JP6684442B2 - Control method and control device for suspension crane - Google Patents

Control method and control device for suspension crane Download PDF

Info

Publication number
JP6684442B2
JP6684442B2 JP2016100104A JP2016100104A JP6684442B2 JP 6684442 B2 JP6684442 B2 JP 6684442B2 JP 2016100104 A JP2016100104 A JP 2016100104A JP 2016100104 A JP2016100104 A JP 2016100104A JP 6684442 B2 JP6684442 B2 JP 6684442B2
Authority
JP
Japan
Prior art keywords
trolley
speed
suspended load
deceleration
speed command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016100104A
Other languages
Japanese (ja)
Other versions
JP2017206358A (en
Inventor
金子 貴之
貴之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016100104A priority Critical patent/JP6684442B2/en
Priority to CN201710216460.1A priority patent/CN107399674B/en
Publication of JP2017206358A publication Critical patent/JP2017206358A/en
Application granted granted Critical
Publication of JP6684442B2 publication Critical patent/JP6684442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/08Electrical assemblies or electrical control devices for cranes, winches, capstans or electrical hoists

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Description

本発明は、港湾、製鉄所、各種工場等において、トロリを横行させて荷役作業を行う懸垂式クレーンの制御装置及び制御方法に関し、詳しくは、クレーンの運転中断時の吊り荷の振れを抑制するための制御技術に関するものである。   The present invention relates to a control device and a control method for a suspension crane that carries out cargo handling work by traversing a trolley in a harbor, a steel mill, various factories, etc. Control technology for this.

一般に、懸垂式クレーンを用いた荷役作業では、吊り荷を短時間で目標位置へ正確に到達させると共に、トロリの走行中や停止時における吊り荷の振れを零にする振れ止め制御が要求される。
上記の振れ止め制御を行うために、これまで各種の制御方式が開発されており、特に近年では、コンピュータ制御による電気式振れ止め制御が注目されている。
Generally, in cargo handling work using a suspended crane, steady rest control is required to make the suspended load accurately reach the target position in a short time and to reduce the swing of the suspended load during traveling or when the trolley is stopped. .
In order to perform the above steady rest control, various control methods have been developed so far, and particularly in recent years, electric steady rest control by computer control has attracted attention.

電気的振れ止め制御には、トロリの加減速終了時の吊り荷の振れを零にする速度パターンを演算し、この速度パターンに従ってトロリを駆動する方式、及び、吊り荷の振れ量(距離)や振れ角を検出してトロリの駆動系にフィードバック制御する方式がある。   The electric steady rest control calculates a speed pattern that makes the swing of the suspended load zero at the end of acceleration / deceleration of the trolley, drives the trolley according to this speed pattern, and the swing amount (distance) of the suspended load. There is a method of detecting the deflection angle and performing feedback control on the drive system of the trolley.

ここで、図6は、前者の速度パターンに基づく方式の一例として、特許文献1に記載された振れ止め制御装置を示している。
この振れ止め制御装置は、所定の速度パターンに従ってトロリ装置70を駆動することにより、トロリ70bの走行中及び停止時の吊り荷70dの振れ角θを零にしながら吊り荷70dを最短時間で始点位置から目標位置に運搬することを目的としている。
Here, FIG. 6 shows the steady rest control device described in Patent Document 1 as an example of the former method based on the speed pattern.
This steady rest control device drives the trolley device 70 in accordance with a predetermined speed pattern so as to set the swing angle θ of the suspended load 70d to zero while the traveling trolley 70b is running and stopped, and starts the suspended load 70d at the starting point position in the shortest time. It is intended to be transported to the target position from.

以下、この従来技術による振れ止め制御の概要を説明する。
図6において、入力装置20には、吊り荷70dを支持するロープ70cの長さl、トロリ70bの走行距離L、トロリ70bの最大加速度αmax、最大速度Vmax等の走行条件が入力され、入力装置20の出力側には速度パターン演算装置30、荷振れ角演算装置40、及び評価基準演算装置80が接続されている。
Hereinafter, an outline of the steady rest control according to this conventional technique will be described.
6, the input device 20 is input with travel conditions such as the length l of the rope 70c supporting the suspended load 70d, the travel distance L of the trolley 70b, the maximum acceleration α max of the trolley 70b, and the maximum speed V max . To the output side of the input device 20, a speed pattern calculation device 30, a load shake angle calculation device 40, and an evaluation reference calculation device 80 are connected.

速度パターン演算装置30は、例えば5種類の速度パターン演算部30a〜30eを備えており、演算部30aには速度パターン1、演算部30bには速度パターン2というように、各演算部30a〜30eには、トロリ70bの速度パターン1〜5がそれぞれ設定されている。これらの演算部30a〜30eは、入力装置20から出力されるロープ長l、走行距離L等の走行条件に応じた加速度切替時刻及び加速度変化量を、個々の速度パターンを対象として演算する。   The speed pattern calculation device 30 includes, for example, five kinds of speed pattern calculation units 30a to 30e. The calculation unit 30a has a speed pattern 1 and the calculation unit 30b has a speed pattern 2, for example, the calculation units 30a to 30e. , The speed patterns 1 to 5 of the trolley 70b are set. These calculation units 30a to 30e calculate the acceleration switching time and the acceleration change amount according to the traveling conditions such as the rope length 1 and the traveling distance L output from the input device 20 for each speed pattern.

図7は、速度パターン1〜5の例を示している。
速度パターン1,2はいわゆる台形状の速度パターンであり、Vは一般的な設定速度、Vmaxは最大速度、t,tは加速度切替時刻、tは停止時刻を示す。また、速度パターン3〜5は、加速区間及び減速区間において加速、減速,等速を適宜組み合わせた例であり、tafは加速度切替時刻、tは停止時刻を示す。
FIG. 7 shows an example of speed patterns 1 to 5.
The speed patterns 1 and 2 are so-called trapezoidal speed patterns. V c is a general set speed, V max is a maximum speed, t 1 and t 2 are acceleration switching times, and t 3 is a stop time. The speed pattern 3-5, the acceleration in the acceleration section and the deceleration section, deceleration, an example of combining a constant velocity appropriate, t af the acceleration change time, the t f shows the stop time.

図6に戻って、荷振れ角演算装置40は、速度パターン1〜5(速度パターン演算部30a〜30e)にそれぞれ対応する荷振れ角演算部40a〜40eを備えている。
これらの荷振れ角演算部40a〜40eは、トロリ70bの運転直前に、速度パターン1〜5の加速度切替時刻及び加速度変化量を用いた状態推移法を適用することにより、加速・減速区間及び定速区間における振れ角θを演算する。
Returning to FIG. 6, the load shake angle calculation device 40 includes load shake angle calculation units 40a to 40e corresponding to the speed patterns 1 to 5 (speed pattern calculation units 30a to 30e), respectively.
These load deflection angle calculation units 40a to 40e apply the state transition method using the acceleration switching time and the acceleration change amount of the speed patterns 1 to 5 immediately before the operation of the trolley 70b, thereby accelerating and decelerating sections and constants. The deflection angle θ in the high speed section is calculated.

評価基準演算装置80は、速度パターン演算装置30から出力される加速度、加速度変化量、加速度切替時刻、走行時間、及び、荷振れ角演算装置40から出力される振れ角θに基づいて速度パターン1〜5を評価することにより、振れ角θが小さく、かつ目標位置まで最短時間で走行可能な速度パターンを決定し、その速度パターンを示す選択信号を速度パターン選択装置50に出力する。
速度パターン選択装置50は、上記選択信号に従って選択した一つの速度パターンを速度制御装置60に出力する。
The evaluation reference calculation device 80 calculates the speed pattern 1 based on the acceleration output from the speed pattern calculation device 30, the acceleration change amount, the acceleration switching time, the traveling time, and the deflection angle θ output from the load deflection angle calculation device 40. By evaluating 5 to 5, a speed pattern having a small deflection angle θ and capable of traveling to the target position in the shortest time is determined, and a selection signal indicating the speed pattern is output to the speed pattern selection device 50.
The speed pattern selection device 50 outputs one speed pattern selected according to the selection signal to the speed control device 60.

速度制御装置60は、速度検出器60eによる速度検出値が、入力された速度パターン(速度指令)に追従するように、差分回路60a、補償回路60b、増幅回路60cを動作させて電動機60dをフィードバック制御し、電動機60dの駆動力をトロリ装置70の歯車機構70aに伝達してトロリ70bを駆動する。これにより、トロリ70bの走行時及び停止時における吊り荷70dの振れ角θを零に抑制しつつトロリ70bを目標位置に到達させている。   The speed control device 60 operates the difference circuit 60a, the compensation circuit 60b, and the amplification circuit 60c to feed back the electric motor 60d so that the speed detection value by the speed detector 60e follows the input speed pattern (speed command). The trolley 70b is driven by controlling and transmitting the driving force of the electric motor 60d to the gear mechanism 70a of the trolley device 70. As a result, the trolley 70b is allowed to reach the target position while suppressing the deflection angle θ of the suspended load 70d during traveling and when the trolley 70b is stopped.

なお、この従来技術では、トロリ70bの横行中はロープ長lが一定であること、トロリ70bの加速度が零の時点から走行を開始すること、振れ摩擦や振れ角θは十分に小さいこと等を解析の条件としている。   In this prior art, the rope length l is constant during traverse of the trolley 70b, the traveling is started from the time when the acceleration of the trolley 70b is zero, and the run-out friction and run-out angle θ are sufficiently small. It is a condition for analysis.

特公平2−44757号公報(第2頁右欄第23行〜第3頁第右欄第24行、第2図,第3図等)Japanese Patent Publication No. 2-44757 (Page 2, right column, line 23 to page 3, right column, line 24, FIG. 2, FIG. 3, etc.)

いま、吊り荷70dの巻き上げ高さをX、トロリ70bの移動量をXとすると、懸垂式クレーンによる荷役動作では、吊り荷70dを短時間で目標位置へ到達させるために、図8(b)に示す如く、吊り荷70dの昇降及びトロリ70bの横行を同時に実行しながら、吊り荷70dが始点O→A→B→C→D→Eという軌跡を辿るように制御することが望ましい。
しかし、特許文献1に係る振れ止め制御装置では、トロリ70bの横行中にロープ長lが一定であることを条件としているため、昇降動作と横行動作とを同時に行うことを予定していない。その結果、吊り荷70dは図8(a)のように始点O→F→G→Eという軌跡を辿らざるを得ず、非常に効率の悪い動作となってしまう。
Now, hanging hoisting height of the load 70d X h, when the amount of movement of the trolley 70b and X t, the cargo handling operation by hanging crane, in order to reach the target position in a short time the suspended load 70d, FIG. 8 ( As shown in b), it is desirable to control the suspended load 70d so that the suspended load 70d follows the locus of the starting point O → A → B → C → D → E while simultaneously performing the lifting and lowering of the suspended load 70d and the traverse of the trolley 70b.
However, in the steady rest control device according to Patent Document 1, the rope length l is constant during the traverse of the trolley 70b, and therefore the vertical movement and the transverse movement are not planned to be performed at the same time. As a result, the suspended load 70d is forced to follow a locus of starting points O → F → G → E as shown in FIG. 8A, resulting in extremely inefficient operation.

ここで、横行中のロープ長lが一定という条件であっても、図9(a)に示すように、トロリ70bの速度vが一定である定速走行時にその動作を中断する場合、従来技術の速度パターンを用いてトロリ70bを減速していって停止させれば、停止時の吊り荷70dの振れ角θを零に収束させることができる。
しかしながら、図9(b)に示す如く、トロリ70bの加速中に吊り荷70dが大きく振れている状態で走行動作を中断する場合、前述の速度パターンを適用すると、前提条件に当てはまらないため振れ角θが零に収束せず、発振してしまう恐れがある。
Here, even if the rope length l during traverse is constant, as shown in FIG. 9A, when the operation is interrupted during constant speed traveling in which the speed v T of the trolley 70b is constant, If the trolley 70b is decelerated and stopped using the speed pattern of the technique, the swing angle θ of the suspended load 70d at the time of stop can be converged to zero.
However, as shown in FIG. 9B, when the traveling operation is interrupted while the suspended load 70d is largely swinging during acceleration of the trolley 70b, if the above-described speed pattern is applied, the precondition is not satisfied, and thus the swing angle is increased. θ may not converge to zero and may oscillate.

そこで、本発明の解決課題は、吊り荷の昇降及びトロリの横行を同時に実行している際に動作中断要求が発生した場合でも、トロリの停止時における吊り荷の振れを抑制可能とした懸垂式クレーンの制御方法及び制御装置を提供することにある。   Therefore, a problem to be solved by the present invention is to provide a suspension system capable of suppressing the swing of the suspended load when the trolley is stopped even when an operation interruption request is generated while simultaneously performing the lifting of the suspended load and the traverse of the trolley. A crane control method and a control device are provided.

上記課題を解決するため、請求項1に係る制御方法は、トロリからロープにより懸垂された吊り荷を始点位置から目標位置まで運搬する懸垂式クレーンの制御方法であって、前記トロリの横行動作及び前記吊り荷の昇降動作が可能な懸垂式クレーンの制御方法において、
前記トロリの走行中に前記クレーンの動作中断信号が発生した時に前記吊り荷の昇降動作を停止すると共に、
前記吊り荷の振れ量と、前記吊り荷の振れ速度を前記吊り荷の固有角速度により除算した量と、を各軸に持ち、かつ、前記トロリの定速走行時の第1の円軌道と前記トロリの加減速走行時の第2の円軌道とを有する位相平面を構成し、
前記トロリの停止時に前記振れ量及び前記振れ速度が零となるように、前記トロリの減速開始タイミング及び前記トロリの減速度を前記位相平面上の軌跡から求め、前記減速開始タイミング及び前記減速度に従って前記トロリの減速を開始するものである。
In order to solve the above-mentioned problems, the control method according to claim 1 is a control method for a suspension crane that conveys a suspended load suspended from a trolley by a rope from a starting point position to a target position. In a control method of a suspension crane capable of lifting operation of the suspended load,
While stopping the lifting operation of the suspended load when the operation suspension signal of the crane is generated during traveling of the trolley,
A swing amount of the suspended load and an amount obtained by dividing the swing speed of the suspended load by the natural angular velocity of the suspended load are provided on each axis, and the first circular orbit during constant speed traveling of the trolley and the A phase plane having a second circular orbit during acceleration / deceleration of the trolley,
The deceleration start timing of the trolley and the deceleration of the trolley are obtained from the locus on the phase plane so that the shake amount and the shake speed become zero when the trolley is stopped, and according to the deceleration start timing and the deceleration. The deceleration of the trolley is started.

請求項2に記載した制御方法は、請求項1に記載した懸垂式クレーンの制御方法において、前記位相平面における前記第1の円軌道と前記第2の円軌道との交点の一つを前記減速開始タイミングとするものである。   The control method according to claim 2 is the control method for a suspended crane according to claim 1, wherein the deceleration is performed at one of intersections of the first circular trajectory and the second circular trajectory in the phase plane. This is the start timing.

請求項3に記載した制御方法は、請求項1または2に記載した懸垂式クレーンの制御方法において、前記減速度を、前記固有角速度と前記トロリの速度と前記位相平面上の位相とに基づいて求めるものである。   The control method according to claim 3 is the control method for the suspension crane according to claim 1 or 2, wherein the deceleration is based on the natural angular velocity, the trolley velocity, and the phase on the phase plane. It is what you want.

請求項4に記載した制御装置は、トロリからロープにより懸垂された吊り荷を始点位置から目標位置まで運搬する懸垂式クレーンの制御装置であって、前記トロリを横行させる横行装置及び前記吊り荷を昇降させる昇降装置を有する懸垂式クレーンの制御装置において、
少なくともトロリ目標速度、トロリ加速度及びロープ長を入力として前記トロリの逐次速度指令を生成する速度指令生成部と、
任意のタイミングで前記クレーンの動作中断信号が発生した時に前記トロリの動作中断時速度指令を生成する動作中断時速度指令生成部と、
前記動作中断信号の発生時に前記逐次速度指令を前記動作中断時速度指令に切り替えて出力する速度指令切替部と、
前記逐次速度指令または前記動作中断時速度指令に従って速度制御信号を生成する速度制御部と、
前記速度制御信号に従って駆動される前記昇降装置、前記横行装置及び前記トロリを含むトロリ機械系と、
前記吊り荷の振れ量を検出する振れセンサと、を備え、
前記トロリの走行中に前記動作中断信号が発生した時に、前記速度制御部を介して前記吊り荷の昇降動作を停止すると共に、
前記動作中断時速度指令生成部は、
前記吊り荷の振れ量と、前記吊り荷の振れ速度を前記吊り荷の固有角速度により除算した量と、を各軸に持つ位相平面を構成し、前記トロリの停止時に前記振れ量及び前記振れ速度が零となるように、前記トロリの減速開始タイミング及び前記トロリの減速度を前記位相平面上の軌跡から求め、前記減速開始タイミング及び前記減速度に従って前記トロリの減速を開始させる速度指令を前記動作中断時速度指令として生成するものである。
The control device according to claim 4 is a control device for a suspension crane that conveys a suspended load suspended from a trolley by a rope from a starting point position to a target position, the traverse device for traversing the trolley, and the suspended load. In a suspension crane control device having a lifting device for lifting and lowering,
At least a trolley target speed, a trolley acceleration, and a rope length, and a speed command generation unit that generates a sequential speed command of the trolley,
An operation-interruption speed command generation unit that generates an operation-interruption speed command for the trolley when an operation-interruption signal for the crane is generated at any timing;
A speed command switching unit that switches and outputs the sequential speed command to the speed command at the time of operation interruption when the operation interruption signal is generated,
A speed control unit that generates a speed control signal according to the sequential speed command or the speed command at the time of operation interruption;
A trolley mechanical system including the lifting device, the traverse device, and the trolley driven according to the speed control signal;
A shake sensor for detecting a shake amount of the suspended load,
When the operation interruption signal is generated during traveling of the trolley, while stopping the lifting operation of the suspended load via the speed control unit,
The speed command generation unit at the time of operation interruption,
A deflection plane of the suspended load and an amount obtained by dividing the deflection velocity of the suspended load by the natural angular velocity of the suspended load constitute a phase plane having each axis, and the deflection amount and the deflection speed when the trolley is stopped. So as to be zero, the deceleration start timing of the trolley and the deceleration of the trolley are obtained from the locus on the phase plane, and the speed command for starting the deceleration of the trolley is started according to the deceleration start timing and the deceleration. It is generated as a speed command during interruption.

本発明によれば、吊り荷の昇降及びトロリの横行を同時に実行している際にクレーンの動作中断要求が発生した場合でも、トロリの減速を開始するタイミング及び減速度を、吊り荷の振れ量及び振れ速度に関する位相平面上の軌跡に基づいて求めることにより、トロリの停止時における吊り荷の振れ量が零となるように制御することができる。   According to the present invention, even when a crane operation interruption request is generated while simultaneously performing lifting and lowering of a suspended load and traverse of the trolley, the timing and deceleration at which the deceleration of the trolley is started are set as the swing amount of the suspended load. Also, by obtaining it based on the trajectory on the phase plane regarding the shake velocity, it is possible to control so that the shake amount of the suspended load when the trolley is stopped becomes zero.

本発明の実施形態に係る制御装置を示すブロック図である。It is a block diagram showing a control device concerning an embodiment of the present invention. 図1におけるトロリ機械系の概念的な構成図である。It is a conceptual block diagram of the trolley mechanical system in FIG. 図1における振れセンサの機能を説明するための図である。It is a figure for demonstrating the function of the shake sensor in FIG. 吊り荷の振れ量x及び(d/dt)(x/ω)に関する位相平面図である。FIG. 7 is a phase plan view regarding the shake amount x L of a suspended load and (d / dt) (x L / ω). 吊り荷の振れ量x及び(d/dt)(x/ω)に関する位相平面図である。FIG. 7 is a phase plan view regarding the shake amount x L of a suspended load and (d / dt) (x L / ω). 特許文献1に記載された振れ止め制御装置の構成図である。It is a block diagram of the steady rest control apparatus described in patent document 1. 図6に示した従来技術における速度パターンの説明図である。It is explanatory drawing of the speed pattern in the prior art shown in FIG. クレーン荷役動作における吊り荷の軌跡を示す図である。It is a figure which shows the locus | trajectory of the suspended load in crane cargo handling operation. トロリの走行動作中断時のトロリ速度と吊り荷振れ角との関係を示す図である。It is a figure which shows the relationship between the trolley speed at the time of the traveling operation interruption of a trolley, and the swing load swing angle.

以下、図に沿って本発明の実施形態を説明する。
図1は、本実施形態に係る懸垂式クレーンの制御装置を示すブロック図である。この制御装置は、速度指令生成部1、動作中断時速度指令生成部2、速度指令切替部3、速度制御部4、トロリ機械系5、及び振れセンサ6によって構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a control device for a suspended crane according to this embodiment. This control device is composed of a speed command generation unit 1, a speed command generation unit during operation interruption 2, a speed command switching unit 3, a speed control unit 4, a trolley mechanical system 5, and a shake sensor 6.

速度指令生成部1は、トロリ目標速度V、トロリ加速度α、及びロープ長lを入力として、トロリの逐次速度指令v’を生成し、出力する。トロリの加速時には、トロリの速度vがトロリ目標速度Vに達するまで、トロリ加速度αを調整して逐次速度指令v’を変更していく。
この時、速度指令生成部1は、特許文献1と同様に、ロープ長lからロープ及び吊り荷系の固有角速度(固有角振動数)ωをω=√(g/l)(gは重力加速度)により求め、トロリの加速・減速区間及び定速区間を組み合わせた速度パターン(逐次速度指令v’)を生成することで、トロリが目標速度Vに到達した時点における吊り荷の振れを零にすることができる。
The speed command generator 1 receives the trolley target speed V T , the trolley acceleration α T , and the rope length 1 as inputs, and generates and outputs a trolley sequential speed command v ′ T. During acceleration of the trolley, the trolley acceleration α T is adjusted to sequentially change the speed command v ′ T until the trolley speed v T reaches the trolley target speed V T.
At this time, the speed command generation unit 1 determines the natural angular velocity (natural angular frequency) ω of the rope and the loading system from ω = √ (g / l) (g is the gravitational acceleration) from the rope length 1 as in Patent Document 1. ), And generate a speed pattern (sequential speed command v ′ T ) combining the acceleration / deceleration section and the constant speed section of the trolley, the swing of the suspended load at the time when the trolley reaches the target speed V T is zero. Can be

動作中断時速度指令生成部2、速度指令切替部3、及び速度制御部4については後述することとし、次に、トロリ機械系5及び振れセンサ6の構成、機能について説明する。
図2は、トロリ機械系5の概念的な構成図である。
図2において、7は横行軌道8に沿って走行するトロリ、9は吊り荷(吊り荷を把時するスプレッダ、ヘッドブロック等を含む)、12はロープ、10は吊り荷9を昇降動作させる昇降装置(巻上げ・巻下げ装置)、11はトロリ7を横行動作させる横行装置である。昇降装置10及び横行装置11は、主に電動機、減速機、及びロープ巻き取り用のドラム等によって構成されている。
The operation-interruption speed command generation unit 2, the speed command switching unit 3, and the speed control unit 4 will be described later. Next, the configurations and functions of the trolley mechanical system 5 and the shake sensor 6 will be described.
FIG. 2 is a conceptual configuration diagram of the trolley mechanical system 5.
In FIG. 2, 7 is a trolley that travels along a traverse path 8, 9 is a suspended load (including a spreader for holding the suspended load, a head block, etc.), 12 is a rope, and 10 is a lift for moving the suspended load 9 up and down. A device (hoisting / lowering device) 11 is a traverse device for traversing the trolley 7. The elevating device 10 and the traversing device 11 are mainly composed of an electric motor, a speed reducer, a rope winding drum, and the like.

図3は、振れセンサ6の機能を説明するための図である。
振れセンサ6は、例えばトロリ7に光学的検出手段を配置し、鉛直線を基準とした吊り荷9の振れ量(距離)xまたは振れ角θを検出する。この実施形態では、振れセンサ6が振れ量xを検出するものとして説明を続ける。
FIG. 3 is a diagram for explaining the function of the shake sensor 6.
The shake sensor 6 has, for example, an optical detection means arranged on the trolley 7, and detects the shake amount (distance) x L or the shake angle θ of the hanging load 9 with reference to the vertical line. In this embodiment, the description will be continued assuming that the shake sensor 6 detects the shake amount x L.

図1に戻って、動作中断時速度指令生成部2は、速度指令生成部1から出力される逐次速度指令v’と、任意のタイミングで発生するクレーンの動作中断信号Sと、振れセンサ6により検出した吊り荷9の振れ量xとに基づいて、動作中断時速度指令v’を生成する。 Returning to FIG. 1, the speed command generator 2 at the time of motion interruption includes the sequential speed command v ′ T output from the speed command generator 1, the crane motion interrupt signal S generated at an arbitrary timing, and the shake sensor 6. Based on the shake amount x L of the suspended load 9 detected by the above, the speed command v ′ S during operation interruption is generated.

次に、動作中断時速度指令v’の生成について説明する。
吊り荷9の振れ量xは、トロリ7が加速度αで運動している場合、振り子の運動方程式に基づき数式1に従って変化する。

Figure 0006684442
Next, generation of the speed command v ′ S at the time of operation interruption will be described.
The shake amount x L of the suspended load 9 changes according to Formula 1 based on the pendulum motion equation when the trolley 7 is moving at acceleration α T.
Figure 0006684442

なお、数式1を展開すると、数式2に示す円の方程式となる。

Figure 0006684442
In addition, when Formula 1 is expanded, it becomes a circle equation shown in Formula 2.
Figure 0006684442

ここで、図4は、吊り荷9の振れ量xを縦軸とし、振れ速度(dx/dt)を角速度ωで除算した値である(d/dt)(x/ω)を横軸とした位相平面図であり、吊り荷9の軌跡を概念的に示したものである。
図4において、トロリ加速度αが零の場合(定速走行時)に、吊り荷9の軌跡は、極座標系における原点(0,0)を中心とした円軌道Aに沿って、偏角θ=ωtとして角速度ωで移動し、また、トロリ加速度αが一定の場合には、点(0,α/ω)を中心とした円軌道Bに沿って移動する。
Here, in FIG. 4, the deflection amount x L of the suspended load 9 is taken as the vertical axis, and the deflection velocity (dx L / dt) is divided by the angular velocity ω (d / dt) (x L / ω) FIG. 3 is a phase plan view with an axis, conceptually showing the locus of the suspended load 9.
In FIG. 4, when the trolley acceleration α T is zero (when traveling at a constant speed), the locus of the suspended load 9 follows the circular orbit A centered at the origin (0, 0) in the polar coordinate system and has a declination θ. = Ωt, the vehicle moves at an angular velocity ω, and when the trolley acceleration α T is constant, it moves along a circular orbit B centered on the point (0, α T / ω 2 ).

トロリ7の加速中に動作中断信号Sが発生した場合には、a→b→cという経路を辿り、また、トロリ7の定速走行中に動作中断信号Sが発生した場合には、b→cという経路を辿れば良い。いずれにしても、吊り荷9の振れ量xを零にするためには、軌跡が原点(0,0)を通るように所定のタイミングでトロリ加速度(減速度)αを与えること、及び、原点(0,0)においてトロリ速度vが零になることが必要である。 When the operation interruption signal S is generated during acceleration of the trolley 7, the route a → b → c is followed, and when the operation interruption signal S is generated while the trolley 7 is traveling at a constant speed, b → Follow the route c. In any case, in order to set the shake amount x L of the suspended load 9 to zero, the trolley acceleration (deceleration) α T is given at a predetermined timing so that the locus passes through the origin (0, 0), and , It is necessary that the trolley speed v T becomes zero at the origin (0,0).

ここで、トロリ加速度αとして零または一定値をどのタイミングで与えれば振れ量xを零にできるかについて説明する。なお、動作中断信号Sが発生した時点で、吊り荷9の昇降動作を停止することを前提とするため、ロープ長lの変化は無視することができる。 Here, it will be described at what timing the zero or a constant value is given as the trolley acceleration α T to make the shake amount x L zero. Since it is premised that the lifting / lowering operation of the suspended load 9 is stopped when the operation interruption signal S is generated, the change in the rope length 1 can be ignored.

吊り荷9を昇降させずにトロリ7だけを横行させるのであれば、減速時に与えるべき加速度αは、加速時と等しくすれば良いことが分かっているが、吊り荷9を巻き上げながらトロリ7を移動させる場合もある。
そこで、図4に示す如く、トロリ7が速度vで定速走行しており、位相平面上の軌跡が円軌道Aにある時に動作中断信号Sが発生したものと仮定し、この場合にトロリ7に与えるべき減速度α及び減速開始タイミングについて説明する。なお、図4において、(π−z)は減速開始タイミングを極座標で見た場合の位相であり、z=ωv/2αである。
It is known that if only the trolley 7 is allowed to traverse without raising or lowering the suspended load 9, the acceleration α T that should be applied during deceleration should be equal to that during acceleration, but the trolley 7 should be raised while the suspended load 9 is being rolled up. It may be moved.
Therefore, as shown in FIG. 4, it is assumed that the trolley 7 is traveling at a constant speed v T and the operation interruption signal S is generated when the locus on the phase plane is the circular orbit A. In this case, The deceleration α T and the deceleration start timing to be given to No. 7 will be described. In FIG. 4, (π-z) is the phase when the deceleration start timing is viewed in polar coordinates, and z = ωv T / 2α T.

まず、図4における原点(0,0)、点(0,α/ω)、及び減速開始タイミング(円軌道A,Bの交点)を頂点とする三角形から、数式3が成り立つ。

Figure 0006684442
First, Expression 3 is established from the triangle having the origin (0, 0), the point (0, α T / ω 2 ) and the deceleration start timing (the intersection of the circular trajectories A and B) as vertices in FIG.
Figure 0006684442

数式3において、ωv/2α=zとおくと数式4が得られ、zは数式5を満たす必要がある。

Figure 0006684442
Figure 0006684442
If ωv T / 2α T = z is set in Expression 3, Expression 4 is obtained, and z needs to satisfy Expression 5.
Figure 0006684442
Figure 0006684442

z=0〜πの範囲で、数式5の(sinz/z)は単調減少関数になるので、この逆関数を得る関数を用意しておいてzを求め、更に、トロリ7に与えるべき減速度αを、ωv/2α=zにより求める。 In the range of z = 0 to π, (sinz / z) in Equation 5 is a monotonically decreasing function. Therefore, a function for obtaining this inverse function is prepared, z is calculated, and further, the deceleration to be given to the trolley 7. α T is calculated by ω v T / 2α T = z.

次に、トロリ7の減速開始タイミングについては、図5に示すように、位相が(π−z)以下の間は軌跡bに従って定速走行し、位相が(π−z)に達した時点で軌跡cに移行させて減速に切り替えれば良いことが分かる。
なお、トロリ7の加速中に任意のタイミングで運転中断信号Sが発生したら、その直前の振れ量x及び振れ速度(dx/dt)を用いて、原点(0,0)回りで見た初期位相θと半径rとを求め、トロリ7の加速を中断して位相が(π−z)に達するまで固有角速度ωにより定速走行させ、その後に位相が(π−z)に達した時点で減速に切り替えれば良い。
Next, regarding the deceleration start timing of the trolley 7, as shown in FIG. 5, while the phase is (π-z) or less, the vehicle travels at a constant speed according to the trajectory b, and when the phase reaches (π-z). It is understood that it is sufficient to shift to the locus c and switch to deceleration.
When the operation interruption signal S is generated at an arbitrary timing during acceleration of the trolley 7, it is observed around the origin (0, 0) using the shake amount x L and the shake velocity (dx L / dt) immediately before that. The initial phase θ 0 and the radius r are obtained, the acceleration of the trolley 7 is interrupted, the vehicle is run at a constant speed by the natural angular velocity ω until the phase reaches (π-z), and then the phase reaches (π-z). Just switch to deceleration at that point.

また、固有角速度ωは、重力加速度をgとした場合、前述したようにロープ長lを用いた下記の数式6により、吊り荷9の高さが変化した場合でも逐次的に算出することが可能である。これにより、吊り荷9の昇降とトロリ7の横行とを同時に行っている時に動作中断信号Sが発生した場合でも、トロリ7に与えるべき減速度α及び減速開始タイミングを適切に求めることができる。

Figure 0006684442
Further, when the gravitational acceleration is g, the natural angular velocity ω can be sequentially calculated by the following equation 6 using the rope length 1 as described above even when the height of the suspended load 9 changes. Is. Accordingly, even when the operation interruption signal S is generated while the lifting load 9 is being raised and lowered and the trolley 7 is being traversed at the same time, the deceleration α T and the deceleration start timing to be given to the trolley 7 can be appropriately obtained. .
Figure 0006684442

図1の速度指令切替部3は、通常動作時には、速度指令v’として逐次速度指令v’をそのまま出力しているが、クレーンの動作中断信号Sが入力された時には、逐次速度指令v’に代えて動作中断時速度指令v’を選択し、速度指令v’として出力する。この速度指令v’は、前述したトロリ7の減速度及び減速開始タイミング等の情報を含む速度パターンに相当する。なお、動作中断信号Sの入力時には、前述したように昇降装置10の動作を停止させる。 The speed command switching unit 3 in FIG. 1 outputs the speed command v ′ T as the speed command v ′ as it is during normal operation, but when the crane operation interruption signal S is input, the speed command switching unit 3 outputs the speed command v ′ sequentially. Instead of T , the speed command v ′ S at the time of operation interruption is selected and output as the speed command v ′. The speed command v'corresponds to the speed pattern including information such as the deceleration of the trolley 7 and the deceleration start timing described above. When the operation interruption signal S is input, the operation of the lifting device 10 is stopped as described above.

速度制御部4は、速度指令切替部3から入力された速度指令v’に従ってトロリ機械系5の昇降装置10及び横行装置11を制御するための速度制御信号を生成する。
特に、動作中断信号Sの発生時には、昇降装置10の動作を停止させると共に、動作中断時速度指令v’に情報として含まれるトロリ7の減速度α及び減速開始タイミングに従って速度制御信号を生成し、この速度制御信号により横行装置11の動作を制御してトロリ7を減速させ、停止させる。
The speed control unit 4 generates a speed control signal for controlling the lifting device 10 and the traverse device 11 of the trolley mechanical system 5 in accordance with the speed command v ′ input from the speed command switching unit 3.
In particular, when the operation interruption signal S is generated, the operation of the lifting device 10 is stopped, and the speed control signal is generated according to the deceleration α T of the trolley 7 and the deceleration start timing included as information in the operation interruption speed command v ′ S. Then, the operation of the traverse device 11 is controlled by this speed control signal to decelerate and stop the trolley 7.

トロリ7の減速度α及び減速開始タイミングは、位相平面上の軌跡が図4,図5における原点(0,0)を通り、しかも原点(0,0)においてトロリ速度vが零になるように求めているため、トロリ7の停止時における吊り荷9の振れ量xを零にすることができる。 Regarding the deceleration α T and the deceleration start timing of the trolley 7, the locus on the phase plane passes through the origin (0, 0) in FIGS. 4 and 5, and the trolley velocity v T becomes zero at the origin (0, 0). Therefore, the shake amount x L of the suspended load 9 when the trolley 7 is stopped can be made zero.

なお、上述した実施形態は、定速走行(減速のタイミングを待っている状態)と減速走行とを組み合わせた場合のものであるが、位相平面上の軌跡が原点を通り、原点においてトロリ速度vが零になる条件であれば、定速走行、減速走行、加速走行を適宜組み合わせて実現しても構わない。 Although the above-described embodiment is a combination of constant speed traveling (a state of waiting for deceleration timing) and deceleration traveling, the trajectory on the phase plane passes through the origin and the trolley speed v is set at the origin. As long as T is zero, constant speed traveling, deceleration traveling, and acceleration traveling may be combined as appropriate.

1:速度指令生成部
2:動作中断時速度指令生成部
3:速度指令切替部
4:速度制御部
5:トロリ機械系
6:振れセンサ
7:トロリ
8:横行軌道
9:吊り荷
10:昇降装置
11:横行装置
12:ロープ
1: Speed command generation unit 2: Speed command generation unit during operation interruption 3: Speed command switching unit 4: Speed control unit 5: Trolley mechanical system 6: Shake sensor 7: Trolley 8: Traverse track 9: Suspended load 10: Lifting device 11: Traverse device 12: Rope

Claims (4)

トロリからロープにより懸垂された吊り荷を始点位置から目標位置まで運搬する懸垂式クレーンの制御方法であって、前記トロリの横行動作及び前記吊り荷の昇降動作が可能な懸垂式クレーンの制御方法において、
前記トロリの走行中に前記クレーンの動作中断信号が発生した時に前記吊り荷の昇降動作を停止すると共に、
前記吊り荷の振れ量と、前記吊り荷の振れ速度を前記吊り荷の固有角速度により除算した量と、を各軸に持ち、かつ、前記トロリの定速走行時の第1の円軌道と前記トロリの加減速走行時の第2の円軌道とを有する位相平面を構成し、
前記トロリの停止時に前記振れ量及び前記振れ速度が零となるように、前記トロリの減速開始タイミング及び前記トロリの減速度を前記位相平面上の軌跡から求め、前記減速開始タイミング及び前記減速度に従って前記トロリの減速を開始することを特徴とする懸垂式クレーンの制御方法。
A control method for a suspension crane that conveys a suspended load suspended from a trolley by a rope from a starting point position to a target position, in a control method for a suspended crane capable of traversing operation of the trolley and lifting operation of the suspended load. ,
While stopping the lifting operation of the suspended load when the operation suspension signal of the crane is generated during traveling of the trolley,
A swing amount of the suspended load and an amount obtained by dividing the swing speed of the suspended load by the natural angular velocity of the suspended load are provided on each axis, and the first circular orbit during constant speed traveling of the trolley and the A phase plane having a second circular orbit during acceleration / deceleration of the trolley,
The deceleration start timing of the trolley and the deceleration of the trolley are obtained from the locus on the phase plane so that the shake amount and the shake speed become zero when the trolley is stopped, and according to the deceleration start timing and the deceleration. A method for controlling a suspension crane, comprising decelerating the trolley.
請求項1に記載した懸垂式クレーンの制御方法において、
前記位相平面における前記第1の円軌道と前記第2の円軌道との交点の一つを前記減速開始タイミングとすることを特徴とする懸垂式クレーンの制御方法。
The method for controlling a suspended crane according to claim 1,
A method for controlling a suspended crane, wherein one of the intersections of the first circular orbit and the second circular orbit on the phase plane is set as the deceleration start timing.
請求項1または2に記載した懸垂式クレーンの制御方法において、
前記減速度を、前記固有角速度と前記トロリの速度と前記位相平面上の位相とに基づいて求めることを特徴とする懸垂式クレーンの制御方法。
The control method for the suspension crane according to claim 1 or 2,
A method for controlling a suspended crane, wherein the deceleration is obtained based on the natural angular velocity, the velocity of the trolley, and the phase on the phase plane.
トロリからロープにより懸垂された吊り荷を始点位置から目標位置まで運搬する懸垂式クレーンの制御装置であって、前記トロリを横行させる横行装置及び前記吊り荷を昇降させる昇降装置を有する懸垂式クレーンの制御装置において、
少なくともトロリ目標速度、トロリ加速度及びロープ長を入力として前記トロリの逐次速度指令を生成する速度指令生成部と、
任意のタイミングで前記クレーンの動作中断信号が発生した時に前記トロリの動作中断時速度指令を生成する動作中断時速度指令生成部と、
前記動作中断信号の発生時に前記逐次速度指令を前記動作中断時速度指令に切り替えて出力する速度指令切替部と、
前記逐次速度指令または前記動作中断時速度指令に従って速度制御信号を生成する速度制御部と、
前記速度制御信号に従って駆動される前記昇降装置、前記横行装置及び前記トロリを含むトロリ機械系と、
前記吊り荷の振れ量を検出する振れセンサと、を備え、
前記トロリの走行中に前記動作中断信号が発生した時に、前記速度制御部を介して前記吊り荷の昇降動作を停止すると共に、
前記動作中断時速度指令生成部は、
前記吊り荷の振れ量と、前記吊り荷の振れ速度を前記吊り荷の固有角速度により除算した量と、を各軸に持つ位相平面を構成し、前記トロリの停止時に前記振れ量及び前記振れ速度が零となるように、前記トロリの減速開始タイミング及び前記トロリの減速度を前記位相平面上の軌跡から求め、前記減速開始タイミング及び前記減速度に従って前記トロリの減速を開始させる速度指令を前記動作中断時速度指令として生成することを特徴とする懸垂式クレーンの制御装置。
A control device of a suspension type crane that conveys a suspended load suspended from a trolley by a rope from a starting point position to a target position, of a suspension type crane having a traverse device that traverses the trolley and an elevating device that elevates and lowers the suspended load. In the control device,
At least a trolley target speed, a trolley acceleration, and a rope length, and a speed command generation unit that generates a sequential speed command of the trolley,
An operation-interruption speed command generation unit that generates an operation-interruption speed command for the trolley when an operation-interruption signal for the crane is generated at any timing;
A speed command switching unit that switches and outputs the sequential speed command to the speed command at the time of operation interruption when the operation interruption signal is generated,
A speed control unit that generates a speed control signal according to the sequential speed command or the speed command at the time of operation interruption;
A trolley mechanical system including the lifting device, the traverse device, and the trolley driven according to the speed control signal;
A shake sensor for detecting a shake amount of the suspended load,
When the operation interruption signal is generated during traveling of the trolley, while stopping the lifting operation of the suspended load via the speed control unit,
The speed command generation unit at the time of operation interruption,
A deflection plane of the suspended load and an amount obtained by dividing the deflection velocity of the suspended load by the natural angular velocity of the suspended load constitute a phase plane having each axis, and the deflection amount and the deflection speed when the trolley is stopped. So as to be zero, the deceleration start timing of the trolley and the deceleration of the trolley are obtained from the locus on the phase plane, and the speed command for starting the deceleration of the trolley is started according to the deceleration start timing and the deceleration. A suspension crane control device, which is generated as a speed command during interruption.
JP2016100104A 2016-05-19 2016-05-19 Control method and control device for suspension crane Expired - Fee Related JP6684442B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016100104A JP6684442B2 (en) 2016-05-19 2016-05-19 Control method and control device for suspension crane
CN201710216460.1A CN107399674B (en) 2016-05-19 2017-04-05 The control method and control device of trolley crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100104A JP6684442B2 (en) 2016-05-19 2016-05-19 Control method and control device for suspension crane

Publications (2)

Publication Number Publication Date
JP2017206358A JP2017206358A (en) 2017-11-24
JP6684442B2 true JP6684442B2 (en) 2020-04-22

Family

ID=60404342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100104A Expired - Fee Related JP6684442B2 (en) 2016-05-19 2016-05-19 Control method and control device for suspension crane

Country Status (2)

Country Link
JP (1) JP6684442B2 (en)
CN (1) CN107399674B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020092B2 (en) * 2017-12-08 2022-02-16 富士電機株式会社 Crane operation control device
JP7384025B2 (en) * 2019-12-25 2023-11-21 富士電機株式会社 Control equipment and inverter equipment for suspended cranes
CN111302222B (en) * 2020-02-27 2021-03-16 武汉理工大学 Bridge crane positioning anti-swing control method capable of realizing random position parking
CN112209251B (en) * 2020-10-30 2021-11-02 华中科技大学 Gantry crane brake swing early warning system and method for hoisting of subway shield tunnel segment
CN112828045B (en) * 2020-12-28 2022-12-06 太原重工股份有限公司 Mandrel transport system and method
WO2023058581A1 (en) * 2021-10-07 2023-04-13 住友重機械搬送システム株式会社 Crane anti-sway control system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912085A (en) * 1982-07-13 1984-01-21 川崎製鉄株式会社 Method of controlling center rest of hung load of crane
JPH0742072B2 (en) * 1986-05-02 1995-05-10 三菱電機株式会社 Steady stop control device for suspension crane
JPH02132098A (en) * 1988-11-10 1990-05-21 Hitachi Kiden Kogyo Ltd Swing damping control method for overhead travelling crane
FI91058C (en) * 1991-03-18 1996-01-10 Kci Kone Cranes Int Oy Procedure for controlling a crane
JP3358768B2 (en) * 1995-04-26 2002-12-24 株式会社安川電機 Method and apparatus for controlling rope steady rest of crane etc.
JP3692621B2 (en) * 1996-05-15 2005-09-07 石川島播磨重工業株式会社 Stabilizer for container crane
US6588610B2 (en) * 2001-03-05 2003-07-08 National University Of Singapore Anti-sway control of a crane under operator's command
JP5293977B2 (en) * 2011-03-17 2013-09-18 富士電機株式会社 Crane steady rest control method and steady rest control apparatus
CN105016210B (en) * 2015-06-10 2017-01-18 河海大学常州校区 Anti-swing control method for crane

Also Published As

Publication number Publication date
CN107399674A (en) 2017-11-28
CN107399674B (en) 2019-02-15
JP2017206358A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6684442B2 (en) Control method and control device for suspension crane
JP5293977B2 (en) Crane steady rest control method and steady rest control apparatus
US7831333B2 (en) Method for the automatic transfer of a load hanging at a load rope of a crane or excavator with a load oscillation damping and a trajectory planner
JP6673745B2 (en) Crane steady rest control method and system
JP7117852B2 (en) hoisting machine
JP2014047022A (en) Control method for movable body
JP6631841B2 (en) Overhead crane control system and overhead crane control method
JP7155603B2 (en) Anti-sway control guidance system
CN109896422B (en) Operation control device for crane
JP7471136B2 (en) Method and device for planning operation of overhead crane, and method and device for controlling overhead crane
JP3019661B2 (en) Crane operation control method
JPH0356396A (en) Ceiling crane with oscillation suppressing driving device
JP2007269450A (en) Conveying facility and its control method
JP2837314B2 (en) Crane steady rest control device
JP2007145519A (en) Swing stop control device for rope trolley type crane
JP2760527B2 (en) Crane control equipment
JPH07291576A (en) Apparatus for controllably stopping sway of hung load
JP2635066B2 (en) Automatic operation method of opposed deck crane
JP2004284737A (en) Swing stop control method for suspension crane
JP2005225593A (en) Crane operation control method
WO2023058581A1 (en) Crane anti-sway control system
JP2001278579A (en) Method and device for controlling swing of hoisted load
JPH0680387A (en) Method for controlling crane positioning and swinging prevention
JP2000313586A (en) Swing stopping controller for suspended cargo
JPH0940364A (en) Clamping and positioning device of crain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200311

R150 Certificate of patent or registration of utility model

Ref document number: 6684442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees