JP2009082888A - Adsorbing element and air-conditioner - Google Patents

Adsorbing element and air-conditioner Download PDF

Info

Publication number
JP2009082888A
JP2009082888A JP2007259612A JP2007259612A JP2009082888A JP 2009082888 A JP2009082888 A JP 2009082888A JP 2007259612 A JP2007259612 A JP 2007259612A JP 2007259612 A JP2007259612 A JP 2007259612A JP 2009082888 A JP2009082888 A JP 2009082888A
Authority
JP
Japan
Prior art keywords
adsorbing
absorbing material
infrared
adsorption element
infrared absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259612A
Other languages
Japanese (ja)
Other versions
JP4998187B2 (en
Inventor
Takaaki Shimado
孝明 島戸
Ryosuke Suga
亮介 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007259612A priority Critical patent/JP4998187B2/en
Publication of JP2009082888A publication Critical patent/JP2009082888A/en
Application granted granted Critical
Publication of JP4998187B2 publication Critical patent/JP4998187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an air-conditioner having an adsorbing element to be used for adsorbing or recovering by concentrating moisture or an organic gas in air, which is capable of regenerating the adsorbing element more efficiently than is conventionally possible so as to be able to save energy or increase an adsorbed amount with the same amount of energy as conventionally used, wherein the adsorbing element carries an infrared ray absorbing agent therein, and a heating device for regenerating the adsorbing element comprises a heating means emitting infrared rays whereby the infrared absorbing agent absorbs infrared rays emitted by the heating means so that an adsorbing agent of the adsorbing element is heated more effectively. <P>SOLUTION: The adsorbing element having zeolite 2 as an adsorbing agent through a binder 3 carried on a honeycomb-structured substrate 1 processed in a circular form by overlapping one after the other and rolling corrugated sheets and flat sheets is impregnated with a dispersion prepared by mixing a surface active agent, manganese dioxide 5 as an infrared ray absorbing agent, and water. The adsorbing element 7 adsorbing infrared rays is obtained by drying it. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、湿分ならびに有機ガスを吸着する吸着素子とまた、前記吸着素子を搭載した空調装置に関するものである。   The present invention relates to an adsorption element that adsorbs moisture and organic gas and an air conditioner equipped with the adsorption element.

従来、この種の吸着素子は、無機のシートをハニカム構造体状に加工し、前記ハニカム構造体にゼオライトなどの吸着剤を担持することによってえられる吸着素子が知られている。なお、その脱着手段としてはヒーターによって温めた温風による加熱やヒーターの輻射による加熱、燃料電池の排熱による加熱等が知られており、特に空気中の湿分を取るための除湿機や空気中の有機ガス等を吸着する脱臭機などに用いられている(例えば、特許文献1参照)。   Conventionally, this type of adsorbing element is known as an adsorbing element obtained by processing an inorganic sheet into a honeycomb structure and supporting an adsorbent such as zeolite on the honeycomb structure. As the desorption means, heating by warm air heated by a heater, heating by radiation of the heater, heating by exhaust heat of the fuel cell, etc. are known, and in particular, a dehumidifier or air for removing moisture in the air. It is used in a deodorizer that adsorbs organic gas and the like therein (for example, see Patent Document 1).

以下、その除湿機と吸着素子について図5および図6を参照しながら説明する。図に示すように、吸着素子101は素子基材102と吸着剤103からなり、空気の流れ104を作る通気ファン105を備えることにより空気中の水分を吸着し、乾燥した処理空気106を提供する。また、回転手段107によって吸着素子は回転し、加熱手段108より吹き出る再生空気109によって吸着剤103に吸着した水分を脱着する。脱着した水は熱交換器110中に入り、そこで吹き入れ空気111によって冷やされ結露し水滴112ができる。これをタンク113に回収する。こうして吸着と脱着を連続に繰り返す吸脱着サイクルにより、連続で空気を除湿することができる。
特開2000−117042号公報
Hereinafter, the dehumidifier and the adsorption element will be described with reference to FIGS. 5 and 6. As shown in the figure, the adsorbing element 101 includes an element base material 102 and an adsorbent 103, and includes a ventilation fan 105 that creates an air flow 104, thereby adsorbing moisture in the air and providing dried processing air 106. . Further, the adsorbing element is rotated by the rotating means 107, and the moisture adsorbed on the adsorbent 103 is desorbed by the regenerated air 109 blown out from the heating means 108. The desorbed water enters the heat exchanger 110, where it is cooled by the blown air 111 and condensed to form water droplets 112. This is collected in the tank 113. Thus, air can be dehumidified continuously by an adsorption / desorption cycle in which adsorption and desorption are repeated.
JP 2000-117042 A

このような従来の吸着素子では、脱着にかかはる加熱手段の消費エネルギーが大きいという課題がある。   Such a conventional adsorption element has a problem that the energy consumed by the heating means for desorption is large.

本発明は、このような従来の課題を解決するものであり、加熱装置の熱を効率的に利用し、脱着にかかはるエネルギー消費を抑えるもしくは、同様のエネルギーでより大きな吸着脱着効果が得られる加熱効率、再生効率の良い吸着素子を提供することを目的としている。そして、この加熱装置の熱を有効に利用できる吸着素子を空調装置に搭載することによって、少ないエネルギーでより効率よく吸着素子がから脱着することができ、これによって、現在の入力と同じエネルギーの入力でより多くの水分や有機ガスを吸着することを目的としている。   The present invention solves such a conventional problem, and efficiently uses the heat of the heating device to suppress energy consumption related to desorption, or has a larger adsorption / desorption effect with similar energy. An object of the present invention is to provide an adsorbing element with good heating efficiency and regeneration efficiency. And by installing an adsorption element that can effectively use the heat of this heating device in the air conditioner, the adsorption element can be desorbed and removed more efficiently with less energy, and this makes it possible to input the same energy as the current input. It aims at adsorbing more moisture and organic gas.

本発明の吸着素子は上記目的を達成するために、吸着剤を構造中に含む通気体である吸着素子の内部もしくは表面に赤外線を吸収する材料を担持した吸着素子でありものである。   In order to achieve the above object, the adsorbing element of the present invention is an adsorbing element in which a material that absorbs infrared rays is carried inside or on the surface of the adsorbing element that is a ventilation body including an adsorbent in the structure.

この手段により、水分や有機ガスなど吸着剤が吸着したものを脱着する際に吸着する場合において加熱装置からの赤外線を有効に吸着することで、赤外線吸収材と接する吸着剤を効率的に加熱することができ、また、温められた吸着剤から伝番して他の吸着剤も温められる。つまり加熱装置からの熱を効率よく脱着に使用することができる吸着素子が得られる。そのために、従来の加熱手段での入力エネルギーでえられたよりもより多くの脱着量が得られることになり、つまりはより多くの吸着が可能になるため、エネルギー量が同じであれば吸着の能力は向上する。吸着量を従来と同様にする場合は、加熱エネルギーにかかる消費エネルギーを少なくすることが可能である。   By this means, when adsorbing adsorbents such as moisture and organic gas when adsorbing, the infrared rays from the heating device are effectively adsorbed to efficiently heat the adsorbents in contact with the infrared absorber. In addition, other adsorbents can also be warmed starting from the warmed adsorbent. That is, an adsorption element that can efficiently use heat from the heating device for desorption is obtained. Therefore, more desorption amount than that obtained with the input energy in the conventional heating means can be obtained, that is, more adsorption is possible, so if the energy amount is the same, the adsorption capacity Will improve. When the amount of adsorption is the same as in the conventional case, it is possible to reduce the energy consumed by the heating energy.

また、本発明の空調装置においては、上記の赤外線吸収材を担持した吸着素子を搭載し、素子から吸着したものを脱着して再生する加熱手段として、ニクロム線ヒーター、ハロゲンヒーター、赤外線ヒーターを用いる。これらのヒーターは赤外線を多く出すため、赤外線吸収材を効果的に温めることができる。そのため、同様の加熱エネルギーで吸着の能力が向上する。吸着量を従来と同様にする場合は、脱着して再生するための加熱エネルギーにかかる消費エネルギーを少なくすることが可能である。   In the air conditioner of the present invention, a nichrome wire heater, a halogen heater, or an infrared heater is used as a heating means that carries the adsorption element carrying the infrared absorbing material and regenerates the element adsorbed from the element. . Since these heaters emit a large amount of infrared rays, the infrared absorbing material can be effectively heated. Therefore, the adsorption capability is improved with the same heating energy. When the amount of adsorption is the same as in the prior art, it is possible to reduce the energy consumed by the heating energy for desorption and regeneration.

本発明によれば、吸着剤の加熱効率、再生効率が良くなり、従来の吸着素子よりも再生に必要なエネルギーを削減して吸着脱着が可能な吸着素子もしくは再生エネルギーを従来と同じにした場合に、従来の吸着素子よりもより多くの水分や有機ガスを吸着脱着できる吸着素子を提供できる。また、この吸着素子を搭載した空調装置において従来の吸着素子を搭載したものよりも省エネルギーな、もしくは従来と同エネルギーであっても吸着脱着能力が高く、現在の入力と同じエネルギーの入力でより多くの水分や有機ガスを吸着できる空調装置を提供できる。   According to the present invention, when the heating efficiency and regeneration efficiency of the adsorbent are improved, the energy required for regeneration is reduced as compared with the conventional adsorption element, and the adsorption element or regeneration energy capable of adsorption / desorption is made the same as the conventional one. In addition, it is possible to provide an adsorption element that can adsorb and desorb more moisture and organic gas than the conventional adsorption element. In addition, the air conditioner equipped with this adsorption element is more energy saving than the one equipped with the conventional adsorption element, or has the same adsorption / desorption capability even with the same energy as the conventional one. It is possible to provide an air conditioner capable of adsorbing moisture and organic gas.

本発明の請求項1記載の発明は、吸着剤をふくむ材料で構成される通気性をもつ吸着素子に、吸着剤より高い赤外線吸収率を有する赤外線吸収材を担持したことにより、吸着剤の加熱効率、再生効率を向上させるものである。吸着剤から構成される吸着素子は、空気中の水分や有機ガスを吸着するがこれを脱着させて吸着力を再生するために加熱装置などによって熱を与える。その際、前述の吸着剤と接触するかもしくはその近傍に、吸着剤よりも赤外線吸収率が高い材料を担持することによって、加熱装置からの赤外線を赤外線吸収材が吸収しその熱を接触するもしくは近傍に存在する前述の水分もしくは有機ガスを吸着した吸着剤に与え、吸着剤は加熱装置からの熱だけでなく、赤外線吸収材からも熱をえられるために、加熱効率および再生効率がよくなり、加熱装置からの熱だけでの再生時よりもより少ないエネルギーで再生をすることが可能である。そのため、再生にかかるエネルギーを少なくすることができる。もしくは、同じエネルギーであっても加熱によって再生する際の脱着量が増えるため、吸着できる量が増え、吸着素子の吸着量をふやすことが可能である。   According to the first aspect of the present invention, an adsorbent element having a breathability made of a material containing an adsorbent is loaded with an infrared absorbing material having an infrared absorption rate higher than that of the adsorbent, thereby heating the adsorbent. The efficiency and the reproduction efficiency are improved. An adsorbing element composed of an adsorbent adsorbs moisture and organic gas in the air, but applies heat by a heating device or the like in order to desorb it and regenerate the adsorbing power. At that time, the infrared absorbing material absorbs the infrared rays from the heating device by contacting the adsorbent mentioned above or in the vicinity thereof with a material having a higher infrared absorptivity than the adsorbent, or the heat is contacted. The adsorbent adsorbs the above-mentioned moisture or organic gas that is present in the vicinity, and the adsorbent can receive heat not only from the heating device but also from the infrared absorbing material, so heating efficiency and regeneration efficiency are improved. It is possible to regenerate with less energy than when regenerating only with heat from the heating device. Therefore, the energy required for regeneration can be reduced. Alternatively, since the amount of desorption during regeneration by heating increases even with the same energy, the amount that can be adsorbed increases, and the amount of adsorption of the adsorption element can be increased.

また、赤外線吸収材には可視光を透過する材料もあるが、可視光波長でも吸収を持ち、かつ吸着剤また吸着剤で構成される吸着素子とは異なる色の材料が望ましい。これは、吸着素子に担持した際に、赤外線吸収材が担持しているかどうか、どの程度担持しているか、担持ムラが生じていないかを目視で確認することができるためであり、またミクロ的に光学顕微鏡などでも、担持の状態が観察しやすいため、大量生産を考慮した場合有利であるからである。   In addition, some infrared absorbing materials transmit visible light. However, it is desirable to use a material that has absorption even at a visible light wavelength and has a color different from that of an adsorbent element composed of an adsorbent or an adsorbent. This is because it is possible to visually check whether the infrared absorbing material is supported, how much it is supported, and whether there is uneven support when it is supported on the adsorption element. This is because, even with an optical microscope or the like, the carrying state is easy to observe, which is advantageous when considering mass production.

本発明の請求項2記載の発明は、前述の赤外線吸収材を担持した吸着素子が通気構造をもつハニカム構造であることを特徴とする吸着素子であり、ハニカム構造体は通気において圧力損失が低いことが知られており、吸着剤を担持する基材の構造とするのが望ましい。   The invention according to claim 2 of the present invention is an adsorbing element characterized in that the adsorbing element carrying the infrared absorbing material has a honeycomb structure having a ventilation structure, and the honeycomb structure has a low pressure loss in ventilation. It is known that the structure of the base material carrying the adsorbent is desirable.

本発明の請求項3記載の発明は、前述の赤外線吸収材を担持した吸着素子において吸着剤が特にゼオライトであることを特徴とする吸着素子である。ゼオライトは水分や有機ガスの吸着にすぐれまた、加熱による再生においても耐熱性が高いため連続して吸着再生するシステムに使用しやすいので望ましい。しかしながら、熱線の吸収では、3μm程度より長波長側で吸収率が増加するが、それより短い近から中赤外線の領域での吸収率が悪いため、特に近から中赤外線を吸収しやすい赤外線吸収材を用いるのが望ましい。   According to a third aspect of the present invention, there is provided an adsorbing element characterized in that the adsorbent is particularly zeolite in the adsorbing element carrying the infrared absorbing material. Zeolite is desirable because it is excellent in adsorption of moisture and organic gas, and has high heat resistance even during regeneration by heating, so that it can be easily used in a system for continuous adsorption and regeneration. However, in the absorption of heat rays, the absorptance increases on the longer wavelength side than about 3 μm, but since the absorptance in the near-to-mid-infrared region is shorter than that, the infrared absorbing material that easily absorbs the mid-infrared light from near. It is desirable to use

本発明の請求項4記載の発明は赤外線吸収材がポリカーボネート樹脂であることを特徴吸着素子であり、ポリカーボネート樹脂は赤外線吸収率が非常に高いため、加熱装置の赤外線を吸収しやすく、吸着剤を温めるための熱を受けることが可能であるため、望ましい。しかしながら、熱的に不安定となる温度での再生には不向きであるため注意が必要である。   The invention according to claim 4 of the present invention is an adsorbing element characterized in that the infrared absorbing material is a polycarbonate resin. Since the polycarbonate resin has a very high infrared absorptivity, it is easy to absorb the infrared rays of the heating device, It is desirable because it can receive heat for heating. However, care must be taken because it is not suitable for regeneration at a temperature that is thermally unstable.

本発明の請求項5記載の発明は、前述の赤外線吸収材が金属酸化物であることを特徴とする吸着素子であり、前述のような赤外線を吸収することの効果だけでなく、金属酸化物が熱触媒としても働くために、吸着剤が吸着した有機ガスを脱着する際に触媒反応で分解することもできる効果がある。   The invention according to claim 5 of the present invention is an adsorbing element characterized in that the infrared absorbing material is a metal oxide, and not only the effect of absorbing infrared rays as described above but also the metal oxide. Acts as a thermal catalyst, so that it can be decomposed by a catalytic reaction when the organic gas adsorbed by the adsorbent is desorbed.

本発明の請求項6記載の発明は、前述の赤外線吸収材が少なくともマンガンを含むマンガン系酸化物であることを特徴とする吸着素子であり、マンガン系酸化物は金属酸化物の中でも安価であり、かつ例えば二酸化マンガンなど茶褐色から黒色の材料であり、担持状態が把握しやすくまた、赤外線を吸収できる材料であるため、吸着材を温める前述の効果もある。また、酸化マンガンが熱触媒としても働くために、吸着剤が吸着した有機ガスを脱着する際に触媒反応で分解することもできる効果もえられる。   The invention according to claim 6 of the present invention is an adsorbing element characterized in that the infrared absorbing material is a manganese-based oxide containing at least manganese, and the manganese-based oxide is inexpensive among metal oxides. In addition, since the material is a brown to black material such as manganese dioxide, the carrying state is easily grasped and the material can absorb infrared rays, the above-described effect of warming the adsorbent is also obtained. Further, since manganese oxide also acts as a thermal catalyst, there is an effect that it can be decomposed by a catalytic reaction when the organic gas adsorbed by the adsorbent is desorbed.

本発明の請求項7記載の発明は、前述の赤外線吸収材が少なくとも酸化鉄であることを特徴とする吸着素子であり、例えば四酸化三鉄などの酸化鉄は金属酸化物の中でも安価であり、かつ黒色の材料であり、担持状態が把握しやすくまた、赤外線を吸収できる材料であるため、吸着材を温める前述の効果もえられる。   The invention according to claim 7 of the present invention is an adsorbing element characterized in that the above-mentioned infrared absorbing material is at least iron oxide. For example, iron oxide such as triiron tetroxide is inexpensive among metal oxides. In addition, since the black material is easy to grasp the carrying state and can absorb infrared rays, the above-described effect of warming the adsorbent can be obtained.

本発明の請求項8記載の発明は、前述の赤外線吸収材をとくに吸着素子の通気端面に塗付することを特徴とした吸着素子である。吸着剤を担持した吸着素子において、吸着剤上に赤外線吸収材が存在すると、吸着剤の吸着サイトを阻害する場合がある。しかしながら通気端面だけであれば、その阻害が小さくてすむその一方で、加熱装置の近傍にあたる通気端面に塗付面を配置することで、有効に熱を吸収し、かつ伝播によって加熱装置の熱を吸着素子全体に伝えることが可能になる。そのため、吸着剤の吸着サイトを阻害せず、赤外線吸収材の効果が得られる。これによって吸着素子は加熱装置からの熱だけでなく、赤外線吸収材からも熱をえられるために、加熱装置からの熱だけでの再生時よりもより少ないエネルギーで吸着剤を再生をすることが可能である。そのため、再生にかかるエネルギーを少なくすることができる。もしくは、同じエネルギーであっても再生量が増えるため、吸着できる量が増え、吸着素子の吸着量をふやすことが可能である。   The invention according to claim 8 of the present invention is an adsorption element characterized in that the above-mentioned infrared absorbing material is applied to the ventilation end face of the adsorption element. In an adsorbing element carrying an adsorbent, if an infrared absorbing material is present on the adsorbent, the adsorption site of the adsorbent may be inhibited. However, if only the vent end face is obstructed, on the other hand, disposing the coating surface on the vent end face in the vicinity of the heating device effectively absorbs heat and propagates the heat of the heating device by propagation. It can be transmitted to the entire adsorption element. Therefore, the effect of the infrared absorbing material can be obtained without inhibiting the adsorption site of the adsorbent. As a result, the adsorption element can obtain heat not only from the heating device but also from the infrared absorbing material, so that the adsorbent can be regenerated with less energy than in the case of regeneration using only the heat from the heating device. Is possible. Therefore, the energy required for regeneration can be reduced. Alternatively, since the amount of regeneration increases even with the same energy, the amount of adsorption can be increased, and the adsorption amount of the adsorption element can be increased.

本発明の請求項9記載の発明は、前述の赤外線吸収材の平均粒子径が0.5μm以上3μm以下である大きさであることを特徴とした吸着素子であり、可視光から近赤外光を吸収するためにとくに0.5μm以上であり、また、吸着剤と接触した状態で担持するために3μm以下にした赤外線吸収材の平均粒径が望ましい。平均粒径が大きくなりすぎると、吸着剤との接触が悪くなるのに加え、大きいために、赤外線吸収材のはがれによる粉落ちがおこる。そのため粉落ちを防ぐために接着剤を用いる必要がある。しかしながら接着剤のために吸着剤の吸着サイトが阻害される。そのため、接着剤を用いずに吸着素子に担持するために平均粒径が3μm以下で、吸着を阻害せず赤外線吸収材の効果が得られる。   The invention according to claim 9 of the present invention is an adsorbing element characterized in that the average particle diameter of the infrared absorbing material is 0.5 μm or more and 3 μm or less, and visible light to near infrared light. In particular, the average particle diameter of the infrared absorbing material is preferably 0.5 μm or more in order to absorb water, and 3 μm or less in order to carry it in contact with the adsorbent. If the average particle size becomes too large, the contact with the adsorbent becomes worse and, in addition, because of the large particle size, the infrared absorbing material will fall off due to peeling. Therefore, it is necessary to use an adhesive to prevent powder falling off. However, because of the adhesive, the adsorption site of the adsorbent is hindered. Therefore, the average particle diameter is 3 μm or less for supporting the adsorption element without using an adhesive, and the effect of the infrared absorbing material can be obtained without inhibiting the adsorption.

本発明の請求項10記載の発明は、前述の赤外線吸収材の重量が吸着剤の重量の0.01%以上から15%以下で含有することを特徴とした吸着素子であり、吸着剤上に赤外線吸収材が明らかに存在することで、その部分に赤外線があたり、熱を吸収し放出して接する吸着材を加熱することができる。一方で15%以上の多量に存在すると赤外線の熱を受けることは可能であるが、逆に吸着剤の吸着サイトを阻害する結果になってしまうため、赤外線吸収材の存在量は、吸着剤の重量に対して適量が存在する。そして望ましくは吸着を阻害せず、吸着量が向上するように6%以下が望ましい。   The invention according to claim 10 of the present invention is an adsorbing element characterized in that the weight of the infrared absorbing material is 0.01% or more and 15% or less of the weight of the adsorbent. When the infrared absorbing material is clearly present, the infrared ray hits the portion, and the adsorbing material that is in contact with the absorbed and released heat can be heated. On the other hand, if it is present in a large amount of 15% or more, it is possible to receive infrared heat, but conversely, it results in inhibiting the adsorption site of the adsorbent. There is an appropriate amount for the weight. Desirably, 6% or less is desirable so that the adsorption amount is improved without inhibiting the adsorption.

本発明の請求項11記載の発明は、赤外線吸収材を吸着素子に担持する方法として赤外線吸収材を界面活性剤と共に分散させた液をボールミルし、赤外線吸収剤分散液を作成し、これに吸着剤を添着した吸着素子を含浸し、赤外線吸収材を担持したことを特徴とする吸着素子であり、赤外線吸収材をボールミルして、粒子径を細かくすることができ、かつその分散液に界面活性剤を混ぜることで赤外線吸収材の再凝集をふせぎ、粒子径を細かいままにできる。粒子か細かく保てることによって赤外線吸収材の接着に接着剤を用いずに吸着素子に担持することができ、接着剤で吸着を阻害されることなく赤外線吸収材の効果が得られる。   In the invention according to claim 11 of the present invention, as a method of supporting the infrared absorbing material on the adsorption element, a liquid in which the infrared absorbing material is dispersed together with the surfactant is ball-milled to prepare an infrared absorbing agent dispersion and adsorbed thereto. The adsorbing element impregnated with an adsorbing element impregnated with an agent and carrying an infrared absorbing material, the infrared absorbing material can be ball milled to reduce the particle size, and the dispersion has surface activity. By mixing the agent, reaggregation of the infrared absorbing material can be prevented and the particle diameter can be kept fine. By keeping the particles fine, the infrared absorbing material can be supported on the adsorbing element without using an adhesive, and the effect of the infrared absorbing material can be obtained without being blocked by the adhesive.

なお、界面活性剤は、赤外線吸収材の特長によってカチオン性、アニオン性、ノニオン性のものを適量使い分けることが望ましい。   It should be noted that it is desirable to use an appropriate amount of a cationic, anionic or nonionic surfactant depending on the characteristics of the infrared absorbing material.

本発明の請求項12記載の発明は、前述の赤外線吸収材を担持した吸着素子と、この吸着素子に通気する通気手段と、前記の吸着素子を加熱するための加熱手段とを筐体内に配し、その加熱手段としてニクロム線ヒーターを用いたことを特徴とする空調装置であり、ニクロム線から発せられる近から中赤外線を赤外線吸収材がとくに吸収し、熱を接触するもしくは近傍に存在する、前述の水分もしくは有機ガスを吸着した吸着剤に与え、吸着剤は加熱装置からの熱だけでなく、赤外線吸収材からも熱をえられるために、加熱装置からの熱だけでの再生時よりもより少ないエネルギーで再生をすることが可能である。そのため、再生にかかるエネルギーを少なくすることができる。もしくは、同じエネルギーであっても加熱による脱着量が増えるため、吸着できる量が増え、吸着素子の吸着量をふやすことが可能である。   According to a twelfth aspect of the present invention, an adsorption element carrying the above-mentioned infrared absorbing material, a ventilation means for venting the adsorption element, and a heating means for heating the adsorption element are arranged in a casing. The air-conditioning apparatus is characterized by using a nichrome wire heater as the heating means, and the infrared absorbing material particularly absorbs the mid-infrared ray emitted from the nichrome wire, and is present in or near the heat. The moisture or organic gas is adsorbed to the adsorbent, and the adsorbent can receive heat not only from the heating device but also from the infrared absorbing material. It is possible to regenerate with less energy. Therefore, the energy required for regeneration can be reduced. Alternatively, since the amount of desorption due to heating increases even with the same energy, the amount that can be adsorbed increases, and the adsorption amount of the adsorption element can be increased.

本発明の請求項13記載の発明は、前述の赤外線吸収材を担持した吸着素子と、この吸着素子に通気する通気手段と、前記の吸着素子を加熱するための加熱手段とを筐体内に配し、その加熱手段としてハロゲンランプを用いたことを特徴とする空調装置であり、ハロゲンランプから発せられる特に波長1μm前後の赤外線を赤外線吸収材がとくに吸収し、熱を接触するもしくは近傍に存在する、前述の水分もしくは有機ガスを吸着した吸着剤に与え、吸着剤は加熱装置からの熱だけでなく、赤外線吸収材からも熱をえられるために、加熱装置からの熱だけでの再生時よりもより少ないエネルギーで再生をすることが可能である。そのため、再生にかかるエネルギーを少なくすることができる。もしくは、同じエネルギーであっても加熱による脱着量が増えるため、吸着できる量が増え、吸着素子の吸着量をふやすことが可能である。   According to a thirteenth aspect of the present invention, an adsorption element carrying the above-mentioned infrared absorbing material, a ventilation means for venting the adsorption element, and a heating means for heating the adsorption element are arranged in a casing. The air conditioner is characterized in that a halogen lamp is used as the heating means, and the infrared ray absorbing material particularly absorbs infrared rays emitted from the halogen lamp, particularly at a wavelength of around 1 μm, and is in contact with or near the heat. , Given to the adsorbent adsorbed moisture or organic gas as mentioned above, because the adsorbent can receive heat not only from the heating device but also from the infrared absorbing material, from the time of regeneration only by the heat from the heating device It is possible to regenerate with less energy. Therefore, the energy required for regeneration can be reduced. Alternatively, since the amount of desorption due to heating increases even with the same energy, the amount that can be adsorbed increases, and the adsorption amount of the adsorption element can be increased.

本発明の請求項14記載の発明は、前述の赤外線吸収材を担持した吸着素子と、この吸着素子に通気する通気手段と、前記の吸着素子を加熱するための加熱手段とを筐体内に配し、その加熱手段として赤外線ヒーターを用いたことを特徴とする空調装置であり、赤外線ヒーターから発せられる赤外線を赤外線吸収材がとくに吸収し、熱を接触するもしくは近傍に存在する、前述の水分もしくは有機ガスを吸着した吸着剤に与え、吸着剤は加熱装置からの熱だけでなく、赤外線吸収材からも熱をえられるために、加熱装置からの熱だけでの再生時よりもより少ないエネルギーで再生をすることが可能である。そのため、再生にかかるエネルギーを少なくすることができる。もしくは、同じエネルギーであっても加熱による脱着量が増えるため、吸着できる量が増え、吸着素子の吸着量をふやすことが可能である。   According to a fourteenth aspect of the present invention, an adsorption element carrying the above-mentioned infrared absorbing material, a ventilation means for venting the adsorption element, and a heating means for heating the adsorption element are arranged in a casing. And an air conditioner characterized in that an infrared heater is used as the heating means, and the infrared ray absorbing material particularly absorbs infrared rays emitted from the infrared heater, and contacts the heat or exists in the vicinity, Since organic gas is given to the adsorbent that has adsorbed it, the adsorbent can receive heat not only from the heating device but also from the infrared absorber, so it requires less energy than when regenerating with heat from the heating device alone. It is possible to play. Therefore, the energy required for regeneration can be reduced. Alternatively, since the amount of desorption due to heating increases even with the same energy, the amount that can be adsorbed increases, and the adsorption amount of the adsorption element can be increased.

本発明の請求項15記載の発明は、前述の空調装置に加熱装置から発せられる赤外線を反射させて、吸着素子に反射した赤外線を当てるように反射板を配置したことを特徴とする空調装置であり、前記の加熱装置から発せられた赤外線をさらに有効に吸着素子に照射することによって、より効率的に吸着素子の再生熱を得ることができる。   The invention according to claim 15 of the present invention is an air conditioner characterized in that a reflecting plate is arranged so that the infrared ray emitted from the heating device is reflected on the air conditioner and the reflected infrared ray is applied to the adsorption element. In addition, by more effectively irradiating the adsorption element with the infrared rays emitted from the heating device, the regeneration heat of the adsorption element can be obtained more efficiently.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、例えば波型のシートと平型のシートを交互に積層して巻き上げ、円形に加工したハニカム構造体基材1に吸着剤としてゼオライト2をコロイダルシリカなどのバインダ3を介して担持した吸着素子を図2に示すようにアニオン性界面活性剤4と赤外線吸収材として二酸化マンガン5と水6を混合した、二酸化マンガン5の分散溶液に含浸する。なお、この分散液を得るために、二酸化マンガン5とアニオン性界面活性剤4の混合液を例えばボールミルなどの粒子を微粒化する方法で微粒化し、平均粒径が0.5μm以上で3μm以下にする。これによってゼオライト2から二酸化マンガン5がほとんど落ちずに接着し、かつ赤外線を吸収するのに十分な大きさであるので望ましい。
(Embodiment 1)
As shown in FIG. 1, for example, corrugated sheets and flat sheets are alternately laminated and rolled up, and a honeycomb structure substrate 1 processed into a circular shape is mixed with zeolite 2 as an adsorbent through a binder 3 such as colloidal silica. As shown in FIG. 2, the adsorbing element thus supported is impregnated with a dispersion solution of manganese dioxide 5 in which anionic surfactant 4 and manganese dioxide 5 and water 6 as an infrared absorbing material are mixed. In order to obtain this dispersion, the mixed liquid of manganese dioxide 5 and anionic surfactant 4 is atomized by a method of atomizing particles such as a ball mill so that the average particle diameter is 0.5 μm or more and 3 μm or less. To do. This is desirable because the manganese dioxide 5 adheres almost without dropping from the zeolite 2 and is large enough to absorb infrared rays.

そして含浸して得られた吸着素子を引上げ、吸着素子につかなかった余剰液を吹き落し、乾燥させて、二酸化マンガンを吸着素子上に担持する。こうして二酸化マンガンを担持した吸着素子7がえられる。   Then, the adsorbing element obtained by the impregnation is pulled up, the excess liquid not attached to the adsorbing element is blown off and dried, and manganese dioxide is supported on the adsorbing element. Thus, the adsorption element 7 carrying manganese dioxide is obtained.

なお、赤外線吸収材としての二酸化マンガン5は、吸着剤のゼオライト2の重量に対して、0.01%以上から15%以下程度担持されるのが望ましく、さらにゼオライト2の吸着サイトを阻害せず、かつ吸着素子7に赤外線吸収材としての二酸化マンガン5を担持させ吸着素子7を再生させるための加熱装置から効率的に熱を受け取るために二酸化マンガン5の担持重量はゼオライト2重量に対して0.01%以上から6%以下とするのが望ましい。   In addition, it is desirable that manganese dioxide 5 as an infrared absorbing material is supported by about 0.01% to 15% with respect to the weight of zeolite 2 as an adsorbent, and does not hinder the adsorption site of zeolite 2. In order to receive heat efficiently from a heating device for supporting the manganese dioxide 5 as an infrared absorbing material on the adsorption element 7 and regenerating the adsorption element 7, the supported weight of the manganese dioxide 5 is 0 with respect to 2 weight of zeolite. It is desirable that the content be from 0.01% to 6%.

なお、アニオン性界面活性剤4は二酸化マンガン5を微粒化し、再凝集を防いで分散させておくために分散液中に混合するのが望ましい。   The anionic surfactant 4 is desirably mixed in the dispersion liquid in order to atomize the manganese dioxide 5 and disperse it while preventing reaggregation.

また、図3に示すように筐体8内に前記のように作成した二酸化マンガンを担持した吸着素子7と、これを回転させるギアモーターなどの回転手段9と、前記吸着素子7を加熱するためのヒーターなどの加熱手段10と、加熱されて放出した水分を結露回収するための結露用熱交換器11と水タンク12と、前記吸着素子7に通気するためのファン13を配した除湿空調装置を得る。   Further, as shown in FIG. 3, the adsorption element 7 carrying the manganese dioxide prepared as described above in the housing 8, the rotating means 9 such as a gear motor for rotating the adsorption element 7, and the adsorption element 7 are heated. Dehumidifying air conditioner provided with a heating means 10 such as a heater, a heat exchanger 11 for dew condensation for collecting and recovering moisture released by heating, a water tank 12, and a fan 13 for ventilating the adsorption element 7. Get.

ファン13によって空気を吸着素子7に送り、湿気が吸着され、乾燥した空気が筐体8外に供給される。吸着素子7は回転手段9によって回転して、加熱手段10によって温められる。ゼオライト2から水分が脱着し、結露用熱交換器11で、冷却され水となり、水タンク12に回収される。また、加熱手段10のヒーターから赤外線が反射し、吸着素子7に反射した赤外線があたるように反射板14a、反射板14bの両方もしくは片方に貼り付けるのが望ましい。このときの反射板としては、金属材料がのぞましく、とく赤外線反射率の優れるアルミニウムや銅をもちい、とくにコストの面でも有利なアルミニウムを用いるのが望ましい。   Air is sent to the adsorption element 7 by the fan 13, moisture is adsorbed, and dry air is supplied to the outside of the housing 8. The adsorption element 7 is rotated by the rotating means 9 and warmed by the heating means 10. Moisture is desorbed from the zeolite 2, cooled by the dew condensation heat exchanger 11, becomes water, and is collected in the water tank 12. Further, it is desirable that the infrared light is reflected from the heater of the heating means 10 and is attached to both or one of the reflecting plates 14a and 14b so that the reflected infrared rays are reflected on the adsorption element 7. As the reflecting plate at this time, it is desirable to use aluminum or copper which is preferably a metal material and has excellent infrared reflectivity, and particularly advantageous in terms of cost.

なお、加熱装置のヒーターとしては、赤外線吸収材の吸収波長にあったものを選ぶのが望ましいが、とくにニクロム線ヒーター、ハロゲンヒーター、赤外線ヒーターが赤外線、特にゼオライトの吸収率がやや低く、赤外線吸収材では吸収できる0.8μmから3μm程度までの近中赤外線の発生が強いため望ましい。   As the heater of the heating device, it is desirable to select one that matches the absorption wavelength of the infrared absorbing material. In particular, nichrome wire heaters, halogen heaters, and infrared heaters have a slightly lower absorption rate of infrared rays, especially zeolite, and absorb infrared rays. The material is desirable because it can generate near-infrared rays from 0.8 μm to 3 μm that can be absorbed.

(実施の形態2)
実施の形態1では赤外線吸収材として二酸化マンガンを用いたが、他の金属酸化物でも赤外線吸収特性をもつものであればよい。例えば酸化鉄であり、例えば四酸化三鉄であれば、安価であり、かつ黒色の材料であり、担持状態が把握しやすいため製造しやすく望ましい。
(Embodiment 2)
In Embodiment 1, manganese dioxide is used as the infrared absorbing material, but other metal oxides may be used as long as they have infrared absorbing characteristics. For example, iron oxide, for example, triiron tetroxide, is inexpensive and is a black material, and is easy to manufacture because it is easy to grasp the carrying state.

(実施の形態3)
実施の形態1では赤外線吸収材として二酸化マンガンを用いたが、ポリカーボネート樹脂でも良い。ただし、分散には界面活性剤は必要ないが溶媒をポリカーボネート樹脂を分散する溶剤にする必要がある。また、加熱装置での加熱温度も、ポリカーボネートの燃焼が起こらない範囲でユーザーが設定する必要がある。しかしポリカーボネート樹脂は赤外線吸収効率が高いので、熱の利用効率を向上させることができる。
(Embodiment 3)
In the first embodiment, manganese dioxide is used as the infrared absorbing material, but polycarbonate resin may be used. However, a surfactant is not required for dispersion, but the solvent must be a solvent for dispersing the polycarbonate resin. Also, the heating temperature in the heating device needs to be set by the user within a range where the polycarbonate does not burn. However, since polycarbonate resin has high infrared absorption efficiency, heat utilization efficiency can be improved.

(実施の形態4)
実施の形態1では、二酸化マンガンの分散液に吸着素子を含浸したが、ハニカム構造体の吸着素子の通気端面に二酸化マンガンの分散液をローラ塗りやスプレーを用いて塗付しても良い。熱を有効に使う点では効果が実施の形態1より落ちるが、簡単に製造ができ、分散液の乾燥にかかるコストおよび乾燥設備にかかるコストを大幅に低減することができる。また、加熱装置の近傍にあたる通気端面に塗付面を配置するのが、有効に熱を吸収し、かつ伝播によって加熱装置の熱を吸着素子全体に伝えることが可能になるため望ましい。
(Embodiment 4)
In the first embodiment, the manganese dioxide dispersion is impregnated with the adsorption element. However, the manganese dioxide dispersion may be applied to the ventilation end surface of the adsorption element of the honeycomb structure by roller coating or spraying. Although the effect is lower than that in Embodiment 1 in terms of effective use of heat, it can be easily manufactured, and the cost for drying the dispersion and the cost for the drying equipment can be greatly reduced. In addition, it is desirable to dispose the coating surface on the ventilation end surface in the vicinity of the heating device because it effectively absorbs heat and can transmit the heat of the heating device to the entire adsorption element by propagation.

実施の形態1のようにセラミックの波型のシートと平型のシートを交互に積層して巻き上げ、円形に加工したハニカム構造体に吸着剤としてゼオライトを担持した吸着素子を作成した。この吸着素子を、アニオン性界面活性剤と二酸化マンガンと水を混合した、二酸化マンガンの分散溶液に含浸する。なお、この分散液を得るために、二酸化マンガンと界面活性剤の混合液を12時間ボールミルすることによって微粒化し、平均粒径が1.2μmとなるようにした。(この評価には堀場製作所製レーザ回折/散乱式粒子径分布測定装置LA−300を用い、相対屈折率1.70−0.00iで計算を行なった。)なお、アニオン性界面活性剤は固形分で二酸化マンガンの重量比1%の割合になるように分散させた。   As in Embodiment 1, ceramic corrugated sheets and flat sheets were alternately laminated and rolled up, and an adsorbing element in which zeolite was supported as an adsorbent on a circularly processed honeycomb structure was produced. This adsorbing element is impregnated with a dispersion solution of manganese dioxide in which an anionic surfactant, manganese dioxide and water are mixed. In order to obtain this dispersion, the mixture of manganese dioxide and surfactant was atomized by ball milling for 12 hours so that the average particle size was 1.2 μm. (This evaluation was performed using a laser diffraction / scattering particle size distribution measuring apparatus LA-300 manufactured by HORIBA, Ltd., with a relative refractive index of 1.70-0.00i.) The anionic surfactant was a solid. It was dispersed so that the ratio by weight of manganese dioxide was 1% per minute.

なお、このとき二酸化マンガンの吸着素子への担持量による違いを検討するために分散液の濃度を1.5、2.0、7.0、14.0重量%と変えて含浸をおこない、計4個の二酸化マンガン添着吸着素子を作成した。   At this time, in order to examine the difference depending on the amount of manganese dioxide supported on the adsorption element, the concentration of the dispersion was changed to 1.5, 2.0, 7.0, 14.0% by weight, and impregnation was performed. Four manganese dioxide adsorbing adsorbing elements were prepared.

そして含浸して得られた吸着素子を引上げ、吸着素子につかなかった余剰液を吹き落し、乾燥させて、二酸化マンガンを吸着素子上に担持する。こうして二酸化マンガンを担持した吸着素子を得た。   Then, the adsorbing element obtained by the impregnation is pulled up, the excess liquid not attached to the adsorbing element is blown off and dried, and manganese dioxide is supported on the adsorbing element. In this way, an adsorption element carrying manganese dioxide was obtained.

このときのゼオライトの重量は約60gで、二酸化マンガンの担持量はゼオライトの重量に対してそれぞれ0.1、1.2、5.5、17.8%であった。   At this time, the weight of the zeolite was about 60 g, and the supported amount of manganese dioxide was 0.1, 1.2, 5.5, and 17.8%, respectively, with respect to the weight of the zeolite.

実施例1と同様の方法で四酸化三鉄でも同様に吸着素子に含浸を行なった。このときの四酸化三鉄の担持量は、ゼオライトの重量に対して6.4%であった。   In the same manner as in Example 1, the adsorption element was impregnated with triiron tetroxide as well. The supported amount of triiron tetroxide at this time was 6.4% with respect to the weight of the zeolite.

実施例1および2の吸着素子を実施の形態1で示した除湿空調装置に搭載し、二酸化マンガン担持の前後での吸湿能力の変化を測定した。なお、測定条件は23m3の室内を常時20℃60%R.H.となるように設定し、このとき一定時間に除湿空調装置のタンクにたまった水の量を除湿量として測定した。加熱装置のヒーターはニクロム線ヒーターを用いた。その結果を表1および表2に示す。表1は、本発明の実施例1の二酸化マンガンの担持量と担持による除湿量変化を示す表である。   The adsorbing elements of Examples 1 and 2 were mounted on the dehumidifying air conditioner shown in Embodiment 1, and the change in moisture absorption capacity before and after supporting manganese dioxide was measured. Note that the measurement condition is that a room of 23 m3 is constantly 20 ° C 60% R.D. H. At this time, the amount of water accumulated in the tank of the dehumidifying air conditioner for a certain time was measured as the dehumidifying amount. A nichrome wire heater was used as the heater of the heating device. The results are shown in Tables 1 and 2. Table 1 is a table showing the amount of manganese dioxide supported in Example 1 of the present invention and the change in dehumidification amount due to the support.

Figure 2009082888
Figure 2009082888

表2は、本発明の実施例2の四酸化三鉄の担持量と担持による除湿量変化を示す表である。   Table 2 is a table showing the amount of triiron tetroxide supported in Example 2 of the present invention and the change in dehumidification amount due to the support.

Figure 2009082888
Figure 2009082888

また、実施例1の二酸化マンガン担持量の違いによる除湿量の担持前後の差を図4に示す。   Further, FIG. 4 shows the difference between before and after the loading of the dehumidifying amount due to the difference in the amount of manganese dioxide carried in Example 1.

以上の結果から、赤外線吸収材の担持が除湿量の向上させることが確認された。また、その担持量は吸着剤に対して15%以下、望ましくは二酸化マンガンの場合に6%以下が望ましいことが確認できた。加熱効率および再生効率の良い吸着剤が得られた。   From the above results, it was confirmed that the loading of the infrared absorbing material improves the dehumidification amount. Further, it was confirmed that the supported amount was 15% or less with respect to the adsorbent, and preferably 6% or less in the case of manganese dioxide. An adsorbent with good heating efficiency and regeneration efficiency was obtained.

吸着剤を担持した吸着素子と吸着させた水分や有機ガスを脱着するための加熱手段を備えた空調装置において、吸脱着効率の向上により、従来より省エネルギー化を実現したもしくは従来と同等のエネルギーでより吸着量の多い空調装置を提供できる。   In an air conditioner equipped with an adsorbing element carrying an adsorbent and heating means for desorbing adsorbed moisture and organic gas, energy saving has been achieved by improving the adsorption / desorption efficiency. An air conditioner with a larger amount of adsorption can be provided.

本発明の実施の形態1の吸着素子の概略図Schematic of the adsorption element of Embodiment 1 of the present invention 本発明の実施の形態1の吸着素子の製造方法の概略図Schematic of the manufacturing method of the adsorption element of Embodiment 1 of the present invention 本発明の実施の形態1の除湿装置の概略図Schematic of the dehumidifying device of Embodiment 1 of the present invention 本発明の実施例の二酸化マンガンの担持量と担持による除湿量変化を示す図The figure which shows the dehumidification amount change by the load and the load of manganese dioxide of the Example of this invention 従来例の除湿機を示す図A diagram showing a conventional dehumidifier 従来例の吸着素子の詳細図Detailed view of conventional adsorption element

符号の説明Explanation of symbols

1 ハニカム構造体基材
2 ゼオライト
3 バインダ
4 アニオン性界面活性剤
5 二酸化マンガン
6 水
7 吸着素子
8 筐体
9 回転手段
10 加熱手段
11 結露用熱交換器
12 水タンク
13 ファン
14a 反射板
14b 反射板
101 吸着素子
102 素子基材
103 吸着剤
104 空気の流れ
105 通気ファン
106 乾燥した処理空気
107 回転手段
108 加熱手段
109 再生空気
110 熱交換器
111 吹き入れ空気
112 結露し水滴
113 タンク
DESCRIPTION OF SYMBOLS 1 Honeycomb structure base material 2 Zeolite 3 Binder 4 Anionic surfactant 5 Manganese dioxide 6 Water 7 Adsorption element 8 Case 9 Rotating means 10 Heating means 11 Condensation heat exchanger 12 Water tank 13 Fan 14a Reflector 14b Reflector DESCRIPTION OF SYMBOLS 101 Adsorption element 102 Element base material 103 Adsorbent 104 Air flow 105 Ventilation fan 106 Dry processing air 107 Rotating means 108 Heating means 109 Regenerated air 110 Heat exchanger 111 Blowing air 112 Condensed water droplet 113 Tank

Claims (15)

吸着剤をふくむ材料で構成される通気性をもつ吸着素子に、吸着剤より高い赤外線吸収率を有する赤外線吸収材を担持したことを特徴とする吸着素子。 An adsorbing element comprising an air-absorbing adsorbing element made of a material including an adsorbent and an infrared absorbing material having an infrared absorption rate higher than that of the adsorbent. 吸着素子が通気構造をもつハニカム構造であることを特徴とする請求項1記載の吸着素子。 The adsorbing element according to claim 1, wherein the adsorbing element has a honeycomb structure having a ventilation structure. 吸着剤がゼオライトであることを特徴とする請求項1もしくは2のいずれかに記載の吸着素子。 The adsorbing element according to claim 1, wherein the adsorbent is zeolite. 赤外線吸収材がポリカーボネート樹脂であることを特徴とする請求項1乃至3のいずれかに記載の吸着素子。 The adsorption element according to claim 1, wherein the infrared absorbing material is a polycarbonate resin. 赤外線吸収材が金属酸化物であることを特徴とする請求項1乃至3のいずれかに記載の吸着素子。 The adsorption element according to claim 1, wherein the infrared absorbing material is a metal oxide. 赤外線吸収材が少なくともマンガンを含むマンガン系酸化物であることを特徴とする請求項5記載の吸着素子。 The adsorption element according to claim 5, wherein the infrared absorbing material is a manganese-based oxide containing at least manganese. 赤外線吸収材が少なくとも酸化鉄であることを特徴とする請求項5記載の吸着素子。 6. The adsorption element according to claim 5, wherein the infrared absorbing material is at least iron oxide. 赤外線吸収材を吸着素子の通気端面に塗付したことを特徴とする請求項1乃至7のいずれかに記載の吸着素子。 The adsorption element according to claim 1, wherein an infrared absorbing material is applied to a ventilation end surface of the adsorption element. 赤外線吸収材の平均粒子径が0.5μm以上3μm以下である大きさであることを特徴とする請求項1乃至8のいずれかに記載の吸着素子。 The adsorption element according to any one of claims 1 to 8, wherein the infrared absorbing material has a mean particle size of 0.5 µm or more and 3 µm or less. 赤外線吸収材の重量が吸着剤の重量の0.01%以上から15%以下で含有することを特徴とする請求項1乃至9のいずれかに記載の吸着素子。 The adsorptive element according to any one of claims 1 to 9, wherein the weight of the infrared absorbing material is 0.01% to 15% of the weight of the adsorbent. 赤外線吸収材を界面活性剤と共に分散させた液をボールミルし、赤外線吸収剤分散液を作成し、これに吸着剤を添着した吸着素子を含浸し、吸着素子内に赤外線吸収材を担持したことを特徴とする請求項1乃至10のいずれかに記載の吸着素子。 Ball milling the liquid in which the infrared absorbing material is dispersed together with the surfactant, creating an infrared absorbing dispersion liquid, impregnating the adsorbing element with adsorbent added thereto, and supporting the infrared absorbing material in the adsorbing element. The adsorption element according to any one of claims 1 to 10, wherein 前記請求項1乃至11記載の吸着素子と、前記吸着素子に通気する通気手段と、前記吸着素子を加熱するための加熱手段とを筐体内に配し、その加熱手段としてニクロム線ヒーターを用いたことを特徴とする空調装置。 The adsorbing element according to any one of claims 1 to 11, a ventilation means for venting the adsorbing element, and a heating means for heating the adsorbing element are arranged in a casing, and a nichrome wire heater is used as the heating means. An air conditioner characterized by that. 前記請求項1乃至11記載の吸着素子と、前記吸着素子に通気する通気手段と、前記吸着素子を加熱するための加熱手段とを筐体内に配し、その加熱手段としてハロゲンランプを用いたことを特徴とする空調装置。 The adsorption element according to any one of claims 1 to 11, a ventilation means for venting the adsorption element, and a heating means for heating the adsorption element are arranged in a housing, and a halogen lamp is used as the heating means. An air conditioner characterized by. 前記請求項1乃至11記載の吸着素子と、前記吸着素子に通気する通気手段と、前記吸着素子を加熱するための加熱手段とを筐体内に配し、その加熱手段として赤外線ランプを用いたことを特徴とする空調装置。 The adsorption element according to any one of claims 1 to 11, a ventilation means for venting the adsorption element, and a heating means for heating the adsorption element are arranged in a housing, and an infrared lamp is used as the heating means. An air conditioner characterized by. 赤外線を反射して請求項1乃至11のいずれかに記載の吸着素子に赤外線をあてるように赤外線反射材を配置したことを特徴とする空調装置。 An air conditioner characterized in that an infrared reflecting material is disposed so as to reflect infrared rays and apply infrared rays to the adsorption element according to any one of claims 1 to 11.
JP2007259612A 2007-10-03 2007-10-03 Adsorption element and air conditioner Expired - Fee Related JP4998187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259612A JP4998187B2 (en) 2007-10-03 2007-10-03 Adsorption element and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259612A JP4998187B2 (en) 2007-10-03 2007-10-03 Adsorption element and air conditioner

Publications (2)

Publication Number Publication Date
JP2009082888A true JP2009082888A (en) 2009-04-23
JP4998187B2 JP4998187B2 (en) 2012-08-15

Family

ID=40657057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259612A Expired - Fee Related JP4998187B2 (en) 2007-10-03 2007-10-03 Adsorption element and air conditioner

Country Status (1)

Country Link
JP (1) JP4998187B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128599A1 (en) * 2009-05-08 2010-11-11 新日本製鐵株式会社 Hybrid adsorbent and method for collection of carbon dioxide from gas
WO2012144342A1 (en) * 2011-04-21 2012-10-26 三菱電機株式会社 Air purifier
CN105233626A (en) * 2015-11-13 2016-01-13 青岛华世洁环保科技有限公司 Bi-functional adsorption rotating wheel achieving dehumidifying and VOCs removing
JP2019534159A (en) * 2016-11-03 2019-11-28 コロンバス・インダストリーズ・インコーポレイテッドCOLUMBUS INDUSTRIES, Incorporated Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245933A (en) * 1984-05-21 1985-12-05 Hideo Abe Electric oven
JPH0275324A (en) * 1988-09-09 1990-03-15 Hitachi Ltd Air conditioner apparatus with deodorizing unit and deodorizer
JP2000102597A (en) * 1998-09-30 2000-04-11 Sharp Corp Solar air cleaning device
JP2004232998A (en) * 2003-01-31 2004-08-19 Fuji Silysia Chemical Ltd Water collector
JP2006315312A (en) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The Joining method and joining apparatus
JP2007237140A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Desalination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245933A (en) * 1984-05-21 1985-12-05 Hideo Abe Electric oven
JPH0275324A (en) * 1988-09-09 1990-03-15 Hitachi Ltd Air conditioner apparatus with deodorizing unit and deodorizer
JP2000102597A (en) * 1998-09-30 2000-04-11 Sharp Corp Solar air cleaning device
JP2004232998A (en) * 2003-01-31 2004-08-19 Fuji Silysia Chemical Ltd Water collector
JP2006315312A (en) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The Joining method and joining apparatus
JP2007237140A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Desalination device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128599A1 (en) * 2009-05-08 2010-11-11 新日本製鐵株式会社 Hybrid adsorbent and method for collection of carbon dioxide from gas
JP5064600B2 (en) * 2009-05-08 2012-10-31 新日本製鐵株式会社 Method and apparatus for recovering carbon dioxide in gas
US8500856B2 (en) 2009-05-08 2013-08-06 Nippon Steel & Sumitomo Metal Corporation Hybrid adsorbent method of capturing carbon dioxide in gas and apparatus for capturing carbon dioxide in gas
WO2012144342A1 (en) * 2011-04-21 2012-10-26 三菱電機株式会社 Air purifier
CN103476437A (en) * 2011-04-21 2013-12-25 三菱电机株式会社 Air purifier
CN103476437B (en) * 2011-04-21 2017-04-26 三菱电机株式会社 Air purifier
CN105233626A (en) * 2015-11-13 2016-01-13 青岛华世洁环保科技有限公司 Bi-functional adsorption rotating wheel achieving dehumidifying and VOCs removing
CN105233626B (en) * 2015-11-13 2018-09-07 青岛纳博科环保科技有限公司 It is a kind of to dehumidify, except the difunctional adsorption runner of VOCs
JP2019534159A (en) * 2016-11-03 2019-11-28 コロンバス・インダストリーズ・インコーポレイテッドCOLUMBUS INDUSTRIES, Incorporated Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants
JP7294755B2 (en) 2016-11-03 2023-06-20 コロンバス・インダストリーズ・インコーポレイテッド Surface-modified carbon and adsorbents for improved efficiency in removing gaseous pollutants

Also Published As

Publication number Publication date
JP4998187B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP2950444B2 (en) Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device
JPH0628173Y2 (en) Moisture exchange element
JP5627870B2 (en) Air conditioner
JPH0118335B2 (en)
CN107107022B (en) Adsorbent having microwave absorbing property
WO2017114687A1 (en) A component for an air filter
KR102068184B1 (en) Adsorber system for removing volatility organic compound
CN100436950C (en) Element for regulating humidity, humidity regulator and humidifier of air conditioner
JP4998187B2 (en) Adsorption element and air conditioner
KR20110132234A (en) Desiccant air conditioner
CN106178823A (en) A kind of purification technique of indoor organic pollutant
JPH03138411A (en) Exhaust purifier of methanol engine
JP2011121004A (en) Dehumidification apparatus
BR112012008825B1 (en) process for the &#34;in-situ&#34; preparation of an alveolar matrix based on a macroporous desiccator
WO2010100739A1 (en) Air conditioner
JP2009019788A (en) Desiccant air conditioner
CN106178822A (en) The absorption of a kind of indoor organic pollutant combines the process technique of infrared induction catalytic regeneration
CN107687677A (en) Air-purifying piece and air cleaner modules
JP5082623B2 (en) Dehumidifying / humidifying device for vehicles
JPH10352A (en) Heat-resistant adsorption element and its production
JP7205866B2 (en) Honeycomb adsorbent and dehumidifying air conditioner using the same
JP4924117B2 (en) Photocatalytic desiccant air conditioning system
JP4393478B2 (en) Desiccant ventilation system
JP2008264737A (en) Carbon monoxide oxidizing catalyst
JP2007098346A (en) Surface treating agent, adsorption filter, and apparatus for recovering gas by adsorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees