とからジブ4の旋回半径Rが求められる。
“Detecting means for the undulation angle φ and turning radius R of the jib 4”
As a sensor for detecting the undulation angle φ of the jib 4, an angle detector 11 made of a magnetic scale or the like is attached to the base of the jib 4, and an output signal thereof is output to the calculation unit 17. In the calculation unit 17, the turning radius R of the jib 4 is obtained from the length of the jib 4 input in advance and the output signal of the angle detector 11.

「ジブ4の旋回角度θの検出手段」
ジブ4の旋回角度θを検出するセンサとして、ジブ4の旋回用電動機20のピニオンギヤーをカウントするセンサ等からなる角度検出器12が取り付けられ、その出力信号は演算部17に出力される。
“Detecting means for turning angle θ of jib 4”
As a sensor for detecting the turning angle θ of the jib 4, an angle detector 12 including a sensor for counting the pinion gear of the turning electric motor 20 for the jib 4 is attached, and an output signal thereof is output to the calculation unit 17.

「ジブ4の旋回速度Vの検出手段」
ジブ4の旋回速度Vを検出するセンサとして、ジブ4の旋回用電動機20にタコジェネレータ等からなる速度検出器13が取り付けられ、その出力信号は演算部17に出力される。
"Detection means for turning speed V of jib 4"
As a sensor for detecting the turning speed V of the jib 4, a speed detector 13 made of a tachometer or the like is attached to the turning electric motor 20 of the jib 4, and an output signal thereof is output to the calculation unit 17.

「ワイヤ5の巻き上げ・巻き下げ速度の検出手段」
ワイヤ5の巻き上げ・巻き下げ速度を検出するセンサとして、ワイヤ5の巻き取り用電動機21にタコジェネレータ等からなる速度検出器15が取り付けられ、その出力信号は演算部17に出力される。
"Detecting means for winding / lowering speed of wire 5"
As a sensor for detecting the winding / lowering speed of the wire 5, a speed detector 15 made of a tachometer or the like is attached to the winding motor 21 of the wire 5, and an output signal thereof is output to the calculation unit 17.

「ワイヤ5の巻き上げ・巻き下げ距離の検出手段」
ワイヤ5の巻き上げ・巻き下げ距離を検出するセンサとして、ワイヤ5の巻き取り用電動機21又は巻上げ・下げドラムに磁気スケール等からなる距離検出器16が取り付けられ、その出力信号は演算部17に出力される。
"Detecting means for winding / lowering distance of wire 5"
As a sensor for detecting the winding / lowering distance of the wire 5, a distance detector 16 made of a magnetic scale or the like is attached to the winding motor 21 or the winding / lowering drum of the wire 5, and the output signal is output to the calculation unit 17. Is done.

「演算部17、出力制御部18」
演算部17はCPUから構成され、後記する各演算処理を行う。出力制御部18は、演算部17の演算結果に基づき、各電動機に制御信号を出力する。
"Calculation unit 17, output control unit 18"
The calculation part 17 is comprised from CPU and performs each calculation process mentioned later. The output control unit 18 outputs a control signal to each electric motor based on the calculation result of the calculation unit 17.

次いで、加速時の遠心力によりバケット6には半径方向の振動が発生するが、バケット6がA地点からB地点に到達したときにこの振動が抑制される理由について説明する。図4はA地点からB地点までのジブ4の旋回周速度の変化を示すグラフであり、縦軸が速度、横軸が時間である。ジブ4のA地点からB地点までの移動区間は、加速区間と等速区間と減速区間の3つに分けられる。前記特許文献1では、加速区間、減速区間の時間をそれぞれ吊荷の振子運動の周期の略整数倍として決定し、等速区間における、旋回時間、旋回速度の値は任意(例えば同文献の段落[0022]に記載されているようにクレーンの最大旋回角速度にする等)であるのに対し、本発明では、等速区間における旋回速度Vo、等速運転時間tpを以下の方法で求める。   Next, the vibration in the radial direction is generated in the bucket 6 due to the centrifugal force during acceleration. The reason why this vibration is suppressed when the bucket 6 reaches the point B from the point A will be described. FIG. 4 is a graph showing a change in the turning peripheral speed of the jib 4 from the point A to the point B, with the vertical axis representing speed and the horizontal axis representing time. The moving section from the A point to the B point of the jib 4 is divided into an acceleration section, a constant speed section, and a deceleration section. In Patent Document 1, the times of the acceleration section and the deceleration section are determined as substantially integral multiples of the period of the pendulum motion of the suspended load, and the values of the turning time and the turning speed in the constant speed section are arbitrary (for example, the paragraph of the same document). In the present invention, the turning speed Vo and the constant speed operation time tp in the constant speed section are obtained by the following method, as described in [0022].

ジブ4の先端の旋回半径(バケット6の旋回半径)Rは式(1)により求められる。
R=L・cosφ …式(1)
L:ジブ4の長さ
φ:ジブ4の起伏角度
The turning radius of the tip of the jib 4 (the turning radius of the bucket 6) R is obtained by the equation (1).
R = L · cosφ Formula (1)
L: Length of jib 4 φ: Uneven angle of jib 4

バケット6の振子運動の固有角速度ωは、
ω=(g/H)1/2 …式(2)
g:重力加速度
H:ジブ4の先端からバケット6までの距離(振子長さ)
により求められ、バケット6の振子運動の周期Toは式(3)により求められる。
To=2π/ω …式(3)
バケット6の円周方向の振れをなくすため、加速区間、減速区間の運転時間はそれぞれ振子運動の周期Toの略整数倍とし、ここでは式(3)で求めた1周期のToを加速区間、減速区間の運転時間とする。なお、加速区間、減速区間の運転時間を振子運動の周期Toの略整数倍とすることで円周方向の振れが抑制されることは、例えば特許文献1にも記載されているように公知であるから、ここではその具体的な説明は省略する。
The intrinsic angular velocity ω of the pendulum motion of the bucket 6 is
ω = (g / H) 1/2 Formula (2)
g: Gravity acceleration H: Distance from tip of jib 4 to bucket 6 (pendulum length)
And the period To of the pendulum motion of the bucket 6 is obtained by the equation (3).
To = 2π / ω Equation (3)
In order to eliminate the circumferential deflection of the bucket 6, the operation time of the acceleration zone and the deceleration zone is set to be substantially an integral multiple of the period To of the pendulum motion, and here, the period To obtained by the equation (3) is the acceleration zone, The operation time in the deceleration zone. In addition, as described in, for example, Patent Document 1, it is known that the fluctuation in the circumferential direction is suppressed by setting the operation time in the acceleration zone and the deceleration zone to be substantially an integral multiple of the period To of the pendulum motion. Therefore, the specific description is omitted here.

次いで、ジブ4の先端の旋回速度Voを式(4)により求める。
Vo=S/{(n+Δ)・To+To} …式(4)
S:A地点からB地点までのジブ4の先端の円周移動距離
n:0以上の整数
Δ:時間差係数
nを変化させて、Vo≦Va(旋回用電動機20の最大旋回速度)の範囲で最適となる一定速度となる旋回速度Voを決定する。通常は、タワークレーン3のサイクルタイムの短縮化の点から、Va以下で最大となる旋回速度Voに設定する。
Next, the turning speed Vo at the tip of the jib 4 is obtained by the equation (4).
Vo = S / {(n + Δ) · To + To} Equation (4)
S: Circumferential travel distance of the tip of the jib 4 from point A to point B n: an integer greater than or equal to 0 Δ: time difference coefficient n is varied within the range of Vo ≦ Va (maximum turning speed of the turning electric motor 20) A turning speed Vo that is an optimum constant speed is determined. Normally, from the viewpoint of shortening the cycle time of the tower crane 3, the turning speed Vo is set to the maximum at Va or less.

旋回速度Voが決定されることにより、加速区間、減速区間の加速度aは、
a=Vo/To …式(5)
で求められる。
等速運転時間tpは、
tp=(n+Δ)・To …式(6)
で求められる。
以上により、ジブ4の全旋回時間ttは、
tt=tp+2To …式(7)
として決定される。
By determining the turning speed Vo, the acceleration a in the acceleration section and the deceleration section is
a = Vo / To (5)
Is required.
The constant speed operation time tp is
tp = (n + Δ) · To (6)
Is required.
From the above, the total turning time tt of the jib 4 is
tt = tp + 2To (7)
As determined.

以下、時間差係数Δについて説明する。
バケット6に関する加速時の運動方程式は式(8)、式(9)となる。
Hereinafter, the time difference coefficient Δ will be described.
Equations (8) and (9) are equations of motion for the bucket 6 during acceleration.

Figure 2009083977
Figure 2009083977

式(8)の一般解は、x=a(cosωt−1)/ωとなり、したがって、円周方向速度は、dx/dt=−(a・sinωt)/ωとなる。ωは振子運動の固有角速度である。これを用いて式(9)を解くことにより、加速終了時の半径方向振れ変位yt=Toと半径方向速度(dy/dt)t=Toは、それぞれ式(10)、式(11)で与えられる。 The general solution of equation (8) is x = a (cos ωt−1) / ω 2 , and therefore the circumferential speed is dx / dt = − (a · sin ωt) / ω. ω is the intrinsic angular velocity of the pendulum motion. By solving the equation (9) using this, the radial deflection displacement yt = To and the radial velocity (dy / dt) t = To at the end of acceleration are expressed by the equations (10) and (11), respectively. Given.

Figure 2009083977
Figure 2009083977

次に、これらの値を用いて等速区間開始時における半径方向の振動の時間差係数Δ/2を求める。時間差係数Δ/2はΔに関する式(12)から求めることができる。また、半径方向の振動の振幅Aは式(13)で与えられる。   Next, using these values, a time difference coefficient Δ / 2 of vibration in the radial direction at the start of the constant velocity section is obtained. The time difference coefficient Δ / 2 can be obtained from the equation (12) regarding Δ. Further, the amplitude A of the vibration in the radial direction is given by Expression (13).

Figure 2009083977
Figure 2009083977

以上の式(12)、(13)から、等速運転時間tpに関する前記式(6)が求められる。   From the above equations (12) and (13), the above equation (6) regarding the constant speed operation time tp is obtained.

図5は、バケット6がA地点からB地点まで移動する際の、半径方向の振動変化を示すグラフであり、縦軸が半径方向振れ変位、横軸が時間である。また、図6は、バケット6がA地点からB地点まで移動する際の、半径方向の振動変化を示す平面説明図である。図5および図6から、バケット6は、Vo/(Rω)を中心に振幅Aで振動しており、加速区間の終了するTo経過時の変位yは半径方向外側の最大振れ幅の変位とはならず、時間差(Δ/2)・Toだけ半径方向内側寄りに位置していることが分かる。つまり、時間差(Δ/2)・Toとは、加速区間の終了時点から、遠心力により生じる吊荷の半径方向の振動で最初の最大振れ変位になるまでの時間差をいう。したがって、この時間差(Δ/2)・Toが存在するため、等速区間の運転時間を単に振子運動の周期Toの略整数倍に設定しただけでは、B地点で半径方向の振れは収まらない。 FIG. 5 is a graph showing a change in vibration in the radial direction when the bucket 6 moves from the point A to the point B. The vertical axis represents the radial deflection displacement, and the horizontal axis represents time. FIG. 6 is an explanatory plan view showing a vibration change in the radial direction when the bucket 6 moves from the point A to the point B. 5 and 6, the bucket 6 vibrates with an amplitude A centering on Vo 2 / (Rω 2 ), and the displacement y when To elapses at the end of the acceleration section is the displacement of the maximum deflection width on the radially outer side. However, it can be seen that it is located inward in the radial direction by a time difference (Δ / 2) · To. That is, the time difference (Δ / 2) · To means the time difference from the end of the acceleration section to the first maximum deflection displacement due to the radial vibration of the suspended load caused by the centrifugal force. Therefore, since this time difference (Δ / 2) · To exists, the vibration in the radial direction cannot be settled at the point B simply by setting the operation time in the constant speed section to an approximately integral multiple of the period To of the pendulum motion.

これに対して、本発明では、等速区間の運転時間を、加速区間が終了した直後の時間差(Δ/2)・Toと、これを打ち消すために対称的に設けた減速区間の開始直前の時間差(Δ/2)・Toとを加えた時間差Δ・Toを最小とし、これに適宜に周期Toの略整数倍を加えた時間、すなわちtp=(n+Δ)・Toに設定する。減速区間の加速度は加速区間のそれと同一に設定されているから、減速区間の間に時間差(Δ/2)・Toの分の振れが打ち消されることになり、B地点でバケット6が停止したときに半径方向の振れは発生しない。なお、図5、図6では、n=3とした場合を示している。   On the other hand, in the present invention, the operation time in the constant speed section is the time difference (Δ / 2) · To immediately after the acceleration section ends, and the time immediately before the start of the deceleration section provided symmetrically to cancel this. The time difference Δ · To obtained by adding the time difference (Δ / 2) · To is minimized, and a time obtained by adding a substantially integer multiple of the period To to this time, that is, tp = (n + Δ) · To is set. Since the acceleration in the deceleration zone is set to be the same as that in the acceleration zone, the time difference (Δ / 2) · To will be canceled during the deceleration zone, and the bucket 6 stops at point B. No radial wobbling occurs. 5 and 6 show a case where n = 3.

以下、本発明を適用したタワークレーン3の動作を説明する。先ず、タワークレーン3を自動運転させるにあたり、打設位置の決定等を手動で行う準備操作について説明する。
タワークレーン3を任意の位置から運転開始状態とする場合、図1において、ジブ4の旋回動作とジブ4の起伏動作およびワイヤ5の巻き下げ動作をオペレータが手動で操作し、ホッパ8が位置するC地点までバケット6を移動させる。このC地点が旋回角度θの基準位置およびジブ4の起伏角度φの基準位置となる。そして、ジブ4の起伏角度φはそのままで、ジブ4をトランスファーカ2からの移載箇所の上方まで旋回させ、一旦ワイヤ5を下げてバケット6をトランスファーカ2からの移載箇所に位置させる。
Hereinafter, operation | movement of the tower crane 3 to which this invention is applied is demonstrated. First, a preparation operation for manually determining a placement position and the like when the tower crane 3 is automatically operated will be described.
When the tower crane 3 is put into an operation start state from an arbitrary position, in FIG. 1, the operator manually operates the turning operation of the jib 4, the raising and lowering operation of the jib 4, and the lowering operation of the wire 5, and the hopper 8 is positioned. Move bucket 6 to point C. This point C becomes the reference position of the turning angle θ and the reference position of the undulation angle φ of the jib 4. Then, with the undulation angle φ of the jib 4 as it is, the jib 4 is turned to above the transfer location from the transfer car 2, the wire 5 is once lowered, and the bucket 6 is positioned at the transfer location from the transfer car 2.

この間にジブ4の旋回した角度が角度検出器12により検出され、演算部17において旋回角度θが算出される。また、ジブ4の起伏角度φは角度検出器11により検出され、演算部17において、前記式(1)に基づいて旋回半径Rが算出される。以降、式(2)〜式(13)を用いて説明した手順により、演算部17において、式(3)の加速区間、減速区間の時間To(Toの略整数倍であってもよい)、式(4)の等速の旋回速度Vo、式(5)の加速区間、減速区間の加速度a、式(6)の等速運転時間tp、式(7)の全旋回時間ttが算出され、図4に示した速度グラフが決定される。   During this time, the angle at which the jib 4 is turned is detected by the angle detector 12, and the turning angle θ is calculated by the calculation unit 17. Further, the undulation angle φ of the jib 4 is detected by the angle detector 11, and the turning radius R is calculated by the calculation unit 17 based on the formula (1). Thereafter, according to the procedure described using Expression (2) to Expression (13), in the calculation unit 17, the acceleration section and the deceleration section time To of Expression (3) (may be a substantially integer multiple of To), The constant speed turning speed Vo of the equation (4), the acceleration a of the equation (5), the acceleration a of the deceleration region, the constant speed operation time tp of the equation (6), and the total turning time tt of the equation (7) are calculated. The speed graph shown in FIG. 4 is determined.

次いで、タワークレーン3の自動運転の動作について説明する。
「(1)バンカ線1上におけるワイヤ5の巻き上げ」
トランスファーカ2からバケット6へ生コンクリートを移載完了した旨の信号を受け、オペレータが本発明に係る振れ止め制御システムを作動させると、距離検出器16から出力信号が出力され、演算部17の演算処理の基づいて、バケット6がA地点に位置するまでワイヤ5が巻き上げられる。
Next, the automatic operation of the tower crane 3 will be described.
"(1) Winding of the wire 5 on the bunker wire 1"
When a signal indicating that the ready-mixed concrete has been transferred from the transferer 2 to the bucket 6 is received and the operator activates the steadying control system according to the present invention, an output signal is output from the distance detector 16, Based on the arithmetic processing, the wire 5 is wound up until the bucket 6 is located at the point A.

「(2)ジブ4の旋回(往路)」
バケット6がA地点に達するのと前後して、演算部17では式(2)〜式(13)に基づいた演算処理がなされ、先ず、Toの時間をかけて旋回速度Voまで加速するように出力制御部18が旋回用電動機20を制御する。そして、速度検出器13の出力信号が演算部17で監視され、旋回速度Voとなった時点で出力制御部18は旋回速度Voを維持するように旋回用電動機20を制御する。加速区間の時間は振子の周期To(若しくは周期Toの略整数倍)であるため、旋回速度Voに達した時点でバケット6の円周方向の振れは取り除かれる。
“(2) Jib 4 turns (outward)”
Before and after the bucket 6 reaches the point A, the calculation unit 17 performs calculation processing based on the equations (2) to (13), and first accelerates to the turning speed Vo over time To. The output control unit 18 controls the turning electric motor 20. Then, the output signal of the speed detector 13 is monitored by the arithmetic unit 17, and when the turning speed Vo is reached, the output control unit 18 controls the turning electric motor 20 so as to maintain the turning speed Vo. Since the time of the acceleration section is the pendulum period To (or approximately an integer multiple of the period To), the circumferential vibration of the bucket 6 is removed when the turning speed Vo is reached.

旋回速度Voに達した時点から、式(6)で求めた等速運転時間tp経過後、加速区間と同じ加速度で減速してB地点で停止するように、つまりToの時間をかけてB地点で停止するように出力制御部18が旋回用電動機20を制御する。等速運転時間tpは(n+Δ)Toに設定されているので、B地点でバケット6は楕円運動が発生することなく停止する。これにより、タワークレーン3の運搬サイクルタイムの短縮化が図れる。   From the time when the turning speed Vo is reached, after the constant speed operation time tp obtained by the equation (6) has elapsed, the vehicle decelerates at the same acceleration as the acceleration section and stops at the B point. The output control unit 18 controls the turning electric motor 20 so as to stop. Since the constant speed operation time tp is set to (n + Δ) To, the bucket 6 stops at point B without causing elliptical motion. Thereby, the conveyance cycle time of the tower crane 3 can be shortened.

「(3)ホッパ8上におけるワイヤ5の巻き下げ」
B地点で停止後、演算部17より出力制御部18にワイヤ5の巻き下げ指令が出され、出力制御部18の制御により巻き取り用電動機21がワイヤ5を下げる。速度検出器15、距離検出器16等の出力信号が監視され、バケット6がC地点に達したら巻き取り用電動機21を停止させる。
“(3) Lowering of the wire 5 on the hopper 8”
After stopping at the point B, the calculation unit 17 issues a command to lower the wire 5 to the output control unit 18, and the winding motor 21 lowers the wire 5 under the control of the output control unit 18. The output signals from the speed detector 15 and the distance detector 16 are monitored, and when the bucket 6 reaches point C, the winding motor 21 is stopped.

「(4)生コンクリートの放出」
バケット6内の生コンクリートはホッパ8に自動放出され、放出完了の信号がオペレータに伝達される。
“(4) Release of ready-mixed concrete”
The ready-mixed concrete in the bucket 6 is automatically discharged to the hopper 8, and a signal indicating the completion of the discharge is transmitted to the operator.

「(5)ホッパ8上におけるワイヤ5の巻き上げ」
生コンクリートの放出完了の信号を受け、オペレータが振れ止め制御システムを作動させると、演算部17より出力制御部18にワイヤ5の巻き上げ指令が出され、出力制御部18の制御により巻き取り用電動機21がワイヤ5を巻き上げる。速度検出器15、距離検出器16等の出力信号が監視され、バケット6がB地点に達したら巻き取り用電動機21を停止させる。
“(5) Winding of the wire 5 on the hopper 8”
When the operator activates the steady rest control system in response to the completion signal of the ready-mixed concrete, the operation unit 17 issues a wire 5 winding command to the output control unit 18, and the output control unit 18 controls the winding motor. 21 winds up the wire 5. Output signals from the speed detector 15 and the distance detector 16 are monitored, and when the bucket 6 reaches the point B, the winding motor 21 is stopped.

「(6)ジブ4の旋回(復路)」
ジブ4の先端からバケット6までの距離Hは往路と変わらないので、往路のときと同様に、Toの時間をかけて旋回速度Voまで加速するように出力制御部18が旋回用電動機20を制御する。そして、速度検出器13の出力信号が演算部17で監視され、旋回速度Voとなった時点で出力制御部18は旋回速度Voを維持するように旋回用電動機20を制御する。旋回速度Voに達した時点でバケット6の円周方向の振れは取り除かれる。
“(6) Jib 4 turn (return)”
Since the distance H from the tip of the jib 4 to the bucket 6 is not different from the forward path, the output control unit 18 controls the turning electric motor 20 so as to accelerate to the turning speed Vo over time To as in the forward path. To do. Then, the output signal of the speed detector 13 is monitored by the arithmetic unit 17, and when the turning speed Vo is reached, the output control unit 18 controls the turning electric motor 20 so as to maintain the turning speed Vo. When the turning speed Vo is reached, the circumferential deflection of the bucket 6 is removed.

旋回速度Voに達した時点から、式(6)で求めた等速運転時間tp経過後、加速区間と同じ加速度で減速してA地点で停止するように、つまりToの時間をかけてA地点で停止するように出力制御部18が旋回用電動機20を制御する。A地点でバケット6は楕円運動が発生することなく停止する。   From the time when the turning speed Vo is reached, after the constant speed operation time tp obtained by the equation (6) has elapsed, the vehicle decelerates at the same acceleration as the acceleration section and stops at the point A. The output control unit 18 controls the turning electric motor 20 so as to stop. At point A, the bucket 6 stops without causing elliptical motion.

「(7)ワイヤ5の巻き下げ、生コンクリートの積み込み」
バケット6がA地点に到着すると、演算部17より出力制御部18にワイヤ5の巻き下げ指令が出され、出力制御部18の制御により巻き取り用電動機21がワイヤ5を下げる。速度検出器15、距離検出器16等の出力信号が監視され、バケット6がトランスファーカ2からの移載箇所に位置したら巻き取り用電動機21を停止させる。トランスファーカ2はバケット6を自動的に検知して生コンクリートを投入する。そして、トランスファーカ2からバケット6へ生コンクリートを移載完了した旨の信号がオペレータに送信される。以降は(1)〜(7)の手順を繰り返す。
"(7) Lowering wire 5, loading fresh concrete"
When the bucket 6 arrives at point A, the operation unit 17 issues a command to lower the wire 5 to the output control unit 18, and the winding motor 21 lowers the wire 5 under the control of the output control unit 18. Output signals from the speed detector 15 and the distance detector 16 are monitored, and the winding motor 21 is stopped when the bucket 6 is positioned at a transfer position from the transfer car 2. The transferer 2 automatically detects the bucket 6 and throws ready-mixed concrete. Then, a signal indicating that the ready-mixed concrete has been transferred from the transfer car 2 to the bucket 6 is transmitted to the operator. Thereafter, the procedures (1) to (7) are repeated.

なお、旋回開始地点であるA地点、旋回終了地点であるB地点、旋回中心等の位置の決定については、例えば3次元座標データを直接コンピュータに入力する方式にすることもできる。   In addition, about the determination of positions, such as A point which is a turning start point, B point which is a turning end point, a turning center, it can also be set as the system which inputs 3D coordinate data directly to a computer, for example.

以上、本発明の好適な実施形態について説明した。説明した形態では、旋回中のワイヤ5の長さを一定としたため、円周方向の振れ止めとして設定する加速区間、減速区間の時間を振子運動の周期Toの略整数倍とした。しかし、たとえば、特許文献1に記載されているように、加速区間、減速区間でそれぞれワイヤを巻き上げ、巻き下げる場合、加速区間においては、加速開始時のワイヤの吊長さに基づく吊荷の振子運動の周期と加速終了時のワイヤの吊長さに基づく吊荷の振子運動の周期との平均値の略整数倍とし、減速区間においては、減速開始時のワイヤの吊長さに基づく吊荷の振子運動の周期と減速終了時のワイヤの吊長さに基づく吊荷の振子運動の周期との平均値の略整数倍とするものとし、本発明では、このような周期の平均値の略整数倍も、「振子運動の周期Toの略整数倍」として包含するものとする。   The preferred embodiments of the present invention have been described above. In the described form, since the length of the wire 5 during turning is constant, the time of the acceleration section and the deceleration section set as the circumferential steady rest is set to be substantially an integral multiple of the period To of the pendulum motion. However, for example, as described in Patent Document 1, when a wire is wound up and down in an acceleration section and a deceleration section, respectively, in the acceleration section, a suspended pendulum based on the suspension length of the wire at the start of acceleration is used. It is approximately an integer multiple of the average value of the period of movement and the period of pendulum movement of the suspended load based on the suspended length of the wire at the end of acceleration. The average value of the pendulum movement period and the period of the pendulum movement of the suspended load based on the suspended length of the wire at the end of deceleration is approximately an integral multiple of the average value. An integer multiple is also included as “substantially an integral multiple of the period To of the pendulum motion”.

ダム周辺をコンクリート打設する際のタワークレーンおよび付帯設備の配置例を示す側面図である。It is a side view which shows the example of arrangement | positioning of the tower crane and incidental equipment at the time of placing concrete around a dam. ダム周辺をコンクリート打設する際のタワークレーンおよび付帯設備の配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of the tower crane and incidental equipment at the time of placing concrete around a dam. 本発明に係る振れ止め制御システムの構成ブロック図である。It is a block diagram of the configuration of the steady rest control system according to the present invention. ジブの旋回周速度の変化を示すグラフである。It is a graph which shows the change of the turning peripheral speed of a jib. 吊荷の半径方向の振動変化を示すグラフである。It is a graph which shows the vibration change of the radial direction of a suspended load. 吊荷の半径方向の振動変化を示す平面説明図である。It is plane explanatory drawing which shows the vibration change of the radial direction of a suspended load.

符号の説明Explanation of symbols

1 バンカ線
2 トランスファーカ
3 タワークレーン
4 ジブ
5 ワイヤ
6 バケット(吊荷)
1 Bunker Line 2 Transfer Car 3 Tower Crane 4 Jib 5 Wire 6 Bucket (Suspended Load)

Claims (2)

ジブを旋回させてワイヤで吊った吊荷を運搬するクレーンにおいて、
ジブを旋回半径一定として加速区間、等速区間、減速区間の順で旋回させ、
加速区間および減速区間の運転時間を、互いに同一の時間であって、吊荷の振子運動の周期Toの略整数倍に設定するとともに、
加速区間の終了時点から、遠心力により生じる吊荷の半径方向の振動で最初の最大振れ変位になるまでの時間差を「(Δ/2)・To」として、等速区間の運転時間を「(n+Δ)・To」(n:0以上の整数)に設定することにより、
停止地点における吊荷の振れを止めることを特徴とするクレーンの振れ止め制御方法。
In a crane that turns a jib and carries a suspended load suspended by a wire,
Rotate the jib in the order of acceleration section, constant speed section, deceleration section with a constant turning radius,
The operation time of the acceleration section and the deceleration section is the same time as each other, and is set to a substantially integer multiple of the period To of the pendulum motion of the suspended load.
The time difference from the end of the acceleration section to the first maximum deflection displacement due to the radial vibration of the suspended load caused by centrifugal force is defined as “(Δ / 2) · To”, and the operation time of the constant speed section is represented by “( n + Δ) · To ”(n: integer greater than or equal to 0)
A crane steady-state control method, characterized in that suspension of suspended load at a stop point is stopped.
ジブを旋回させてワイヤで吊った吊荷を運搬するクレーンにおいて、
ジブを旋回半径一定として加速区間、等速区間、減速区間の順で旋回させ、
加速区間および減速区間の運転時間を、互いに同一の時間であって、吊荷の振子運動の周期Toの略整数倍に設定するとともに、
加速区間の終了時点から、遠心力により生じる吊荷の半径方向の振動で最初の最大振れ変位になるまでの時間差を「(Δ/2)・To」として、等速区間の運転時間を「(n+Δ)・To」(n:0以上の整数)に設定する演算部を有することを特徴とするクレーンの振れ止め制御システム。
In a crane that turns a jib and carries a suspended load suspended by a wire,
Rotate the jib in the order of acceleration section, constant speed section, deceleration section with a constant turning radius,
The operation time of the acceleration section and the deceleration section is the same time as each other, and is set to a substantially integer multiple of the period To of the pendulum motion of the suspended load.
The time difference from the end of the acceleration section to the first maximum deflection displacement due to the radial vibration of the suspended load caused by centrifugal force is defined as “(Δ / 2) · To”, and the operation time of the constant speed section is represented by “( A crane steady-state control system having a calculation unit set to (n + Δ) · To ”(n: an integer equal to or greater than 0).
JP2007254381A 2007-09-28 2007-09-28 Crane steady rest control method and steady rest control system Expired - Fee Related JP4572224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254381A JP4572224B2 (en) 2007-09-28 2007-09-28 Crane steady rest control method and steady rest control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254381A JP4572224B2 (en) 2007-09-28 2007-09-28 Crane steady rest control method and steady rest control system

Publications (2)

Publication Number Publication Date
JP2009083977A true JP2009083977A (en) 2009-04-23
JP4572224B2 JP4572224B2 (en) 2010-11-04

Family

ID=40657902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254381A Expired - Fee Related JP4572224B2 (en) 2007-09-28 2007-09-28 Crane steady rest control method and steady rest control system

Country Status (1)

Country Link
JP (1) JP4572224B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001324A (en) * 2010-06-17 2012-01-05 Okumura Corp Method of controlling crane
JP2012041180A (en) * 2010-08-23 2012-03-01 Okumura Corp Method of controlling crane
DE112010001460T5 (en) 2009-03-31 2012-05-16 Hitachi Automotive Systems, Ltd. In-vehicle control device
CN105388761A (en) * 2015-12-10 2016-03-09 上海海事大学 Positive and negative POSICAST input shaping method-based crane anti-swing control method
CN113104730A (en) * 2021-03-09 2021-07-13 北京佰能盈天科技股份有限公司 Anti-swing control method and device in rotation process of lifting appliance
WO2022050023A1 (en) * 2020-09-07 2022-03-10 株式会社神戸製鋼所 Turning swing stopping device for crane and crane provided with same
KR20230012013A (en) 2020-06-22 2023-01-25 제이에프이 스틸 가부시키가이샤 Unloading crane, how to prevent shaking of the unloading crane, and how to transport the unloading
CN116165963A (en) * 2023-04-19 2023-05-26 苏州迈卡格自动化设备有限公司 Anti-swing PLC motion curve calculation method and control system for ultra-high stacker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50541A (en) * 1973-05-09 1975-01-07
JPS53111957A (en) * 1977-03-10 1978-09-29 Mitsubishi Heavy Ind Ltd Device for preventing luggage from swinging for turning crane
JPH0891774A (en) * 1994-07-28 1996-04-09 Kobe Steel Ltd Method and device for swing stop control of crane
JP3241591B2 (en) * 1996-04-10 2001-12-25 株式会社奥村組 Crane control method
JP2004161460A (en) * 2002-11-14 2004-06-10 Ishikawajima Transport Machinery Co Ltd Method of controlling swing stopper for lifted load of rotary crane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50541A (en) * 1973-05-09 1975-01-07
JPS53111957A (en) * 1977-03-10 1978-09-29 Mitsubishi Heavy Ind Ltd Device for preventing luggage from swinging for turning crane
JPH0891774A (en) * 1994-07-28 1996-04-09 Kobe Steel Ltd Method and device for swing stop control of crane
JP3241591B2 (en) * 1996-04-10 2001-12-25 株式会社奥村組 Crane control method
JP2004161460A (en) * 2002-11-14 2004-06-10 Ishikawajima Transport Machinery Co Ltd Method of controlling swing stopper for lifted load of rotary crane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010001460T5 (en) 2009-03-31 2012-05-16 Hitachi Automotive Systems, Ltd. In-vehicle control device
DE112010001460B4 (en) 2009-03-31 2021-10-14 Hitachi Automotive Systems, Ltd. In-vehicle control device
JP2012001324A (en) * 2010-06-17 2012-01-05 Okumura Corp Method of controlling crane
JP2012041180A (en) * 2010-08-23 2012-03-01 Okumura Corp Method of controlling crane
CN105388761A (en) * 2015-12-10 2016-03-09 上海海事大学 Positive and negative POSICAST input shaping method-based crane anti-swing control method
KR20230012013A (en) 2020-06-22 2023-01-25 제이에프이 스틸 가부시키가이샤 Unloading crane, how to prevent shaking of the unloading crane, and how to transport the unloading
WO2022050023A1 (en) * 2020-09-07 2022-03-10 株式会社神戸製鋼所 Turning swing stopping device for crane and crane provided with same
JP7414672B2 (en) 2020-09-07 2024-01-16 株式会社神戸製鋼所 Crane swivel rest device and crane equipped with the same
CN113104730A (en) * 2021-03-09 2021-07-13 北京佰能盈天科技股份有限公司 Anti-swing control method and device in rotation process of lifting appliance
CN113104730B (en) * 2021-03-09 2023-11-17 北京佰能盈天科技股份有限公司 Anti-swing control method and equipment in rotation process of lifting appliance
CN116165963A (en) * 2023-04-19 2023-05-26 苏州迈卡格自动化设备有限公司 Anti-swing PLC motion curve calculation method and control system for ultra-high stacker

Also Published As

Publication number Publication date
JP4572224B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4572224B2 (en) Crane steady rest control method and steady rest control system
JP5293977B2 (en) Crane steady rest control method and steady rest control apparatus
JP4840442B2 (en) Suspended load stabilization device
US20210206605A1 (en) System and method for transporting a swaying hoisted load
JP6673745B2 (en) Crane steady rest control method and system
JP6684442B2 (en) Control method and control device for suspension crane
JP5686404B2 (en) Crane control method
JP2007161393A (en) Swing prevention control method for crane
JP7117852B2 (en) hoisting machine
CN102530729A (en) Method and system for controlling pendulum of suspender
JP5686401B2 (en) Crane control method
JP7297645B2 (en) Crane and crane control method
JP3229222B2 (en) Crane suspended load control device
JP2021172472A (en) Operation plan method and device of ceiling type crane and control method and device of ceiling type crane
JP3241591B2 (en) Crane control method
JP3244498B2 (en) Speed control method of trolley for cable crane
JP3325837B2 (en) Control method of dam crane
JPH0356394A (en) Oscillation control method in ceiling crane
JP2007269450A (en) Conveying facility and its control method
JP3242633B2 (en) How to set operation pattern of suspended load suspended by cable crane
JP2766726B2 (en) Steady control device
JPH06135684A (en) Maximum swing angle detecting device
JPS6219353B2 (en)
JPH0891774A (en) Method and device for swing stop control of crane
JP2979824B2 (en) Crane steady rest control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4572224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees