JP2007237140A - Desalination device - Google Patents

Desalination device Download PDF

Info

Publication number
JP2007237140A
JP2007237140A JP2006067182A JP2006067182A JP2007237140A JP 2007237140 A JP2007237140 A JP 2007237140A JP 2006067182 A JP2006067182 A JP 2006067182A JP 2006067182 A JP2006067182 A JP 2006067182A JP 2007237140 A JP2007237140 A JP 2007237140A
Authority
JP
Japan
Prior art keywords
adsorbent
air
water
raw water
desalination apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006067182A
Other languages
Japanese (ja)
Inventor
Takaaki Shimado
孝明 島戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006067182A priority Critical patent/JP2007237140A/en
Publication of JP2007237140A publication Critical patent/JP2007237140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Physical Water Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desalination device with small energy consumption because a desalination device used for desalination of seawater etc. consumes a large amount of energy for evaporating moisture from the seawater when using an evaporation and condensation method. <P>SOLUTION: Raw water 1, such as seawater, is introduced into a nozzle 2 capable of spraying the water of a size of ≤10 μm, and then sprayed into an atomizing chamber 5. The atomized raw water 6 is adsorbed by an adsorbent 7, and the adsorbent 7 is regenerated by a regeneration means 14 to obtain high-humidity moisture, and the moisture is condensed to obtain fresh water with low energy and energy saving. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、海水や泥水といった原水を淡水にするための装置に関する発明である。   The present invention relates to an apparatus for making raw water such as seawater and muddy water into fresh water.

現在、地球上では人口増加、産業活動の活性化により水の需要は増加傾向にあり、水資源の安定的な供給は必要不可欠なものとなっている。しかしながら、地球上に存在する水は塩化ナトリウムを含む海水であったり、また、泥水のような飲用や生活に使用できない水が多い。そのため、これら海水や泥水を原水として淡水を作り出す淡水化装置が注目されている。また、地球環境の視点からは、地球上各地での砂漠化は深刻化しており、淡水化装置による水の供給とそれによる植物の栽培によって砂漠化の進行をストップする研究も盛んである。   Currently, the demand for water is increasing due to population growth and industrial activity on the earth, and a stable supply of water resources is indispensable. However, the water existing on the earth is seawater containing sodium chloride, and there are many waters that cannot be used for drinking and living such as muddy water. Therefore, a desalination apparatus that produces fresh water using these seawater and muddy water as raw water has attracted attention. In addition, from the viewpoint of the global environment, desertification in various places on the earth has become serious, and research to stop the progress of desertification by supplying water with desalination equipment and cultivating plants by it is also active.

淡水化の方法としては、採取した原水を加熱して、生成した水蒸気を凝縮することにより淡水を得る、蒸発型淡水化装置や採取した原水を逆浸透膜に導き、加圧することにより淡水を得る逆浸透膜方式淡水化装置等が知られている。   As a method of desalination, the collected raw water is heated, and the generated water vapor is condensed to obtain fresh water. The evaporative desalination apparatus or the collected raw water is guided to the reverse osmosis membrane and pressurized to obtain fresh water. A reverse osmosis membrane desalination apparatus and the like are known.

以下、その蒸発型淡水化装置について図11を参照しながら説明する。   Hereinafter, the evaporative desalination apparatus will be described with reference to FIG.

図に示すように、淡水化装置101はスプレーノズル102と熱交換器103からなり、タービン104等で加熱した空気105を熱交換器103に流し、それに海水106を吹きかける。熱交換器の面積が広くなることで、効率的に水分を蒸発させ、これを後に冷却用の熱交換器107で凝縮することで、淡水108を回収している。(例えば、特許文献1参照)。
特開昭52−110279号公報
As shown in the figure, the desalination apparatus 101 includes a spray nozzle 102 and a heat exchanger 103, and air 105 heated by a turbine 104 or the like is caused to flow through the heat exchanger 103 and sprayed with seawater 106. By increasing the area of the heat exchanger, the water is efficiently evaporated, and this is subsequently condensed by the heat exchanger 107 for cooling, whereby the fresh water 108 is recovered. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 52-110279

このような従来の技術では、例えば、蒸発型淡水化装置を用いる場合は原水を高温で加熱するために大量のエネルギーを消費するし、逆浸透膜方式の場合においても、加圧のためにエネルギーを消費するため、淡水製造にかかるエネルギーが膨大であるという課題があり、低エネルギー、省エネルギーで淡水を得られる手法が求められている。   In such a conventional technique, for example, when an evaporative desalination apparatus is used, a large amount of energy is consumed to heat raw water at a high temperature, and even in the case of a reverse osmosis membrane method, energy for pressurization is consumed. In order to consume freshwater, there is a problem that enormous energy is required for freshwater production, and a method for obtaining freshwater with low energy and energy saving is demanded.

本発明は、このような従来の課題を解決するものであり、低エネルギー、省エネルギーで淡水を得ることを目的としている。   The present invention solves such a conventional problem and aims to obtain fresh water with low energy and energy saving.

本発明では、わずかなエネルギーのみで、淡水を取り出す方法として、原水を噴霧して外気との接触によって効率的に気化させたのち、気化水分を吸着材によって吸湿し、これを加熱等の再生手段によって、再生することで吸着材から放出する高湿空気を得、これを凝縮機で水とすることで、淡水を得る方法を開発した。これによって、原水を高温に熱したり、膜を通過させるために加圧するようなエネルギーも要求されず、少ない消費エネルギーによって原水を淡水化することが出来る。   In the present invention, as a method for extracting fresh water with only a small amount of energy, after the raw water is sprayed and vaporized efficiently by contact with the outside air, the vaporized water is absorbed by the adsorbent, and this is regenerated means such as heating. Has developed a method of obtaining fresh water by regenerating the high-humidity air released from the adsorbent and using it as water with a condenser. Accordingly, energy that heats the raw water to a high temperature or pressurizes the raw water to pass through the membrane is not required, and the raw water can be desalinated with less energy consumption.

なお、このとき発生する不純物は気中にてその多くが沈降するため、吸着材に付着しないか付着しても吸着材をそのまま原水につけるよりも非常に微量にしかつかないため、不純物を洗い流すなどのメンテナンスは少なくてよい。また、原水の一例としてあげられる海水に多く含まれる塩化ナトリウムなどは吸着材を再生の際には高湿空気に気化しないため、凝集する際には塩化ナトリウムが入り込むことはなく、純度の高い純粋が得られる。   In addition, since most of the impurities generated at this time settle in the air, they do not adhere to the adsorbent, or even if attached, the adsorbent is much less than the raw water, so the impurities are washed away, etc. There is little maintenance. In addition, sodium chloride contained in seawater, which is an example of raw water, does not evaporate into high-humidity air during regeneration of the adsorbent. Is obtained.

なお、さらに吸着材に付着した不純物を洗い流すなどのメンテナンスの頻度をさらに少なくするためには、吸着材の前段に不純物や気化できなかった原水の粒子を捕集するための不純物除去手段を設けてもよい。   In order to further reduce the frequency of maintenance such as washing away impurities adhering to the adsorbent, an impurity removing means for collecting impurities or raw water particles that could not be vaporized is provided in the previous stage of the adsorbent. Also good.

また、本発明での噴霧方法として、微細水滴を噴霧できる形状のノズルから水を噴霧することによって霧を発生させることで、効率的に低エネルギーで水を噴霧でき、供給される乾燥空気によって、微細な霧は気化し、高湿の空気と、不純物の析出物に分けられ、湿度を吸着することで、水分子のみとして取り出し、吸着材から再生し、凝縮することで水を得ることが出来るものである。   Moreover, as a spraying method in the present invention, by generating water by spraying water from a nozzle having a shape capable of spraying fine water droplets, water can be efficiently sprayed with low energy, and by supplied dry air, Fine mist vaporizes and is divided into high-humidity air and impurity precipitates. By adsorbing humidity, it can be extracted as water molecules only, regenerated from the adsorbent, and condensed to obtain water. Is.

また、本発明の噴霧方法としては、原水を、回転装置の遠心力や、高位置からの落下などを用いて壁面もしくは床面に原水をあてて微細化することで移動というわずかなエネルギーで高湿空気を取り出すことが出来る。   Further, as a spraying method of the present invention, the raw water is made high by a slight energy of movement by applying the raw water to the wall surface or floor surface by using centrifugal force of a rotating device or dropping from a high position to make it fine. Wet air can be taken out.

また、本発明の噴霧方法としては、キャブレター方式を用いて、通気路に高速空気を流し、負圧にし、負圧部分に原水の噴出口を設けることで、原水は吸い上げられ、水が霧化して噴出す。噴出すと、原水量の調整をしながら、急激に気化させることが出来、高湿の空気を得られる。特に高温で乾燥した空気を導入することで気化しやすく効率が上がるのは言うまでも無い。   In addition, as a spraying method of the present invention, by using a carburetor method, high-speed air is made to flow in the aeration path to create a negative pressure, and a raw water jet is provided in the negative pressure portion, whereby the raw water is sucked up and the water is atomized. Erupt. When ejected, it can be vaporized rapidly while adjusting the amount of raw water, and humid air can be obtained. Needless to say, by introducing air dried at a high temperature, it is easy to vaporize and the efficiency is increased.

また、本発明の噴霧方法としては、原水を超音波振動の発生する槽に入れたり、原水中に超音波を発生する振動子を入れたりすることで、原水に超音波振動を与え、原水と空気の界面を振動させることで、そのエネルギーにより、原水の粒子および水蒸気を気中に拡散する。これにより原水を加熱して蒸発させるよりも非常に少ないエネルギーで高湿空気を取り出すことが出来る。また、原水中の不純物は、原水の飛散元から比較的近くに落ちるため、発生器と吸着材の距離をとることで、吸着材に不純物が混入することを防ぐことが出来る。   In addition, as a spraying method of the present invention, raw water is put into a tank where ultrasonic vibrations are generated or a vibrator that generates ultrasonic waves is put into the raw water to give ultrasonic vibrations to the raw water. By vibrating the air interface, the raw water particles and water vapor are diffused into the air by the energy. This makes it possible to extract high-humidity air with much less energy than heating and evaporating raw water. Moreover, since impurities in the raw water fall relatively close to the source of the raw water, it is possible to prevent impurities from being mixed into the adsorbent by taking a distance between the generator and the adsorbent.

また、本発明における噴霧して得られる高湿空気を有効に利用するために、噴霧室を設け、吸入口より外気もしくは処理後の乾燥空気を回収して取り込み、噴霧した高湿空気が拡散しないようにすることで、効率よく、水分を吸着回収できる。   Also, in order to effectively use the high-humidity air obtained by spraying in the present invention, a spray chamber is provided, the outside air or the treated dry air is collected and taken in from the suction port, and the sprayed high-humidity air does not diffuse By doing so, moisture can be efficiently adsorbed and recovered.

また、本発明における霧化室を負圧にし、原水の噴霧状態で霧状の水が揮発しやすくし、その後外気もしくは処理後の乾燥空気を回収して取り込み、高湿空気を正圧に戻すことで、効率よく、水分を回収できる。   In addition, the atomization chamber in the present invention is set to a negative pressure so that the atomized water is easily volatilized in the raw water spray state, and then the outside air or the treated dry air is collected and taken in, and the high-humidity air is returned to the positive pressure. Thus, moisture can be collected efficiently.

また、原水を気化した場合に、気化とともに原水から取り除かれた固形分や、大きな水滴は重いため、気中で沈降する。その沈降物や大きな水滴を回収するスペースを有することで、吸着材に吸い込まれず、固形分を回収でき、そうすることによって、吸着材の目詰まりがなく、装置の長寿命化につながる。また、この堆積物の回収部分を取り外して、堆積物を噴霧室から回収するようにすると、より簡易的にメンテナンスが可能になる。また、不純物であったものは水に溶けやすいものも多いため、沈降物の回収部に水をためたり、流すことで、より回収しやすくまた際飛散の心配がないため、よりよい。   In addition, when raw water is vaporized, solids removed from the raw water along with vaporization and large water droplets are heavy, so they settle in the air. By having a space for collecting the sediment and large water droplets, the solid content can be recovered without being sucked into the adsorbent, and as a result, there is no clogging of the adsorbent and the life of the apparatus is extended. Further, if the deposit recovery part is removed and the deposit is recovered from the spray chamber, maintenance can be performed more easily. In addition, since many of the impurities are easily soluble in water, it is better to accumulate or flow water in the sediment collection part, so that it is easier to collect and there is no fear of splashing.

また、高湿の空気を吸着材に導入する前に、その高湿空気の温湿度もしくはそのどちらか一方でもセンサーを設置する。これにより、より高湿の空気の場合は吸着材が早く吸着容量の飽和点に達するため、早く再生過程に送る必要があり、その制御をすることが可能である。逆に比較的低湿の場合は、送風量や加湿する原水供給を増やすなどの制御を行うことで、淡水化能力を向上させることが出来る。同様に、処理後の空気や、霧化する前の導入空気もセンシングすることでその制御がより高精度なものになる。   In addition, before introducing high-humidity air into the adsorbent, a sensor is installed at the temperature and / or humidity of the high-humidity air. As a result, in the case of air of higher humidity, the adsorbent quickly reaches the saturation point of the adsorption capacity. Therefore, it is necessary to send the adsorbent to the regeneration process earlier, and the control can be performed. On the other hand, when the humidity is relatively low, the desalination ability can be improved by performing control such as increasing the amount of blown air or supplying raw water to be humidified. Similarly, sensing the air after processing and the introduced air before atomization makes the control more accurate.

また、吸着材の後段にファンを配置することによって、霧化室は外気より負圧になり、噴霧された原水は気化しやすくなり、またファン自体は吸着材に処理されたのちの乾燥した空気にさらされるだけなので、比較的長寿命の運転が可能となる。   In addition, by disposing a fan after the adsorbent, the atomization chamber has a negative pressure from the outside air, the sprayed raw water is easily vaporized, and the fan itself is treated with the adsorbent and then dried air. Therefore, operation with a relatively long life is possible.

また、吸着材を再生して取り出した高温高湿度に凝縮した空気は顕熱交換器に導入され、熱交換器を吸着材に導入される前の低温低湿度の空気にさらされることで、再生空気は冷やされ、水は結露することが出来る。これにより凝縮に新たなエネルギーを用いることなく、目的の淡水を回収できる。   In addition, the high-temperature, high-humidity air that has been recovered from the adsorbent is introduced into the sensible heat exchanger, and the heat exchanger is exposed to low-temperature, low-humidity air before it is introduced into the adsorbent. Air is cooled and water can condense. Thereby, the target fresh water can be recovered without using new energy for condensation.

また、吸着材がハニカム構造をしており、通気体の構造で表面積が大きいために、圧力損失が低くて通気エネルギーを低く出来且つ、空気中の湿度を回収できるため、水の回収効率を向上させることが出来る。また、原水を霧化した際にも、空中で原水から分離した不純物固体などは、通気口のあいたハニカム構造であれば捕集されずに排気されてしまうため、吸着材の劣化を遅くすることもできるし、不純物を洗い流すなどの洗浄のメンテナンスの頻度を少なくすることが可能である。   In addition, because the adsorbent has a honeycomb structure and the surface area of the ventilation body is large, the pressure loss is low, the ventilation energy can be reduced, and the humidity in the air can be recovered, improving the water recovery efficiency. It can be made. Also, when the raw water is atomized, impurity solids etc. separated from the raw water in the air will be exhausted without being collected in the honeycomb structure with vents, thus slowing the deterioration of the adsorbent. It is also possible to reduce the frequency of cleaning maintenance such as washing away impurities.

また、吸着材の材料として少なくともゼオライト、シリカゲル、活性炭、酸化アルミナ、シリカアルミナのうち複数もしくはいずれかひとつを有していることで、以上の材料は、吸着のサイクルにおいて、吸着空気と再生空気の間で、大きな吸着容量を有し、且つ吸着と再生の繰り返しにおいても、性能の劣化が少ないため、装置の長寿命化が計れる。   In addition, since the adsorbent material includes at least one of zeolite, silica gel, activated carbon, alumina oxide, and silica alumina, the above materials can be used for adsorption air and regeneration air in the adsorption cycle. In the meantime, it has a large adsorption capacity, and even when adsorption and regeneration are repeated, there is little deterioration in performance, so that the life of the apparatus can be extended.

また、前述の材料を、前述のハニカム形状に加工するために、ハニカム形状のアルミなどの金属やセラミックの基材上に、接着剤を用いて前述の材料を担持することでハニカム状の吸着材が得られる。また、前述の吸着材をバインダなどと混合して、押し出し生計などを用いてハニカム形状に仕上げても良い。   Moreover, in order to process the above-mentioned material into the above-mentioned honeycomb shape, a honeycomb-shaped adsorbent is obtained by supporting the above-described material using an adhesive on a metal substrate such as honeycomb-shaped aluminum or a ceramic substrate. Is obtained. Further, the above adsorbent may be mixed with a binder or the like and finished into a honeycomb shape using an extrusion biometer or the like.

また、吸着材の形状としては円形で、装置には吸着材を回転させる回転手段を設け、吸着材を回転させる。円形の一部で高湿の空気を吸着しながら残り部分には再生用の温風を流し、水分を回収する。このようにして、吸着材の一部で再生し、連続的に吸着と再生を繰り返すことが出来る。   Further, the shape of the adsorbent is circular, and the apparatus is provided with a rotating means for rotating the adsorbent to rotate the adsorbent. While adsorbing high-humidity air in a part of the circle, warm air for regeneration is passed through the remaining part to collect moisture. In this way, it is possible to regenerate with a part of the adsorbent and continuously repeat the adsorption and regeneration.

また、吸着材は複数個を設け、水蒸気を吸着する吸着部と吸着した水分を取り出す再生部を交互に入れ替えて繰り返すことで連続的に吸着と再生による水分の回収してもよい。   Further, a plurality of adsorbents may be provided, and moisture may be continuously collected by adsorption and regeneration by alternately replacing the adsorption unit that adsorbs water vapor and the regeneration unit that extracts the adsorbed moisture.

また、吸着材の再生手段としてはヒーターなどの加熱装置を用いてもよいが、本発明では外気が砂漠気候などの高温乾燥した地域でとくに有利であるが、吸着材の再生用空気としても塵などを取り除いた乾燥した外気を導入することで、特に再生装置で空気の加熱をせずに吸着材の再生をすることも可能である。   In addition, although a heating device such as a heater may be used as the adsorbent regeneration means, the present invention is particularly advantageous in high-temperature and dry areas such as desert climates. It is possible to regenerate the adsorbent without heating the air, particularly with a regenerator, by introducing dry outside air from which the above has been removed.

また、本発明の再生装置として、例えば黒く塗り太陽光による加熱を受けた材料に、送風して、空気を加熱したものを再生空気として用いることで、低エネルギーでの再生効率を向上させることが出来る。   In addition, the regeneration device of the present invention can improve the regeneration efficiency with low energy by using, as the regeneration air, the material heated by air, for example, by applying black heat to the material that has been painted black and heated. I can do it.

また、本発明の再生装置の再生手段として、太陽光を集光し、これを再生部で素子に照射することで素子を温め、別途再生用の空気をファンで送る、例えば前述のような方法で送風することで、脱着した水蒸気を得ることが可能である。   Further, as the reproducing means of the reproducing apparatus of the present invention, sunlight is collected, the element is irradiated on the element by the reproducing unit, the element is warmed, and air for regeneration is separately sent by a fan. It is possible to obtain desorbed water vapor by blowing air.

また、本発明の再生装置の再生手段として、水の蒸発に用いることのできないような80℃以下のガスタービンや燃料電池などの廃熱を利用して、再生空気と熱交換し、再生空気を温め吸着材の再生をすることも可能である。   In addition, as regeneration means of the regeneration device of the present invention, waste heat from a gas turbine or a fuel cell of 80 ° C. or less that cannot be used for water evaporation is used to exchange heat with the regeneration air, It is also possible to regenerate the warm adsorbent.

本発明では、原水をノズルや水の破砕、キャブレター、超音波振動によって噴霧して気化させ、気化水分を吸着材に送り込んで、吸着材で吸湿し、これを加熱手段によって再生することで高湿空気を得、これを熱交換器等の凝縮機で水にすることで、低エネルギー、省エネルギーで淡水を得ることが出来る。また、この際霧化した水分が拡散しないよう、霧化室をもうけ、それに乾燥空気を導入したり、空間を負圧にするとより蒸気にしやすい。   In the present invention, raw water is sprayed and vaporized by a nozzle, water crushing, carburetor, or ultrasonic vibration, the vaporized water is sent to the adsorbent, absorbed by the adsorbent, and regenerated by the heating means. By obtaining air and making it water with a condenser such as a heat exchanger, fresh water can be obtained with low energy and energy saving. Further, in order to prevent the atomized water from diffusing at this time, it is easier to form a vapor when an atomization chamber is provided and dry air is introduced into the chamber, or the space is set to a negative pressure.

また、本発明では、霧化室の入り口に集塵フィルターおよび有機ガスフィルターを設置することで、霧化室内への不純物および有機ガスの混入を防ぎ、吸着材への不純物および有機ガスの混入を防ぐことで、吸着材の再生によって得られる高湿空気中に不純物および有機ガスが溶け込むのを防ぐことができ、純度の高い淡水が得られる。   Further, in the present invention, by installing a dust collection filter and an organic gas filter at the entrance of the atomization chamber, contamination of impurities and organic gas into the atomization chamber is prevented, and impurities and organic gas are mixed into the adsorbent. By preventing, impurities and organic gas can be prevented from dissolving in the high-humidity air obtained by regeneration of the adsorbent, and high-purity fresh water can be obtained.

また、本発明では高湿の空気の温湿度をセンシングすることによって、吸着再生のタイミングや導入空気の風量や原水の噴霧量を制御することで、淡水化の効率を最適化することが出来る。   Further, in the present invention, the desalination efficiency can be optimized by sensing the temperature and humidity of the high-humidity air to control the timing of adsorption regeneration, the air volume of the introduced air, and the amount of raw water sprayed.

また、本発明では吸着材の後段にファンを配置し、霧化室を負圧にすることで、噴霧された原水を気化しやすくし、またファン自体は吸着材に処理されたのちの乾燥した空気にさらされるように配置するため、効率よく且つ長寿命な装置が得られる。   Further, in the present invention, a fan is disposed after the adsorbent, and the atomization chamber is set to a negative pressure to facilitate vaporization of the sprayed raw water, and the fan itself is dried after being treated with the adsorbent. Since it is arranged to be exposed to air, an efficient and long-life apparatus can be obtained.

また、本発明では吸着材を再生して取り出した高温高湿度の空気を顕熱交換器に導入し、この熱交換器を吸着材に導入される前の低温低湿度の空気に接触させることで、高湿度の再生空気を冷やし凝縮させることができるため、新たなエネルギー無しに、淡水を回収することが出来る。   In the present invention, the high-temperature and high-humidity air regenerated from the adsorbent is introduced into the sensible heat exchanger, and the heat exchanger is brought into contact with the low-temperature and low-humidity air before being introduced into the adsorbent. Because the high-humidity regeneration air can be cooled and condensed, fresh water can be recovered without any new energy.

また、本発明では吸着材がハニカム構造にすることで、通気用のエネルギー負担を減らし、かつ広い面積で効率よく湿分と吸着材を接触させることで高効率に淡水を回収できる。   In the present invention, the adsorbent has a honeycomb structure, so that the energy burden for ventilation is reduced, and fresh water can be recovered with high efficiency by efficiently contacting moisture and the adsorbent in a wide area.

また、本発明では、吸着材の材料にゼオライト、シリカゲル、活性炭、酸化アルミナ、シリカアルミナのうち複数もしくはいずれかひとつを使うことで吸着容量が大きくかつ、劣化しにくい装置を得ることが出来る。またその加工方法としては、ハニカム状の基材上にバインダを介して担持したり、バインダと吸着材料を混合し、押し出し成形などによってハニカム成形しても良い。   Further, in the present invention, an apparatus having a large adsorption capacity and hardly deteriorates can be obtained by using a plurality of or any one of zeolite, silica gel, activated carbon, alumina oxide, and silica alumina as the material of the adsorbent. Further, as a processing method thereof, it may be supported on a honeycomb-like base material via a binder, or a binder and an adsorbing material may be mixed and formed into a honeycomb by extrusion molding or the like.

また、本発明では、吸着材を円形とすることで吸着材を回転させ、円形の一部で高湿の空気を吸着しながら別の部分には再生用の温風を流し、このようにして連続的に淡水を取り出すことが出来る。   Further, in the present invention, the adsorbent is rotated by making the adsorbent circular, and the warm air for regeneration is flowed to the other part while adsorbing high-humidity air in a part of the circular shape, thus Fresh water can be taken out continuously.

また、本発明では吸着材を複数個を設け、水蒸気を吸着する吸着部と吸着した水分を取り出す再生部を交互に入れ替えて繰り返すことで連続的に水分を回収できる。   Further, in the present invention, a plurality of adsorbents are provided, and moisture can be continuously recovered by alternately replacing the adsorption unit that adsorbs water vapor and the regeneration unit that extracts the adsorbed moisture.

また、本発明では、外気が比較的乾燥しているならば、それを導入し吸着材の再生空気に用い、エネルギーを節約できる。   Further, in the present invention, if the outside air is relatively dry, it can be introduced and used for the regeneration air of the adsorbent to save energy.

また、本発明の再生空気としては、太陽光で温めた材料に空気を触れさせ温めた温風やガスタービンや燃料電池などの廃熱を熱交換して作った温風で再生したり、太陽光を集光し、これを再生部で素子に照射することで素子を温め、別途再生用の空気をファンで送ることで、エネルギー消費の少ない再生が出来る。   In addition, the regenerated air of the present invention can be regenerated with warm air produced by heat exchange of waste heat from gas turbines, fuel cells, etc. By condensing the light and irradiating the element with the reproducing unit, the element is warmed, and reproduction air is separately sent by a fan, so that reproduction with low energy consumption can be performed.

本発明の請求項1記載の発明は、前段に原水の霧化装置と後段に吸着材を備え、原水を霧化した内の水分を吸着材が吸着し、この吸着材を再生装置によって再生することで、高湿度の水分を得、これを凝縮することで淡水を得られるようにしたものであり、従来の装置に比べ、加熱による水の蒸発を伴わず、水分を吸着放出というサイクルを経るために低エネルギー、省エネルギーで不純物の少ない淡水を得られる。   According to the first aspect of the present invention, the raw water atomization device is provided in the front stage and the adsorbent is provided in the rear stage, the adsorbent adsorbs the water in the raw water atomized, and the adsorbent is regenerated by the regenerator. In this way, fresh water can be obtained by condensing this with high-humidity moisture, and it undergoes a cycle of adsorption and release of moisture without heating water evaporation compared to conventional devices. Therefore, fresh water with less impurities can be obtained with low energy and energy saving.

また、本発明の請求項2記載の発明は、前述の淡水化装置の霧化方法として、原水に圧力をかけて、霧状に噴出せる形状に加工したノズルから噴出すことによって、非常に細かい原水の粒子を気中に噴出し、徐々に蒸発させることで、高湿空気を得る手法として、加熱を伴わず、少ないエネルギーによって淡水を得るための高湿空気を作り出すことが出来る。噴出す霧が気化できるように、ノズルの形状は特殊な形状でなくてはならず、噴出される水が100μm以下で、望ましくは、10μm以下がより気化しやすく望ましい。   Further, the invention according to claim 2 of the present invention is very fine by spraying from the nozzle processed into a mist-like shape by applying pressure to the raw water as the atomization method of the desalination apparatus described above. As a method for obtaining high-humidity air by ejecting raw water particles into the air and gradually evaporating it, high-humidity air for obtaining fresh water can be created with little energy without heating. The shape of the nozzle must be a special shape so that the sprayed mist can be vaporized, and the amount of water to be ejected is 100 μm or less, preferably 10 μm or less.

また、本発明の請求項3記載の発明は、前述の淡水化装置の霧化方法として、原水を落下や遠心力を掛けることによって壁面もしくは床面に衝突させ、水を破砕し、その際に水の細かい粒子を得、径時に蒸発させることで、高湿空気を得る手法として、加熱を伴わず、少ないエネルギーによって淡水を得るための高湿空気を作り出すことが出来る。   Further, according to the invention described in claim 3 of the present invention, as the atomization method of the desalination apparatus described above, the raw water is collided with the wall surface or the floor surface by applying a centrifugal force to the water, and the water is crushed. As a technique for obtaining high-humidity air by obtaining fine particles of water and evaporating at the time of diameter, high-humidity air for obtaining fresh water can be created with little energy without heating.

また、本発明の請求項4記載の発明は、前述の淡水化装置の霧化方法として、キャブレターを有しており、通気路に高速空気を流し、通気路を負圧にし、負圧部分に原水の噴出口を設けることで、原水は吸い上げられ、水が霧化して噴出す。噴出すと、原水量の調整をしながら、急激に気化させることが出来、高湿空気を得る手法として、加熱を伴わず、少ないエネルギーによって淡水を得るための高湿空気を作り出すことが出来る。   Further, the invention according to claim 4 of the present invention has a carburetor as the atomization method of the desalination apparatus described above, allows high-speed air to flow through the air passage, and makes the air passage negative pressure, so that the negative pressure portion By providing a spout for raw water, the raw water is sucked up and the water is atomized and ejected. When ejected, it can be rapidly vaporized while adjusting the amount of raw water, and as a method for obtaining high-humidity air, high-humidity air for obtaining fresh water can be created with little energy without heating.

また、本発明の請求項5記載の発明は、前述の淡水化装置の霧化方法として、原水を超音波振動の発生する槽に入れたり、原水中に超音波を発生する振動子を入れたりすることで、原水に超音波振動を与え、原水と空気の界面を振動させることで、そのエネルギーにより、原水の粒子および水蒸気を気中に拡散することができる。これにより原水を加熱して蒸発させるよりも非常に少ないエネルギーで淡水を得るための高湿空気を取り出すことが出来る。   Further, according to the fifth aspect of the present invention, as the atomization method of the desalination apparatus described above, raw water is put into a tank where ultrasonic vibrations are generated, or a vibrator which generates ultrasonic waves is put into the raw water. As a result, ultrasonic vibration is applied to the raw water and the interface between the raw water and air is vibrated, whereby the raw water particles and water vapor can be diffused into the air by the energy. Thereby, it is possible to take out high-humidity air for obtaining fresh water with much less energy than heating and evaporating raw water.

なお、霧化において原水中の不純物は、多くは霧化によって発生する比較的大きな原水の微粒子中に存在し、原水の飛散元から比較的近くに落ちるため、発生器と吸着材の距離を微粒子を吸着材が吸い込んでしまわない程度以上にとることで、吸着材に不純物が混入することを防ぐことが出来る。   In addition, most of the impurities in the raw water in the atomization are present in the relatively large raw water fine particles generated by the atomization and fall relatively close to the source of the raw water. If the adsorbent is taken in such a degree that the adsorbent does not inhale, impurities can be prevented from being mixed into the adsorbent.

なお、ここではそれぞれの霧化装置について説明したが、これ以外の霧化装置で、装置前段の原水の霧化工程を行なってもよく、複数の霧化装置を配しても良い。   In addition, although each atomizer was demonstrated here, the atomization process of the raw | natural water of an apparatus front stage may be performed with an atomizer other than this, and several atomizers may be arranged.

また、本発明の請求項6記載の発明は、前述の霧化装置で発生した霧を拡散させないように、霧化用の部屋を設けることによって、効率的に高湿度の空気を得られる。   In the invention according to claim 6 of the present invention, high-humidity air can be efficiently obtained by providing a room for atomization so as not to diffuse the fog generated by the atomization device.

また、本発明の請求項7記載の発明は、前述の霧化室を特に負圧とすることで霧化して存在している水の粒子を蒸発しやすくすることで、より効率的に水蒸気を得ることが出来る。   In addition, the invention according to claim 7 of the present invention makes it easier to evaporate water particles present by atomization by setting the above-mentioned atomization chamber to a particularly negative pressure, so that water vapor can be more efficiently generated. Can be obtained.

また、本発明の請求項8記載の発明は、前述の霧化室中に霧化した原水中の不純物が、重力によって、沈下し、室内に積もるようにすることで、不純物を空気中から取り除けるようなスペースを設ける。このスペースを吸着材より下の部分に設定し、吸着材に吸い込まれないように配置することで吸着材への不純物の混入を防止することが出来る。   In the invention according to claim 8 of the present invention, the impurities in the raw water atomized in the atomization chamber sink by gravity and accumulate in the room, so that the impurities can be removed from the air. Such a space is provided. By setting this space below the adsorbent and arranging it so as not to be sucked into the adsorbent, it is possible to prevent impurities from being mixed into the adsorbent.

また、本発明の請求項9記載の発明は、原水中の不純物および霧化しなかった水の粒が霧化室中で下降し、室内の下部に溜まるように、室内の下部に不純物を溶かし水の粒を回収できるように水をためられるようにすることで、もともと不純物等は水に溶けていたもしくは分散しており、水への溶解および馴染みが良いものであるため、効果的に回収でき、かつ不純物の再飛散を防ぐことが出来る。   In the invention according to claim 9 of the present invention, the impurities are dissolved in the lower part of the room so that the impurities in the raw water and the water particles which have not been atomized descend in the atomization room and accumulate in the lower part of the room. By allowing water to be collected so that the grains can be recovered, the impurities etc. were originally dissolved or dispersed in the water and can be effectively recovered because they are well dissolved and familiar with the water. In addition, re-scattering of impurities can be prevented.

本発明の請求項10記載の発明は、霧化室への吹き込み口に有機ガスを吸着するフィルターおよび塵埃を捕集するフィルターの両方もしくは一方を設置する。霧化室の後段の吸着材は、有機ガスを吸着しやすく、再生装置によって、濃縮された有機ガスが淡水と同時に吸着材から離れてしまう可能性があるため、吹き込み口に有機ガスのフィルターを設けることで、吸着材が吸着する有機ガスをあらかじめ取り除くことができる。また、塵埃のフィルターについても、吸着材の劣化につながる可能性があり、あらかじめ塵埃を捕集できるフィルターを設けることで、吸着材の劣化を無くすことが出来る。しかしながらこのようなフィルターは通気抵抗をあげ、通気ファン等に負荷がかかってしまい、また装置のコストも上がるため、必要のない場合取り付けなくともよい。たとえば微量な有機ガスが存在するものの、装置で得られる淡水を農業用水などそれほど純度を求めないものなどの場合は、有機ガスフィルターは必要ないといえる。   In the invention according to claim 10 of the present invention, both or one of a filter that adsorbs organic gas and a filter that collects dust is installed at the inlet to the atomization chamber. The adsorbent at the latter stage of the atomization chamber is easy to adsorb organic gas, and the regenerator may leave the concentrated organic gas away from the adsorbent at the same time as fresh water. By providing, the organic gas adsorbed by the adsorbent can be removed in advance. Also, the dust filter may lead to deterioration of the adsorbent, and by providing a filter that can collect dust in advance, it is possible to eliminate the deterioration of the adsorbent. However, such a filter increases ventilation resistance, places a load on the ventilation fan, etc., and increases the cost of the apparatus. For example, in the case where there is a trace amount of organic gas but the fresh water obtained by the apparatus does not require so much purity such as agricultural water, it can be said that the organic gas filter is not necessary.

本発明の請求項11記載の発明は、霧化装置から霧化した原水の水蒸気が吸着材に導入される前段と後段の両方もしくはいずれか一方に、温度と湿度の両方もしくはどちらか片方をモニターするセンサーを配し、温度と湿度をモニターすることで、吸着材への水分の吸着時間と吸着材への空気の導入量と再生時間と再生装置の温度、再生装置の風量のうち複数もしくはいずれかひとつを設定できるような自動切り換え装置、もしくは設定の変更指令を作業者に知らせるための報知器のその一方もしくは両方を設置することで、淡水化装置の運転状況を変更し、淡水を供給することで、エネルギー消費量を抑え、効率的に運転することが出来る。   According to the eleventh aspect of the present invention, the temperature and / or humidity is monitored at both the front stage and / or the rear stage where the water vapor atomized from the atomizer is introduced into the adsorbent. By monitoring the temperature and humidity, multiple or any of the adsorption time of moisture to the adsorbent, the amount of air introduced to the adsorbent, the regeneration time, the temperature of the regenerator, and the airflow of the regenerator By installing either or both of an automatic switching device that can set one of them, or one or both of the alarms to notify the operator of setting change commands, the operating status of the desalination device is changed and fresh water is supplied. Thus, energy consumption can be suppressed and operation can be performed efficiently.

本発明の請求項12記載の発明は、吸着材の後段にファンを設置し、吸い込み空気によって、水蒸気を吸着材に吸着させることによって、連続的に高湿空気を吸着材に供給でき、かつ、ファン自体は吸着材を通った後の乾燥空気があたるため、湿度が低く、劣化が起こりにくい。また、霧化室が存在する場合、吸着材の前は負圧になるため、水が気化しやすい効果がある。   The invention according to claim 12 of the present invention can be continuously supplied with high-humidity air to the adsorbent by installing a fan in the subsequent stage of the adsorbent and adsorbing water vapor to the adsorbent with the sucked air, and Since the fan itself is exposed to dry air after passing through the adsorbent, the humidity is low and deterioration is unlikely to occur. Moreover, when an atomization chamber exists, since it becomes a negative pressure before an adsorbent, there exists an effect which water tends to vaporize.

本発明の請求項13記載の発明は、吸着材を再生装置によって再生し、それによって抜けた高温で高湿な水分を冷やして凝縮させるために、吸着材の前段に配置した熱交換器内に導入する。これにより、吸着材に吸い込まれる前の高湿で低温な空気が熱交換器を冷やし、再生空気を冷やし、水分が凝縮し、淡水として回収できる。熱交換気を吸着材前に置くことで、再生空気の凝縮に新たなエネルギーを必要としないため、装置のエネルギー消費を抑えることが出来る。   In the invention according to claim 13 of the present invention, the adsorbent is regenerated by a regenerator, and in order to cool and condense the high-temperature and high-humidity moisture that has escaped, the heat exchanger is disposed in the heat exchanger disposed in the preceding stage of the adsorbent. Introduce. Thereby, the high-humidity and low-temperature air before being sucked into the adsorbent cools the heat exchanger, cools the regenerated air, condenses moisture, and can be recovered as fresh water. By placing the heat exchange air in front of the adsorbent, no new energy is required to condense the regeneration air, so that the energy consumption of the apparatus can be suppressed.

本発明の請求項14記載の発明は、吸着材の形状をハニカム状にすることで、霧化した処理空気を通す際には圧力損失が低く、且つ接触面積が大きいために、多くの湿分を吸着できる。また再生空気を通す際も同様に、吸着材料はハニカム材の表面近くにあるため、吸着材内の移動によって、吸着材の内部まで湿分が入ってしまい、再生する際のエネルギーと時間のロスを防ぐことが出来る。   According to the fourteenth aspect of the present invention, since the shape of the adsorbent is made into a honeycomb shape, when passing the atomized process air, the pressure loss is low and the contact area is large. Can be adsorbed. Similarly, when the regenerative air is passed, the adsorbent material is close to the surface of the honeycomb material, so that moisture moves into the adsorbent due to movement within the adsorbent, resulting in loss of energy and time during regeneration. Can be prevented.

本発明の請求項15記載の発明は、吸着材が少なくともゼオライト、シリカゲル、活性炭、酸化アルミナ、シリカアルミナのうち複数もしくはいずれかひとつをふくんでおり、吸着材として、吸着再生の繰り返しに強く、吸着材の劣化が少ないため、長く使用できるという作用がある。   In the invention according to claim 15 of the present invention, the adsorbent material includes at least one of zeolite, silica gel, activated carbon, alumina oxide, and silica alumina. Since there is little deterioration of a material, it has the effect | action that it can be used for a long time.

本発明の請求項16記載の発明は、前述の吸着材を特にハニカム状に加工した基材上および基材内部に担持することで、ハニカム構造体としての強度をあわせながら、その表面を吸着材で構成することで、ハニカム構造体の接触面積をもち、高効率の吸着材として利用できる。   According to the sixteenth aspect of the present invention, the surface of the adsorbent is adsorbed on the surface of the adsorbent while maintaining the strength of the honeycomb structure by supporting the adsorbent on the substrate processed into a honeycomb shape and inside the substrate. With this structure, the honeycomb structure has a contact area and can be used as a highly efficient adsorbent.

本発明の請求項17記載の発明は、吸着材が円形で吸着材を回転させる回転手段を有しており、円形の一部で吸着しながら残り部分には再生用の温風を流して吸着材を再生し、その吸着材が回転することにより吸着部分と再生部分を繰り返し通過することで連続的に吸着と再生を繰り返すことが出来る。   In the invention according to claim 17 of the present invention, the adsorbent is circular and has a rotating means for rotating the adsorbent. While adsorbing by a part of the circular shape, the remaining part is adsorbed by flowing warm air for regeneration. By regenerating the material and rotating the adsorbent, the adsorption and regeneration can be continuously repeated by repeatedly passing the adsorption portion and the regeneration portion.

本発明の請求項18記載の発明は、吸着材を複数個有し、吸着用の高湿の空気を通過させる吸着塔と再生空気を通過させる再生塔とをわけ、水分を吸着した吸着材を再生塔に送り、水分の放出再生が終わったものを吸着塔に送るものである。この繰り返しによって連続的に淡水を作り出すことができ、吸着塔、再生塔の数を調節することで、吸着時間と再生時間を調節することができる。   The invention according to claim 18 of the present invention includes an adsorbent having a plurality of adsorbents, an adsorption tower through which high-humidity air for adsorption is passed and a regeneration tower through which regenerated air is passed. This is sent to the regeneration tower, and after the release and regeneration of moisture is completed, it is sent to the adsorption tower. By repeating this, fresh water can be continuously produced, and the adsorption time and the regeneration time can be adjusted by adjusting the number of adsorption towers and regeneration towers.

本発明の請求項19記載の発明は、再生空気として、吸着材に導入される霧化した低温で高湿な空気より乾燥した装置の外気を導入することによって、再生空気として新たな熱源を必要とせず、低エネルギー消費の装置を実現できる。特に砂漠地方など、淡水化が必要で且つ、高温で乾いた空気が外気である地域では、実現しやすい。   The invention according to claim 19 of the present invention requires a new heat source as the regeneration air by introducing the outside air of the apparatus dried from the atomized low temperature and high humidity air introduced into the adsorbent as the regeneration air. However, a low energy consumption device can be realized. This is particularly easy in areas where desalination is necessary and high temperature and dry air is outside air, such as desert areas.

本発明の請求項20記載の発明は、再生空気として、太陽光によって温められた材料に空気を当てて、熱交換することにより空気を高温低湿にし、吸着材に再生空気として送り込むものであることで、太陽光を使うことでエネルギー消費を減らすことが出来る。また、特に砂漠地方など、淡水化が必要で且つ、高温で乾いた空気が外気であり、太陽の光が強い地域では、実現しやすい。   According to the invention of claim 20 of the present invention, as the regenerated air, air is applied to the material warmed by sunlight, and heat exchange is performed to make the air high temperature and low humidity, and the air is fed into the adsorbent as regenerated air. By using sunlight, energy consumption can be reduced. In addition, it is easy to realize in an area where desalination is necessary and high temperature and dry air is outside air and strong sunlight, especially in the desert region.

本発明の請求項21記載の発明は、太陽光を集光して、吸着材に直接当てることで吸着材を温め、加熱し、空気を送り込むことで吸着した水分を取り出すことができる。この際吸着材は黒などの赤外線を吸収しやすい材料とすることが望ましい。また、特に砂漠地方など、淡水化が必要で且つ、高温で乾いた空気が外気であり、太陽の光が強い地域では、実現しやすい。また、集光には集光機器などをもちい、より強い光を吸着材にあてて、高温で再生でき、淡水化の効率を向上させることができるため望ましい。   The invention according to claim 21 of the present invention can extract the adsorbed moisture by condensing sunlight and directly applying it to the adsorbent to warm and heat the adsorbent and sending air. At this time, the adsorbent is preferably made of a material that can easily absorb infrared rays such as black. In addition, it is easy to realize in an area where desalination is necessary and high temperature and dry air is outside air and strong sunlight, especially in the desert region. Further, it is desirable to collect light by using a condensing device or the like, by applying stronger light to the adsorbent and regenerating at a high temperature and improving the efficiency of desalination.

本発明の請求項22記載の発明は、ガスタービンや燃料電池などより排出される比較的低温である80℃以下の廃熱を熱交換器にて熱交換し、これを高温低湿な再生空気として送り込むものである。通常80℃以下の廃熱は利用範囲が限られるため、そのまま排出されているが、これによって廃熱を有効利用でき、かつ再生手段として用いることができる。   In the invention according to claim 22 of the present invention, waste heat of 80 ° C. or less, which is a relatively low temperature discharged from a gas turbine, a fuel cell or the like, is heat-exchanged by a heat exchanger, and this is used as high-temperature, low-humidity regenerated air. It is what you send in. Normally, waste heat of 80 ° C. or less is discharged as it is because the range of use is limited. However, waste heat can be used effectively and can be used as a regeneration means.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、海水などの原水1を100μm以下のサイズ、望ましくは10μm以下のサイズで噴霧できるノズル2に導入し、それより空気導入口3と処理装置入り口4をそれぞれ設けた霧化室5内に噴霧し、霧化した原水6が吸着材7に吸着されるよう、吸着材7の後段に設けたファン8により、吸い込み、水蒸気が吸着材7に吸着される。なお、吸着材7の前段に原水中の不純物や気化しなかった原水の粒子をろ過できるフィルター9を設け、不純物が吸着材に導入されないようにするのが望ましい。なお、霧化室5の下部に、水10など(純水でなくともよい)を望ましくは流しつづける設備を設けることで、霧化した水から分離して沈降する不純物や、気化できなかった原水などを回収することが出来る。なお、そのために、処理装置入り口4とノズル2の間の距離は、出来るだけ離したほうがよく、霧化室5内を過剰に加湿することで、水蒸気分のみを処理装置に導入したほうがよい。なお、霧化室5中に余分な不純物を取り込まず、また、吸着材7が有機ガスを吸着し、ガスが濃縮されて、得られる淡水中に溶け込む問題をなくすために、集塵フィルター11および有機ガスフィルター12を空気導入口3に設置するのが望ましい。
(Embodiment 1)
As shown in FIG. 1, atomization in which raw water 1 such as seawater is introduced into a nozzle 2 that can be sprayed with a size of 100 μm or less, preferably 10 μm or less, and then an air inlet 3 and a processing device inlet 4 are provided respectively. Suction and water vapor are adsorbed by the adsorbent 7 by the fan 8 provided at the subsequent stage of the adsorbent 7 so that the raw water 6 sprayed and atomized in the chamber 5 is adsorbed by the adsorbent 7. In addition, it is desirable to provide a filter 9 that can filter the impurities in the raw water and the raw water particles that have not been vaporized before the adsorbent 7 so that the impurities are not introduced into the adsorbent. It should be noted that, by providing equipment that desirably flows water 10 or the like (not necessarily pure water) at the lower part of the atomization chamber 5, impurities that separate from the atomized water and settle, or raw water that could not be vaporized Etc. can be recovered. For this purpose, the distance between the processing apparatus inlet 4 and the nozzle 2 should be as far as possible, and it is better to introduce only water vapor into the processing apparatus by excessively humidifying the inside of the atomization chamber 5. In order to eliminate the problem that excessive impurities are not taken into the atomizing chamber 5 and the adsorbent 7 adsorbs organic gas and the gas is concentrated and dissolved in the obtained fresh water, the dust collecting filter 11 and It is desirable to install the organic gas filter 12 at the air inlet 3.

吸着材7はギアモーターなどの回転手段13によって回転し、吸着材7の通風面の一部に再生手段14を設けて、吸着材を加熱し、吸着した水蒸気を高温高湿に濃縮して放出する。再生した空気を、熱交換器15に送り込むよう、再生風路16と再生ファン17を設けておく。熱交換器15に送られた水分は凝集し水となってタンク18に回収される。再生手段14としては加熱手法として、ニクロム線ヒーター、赤外線ランプ、ハロゲンランプ、PTCヒーター、セラミックヒーター等の熱源によって温める手法が一般的であるが、本発明の装置としても同様である。また、別の淡水化装置、例えば蒸発法などと併用する場合は、その廃熱を使用してもよく、蒸発に用いるより低い温度で再生できる吸着材もあるため、吸着材の選択によって、より効率的に淡水を得ることが出来る。また、実施の形態6乃至8では別の再生手段を述べており、そちらを用いた再生手法でもよい。   The adsorbent 7 is rotated by a rotating means 13 such as a gear motor. A regenerating means 14 is provided on a part of the ventilation surface of the adsorbent 7 to heat the adsorbent, and the adsorbed water vapor is concentrated and discharged to high temperature and high humidity. To do. A regeneration air passage 16 and a regeneration fan 17 are provided so that the regenerated air is sent to the heat exchanger 15. The water sent to the heat exchanger 15 is condensed and collected in the tank 18 as water. The regenerating means 14 is generally heated by a heat source such as a nichrome wire heater, an infrared lamp, a halogen lamp, a PTC heater, or a ceramic heater, but the same applies to the apparatus of the present invention. In addition, when used in combination with another desalination device, such as an evaporation method, the waste heat may be used, and there are also adsorbents that can be regenerated at a lower temperature than used for evaporation. Fresh water can be obtained efficiently. Further, in Embodiments 6 to 8, another reproducing means is described, and a reproducing method using that means may be used.

また、霧化室への導入空気、霧化後吸着材の前での加湿空気、吸着材透過後の処理後空気、それぞれの温度湿度を温湿度計19で測定する。この情報をもとに制御装置20より原水1の噴霧量、ファン8の回転数による処理風量、回転手段13の回転数による吸着材7の吸着再生時間、再生手段14の出力を制御し、これによりそのときの最適な装置の運用ができ、望む量の淡水を得ることが出来る。   Further, the temperature and humidity meter 19 measures the air introduced into the atomization chamber, the humidified air before the adsorbent after atomization, the treated air after passing through the adsorbent, and the temperature and humidity meter 19. Based on this information, the control device 20 controls the spray amount of the raw water 1, the processing air volume according to the rotation speed of the fan 8, the adsorption regeneration time of the adsorbent 7 according to the rotation speed of the rotation means 13, and the output of the regeneration means 14. Therefore, the optimum apparatus at that time can be operated, and a desired amount of fresh water can be obtained.

また、熱交換器15は高湿の風路21中に一部もしくはその全てを置くことで、原水が気化することで熱が奪われ低温となっている高湿の空気21によって冷やされるためより効率的に水を凝集させ、回収することが出来る。   In addition, the heat exchanger 15 is partly or wholly placed in the high-humidity air passage 21, so that the raw water is vaporized and heat is taken away and the low-humidity air 21 is cooled. Water can be efficiently aggregated and recovered.

また、吸着材7の構造として、図2に示すように平らな平シート22と波型形状の波シート23を積層したハニカム構造体24などがあるが、その他に、図示はしないが押し出し成形などのハニカムや、ペレット状の吸着剤を筒状のものに飛散しないように詰めたものなどでも良い。   In addition, as the structure of the adsorbent 7, there is a honeycomb structure 24 in which a flat flat sheet 22 and a corrugated corrugated sheet 23 are laminated as shown in FIG. A honeycomb or a pellet-shaped adsorbent packed so as not to be scattered into a cylindrical shape may be used.

また、吸着材を形成する吸着材料としては、ゼオライト、シリカゲル、活性炭、酸化アルミナ、シリカアルミナなどがあり、これを前述のハニカムなどに加工した基材上に、バインダーを介して接着することで、吸着材を構成する。またその際には基材は比熱の低いもののほうがが、吸着材が吸着再生の際、すばやく温まり、すばやく冷えるため水分の吸放湿能力を向上させるため望ましい。   In addition, as the adsorbing material forming the adsorbent, there are zeolite, silica gel, activated carbon, alumina oxide, silica alumina, etc., and by adhering it to the above-described honeycomb or the like through a binder, Configure the adsorbent. In this case, it is preferable that the base material has a low specific heat because the adsorbent quickly warms and cools quickly during the adsorption regeneration so as to improve moisture absorption and desorption capability.

(実施の形態2)
本発明の実施の形態1と同一部分は同一番号を付し、詳細な説明は省略する。実施の形態1では吸着材を回転させ、その一部に再生手段を配したが、図3に示すように吸着材7を複数有し、それを高湿の処理風路25と再生風路26で入れ替える入れ替え手段27を設けることで、吸着中の吸着材28と再生中の吸着材29を設ける。再生したあとの高湿空気は熱交換器30に送られるが熱交換器30は、処理風路25にあたるように配するのが望ましい。なお、入れ替え手段としては、複数の吸着材を円中心より等距離に配置して、一定時間で回転させるなどが挙げられる。吸着材がその容量まで吸着しきるとの再生によってその吸着容量が回復するのに最適なタイミングで回転時間を設定するのがのぞましく、そのサイクルは5乃至10分程度が望ましい。
(Embodiment 2)
The same parts as those of the first embodiment of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted. In the first embodiment, the adsorbent is rotated, and the regenerating means is arranged on a part thereof. However, as shown in FIG. By providing the replacement means 27 for replacement, the adsorbent 28 being adsorbed and the adsorbent 29 being regenerated are provided. The regenerated high-humidity air is sent to the heat exchanger 30, but the heat exchanger 30 is preferably arranged so as to hit the treatment air passage 25. In addition, as a replacement means, a plurality of adsorbents are arranged equidistant from the center of the circle and rotated in a certain time. It is desirable to set the rotation time at an optimal timing for recovering the adsorption capacity by regeneration that the adsorbent has adsorbed up to that capacity, and the cycle is preferably about 5 to 10 minutes.

また、前述の実施の形態1では吸着材の前段にフィルターを設け、不純物や原水の粒子が吸着材に入るのを防いだが、吸着材7の前段に空気を回転させるサイクロン装置31を設けることで、空気に遠心力をあたえ、水分子より重い不純物や、大きな水の粒子を分離することができ、水分を含んだ空気のみを吸着材7に導入することが出来るためより望ましい。   In the first embodiment, a filter is provided in front of the adsorbent to prevent impurities and raw water particles from entering the adsorbent, but a cyclone device 31 for rotating air is provided in front of the adsorbent 7. It is more desirable because air can be given a centrifugal force to separate impurities and heavier water particles than water molecules, and only moisture-containing air can be introduced into the adsorbent 7.

また、前述の実施の形態1では分離した不純物や大きいままの原水の粒子を沈降させて回収するのに、水を流して回収したが、霧化室から取り外すことの出来る回収皿32を底部に設けることで、不純物や原水の粒子を回収することが出来る。   Further, in the first embodiment described above, the separated impurities and raw raw water particles are settled and collected to collect the water, but the collection plate 32 that can be removed from the atomization chamber is provided at the bottom. By providing, impurities and raw water particles can be recovered.

(実施の形態3)
本発明の実施の形態1または2と同一部分は同一番号を付し、詳細な説明は省略する。実施の形態1では水蒸気の発生源としてノズルから水を噴霧する方法をもちいたが、図4に示すように、超音波振動子33によって原水を振動させ、水を霧化する。図中には示されていないが、超音波振動子33は複数在っても良いし、原水が常に一定の水位となるように供給される構成とし、常に振動によって最も霧化しやすい水位に保つのが望ましい。
(Embodiment 3)
The same parts as those in the first or second embodiment of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted. In the first embodiment, water is sprayed from a nozzle as a water vapor generation source. However, as shown in FIG. 4, raw water is vibrated by an ultrasonic vibrator 33 to atomize the water. Although not shown in the drawing, there may be a plurality of ultrasonic transducers 33, and the raw water is always supplied at a constant water level, and the water level is always kept at the level that is most easily atomized by vibration. Is desirable.

また、前述の実施の形態1では吸着材に不純物や原水の粒子が入らないようにフィルターをまた、実施の形態2ではサイクロンを設置したが、同様に吸着材7の前段に空気のトラップ装置34を設けることが、不純物を分離することができて、望ましい。   In the first embodiment, a filter is installed to prevent impurities and raw water particles from entering the adsorbent, and a cyclone is installed in the second embodiment. Similarly, an air trap device 34 is provided upstream of the adsorbent 7. It is desirable to provide an impurity because impurities can be separated.

(実施の形態4)
本発明の実施の形態1乃至3のいずれかと同一部分は同一番号を付し、詳細な説明は省略する。実施の形態1では水蒸気の発生源としてノズルから水を噴霧する方法を用いたが、図5に示すように、原水35をポンプ36によって回転装置37の中心に送り込み、遠心力によって、回転装置37の周辺に吹き飛ばし、これが壁面38にあたることでそのエネルギーで水を破砕し霧化することが出来る。
(Embodiment 4)
The same parts as those in any of Embodiments 1 to 3 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted. In the first embodiment, a method of spraying water from a nozzle as a water vapor generation source is used. However, as shown in FIG. 5, the raw water 35 is fed to the center of the rotating device 37 by a pump 36 and is rotated by centrifugal force. The water is blown off around the wall and hits the wall surface 38, whereby water can be crushed and atomized with the energy.

(実施の形態5)
本発明の実施の形態1乃4のいずれかと同一部分は同一番号を付し、詳細な説明は省略する。実施の形態1では水蒸気の発生源としてノズルから水を噴霧する方法を用いたが、図6に示すように、霧化室内にキャブレター39を設け、例えばポンプ40などによって高速空気41を流しながら負圧になっている風路42に原水43を流し、霧化することが出来る。
(Embodiment 5)
The same parts as those in any of Embodiments 1 to 4 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted. In the first embodiment, a method in which water is sprayed from a nozzle is used as a water vapor generation source. However, as shown in FIG. 6, a carburetor 39 is provided in the atomization chamber, and, for example, a negative pressure is applied while flowing high-speed air 41 by a pump 40 or the like. The raw water 43 is allowed to flow through the air passage 42 that is in pressure to be atomized.

なお、実施の形態1乃至5では原水の霧化方法や不純物の回収方法、捕集方法などについて述べたが、複数の霧化方法を同時に行なっても良い。   In Embodiments 1 to 5, the raw water atomization method, the impurity recovery method, the collection method, and the like have been described. However, a plurality of atomization methods may be performed simultaneously.

(実施の形態6)
本発明の実施の形態1乃5のいずれかと同一部分は同一番号を付し、詳細な説明は省略する。実施の形態1乃至5では吸着材の再生方法として、例えばヒーターなどの加熱装置を述べたが、図7に示すように、再生部44に導入する空気を外気の乾燥空気45とし、再生ファン46によって導入する。とくに砂漠などの高温低湿な地域の空気であれば、吸着材7に吸着した水を取り出すことができ、ヒーターなどの加熱手段を用いないため、低電力の淡水化装置が実現できる。
(Embodiment 6)
The same parts as those in any of Embodiments 1 to 5 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted. In the first to fifth embodiments, a heating device such as a heater has been described as a method for regenerating the adsorbent. However, as shown in FIG. Introduce by. In particular, if the air is in a high-temperature and low-humidity area such as a desert, water adsorbed on the adsorbent 7 can be taken out, and heating means such as a heater is not used, so a low-power desalination apparatus can be realized.

(実施の形態7)
本発明の実施の形態1乃6のいずれかと同一部分は同一番号を付し、詳細な説明は省略する。実施の形態6では再生手段として、外気導入のみをおこなったが、図8に示すように再生ファン47により外気を導入する前段に太陽光48によって蓄熱した熱交換器49を通過させ、空気を温めることができる。この温められた空気によって吸着材7が再生され、水を回収することが出来る。これによって低電力の淡水化装置が実現できる。なお、太陽光48によって温められるため、熱交換器は赤外線を吸収しやすい黒い材料かもしくは、光の吸収率が高い材料をもちいたほうがより望ましく、その面積は広く、太陽光線を垂直に受けられる角度に立てられたものがより望ましい。
(Embodiment 7)
The same parts as those in any one of the first to sixth embodiments of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted. In the sixth embodiment, only the outside air is introduced as the regeneration means. However, as shown in FIG. 8, the heat is stored in the heat exchanger 49 stored by sunlight 48 before the outside air is introduced by the regeneration fan 47 to warm the air. be able to. The adsorbent 7 is regenerated by this warmed air, and water can be recovered. As a result, a low-power desalination apparatus can be realized. In addition, since it is heated by sunlight 48, it is more desirable to use a black material that easily absorbs infrared rays or a material that has a high light absorption rate, and the heat exchanger has a large area and can receive sunlight rays vertically. An angled one is more desirable.

(実施の形態8)
本発明の実施の形態1乃7のいずれかと同一部分は同一番号を付し、詳細な説明は省略する。実施の形態7では熱交換器に外気を導入したが、図9に示すように、太陽光50を集光機51によって集光し、その光を吸着材7に当てることで、吸着材7を温め、再生ファン52によって空気を流すことで、温められた吸着材7から水分を回収することができる。これによって低電力の淡水化装置が実現できる。なお、この場合も太陽光によって吸着材は温められるため、吸着材表面が赤外線を吸収しやすい黒色かもしくは光の吸収率が高いものを配合したものがより望ましい。
(Embodiment 8)
The same parts as those in any of the first to seventh embodiments of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted. In the seventh embodiment, outside air is introduced into the heat exchanger. However, as shown in FIG. 9, the sunlight 50 is collected by the condenser 51 and the light is applied to the adsorbent 7, so that the adsorbent 7 is Water can be recovered from the warmed adsorbent 7 by warming and flowing air with the regeneration fan 52. As a result, a low-power desalination apparatus can be realized. In this case as well, since the adsorbent is warmed by sunlight, it is more desirable that the adsorbent surface is black that easily absorbs infrared rays or that has a high light absorption rate.

なお、実施の形態7乃至8では外気導入以外でも、再生後、水分を凝集して乾燥した空気を再度再生空気として循環して用いてもよく、外気との再生効率の良いほうをユーザーが選べばよい。   In Embodiments 7 to 8, in addition to the introduction of outside air, air that has been condensed and dried after regeneration may be circulated and used again as regeneration air, and the user can select the one that has better regeneration efficiency with outside air. That's fine.

なお、さまざまな実施の形態を挙げたが、当然この実施の形態を組み合わせて装置をくみ上げてもよい。   In addition, although various embodiments have been described, it is naturally possible to draw up the apparatus by combining these embodiments.

図10に示すように、アクリル製ボックス53内に、超音波振動子54を備えた水槽55を設け、これを電子天秤56上に置いた。水槽55は一定の水位57となるようにし、原水として海水を模した塩化ナトリウム3.5%塩化ナトリウム水溶液58を入れた。   As shown in FIG. 10, a water tank 55 provided with an ultrasonic transducer 54 was provided in an acrylic box 53 and placed on an electronic balance 56. The water tank 55 was set to a constant water level 57, and sodium chloride 3.5% sodium chloride aqueous solution 58 imitating seawater was added as raw water.

アクリル製ボックス53は下部に吸気用の穴として吸気口59を設け、比較的上部に処理用通気口60を設けた。   The acrylic box 53 is provided with an intake port 59 at the bottom as an intake hole and a processing vent 60 at a relatively upper portion.

処理用通気口60から再生凝集用の熱交換器61を通して、吸着材62を配し、その後段に処理ファン63を設置した。吸着材62の再生装置としてはヒーター64と再生用のファン(図示せず)を用いた。   An adsorbent 62 was disposed from the processing vent 60 through a heat exchanger 61 for regeneration and aggregation, and a processing fan 63 was installed at the subsequent stage. As a regeneration device for the adsorbent 62, a heater 64 and a regeneration fan (not shown) were used.

外気雰囲気としては、約40℃20%R.H.と設定し、超音波振動を起こしてアクリル製ボックス53内を加湿しながら、処理ファン63によって、加湿空気を吸着材62に導入した。吸着材62は回転手段(図示せず)によって回転し、回転によって再生部と吸着部を交互に入れ替わる。再生された高湿空気は、熱交換器61内で凝集し、凝集した水がタンク65に流れ、淡水66が回収された。   The outside air atmosphere is about 40 ° C. and 20% R.D. H. The humidified air was introduced into the adsorbent 62 by the processing fan 63 while ultrasonic vibration was generated and the inside of the acrylic box 53 was humidified. The adsorbent 62 is rotated by a rotating means (not shown), and the reproducing unit and the adsorbing unit are alternately switched by the rotation. The regenerated high-humidity air aggregated in the heat exchanger 61, the aggregated water flowed to the tank 65, and fresh water 66 was recovered.

このときの加湿量は水槽の重量減分より算出し、吸着材による水の回収量はタンクに溜まった量を測定した。このとき、導入空気および、加湿後吸着材導入前の空気の温度湿度をモニターした。その結果を表1に示す。表1は本発明の実施例1の淡水化実験での回収効率の測定結果である。   The humidification amount at this time was calculated from the weight reduction of the water tank, and the amount of water collected by the adsorbent was measured by the amount accumulated in the tank. At this time, the temperature and humidity of the introduced air and the air after humidification and before introduction of the adsorbent were monitored. The results are shown in Table 1. Table 1 shows the measurement results of the recovery efficiency in the desalination experiment of Example 1 of the present invention.

Figure 2007237140
Figure 2007237140

また、回収した水について、蒸発させ、回収した水における不純物の割合を測定した。その結果を表2に示す。表2は本発明の実施例1の淡水化実験での回収水の不純物量の測定結果である。   Further, the recovered water was evaporated and the ratio of impurities in the recovered water was measured. The results are shown in Table 2. Table 2 shows the measurement results of the amount of impurities in the recovered water in the desalination experiment of Example 1 of the present invention.

Figure 2007237140
Figure 2007237140

その結果、装置運転の初期は、加湿量が少ないことなどが考慮されるが、30分以降は安定して、水の回収が出来、水の回収率は27%程度であった。また、回収された水に不純物はほとんど見られず、淡水化が出来た。   As a result, it was considered that the amount of humidification was small at the initial stage of the operation of the apparatus, but after 30 minutes, water could be recovered stably and the water recovery rate was about 27%. Moreover, almost no impurities were found in the recovered water, and the water was desalinated.

海水や泥水などから、少ないエネルギーで淡水を回収できる装置を提供でき、従来のものより低エネルギーで淡水を提供できる。   A device capable of collecting fresh water from seawater or muddy water with less energy can be provided, and fresh water can be provided with lower energy than conventional ones.

本発明の実施の形態1の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の吸着材のハニカム構造を示す概略図Schematic which shows the honeycomb structure of the adsorbent of Embodiment 1 of this invention 本発明の実施の形態2の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 3 of this invention. 本発明の実施の形態4の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 4 of this invention. 本発明の実施の形態5の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 5 of this invention. 本発明の実施の形態6の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 6 of this invention. 本発明の実施の形態7の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 7 of this invention. 本発明の実施の形態8の淡水化装置を示す概略図Schematic which shows the desalination apparatus of Embodiment 8 of this invention. 本発明の実施例1の淡水化実験装置を示す概略図Schematic which shows the desalination experiment apparatus of Example 1 of this invention. 従来の淡水化装置の例を示す概略図Schematic showing an example of a conventional desalination apparatus

符号の説明Explanation of symbols

1 原水
2 ノズル
3 空気導入口
4 処理装置入り口
5 霧化室
6 原水(霧化)
7 吸着材
8 ファン
9 フィルター
10 水
11 集塵フィルター
12 有機ガスフィルター
13 回転手段
14 再生手段
15 熱交換器
16 再生風路
17 再生ファン
18 タンク
19 温湿度計
20 制御装置
21 高湿の風路
22 平シート
23 波シート
24 ハニカム構造体
25 処理風路
26 再生風路
27 入れ替え手段
28 吸着材(吸着中)
29 吸着材(再生中)
30 熱交換器
31 サイクロン装置
32 回収皿
33 超音波振動子
34 トラップ装置
35 原水
36 ポンプ
37 回転装置
38 壁面
39 キャブレター
40 ポンプ
41 高速空気
42 風路(負圧)
43 原水
44 再生部
45 乾燥空気
46 再生ファン
47 再生ファン
48 太陽光
49 熱交換器
50 太陽光
51 集光機
52 再生ファン
53 アクリル製ボックス
54 超音波振動子
55 水槽
56 電子天秤
57 水位(一定)
58 塩化ナトリウム水溶液
59 吸気口
60 処理用通気口(加湿空気)
61 熱交換器
62 吸着材
63 処理ファン
64 ヒーター
65 タンク
66 淡水
1 Raw water 2 Nozzle 3 Air inlet 4 Treatment device entrance 5 Atomization chamber 6 Raw water (atomization)
7 Adsorbent 8 Fan 9 Filter 10 Water 11 Dust collection filter 12 Organic gas filter 13 Rotating means 14 Regenerating means 15 Heat exchanger 16 Regenerating air path 17 Regenerating fan 18 Tank 19 Thermo-hygrometer 20 Control device 21 High humidity air path 22 Flat sheet 23 Wave sheet 24 Honeycomb structure 25 Treatment air passage 26 Regeneration air passage 27 Replacement means 28 Adsorbent (during adsorption)
29 Adsorbent (regenerating)
Reference Signs List 30 Heat exchanger 31 Cyclone device 32 Collection dish 33 Ultrasonic vibrator 34 Trap device 35 Raw water 36 Pump 37 Rotating device 38 Wall surface 39 Carburetor 40 Pump 41 High-speed air 42 Air passage (negative pressure)
43 Raw Water 44 Regeneration Unit 45 Dry Air 46 Regeneration Fan 47 Regeneration Fan 48 Sunlight 49 Heat Exchanger 50 Sunlight 51 Concentrator 52 Regeneration Fan 53 Acrylic Box 54 Ultrasonic Vibrator 55 Water Tank 56 Electronic Balance 57 Water Level (Constant)
58 Sodium chloride aqueous solution 59 Air intake port 60 Ventilation port for treatment (humidified air)
61 Heat exchanger 62 Adsorbent 63 Treatment fan 64 Heater 65 Tank 66 Fresh water

Claims (22)

前段に原水の霧化装置と後段に吸着材を備え、原水を霧化した内の水分を吸着材が吸着し、この吸着材を再生装置によって再生することで、高湿度の水分を得、これを凝縮することで淡水を得ることを特徴とする淡水化装置。 The raw water atomizer and the adsorbent are provided in the former stage, and the adsorbent adsorbs the water in the raw water atomized, and the adsorbent is regenerated by the regenerator to obtain high humidity moisture. Fresh water is obtained by condensing fresh water. 霧化装置としてノズルを有し、原水に圧力をかけて複数もしくはひとつ配したノズルから噴射されることを特徴とする請求項1記載の淡水化装置。 2. The desalination apparatus according to claim 1, wherein the atomization apparatus has a nozzle and is sprayed from a plurality of or one nozzle arranged by applying pressure to the raw water. 霧化装置として原水の移動手段を有し、移動させた原水を壁面および、もしくは床面に衝突させることで霧化させることを特徴とする請求項1または2記載の淡水化装置。 The desalination apparatus according to claim 1 or 2, wherein the atomizing apparatus includes a raw water moving means, and the moved raw water is atomized by colliding with a wall surface and / or a floor surface. 霧化装置としてキャブレターを有し、キャブレターによって原水が霧状に噴射されることを特徴とする請求項1乃至3のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 3, wherein the atomization apparatus includes a carburetor, and raw water is sprayed in a mist form by the carburetor. 霧化装置として超音波発生器を有し、原水に超音波振動を与え、原水と空気の界面より振動によって水の粒子および水蒸気を気中に拡散することを特徴とする請求項1乃至4のいずれかに記載の淡水化装置。 5. An atomizer having an ultrasonic generator, applying ultrasonic vibration to the raw water, and diffusing water particles and water vapor into the air by vibration from an interface between the raw water and air. The desalination apparatus in any one. 霧化装置から霧化した原水が拡散せず室内にこもるように、原水の霧化室を前段に設け、後段には吸着材を備えた請求項1乃至5のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 5, wherein the raw water atomization chamber is provided at the front stage and the rear stage is provided with an adsorbent so that the raw water atomized from the atomization apparatus does not diffuse and is accumulated in the room. . 霧化装置から霧化した原水が拡散せず室内にこもるように、原水の霧化室を前段に設け、その霧化室を負圧にすることを特徴とした請求項6に記載の淡水化装置。 The desalination according to claim 6, characterized in that the raw water atomization chamber is provided in the previous stage so that the raw water atomized from the atomizer does not diffuse and is stored in the room, and the atomization chamber is set to a negative pressure. apparatus. 霧化装置から霧化した原水が室内にこもるように原水の霧化室を前段に設け、原水中の不純物が、重力によって、沈下し、室内に積もることで、不純物を取り除けるように、堆積用のスペースを吸着材より下の部分に配したことを特徴とする請求項6または7のいずれかに記載の淡水化装置。 The raw water atomization chamber is installed in the previous stage so that the raw water atomized from the atomizer is accumulated in the room, and the impurities in the raw water sink by gravity and accumulate in the room so that the impurities can be removed. The desalination apparatus according to claim 6, wherein the space is arranged in a portion below the adsorbent. 霧化装置から霧化した原水が室内にこもるように原水の霧化室を前段に設け、原水中の不純物および霧化しなかった水の粒が下降し、室内の下に溜まるように室内の下部に、不純物を溶かし水の粒を回収できるように、水をためられるようにしたことを特徴とする請求項6乃至8のいずれかに記載の淡水化装置。 The raw water atomization chamber is provided in the front stage so that the raw water atomized from the atomizer is stored in the room, and impurities in the raw water and water particles that have not been atomized fall down and accumulate in the lower part of the room. The desalination apparatus according to claim 6, wherein water can be stored so that impurities can be dissolved and water particles can be collected. 霧化室に空気が吹き込む吸気口に、有機ガスを吸着するフィルターおよび、塵埃を捕集するフィルターの両方もしくはいずれか一方を配したことを特徴とする請求項6乃至9のいずれかに記載の淡水化装置。 10. The filter according to claim 6, wherein at least one of a filter that adsorbs organic gas and a filter that collects dust is disposed at an air inlet through which air is blown into the atomizing chamber. Desalination equipment. 霧化装置から霧化した原水の水蒸気が吸着材に導入される前段と後段の両方もしくはいずれか一方に、温度と湿度の両方もしくはどちらか片方をモニターするセンサーを配し、温度と湿度をセンサーすることで、吸着材の吸着時間と吸着材への空気の導入量と再生時間と再生装置の温度、再生装置の風量のうち複数もしくはいずれかひとつを設定できるような自動切り換え装置、もしくは設定の変更指令を作業者に知らせるための報知器のその一方もしくは両方を設置したことを特徴とした請求項1乃至10のいずれかに記載の淡水化装置。 A sensor that monitors both temperature and / or humidity is placed at the front and / or back of the raw water atomized from the atomizer into the adsorbent. Automatic switching device that can set multiple or any one of the adsorbent adsorption time, the amount of air introduced into the adsorbent, the regeneration time, the temperature of the regenerator, and the air volume of the regenerator The desalination apparatus according to any one of claims 1 to 10, wherein one or both of alarms for notifying an operator of a change command are installed. 吸着材の後段にファンを配置し、ファンによって吸着材に霧化した水蒸気を導入することを特徴とする請求項1乃至11のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 11, wherein a fan is disposed downstream of the adsorbent, and water vapor atomized by the fan is introduced into the adsorbent. 再生装置により吸着材より抜けた水分を熱交換器に導入し、吸着材に導入される前の霧化した空気によって冷やされることで、凝縮し、水を回収することを特徴とする請求項1乃至12のいずれかに記載の淡水化装置。 The moisture removed from the adsorbent by the regenerator is introduced into the heat exchanger, and is cooled by atomized air before being introduced into the adsorbent, thereby condensing and collecting water. The desalination apparatus in any one of thru | or 12. 吸着材がハニカム状の構造体であることを特徴とする請求項1乃至13のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 13, wherein the adsorbent is a honeycomb-like structure. 吸着材が少なくともゼオライト、シリカゲル、活性炭、酸化アルミナ、シリカアルミナのうち複数もしくはいずれかひとつを含むことを特徴とする請求項1乃至14のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 14, wherein the adsorbent contains at least one of zeolite, silica gel, activated carbon, alumina oxide, and silica alumina. 吸着材が、少なくともゼオライト、シリカゲル、活性炭、酸化アルミナ、シリカアルミナのうちの複数もしくはいずれかひとつの材料をふくみ、ハニカム状に加工した基材上および基材内部に担持したことを特徴とする請求項1乃至15のいずれかに記載の淡水化装置。 The adsorbent comprises at least a zeolite, silica gel, activated carbon, alumina oxide, silica alumina, or any one of the materials, and is supported on and inside the substrate processed into a honeycomb shape. Item 16. A desalination apparatus according to any one of Items 1 to 15. 吸着材が円形で吸着材を回転させる回転手段を有し、吸着材が回転することにより、円形の一部で吸着しながら残り部分には再生用の温風が流れることで、吸着材を再生することを特徴とする請求項1乃至16のいずれかに記載の淡水化装置。 The adsorbent is circular and has rotating means for rotating the adsorbent. By rotating the adsorbent, the adsorbent is regenerated by adsorbing at the part of the circle and flowing warm air for regeneration through the remaining part. The desalination apparatus according to any one of claims 1 to 16, wherein: 吸着材を複数有し、水蒸気を吸着する吸着時と吸着した水分を取り出す再生時を繰り返すことを特徴とする請求項1乃至17のいずれかに記載の淡水化装置。 The desalination apparatus according to claim 1, wherein the desalination apparatus has a plurality of adsorbents, and repeats the time of adsorption for adsorbing water vapor and the time of regeneration for removing adsorbed water. 再生空気が、吸着材に導入前の水蒸気空気に比べ乾燥した、装置の外気を導入する再生装置であることを特徴とする請求項1乃至18のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 18, wherein the regeneration air is a regeneration apparatus that introduces the outside air of the apparatus, which is dry compared to water vapor air before being introduced into the adsorbent. 再生装置が、太陽光によって温められた材料に空気をあてて、乾燥した温風として再生空気を送り込むものであることを特徴とする請求項1乃至19のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 19, wherein the regenerator applies air to a material heated by sunlight and sends the regenerated air as dry hot air. 再生装置として、太陽光を集光し吸着材に直接当てることで、吸着材の一部もしくは全てを加熱し、再生空気を当てることで、吸着した水分を取り除くことを特徴とした請求項1乃至20のいずれかに記載の淡水化装置。 The regenerator is characterized in that sunlight is collected and directly applied to the adsorbent, so that part or all of the adsorbent is heated and the regenerated air is applied to remove the adsorbed moisture. The desalination apparatus according to any one of 20. 再生装置として、80℃以下の廃熱と熱交換してあたためた空気を再生空気として送り込むものであることを特徴とする請求項1乃至21のいずれかに記載の淡水化装置。 The desalination apparatus according to any one of claims 1 to 21, wherein as the regenerator, the warm air exchanged with waste heat of 80 ° C or less is sent as regenerated air.
JP2006067182A 2006-03-13 2006-03-13 Desalination device Pending JP2007237140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067182A JP2007237140A (en) 2006-03-13 2006-03-13 Desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006067182A JP2007237140A (en) 2006-03-13 2006-03-13 Desalination device

Publications (1)

Publication Number Publication Date
JP2007237140A true JP2007237140A (en) 2007-09-20

Family

ID=38583204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067182A Pending JP2007237140A (en) 2006-03-13 2006-03-13 Desalination device

Country Status (1)

Country Link
JP (1) JP2007237140A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082888A (en) * 2007-10-03 2009-04-23 Panasonic Corp Adsorbing element and air-conditioner
CN101838079A (en) * 2010-04-21 2010-09-22 王剑波 Ultrasonic atomization and vaporization seawater desalination desalting device and method
CN102416309A (en) * 2011-08-05 2012-04-18 上海交通大学 Liquid desiccant ultrasonic regeneration device
WO2012050084A1 (en) * 2010-10-15 2012-04-19 日本エクスラン工業株式会社 Recycled photothermal conversion desiccant sheet, and desiccant element and desiccant rotor using sheet, and air-conditioning system using element or rotor
KR101176402B1 (en) * 2009-12-04 2012-08-28 동양하이테크산업주식회사 Separation apparatus of fresh water having porous member
CN104828888A (en) * 2015-04-10 2015-08-12 济南大学 Seawater or hypersaline water desalination processing method and system thereof
WO2015152819A1 (en) * 2014-03-31 2015-10-08 Medad Technologies Pte Ltd A method and apparatus for multi-effect adsorption distillation
CN105645682A (en) * 2016-01-11 2016-06-08 常州大学 Steel hydrochloric acid pickling wastewater treatment device
JP2016165676A (en) * 2015-03-09 2016-09-15 国立研究開発法人産業技術総合研究所 Seawater desalination apparatus
CN106830141A (en) * 2017-03-02 2017-06-13 李彦宏 A kind of wastewater from car washer recycling device
WO2018066879A3 (en) * 2016-10-06 2018-05-31 이문현 Device and method for manufacturing distilled water
WO2020179689A1 (en) * 2019-03-06 2020-09-10 シャープ株式会社 Seawater desalination device and seawater desalination method
CN111736645A (en) * 2020-06-24 2020-10-02 大唐东北电力试验研究院有限公司 Negative pressure adsorption type temperature and humidity automatic regulating device
CN112121594A (en) * 2020-09-28 2020-12-25 山东彬伟装饰材料有限公司 VOCS's device is handled through two-stage active carbon case
CN114702094A (en) * 2021-12-22 2022-07-05 国电电力邯郸东郊热电有限责任公司 Comprehensive treatment system for tail end wastewater and tail end solid wastewater of coal-fired power plant
KR102533195B1 (en) * 2022-05-03 2023-05-18 (주)푸르엔 Zero discharge treatment system for high concentration abandonment waste water
CN116140054A (en) * 2023-04-04 2023-05-23 山西通才工贸有限公司 Sorting system for metallurgical ash
KR102564929B1 (en) * 2022-05-03 2023-08-10 정호경 Zero discharge treatment system for high concentration abandonment waste water

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082888A (en) * 2007-10-03 2009-04-23 Panasonic Corp Adsorbing element and air-conditioner
KR101176402B1 (en) * 2009-12-04 2012-08-28 동양하이테크산업주식회사 Separation apparatus of fresh water having porous member
CN101838079A (en) * 2010-04-21 2010-09-22 王剑波 Ultrasonic atomization and vaporization seawater desalination desalting device and method
JP5962917B2 (en) * 2010-10-15 2016-08-03 日本エクスラン工業株式会社 Photothermal conversion regenerated desiccant sheet, desiccant element and desiccant rotor using the sheet, and air conditioning system using the element or rotor
WO2012050084A1 (en) * 2010-10-15 2012-04-19 日本エクスラン工業株式会社 Recycled photothermal conversion desiccant sheet, and desiccant element and desiccant rotor using sheet, and air-conditioning system using element or rotor
CN102416309A (en) * 2011-08-05 2012-04-18 上海交通大学 Liquid desiccant ultrasonic regeneration device
CN102416309B (en) * 2011-08-05 2013-12-11 上海交通大学 Liquid desiccant ultrasonic regeneration device
WO2015152819A1 (en) * 2014-03-31 2015-10-08 Medad Technologies Pte Ltd A method and apparatus for multi-effect adsorption distillation
JP2016165676A (en) * 2015-03-09 2016-09-15 国立研究開発法人産業技術総合研究所 Seawater desalination apparatus
CN104828888A (en) * 2015-04-10 2015-08-12 济南大学 Seawater or hypersaline water desalination processing method and system thereof
CN105645682A (en) * 2016-01-11 2016-06-08 常州大学 Steel hydrochloric acid pickling wastewater treatment device
WO2018066879A3 (en) * 2016-10-06 2018-05-31 이문현 Device and method for manufacturing distilled water
KR101898621B1 (en) 2016-10-06 2018-09-13 이문현 Apparatus and method for producing distilled water
CN106830141A (en) * 2017-03-02 2017-06-13 李彦宏 A kind of wastewater from car washer recycling device
WO2020179689A1 (en) * 2019-03-06 2020-09-10 シャープ株式会社 Seawater desalination device and seawater desalination method
CN111736645A (en) * 2020-06-24 2020-10-02 大唐东北电力试验研究院有限公司 Negative pressure adsorption type temperature and humidity automatic regulating device
CN112121594A (en) * 2020-09-28 2020-12-25 山东彬伟装饰材料有限公司 VOCS's device is handled through two-stage active carbon case
CN114702094A (en) * 2021-12-22 2022-07-05 国电电力邯郸东郊热电有限责任公司 Comprehensive treatment system for tail end wastewater and tail end solid wastewater of coal-fired power plant
CN114702094B (en) * 2021-12-22 2023-11-28 国电电力邯郸东郊热电有限责任公司 Comprehensive treatment system for tail end wastewater and tail end wastewater of coal-fired power plant
KR102533195B1 (en) * 2022-05-03 2023-05-18 (주)푸르엔 Zero discharge treatment system for high concentration abandonment waste water
KR102564929B1 (en) * 2022-05-03 2023-08-10 정호경 Zero discharge treatment system for high concentration abandonment waste water
CN116140054A (en) * 2023-04-04 2023-05-23 山西通才工贸有限公司 Sorting system for metallurgical ash

Similar Documents

Publication Publication Date Title
JP2007237140A (en) Desalination device
CN205783431U (en) A kind of small air dehumidifying humidifying and purifying integrated apparatus
CN103877821B (en) A kind of Intelligent air purifier of emulated ecological environment
JP3594463B2 (en) Gas adsorption device
WO2012105654A1 (en) Seawater desalination device
CN105003989A (en) Air conditioning device
WO2019091422A1 (en) Air purifier based on steam condensation and adsorption principle and air conditioning apparatus having same
JP4423499B2 (en) Absorption type dehumidification air conditioning system
JP2002286250A (en) Desiccant air conditioning system
KR102006326B1 (en) Water separating apparatus using solar energy
JP2006077225A (en) Method and apparatus for separating petroleum
CN102381735A (en) Semi-dry process air humidifying and dehumidifying type seawater desalinating system and method
KR200399678Y1 (en) An air cleaner
CN207056224U (en) Acid gas purifying processing system in a kind of biological sludge pyrolysis synthesis gas
CN106927528A (en) A kind of air wetting dehumidification type desulfurizing waste water processing device of utilization solar energy
CN103539215B (en) Sewage treatment systems and technique
CN203264496U (en) Tower-type water spray condensation air purifier
EP3289289B1 (en) Humidity management device and methods
CN210220065U (en) Multifunctional air purifying device
CN105276754B (en) Air cleaning system
KR102159546B1 (en) Filter-less fine dust removal system
CN209165628U (en) Thermoelectric (al) cooling formula air purifier
JP7033065B2 (en) Drinking water supply device
CN204787002U (en) Air conditioning device
CN208108274U (en) A kind of air cleaning system