JP2009082937A - Draining device and method for detecting abnormality of air-nozzle - Google Patents

Draining device and method for detecting abnormality of air-nozzle Download PDF

Info

Publication number
JP2009082937A
JP2009082937A JP2007253844A JP2007253844A JP2009082937A JP 2009082937 A JP2009082937 A JP 2009082937A JP 2007253844 A JP2007253844 A JP 2007253844A JP 2007253844 A JP2007253844 A JP 2007253844A JP 2009082937 A JP2009082937 A JP 2009082937A
Authority
JP
Japan
Prior art keywords
air
compressed air
nozzle
slab
clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007253844A
Other languages
Japanese (ja)
Other versions
JP5109557B2 (en
Inventor
Akihiro Arimura
昭洋 有村
Satoshi Nakajima
聡 中島
Takashi Jikuya
隆司 軸屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007253844A priority Critical patent/JP5109557B2/en
Publication of JP2009082937A publication Critical patent/JP2009082937A/en
Application granted granted Critical
Publication of JP5109557B2 publication Critical patent/JP5109557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly detect partial-clogging of an air-nozzle. <P>SOLUTION: One group of air-nozzles 12 linearly arranged in the width direction of a cast billet, are divided into the plurality of systems (#1 to #n), and compressed air is supplied to the air-nozzles 12 of the respective systems from respective air pipings 14 through a header 13. The flowing rate and the pressure are monitored at the respective air pipings 14, and when the flowing rate based on the pressure is decreased, it is judged that the clogging occurs, and the air-nozzle 12 of which system out of the #1 to #n systems is clogged is specified. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水切り装置、及びエアノズルの異常検知方法に関するものである。   The present invention relates to a drainer and an air nozzle abnormality detection method.

連続鋳造の二次冷却では、鋳片の過冷却を防ぐために、エアノズルからの風圧によって水切りを行っている(特許文献1参照)。
実開平1−135156号公報
In secondary cooling of continuous casting, water is drained by wind pressure from an air nozzle in order to prevent overcooling of the slab (see Patent Document 1).
Japanese Utility Model Publication No. 1-135156

エアノズルは、図7に示すように、フラット型のデフレクタノズルで形成されることが多く、この種のノズルもスケールやパウダ等によって目詰まりする可能性がある。エアノズルの上流側で圧力を監視しているので、全体的に目詰まりすれば即座に検知できるが、部分的な目詰まりだとそれが難しい。点検や清掃作業の頻度を増加させることも考えられるが、非効率的である。   As shown in FIG. 7, the air nozzle is often formed of a flat-type deflector nozzle, and this type of nozzle may also be clogged with a scale, powder, or the like. Since the pressure is monitored upstream of the air nozzle, it can be detected immediately if it is totally clogged, but it is difficult if it is partially clogged. Although it may be possible to increase the frequency of inspection and cleaning work, it is inefficient.

本発明の課題は、エアノズルの部分的な目詰まりを速やかに検知することである。   An object of the present invention is to quickly detect partial clogging of an air nozzle.

本発明の請求項1に係る水切り装置は、連続鋳造の過程で鋳片に対して冷却水の水切りを行う水切り装置において、鋳片幅方向に列設され、前記鋳片に対して圧縮空気を噴射可能な一群のエアノズルと、該エアノズルの一群を複数の系統に分割し、各系統ごとに圧縮空気を供給する複数のエア配管と、該エア配管を通過する圧縮空気の流量及び圧力に応じて、各系統ごとに前記エアノズルの目詰まりを検知する検知手段と、を備えることを特徴とする。   A draining device according to claim 1 of the present invention is a draining device for draining cooling water from a slab in the course of continuous casting. The draining device is arranged in the slab width direction, and compressed air is supplied to the slab. A group of air nozzles that can be injected, a group of the air nozzles divided into a plurality of systems, a plurality of air pipes supplying compressed air for each system, and the flow rate and pressure of the compressed air passing through the air pipes And detecting means for detecting clogging of the air nozzle for each system.

本発明の請求項2に係る水切り装置は、前記検知手段が何れかの系統で前記エアノズルの目詰まりを検知したときに、目詰まりを検知した系統の前記エア配管で圧縮空気の圧力を上昇させることを特徴とする。
本発明の請求項3に係る水切り装置は、前記エアノズルは、圧縮空気を扇状に噴射するように構成され、且つ前記エア配管を通過する圧縮空気の流量に応じて噴射方向の回転角が決定されることを特徴とする。
The draining device according to claim 2 of the present invention increases the pressure of the compressed air in the air pipe of the system in which the clogging is detected when the detection means detects clogging of the air nozzle in any system. It is characterized by that.
In the draining device according to claim 3 of the present invention, the air nozzle is configured to inject compressed air in a fan shape, and the rotation angle in the injection direction is determined according to the flow rate of the compressed air passing through the air pipe. It is characterized by that.

本発明の請求項4に係るエアノズルの異常検知方法は、連続鋳造の過程で鋳片に対して冷却水の水切りを行う場合、前記鋳片に対して圧縮空気を噴射可能な一群のエアノズルを鋳片幅方向に列設し、当該一群のエアノズルを複数の系統に分割し、一つの系統に対して一つのエア配管から圧縮空気を供給し、前記エア配管を通過する圧縮空気の流量及び圧力に応じて各系統ごとに前記エアノズルの目詰まりを検知することを特徴とする。   In the air nozzle abnormality detection method according to claim 4 of the present invention, when water is drained from the slab during continuous casting, a group of air nozzles capable of injecting compressed air onto the slab is cast. Lined up in a single width direction, the group of air nozzles is divided into a plurality of systems, compressed air is supplied from one air pipe to one system, and the flow rate and pressure of the compressed air passing through the air pipe are adjusted. Accordingly, the clogging of the air nozzle is detected for each system.

本発明の請求項1に係る水切り装置によれば、鋳片幅方向に列設した一群のエアノズルを複数の系統に分割し、一つの系統に対して一つのエア配管から圧縮空気を供給し、エア配管を通過する圧縮空気の流量及び圧力に応じて、各系統ごとにエアノズルの目詰まりを検知することで、エアノズルの部分的な目詰まり、つまり何れかの系統で発生したエアノズルの目詰まりを速やかに検知することができる。   According to the draining device according to claim 1 of the present invention, the group of air nozzles arranged in the slab width direction is divided into a plurality of systems, and compressed air is supplied from one air pipe to one system, By detecting air nozzle clogging for each system according to the flow rate and pressure of compressed air passing through the air piping, partial clogging of the air nozzles, that is, clogging of air nozzles that occurred in either system It can be detected promptly.

本発明の請求項2に係る水切り装置によれば、何れかの系統でエアノズルの目詰まりを検知したときに、目詰まりした系統のエア配管で圧縮空気の圧力を上昇させることで、同一系統の中で、目詰まりを起こしていないエアノズルから噴射する圧縮空気の流量を増加させ、エア配管を通過する総流量を維持することにより、水切り性能の低下を可及的に抑制することができる。   According to the draining device according to claim 2 of the present invention, when the clogging of the air nozzle is detected in any system, the pressure of the compressed air is increased by the air piping of the clogged system, In particular, by decreasing the flow rate of the compressed air injected from the air nozzle that is not clogged and maintaining the total flow rate that passes through the air piping, it is possible to suppress the reduction of draining performance as much as possible.

本発明の請求項3に係る水切り装置によれば、エア配管を通過する圧縮空気の流量に応じて、エアノズルにおける噴射方向の回転角を決定することで、水切り性能や冷却水の回収性能を向上させることができる。
本発明の請求項4に係るエアノズルの異常検知方法によれば、鋳片幅方向に列設した一群のエアノズルを複数の系統に分割し、一つの系統に対して一つのエア配管から圧縮空気を供給し、エア配管を通過する圧縮空気の流量及び圧力に応じて、各系統ごとにエアノズルの目詰まりを検知することで、エアノズルの部分的な目詰まり、つまり何れかの系統で発生したエアノズルの目詰まりを速やかに検知することができる。
According to the draining device according to claim 3 of the present invention, the drainage performance and the cooling water recovery performance are improved by determining the rotation angle of the injection direction in the air nozzle according to the flow rate of the compressed air passing through the air pipe. Can be made.
According to the air nozzle abnormality detection method of the present invention, the group of air nozzles arranged in the slab width direction is divided into a plurality of systems, and compressed air is supplied from one air pipe to one system. Supplying and detecting the clogging of the air nozzle for each system according to the flow rate and pressure of the compressed air passing through the air piping, the air nozzle partially clogged, that is, the air nozzle generated in any system It is possible to quickly detect clogging.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、垂直曲げ型、連続鋳造機の概略構成である。取鍋1に注入した溶鋼は、タンディッシュ2を経て水冷式の鋳型3へと流入し、ここで急冷され凝固し始めた鋳片を、ダミーバー及びピンチロールによって継続的に下方に引抜き、連続した鋳片4を成形する。鋳型3から引出した鋳片4には、スプレーノズル5によって冷却水を噴霧することで、鋳片4を中心部まで凝固させ、その冷却水は水切り装置6によって除去する。中心部まで凝固した鋳片4は、進路を垂直方向から水平方向に案内され、トーチカッタ7で切断してから搬出する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration of a vertical bending die and a continuous casting machine. The molten steel poured into the ladle 1 flows into the water-cooled mold 3 through the tundish 2, and the slab that has been rapidly cooled and solidified here is continuously drawn downward by a dummy bar and a pinch roll to be continuous. The slab 4 is formed. The slab 4 drawn out from the mold 3 is sprayed with cooling water by the spray nozzle 5 to solidify the slab 4 to the center, and the cooling water is removed by the draining device 6. The slab 4 solidified to the center is guided from the vertical direction to the horizontal direction along the path, and is cut out by the torch cutter 7 before being carried out.

図2は、水切り装置6の概略構成である。鋳片4に向かって上に傾斜した水切り板11を、僅かな隙間を空けて鋳片4に近接させ、この隙間に向けて、水切り板11の下面側に配設したエアノズル12から圧縮空気を噴射することで、鋳片4を伝って落下してくる冷却水を吹飛ばし、水切り板11によって回収し排水する。
図3に示すように、エアノズル12の一群を鋳片幅方向に列設しており、鋳片幅方向の全域を水切りできるように、数量及びピッチを決定する。一群のエアノズル12は、複数の系統♯1〜♯nに分割され、各系統のエアノズル12に対してヘッダ13を介してエア配管14から圧縮空気を供給し、各系統ごとにエア配管14の圧力を調整する。なお、各エア配管14には、流量を検出する流量センサ15と、圧力を検出する圧力センサ16とを配設する。
FIG. 2 is a schematic configuration of the draining device 6. The draining plate 11 inclined upward toward the slab 4 is brought close to the slab 4 with a slight gap, and compressed air is supplied from the air nozzle 12 disposed on the lower surface side of the draining plate 11 toward this gap. By spraying, the cooling water falling along the slab 4 is blown off, and is collected and drained by the draining plate 11.
As shown in FIG. 3, a group of air nozzles 12 are arranged in the slab width direction, and the quantity and pitch are determined so that the entire area in the slab width direction can be drained. The group of air nozzles 12 is divided into a plurality of systems # 1 to #n, and compressed air is supplied from the air piping 14 to the air nozzles 12 of each system via the header 13, and the pressure of the air piping 14 for each system. Adjust. Each air pipe 14 is provided with a flow rate sensor 15 for detecting the flow rate and a pressure sensor 16 for detecting the pressure.

エアノズル12の噴射方向は、図4に示すように、垂直面に対して例えば45度に設定する。この角度が大き過ぎても冷却水の回収性能は低下し、逆に小さ過ぎても垂直方向の省スペース化の点で不利になるからである。
エアノズル12は、圧縮空気を扇状に噴射する構造とし、図5に示すように、噴射方向の回転角を、水平面に対して例えば15度に設定する。エア配管14の流量が多いときには、その角度によって冷却水の回収性能に大きな影響はないが、流量が減少してくると、角度の小さい方が、冷却水の回収性能が高いからである。したがって、その噴射方向の回転角は、エア配管14を通過する圧縮空気の流量に応じて決定する。
As shown in FIG. 4, the jet direction of the air nozzle 12 is set to, for example, 45 degrees with respect to the vertical plane. This is because if the angle is too large, the cooling water recovery performance decreases, and conversely if the angle is too small, it is disadvantageous in terms of space saving in the vertical direction.
The air nozzle 12 has a structure in which compressed air is ejected in a fan shape, and the rotation angle in the ejection direction is set to, for example, 15 degrees with respect to the horizontal plane, as shown in FIG. This is because when the flow rate of the air pipe 14 is large, the angle does not significantly affect the recovery performance of the cooling water, but when the flow rate decreases, the smaller the angle, the higher the recovery performance of the cooling water. Therefore, the rotation angle in the injection direction is determined according to the flow rate of the compressed air passing through the air pipe 14.

一方、夫々のエア配管14で流量及び圧力を監視することで、各系統ごとにエアノズル12が目詰まりしているか否かを判断する。すなわち、圧力に対する流量が減少し、その減少量が所定量を上回ったときに、何れかのエアノズル12が目詰まりしていると判断する。この場合、その旨を管理者に報知すると共に、目詰まりが発生した系統の圧力を、流量の減少量に応じて上昇させる。   On the other hand, by monitoring the flow rate and pressure in each air pipe 14, it is determined whether or not the air nozzle 12 is clogged for each system. That is, when the flow rate with respect to pressure decreases and the amount of decrease exceeds a predetermined amount, it is determined that one of the air nozzles 12 is clogged. In this case, the administrator is notified of this, and the pressure of the system in which clogging has occurred is increased according to the amount of decrease in the flow rate.

次に、本発明の作用効果について説明する。
エアノズル12のうちの何れかがスケールやパウダ等によって目詰まりすると、その部分だけ水切り性能の低下に伴って過冷却され、鋳片4の表面割れが発生する等の品質異常を来たす可能性があるので、こうした目詰まりは速やかに検知し、善処することが必要である。
Next, the function and effect of the present invention will be described.
If any of the air nozzles 12 is clogged with a scale, powder, or the like, only that portion may be supercooled due to a decrease in drainage performance, resulting in quality abnormalities such as surface cracks in the slab 4. Therefore, it is necessary to detect such clogging promptly and take appropriate measures.

本実施形態では、一群のエアノズル12を♯1〜♯nの系統に分割し、一つの系統に対して一つのエア配管14から圧縮空気を供給し、エア配管14の流量及び圧力に応じて、各系統ごとにエアノズル12の目詰まりを検知する。すなわち、各エア配管14の流量及び圧力を監視し、圧力に対する流量が減少したときに、目詰まりが発生していると判断することで、♯1〜♯nの系統のうち、どの系統でエアノズル12が目詰まりしているのかを直ちに特定することができる。このように、エアノズル12の全てが目詰まりしなくても、一部に発生した目詰まりを速やかに検知することができるので、直ちに清掃や部品交換を行い、目詰まりを解消することが可能になる。   In this embodiment, the group of air nozzles 12 is divided into # 1 to #n systems, compressed air is supplied from one air pipe 14 to one system, and according to the flow rate and pressure of the air pipe 14, Clogging of the air nozzle 12 is detected for each system. That is, by monitoring the flow rate and pressure of each air pipe 14 and determining that clogging has occurred when the flow rate with respect to the pressure has decreased, it is possible to determine which of the # 1 to #n systems has the air nozzle. It is possible to immediately identify whether 12 is clogged. In this way, even if all of the air nozzles 12 are not clogged, it is possible to quickly detect clogging that has occurred in part, so it is possible to immediately clean and replace parts to eliminate clogging. Become.

また、目詰まりを検知した時点で、目詰まりが発生した系統の圧力を、流量の減少量に応じて上昇させる。これにより、同一系統の中で、目詰まりを起こしていないエアノズル12から噴射する圧縮空気の流量を増加させ、エア配管14を通過する総流量を維持することができるので、清掃や部品交換によって目詰まりを解消するまでの期間も、水切り性能の低下を可及的に抑制することができる。   Further, when the clogging is detected, the pressure of the system in which the clogging has occurred is increased according to the amount of decrease in the flow rate. As a result, the flow rate of the compressed air injected from the air nozzle 12 that is not clogged in the same system can be increased, and the total flow rate passing through the air pipe 14 can be maintained. Also during the period until the clogging is eliminated, it is possible to suppress the decrease in draining performance as much as possible.

また、エアノズル12における噴射方向の回転角を、エア配管14を通過する圧縮空気の流量に応じて決定するので、水切り性能や冷却水の回収性能を向上させることができる。
ここで、目詰まりによる水切り性能への影響を評価した実験結果について説明する。
図6は、実験結果である。一系統に5本のエアノズル12を配設し、5本で噴射した場合(目詰まり0本)と、4本で噴射した場合(中央の1本が目詰まり)と、3本で噴射した場合(中央の両側2本が目詰まり)とで、圧力及び流量に対する水切り性能の評価を行った。実験は、実機と同様のエアノズル12を使用しているが、落下水の水量、並びにエア配管14の流量及び圧力は、実機に対する約1/13の規模で行ったものである。その結果、5本のうち、1本又は2本が目詰まりしたとしても、圧力を上昇させて流量を維持すれば、良好な水切り性能を維持できることを確認できた。
Moreover, since the rotation angle of the injection direction in the air nozzle 12 is determined according to the flow rate of the compressed air passing through the air pipe 14, the draining performance and the cooling water recovery performance can be improved.
Here, the experimental result which evaluated the influence on the draining performance by clogging is demonstrated.
FIG. 6 shows the experimental results. When five air nozzles 12 are arranged in one system and injected with 5 nozzles (no clogging), when injected with 4 nozzles (the central one is clogged), and when injected with 3 nozzles (The two on the two sides are clogged), and the drainage performance with respect to pressure and flow rate was evaluated. In the experiment, the same air nozzle 12 as that in the actual machine is used, but the amount of the falling water and the flow rate and pressure of the air pipe 14 are about 1/13 of the actual machine. As a result, even if one or two of the five were clogged, it was confirmed that good drainage performance could be maintained by increasing the pressure and maintaining the flow rate.

連続鋳造設備の概略構成である。It is a schematic structure of a continuous casting facility. 水切り装置の概略構成を示す。The schematic structure of the drainer is shown. エアノズルのレイアウトである。It is a layout of an air nozzle. 垂直面に対する噴射角度による冷却水の回収性能を示す。The cooling water recovery performance by the injection angle with respect to the vertical plane is shown. 噴射方向の回転角による冷却水の回収性能を示す。The cooling water recovery performance by the rotation angle in the injection direction is shown. 目詰まりによる水切り性能への影響を示す。Shows the effect of clogging on drainage performance. 従来のフラット型のデフレクタノズルである。This is a conventional flat-type deflector nozzle.

符号の説明Explanation of symbols

4 鋳片
6 水切り装置
11 水切り板
12 エアノズル
13 ヘッダ
14 エア配管
15 流量センサ
16 圧力センサ
4 Casting 6 Draining device 11 Draining plate 12 Air nozzle 13 Header 14 Air piping 15 Flow rate sensor 16 Pressure sensor

Claims (4)

連続鋳造の過程で鋳片に対して冷却水の水切りを行う水切り装置において、
鋳片幅方向に列設され、前記鋳片に対して圧縮空気を噴射可能な一群のエアノズルと、該エアノズルの一群を複数の系統に分割し、各系統ごとに圧縮空気を供給する複数のエア配管と、該エア配管を通過する圧縮空気の流量及び圧力に応じて、各系統ごとに前記エアノズルの目詰まりを検知する検知手段と、を備えることを特徴とする水切り装置。
In the draining device that drains the cooling water on the slab in the process of continuous casting,
A group of air nozzles arranged in the width direction of the slab and capable of injecting compressed air to the slab, and a plurality of airs for dividing the group of air nozzles into a plurality of systems and supplying the compressed air for each system A draining apparatus comprising: a pipe; and a detecting unit that detects clogging of the air nozzle for each system in accordance with a flow rate and a pressure of compressed air passing through the air pipe.
前記検知手段が何れかの系統で前記エアノズルの目詰まりを検知したときに、目詰まりを検知した系統の前記エア配管で圧縮空気の圧力を上昇させることを特徴とする請求項1に記載の水切り装置。   2. The drainer according to claim 1, wherein when the detection unit detects clogging of the air nozzle in any system, the pressure of the compressed air is increased in the air piping of the system in which the clogging is detected. apparatus. 前記エアノズルは、圧縮空気を扇状に噴射するように構成され、且つ前記エア配管を通過する圧縮空気の流量に応じて噴射方向の回転角が決定されることを特徴とする請求項1又は2に記載の水切り装置。   The said air nozzle is comprised so that compressed air may be injected in fan shape, and the rotation angle of an injection direction is determined according to the flow volume of the compressed air which passes through the said air piping, The Claim 1 or 2 characterized by the above-mentioned. The draining device as described. 連続鋳造の過程で鋳片に対して冷却水の水切りを行う場合、
前記鋳片に対して圧縮空気を噴射可能な一群のエアノズルを鋳片幅方向に列設し、当該一群のエアノズルを複数の系統に分割し、一つの系統に対して一つのエア配管から圧縮空気を供給し、前記エア配管を通過する圧縮空気の流量及び圧力に応じて各系統ごとに前記エアノズルの目詰まりを検知することを特徴とするエアノズルの異常検知方法。
When draining the cooling water to the slab during the continuous casting process,
A group of air nozzles capable of injecting compressed air to the slab is arranged in the slab width direction, the group of air nozzles is divided into a plurality of systems, and compressed air is supplied from one air pipe to one system. And detecting the clogging of the air nozzle for each system in accordance with the flow rate and pressure of the compressed air passing through the air pipe.
JP2007253844A 2007-09-28 2007-09-28 Drainer Active JP5109557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253844A JP5109557B2 (en) 2007-09-28 2007-09-28 Drainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253844A JP5109557B2 (en) 2007-09-28 2007-09-28 Drainer

Publications (2)

Publication Number Publication Date
JP2009082937A true JP2009082937A (en) 2009-04-23
JP5109557B2 JP5109557B2 (en) 2012-12-26

Family

ID=40657091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253844A Active JP5109557B2 (en) 2007-09-28 2007-09-28 Drainer

Country Status (1)

Country Link
JP (1) JP5109557B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384751A (en) * 1986-09-29 1988-04-15 Kobe Steel Ltd Method for detecting clogging of spray nozzle for continuous casting
JP2004223526A (en) * 2003-01-20 2004-08-12 Jfe Steel Kk Method for draining cast slab in continuous casting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384751A (en) * 1986-09-29 1988-04-15 Kobe Steel Ltd Method for detecting clogging of spray nozzle for continuous casting
JP2004223526A (en) * 2003-01-20 2004-08-12 Jfe Steel Kk Method for draining cast slab in continuous casting machine

Also Published As

Publication number Publication date
JP5109557B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
CN101678415B (en) Process and plant for the production of metal strip
CN104884189B (en) Combination cooling spray nozzle device and the method using its cooling nozzles for controlling continuous casting equipment
JP6358178B2 (en) Continuous casting method and mold cooling water control device
JP5817689B2 (en) Secondary cooling method for continuous casting
JP2010253529A (en) Secondary cooling method for continuous casting
JP2011526205A5 (en)
KR20110022659A (en) Method and apparatus for removal of cooling water from ingots by means of water jets
JP2008100253A (en) Cast slab draining device in continuous casting machine
JP5109557B2 (en) Drainer
KR101267340B1 (en) Device for preventing crack of strand in continuous casting process and method therefor
JP6570738B2 (en) Steel vertical continuous casting equipment
JP4935383B2 (en) Steel continuous casting method
JP4882406B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2009039770A (en) Method for preventing clogging of spray nozzle for secondary cooling in continuous casting machine
CN101745618A (en) Non-continuous water cooling device for aluminum alloy casting
JP5545015B2 (en) Clogging judgment method for cooling water supply piping in continuous casting equipment
JP5082630B2 (en) Secondary cooling water injection method in continuous casting machine
JP6148447B2 (en) Secondary cooling method for continuous casting
JP2007245213A (en) Method of and device for pulverizing molten steel outflowing due to breakout in continuous casting
KR102265199B1 (en) Apparatus for spraying cooling medium
KR101320342B1 (en) Device for extracting inclusion entrapped slab and method thereof
JP4862718B2 (en) Cooling grid apparatus for continuous casting machine and method for producing continuous cast slab
JP4506691B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2003299988A (en) Jet nozzle and jet method
JP6551161B2 (en) Pouring nozzle for twin roll casting apparatus, twin roll casting apparatus, and cast piece casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5109557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250