JP2009081926A - Apparatus for detecting grounding current for resistor - Google Patents

Apparatus for detecting grounding current for resistor Download PDF

Info

Publication number
JP2009081926A
JP2009081926A JP2007248416A JP2007248416A JP2009081926A JP 2009081926 A JP2009081926 A JP 2009081926A JP 2007248416 A JP2007248416 A JP 2007248416A JP 2007248416 A JP2007248416 A JP 2007248416A JP 2009081926 A JP2009081926 A JP 2009081926A
Authority
JP
Japan
Prior art keywords
ground fault
current
fault current
resistance ground
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007248416A
Other languages
Japanese (ja)
Other versions
JP5072085B2 (en
Inventor
Tetsuo Furumoto
哲男 古本
Kenji Nakada
健司 中田
Masao Imamoto
正夫 今本
Shigeru Aihara
茂 相原
Tadataka Hayashi
忠孝 林
Takanori Aoki
孝徳 青木
Kenji Ando
賢二 安藤
Hironori Higashida
浩典 東田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP2007248416A priority Critical patent/JP5072085B2/en
Publication of JP2009081926A publication Critical patent/JP2009081926A/en
Application granted granted Critical
Publication of JP5072085B2 publication Critical patent/JP5072085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus which can easily determine whether the state of the normal leak current of an electric path is in a range of being able to guarantee the detection accuracy of a requested grounding current for a resistor and also is practical and economical, relating to an apparatus such as a molded case circuit breaker, an earth leakage breaker, or a relay, which includes a means for detecting the ground leakage current of an electric path and detecting the magnitude of the leakage current due to resistor grounding, based on the phase difference between the magnitude and the voltage of the electric path. <P>SOLUTION: The apparatus includes a means that detects the ground leakage current of the electric path and computes the grounding current for the resistor, based on the phase shift between the magnitude and the voltage of the electric path, thereby detecting the grounding current for the resistor having surpassed the specified magnitude. The apparatus detects the grounding current for the resistor, including a means that issues an alarm when the ground leakage current is over a value that is set according to the detection sensitivity of the grounding current for the resistor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本件の発明は,電路の対地漏洩電流を検出し,その大きさと電路電圧からの位相のずれを基にして抵抗分地絡電流を検出する手段を備えた配線用遮断器や漏電遮断器あるいは継電器のような装置に関する。 The invention of the present invention is a circuit breaker, a leakage breaker or a relay having a means for detecting a ground leakage current of a circuit and detecting a resistance ground fault current based on the magnitude and a phase shift from the circuit voltage. Relates to a device such as

電路の対地漏洩電流に,電路の対地静電容量分や機器のノイズフィルターのキャパシタンス分を通じて流れる常時漏洩電流と,絶縁不良による抵抗分地絡電流が含まれることはよく知られている。 It is well known that the ground leakage current of the circuit includes a constant leakage current that flows through the capacitance of the circuit ground capacitance and the noise filter capacitance of the device, and a resistance ground fault current due to poor insulation.

前記の常時漏洩電流は,対地静電容量分を通じて流れる電流であるから,対地電圧に対して90度位相が進み,絶縁不良による抵抗分地絡電流は対地電圧と同位相である。従って,電路電圧と対地漏洩電流の間には,常時漏洩電流と抵抗分地絡電流の大きさの比によって決まる位相差が生じる。 Since the constant leakage current is a current flowing through the ground capacitance, the phase advances by 90 degrees with respect to the ground voltage, and the resistance ground fault current due to insulation failure is in phase with the ground voltage. Therefore, there is a phase difference between the circuit voltage and the ground leakage current that is determined by the ratio of the magnitude of the constant leakage current and the resistance ground fault current.

そこで,対地漏洩電流の大きさと,電路電圧との位相差を元にして絶縁不良による抵抗分地絡電流のみを分別する方法が知られている。
特開2005−140532 特開2006−71341
Therefore, a method is known in which only the resistance ground fault current due to insulation failure is classified based on the phase difference between the magnitude of the ground leakage current and the circuit voltage.
JP-A-2005-140532 JP 2006-71341 A

しかしながら,対地漏洩電流の電路電圧との位相差によっては,位相差の検出精度が抵抗分地絡電流の検出精度に大きく影響を与える。位相差の検出精度が同一でも抵抗分地絡電流の計算結果に対する影響は,位相差が0度付近ではほとんどないのに対し,位相差が90度付近では,相当に大きい。 However, depending on the phase difference between the earth leakage current and the circuit voltage, the detection accuracy of the phase difference greatly affects the detection accuracy of the resistance ground fault current. Even if the detection accuracy of the phase difference is the same, the influence on the calculation result of the resistance ground fault current is almost not when the phase difference is near 0 degrees, but is considerably large when the phase difference is near 90 degrees.

従って,電路電圧に対する対地漏洩電流の位相差の角度範囲によっては,要求される精度で抵抗分地絡電流を検出できない場合がある。例えば,位相差の検出精度が±1度であり,1mAの抵抗分地絡電流を±10%の精度で検出しようとする場合,その精度を保証できるのは,位相差以外の他の検出誤差を無視した場合,常時漏洩電流の大きさが0mAから約6.3mAまで,すなわち位相差の角度範囲は0度から約81度までに限られる。 Therefore, depending on the angle range of the phase difference of the ground leakage current with respect to the circuit voltage, the resistance ground fault current may not be detected with the required accuracy. For example, if the detection accuracy of the phase difference is ± 1 degree and an attempt is made to detect a resistance ground fault current of 1 mA with an accuracy of ± 10%, the accuracy can be guaranteed only by detection errors other than the phase difference. Is ignored, the leakage current always has a magnitude of 0 mA to about 6.3 mA, that is, the angle range of the phase difference is limited to 0 degree to about 81 degrees.

つまり位相の検出精度が抵抗分地絡電流の検出精度に影響を与えるが,誤差が出やすい90度に近い位相差での抵抗分地絡電流の検出精度を保証しようとすれば,極端に位相の検出精度の向上が必要で,そのためには装置のコストが高くなる。 In other words, the detection accuracy of the phase affects the detection accuracy of the resistance ground fault current, but if you try to guarantee the detection accuracy of the resistance ground fault current at a phase difference close to 90 degrees, which is likely to cause errors, Therefore, it is necessary to improve the accuracy of detection, which increases the cost of the apparatus.

そこで本件の発明は,電路の対地漏洩電流を検出し,その大きさと電路電圧との位相差を基にして抵抗地絡による漏洩電流の大きさを検出する手段を備えた配線用遮断器や漏電遮断器あるいは継電器のような装置において,要求される抵抗分地絡電流の検出精度を保証できる範囲に電路の常時漏洩電流の状態があるかどうかを容易に判定できるようにするとともに,実用的で経済的な装置を提供しようとするものである。 Therefore, the present invention detects a leakage current to the ground of the circuit, and based on the phase difference between the magnitude of the circuit and the circuit voltage, detects a magnitude of the leakage current due to the resistance ground fault or a circuit breaker or a leakage current. In devices such as circuit breakers or relays, it is possible to easily determine whether there is a constant leakage current state in the circuit within a range where the required resistance ground fault current detection accuracy can be guaranteed. It is intended to provide an economical device.

そのため請求項1の発明では,電路の対地漏洩電流を検出し,その大きさと電路電圧との位相ずれを元にして抵抗分地絡電流を計算し,該抵抗分地絡電流が所定の大きさを超えたことを検知する手段を備えた装置において,対地漏洩電流が抵抗分地絡電流の検知感度に応じて設定される値を超えている場合は警報を発する手段を備えたことを特徴とする抵抗分地絡電流を検出する装置を提供したものである。 Therefore, in the first aspect of the present invention, the ground leakage current of the circuit is detected, the resistance ground fault current is calculated based on the phase shift between the magnitude and the circuit voltage, and the resistance ground fault current has a predetermined magnitude. Characterized in that, in a device having means for detecting exceeding, a means for issuing a warning when the ground leakage current exceeds a value set in accordance with the detection sensitivity of the resistance ground fault current is provided. An apparatus for detecting a resistance ground fault current is provided.

請求項2の発明は,前記の警報を発する手段は,一時的に機能させる手段を有することを特徴とする請求項1の抵抗分地絡電流を検出する装置を提供したものである。 According to a second aspect of the present invention, there is provided the apparatus for detecting a resistance ground fault current according to the first aspect, wherein the means for issuing an alarm has means for temporarily functioning.

請求項3の発明は,前記の抵抗分地絡電流の検知感度に応じて設定される対地漏洩電流の値は,対地漏洩電流と電路電圧との位相ずれを元にして計算した抵抗分地絡電流の現在値と,抵抗分地絡電流の検知感度に応じて設定される常時漏洩電流のベクトル合成から可変的に設定されるものであることを特徴とする抵抗分地絡電流を検出する装置を提供したものである。 According to a third aspect of the present invention, the value of the ground leakage current set according to the detection sensitivity of the resistance ground fault current is a resistance ground fault calculated based on a phase shift between the ground leakage current and the circuit voltage. A device for detecting a resistance ground fault current, which is variably set from a vector synthesis of a constant leakage current set according to the current current value and the detection sensitivity of the resistance ground fault current Is provided.

請求項4の発明は,前記の抵抗分地絡電流を検出する装置は,抵抗分地絡電流が所定の大きさを超えている場合に警報を発生する配線用遮断器または該警報が事前警報である漏電遮断器または漏電継電器であることを特徴とする請求項1乃至請求項3の抵抗分地絡電流を検出する装置を提供したものである。 According to a fourth aspect of the present invention, there is provided a circuit breaker for generating a warning when the resistance ground fault current exceeds a predetermined magnitude. The apparatus for detecting a resistance ground fault current according to any one of claims 1 to 3, wherein the earth leakage breaker or the earth leakage relay is provided.

請求項5の発明は,前記の抵抗分地絡電流を検出する手段を備えた装置は,抵抗分地絡電流が所定の大きさを越えている場合に,回路を遮断する漏電遮断器,あるいは出力を発生する漏電継電器であることを特徴とする請求項1乃至請求項3の抵抗分地絡電流を検出する手段を備えた装置を提供したものである。 According to a fifth aspect of the present invention, there is provided an earth leakage circuit breaker for interrupting a circuit when the resistance ground fault current exceeds a predetermined magnitude. 4. An apparatus having means for detecting a resistance ground fault current according to claim 1, wherein the apparatus is an earth leakage relay that generates an output.

本件の発明によれば,電路の対地漏洩電流を検出し,その大きさと電路電圧との位相ずれを元にして抵抗分地絡電流を計算し,該抵抗分地絡電流が所定の大きさを超えたことを検知する手段を備えた装置において,対地漏洩電流が抵抗分地絡電流の検知感度に応じて設定される値を超えている場合は警報を発する手段を備えたから,要求される抵抗分地絡電流の検出精度を保証できない範囲に電路の対地漏洩電流がある場合は,所定の抵抗分地絡電流を検知した場合にその検知出力が要求精度にかなうかどうかを容易に判断できる。また,そのような警報を発する手段を装置に備えることで,実用上差し支えない程度の位相ずれの検出精度を有する装置とすることができて装置のコストを抑えることが可能となる。 According to the present invention, the ground leakage current of the circuit is detected, the resistance ground fault current is calculated based on the phase shift between the magnitude and the circuit voltage, and the resistance ground fault current has a predetermined magnitude. In a device equipped with a means for detecting exceeding, since the earth leakage current exceeds the value set according to the detection sensitivity of the resistance ground fault current, it is provided with a means for issuing an alarm. When the ground leakage current of the circuit is within a range where the detection accuracy of the ground fault current cannot be guaranteed, it can be easily determined whether or not the detected output meets the required accuracy when a predetermined resistance ground fault current is detected. Further, by providing the device with such a warning means, it is possible to obtain a device having a phase shift detection accuracy that does not interfere with practical use, and it is possible to reduce the cost of the device.

本件発明の第一の実施例を図1に示す。図1は,抵抗分地絡電流検出表示機能付の配線用遮断器10と該配線用遮断器10を電路に設置した場合の例である。図1において,1は変圧器で電路2,2’に商用電圧を供給し,低圧側巻線の2’側端子は3のように接地してある。なお便宜上電路は単相2線式として説明するが,単相3線式の電路あるいは三相3線式でΔ結線1極接地式の電路でも原理は同一で適用可能である。 A first embodiment of the present invention is shown in FIG. FIG. 1 shows an example in which a circuit breaker 10 with a resistance ground fault current detection display function and the circuit breaker 10 are installed in an electric circuit. In FIG. 1, reference numeral 1 denotes a transformer for supplying a commercial voltage to the electric lines 2 and 2 ′, and the 2′-side terminal of the low-voltage side winding is grounded as 3. For convenience, the electric circuit will be described as a single-phase two-wire system, but the same principle can be applied to a single-phase three-wire electric circuit or a three-phase three-wire electric circuit with a Δ connection and a single-pole grounding type.

1001と1002は開閉接点,1003は過電流検出素子で,電路の電流が所定の値を超えると過電流検出素子1003が電流の大きさに応じた時限で図示しない開閉機構に作用し,接点1001と1002を自動的に開離するように働く。1004は零相変流器で,電路2と2’の往復電流の差分を検出する。なお,零相変流器1004が検出する電流は,電路2の対地静電容量4に流れる常時漏洩電流Iocと絶縁不良による地絡抵抗5に流れる地絡漏洩電流Iorから成る零相漏洩電流Ioである。 1001 and 1002 are switching contacts, and 1003 is an overcurrent detection element. When the current in the electric circuit exceeds a predetermined value, the overcurrent detection element 1003 acts on a switching mechanism (not shown) in a time period corresponding to the magnitude of the current. And 1002 are automatically opened. Reference numeral 1004 denotes a zero-phase current transformer that detects the difference between the reciprocating currents of the electric circuits 2 and 2 '. The current detected by the zero-phase current transformer 1004 is a zero-phase leakage current Io consisting of a constant leakage current Ioc flowing in the ground capacitance 4 of the circuit 2 and a ground-fault leakage current Ior flowing in the ground-fault resistor 5 due to insulation failure. It is.

1005は零相変流器1004が検出する電流の入力回路で,過入力保護回路のほか必要に応じフィルター回路や増幅回路,移相回路などを含む。なお移相回路は,実際の零相電流と検出回路で扱う電流信号に位相差がある場合にその差を補正する目的に用いるが,演算回路1007に含ませてもよい。 Reference numeral 1005 denotes an input circuit for a current detected by the zero-phase current transformer 1004, which includes an over-input protection circuit, a filter circuit, an amplifier circuit, a phase shift circuit and the like as necessary. Note that the phase shift circuit is used for the purpose of correcting the phase difference between the actual zero-phase current and the current signal handled by the detection circuit, but may be included in the arithmetic circuit 1007.

一般的に電路の電圧には,本来の商用基本波に対し,変圧器1の非線形性や負荷電流波形による高調波や高周波を含んでいる。地絡抵抗5を流れる電流はそれらの電圧波形歪みに線形的に対応する。しかし対地静電容量4を流れる電流は,波形歪み成分の周波数に対してそのインピーダンスが変化するため周波数が高くなるにつれて相対的に大きくなる。従って,より正確に商用の基本周波数だけの地絡電流を検出しようとすれば,フィルターにより高調波・高周波成分を除去することが望ましい。 Generally, the voltage of the electric circuit includes harmonics and high frequencies due to the nonlinearity of the transformer 1 and the load current waveform with respect to the original commercial fundamental wave. The current flowing through the ground fault resistor 5 linearly corresponds to those voltage waveform distortions. However, the current flowing through the ground capacitance 4 changes relatively as the frequency increases because the impedance changes with respect to the frequency of the waveform distortion component. Therefore, it is desirable to remove harmonics and high-frequency components with a filter in order to detect a ground fault current of only a commercial fundamental frequency more accurately.

1006は電路電圧の入力回路で,電路との絶縁回路や1005と同様に過入力保護回路のほか必要に応じフィルター回路などを有する。電路電圧はこの場合対地電圧に相当する。 Reference numeral 1006 denotes an input circuit for an electric circuit voltage, which has an insulating circuit for the electric circuit, an over-input protection circuit as in the case of 1005, and a filter circuit if necessary. In this case, the circuit voltage corresponds to the ground voltage.

1007は演算回路で,電路電圧と零相電流の位相差を演算し,該位相差と零相電流の絶対的な大きさから抵抗分の地絡電流を演算する。その様子を図2,図3を元に説明する。 Reference numeral 1007 denotes an arithmetic circuit that calculates the phase difference between the circuit voltage and the zero-phase current, and calculates the ground fault current for the resistance from the absolute magnitude of the phase difference and the zero-phase current. This will be described with reference to FIGS.

図2において,6は電路電圧のベクトル,7は零相電流のベクトルである。零相電流7は,抵抗分地絡電流8と対地静電容量分による常時漏洩電流9の合成電流である。演算回路1007は電路電圧の0点と零相電流の0点のタイムラグなどから電路電圧ベクトル6と零相電流のベクトル7の位相差θを計算し,零相電流ベクトル7の絶対値に位相差θの余弦(cos)を掛けて抵抗分地絡電流8の大きさを計算する。 In FIG. 2, 6 is a circuit voltage vector and 7 is a zero-phase current vector. The zero-phase current 7 is a combined current of a constant leakage current 9 due to a resistance ground fault current 8 and a ground capacitance. The arithmetic circuit 1007 calculates the phase difference θ between the circuit voltage vector 6 and the zero phase current vector 7 from the time lag between the zero point of the circuit voltage and the zero point of the zero phase current, and the phase difference is calculated as the absolute value of the zero phase current vector 7. The magnitude of the resistance ground fault current 8 is calculated by multiplying by the cosine (cos) of θ.

図3は別の方法を示す。図3は電路電圧10と零相電流11の瞬時値同士を積算して抵抗分地絡電流12の大きさを算出する方法を示している。(a)は,電路電圧と零相電流の位相差がない場合の事例で,位相差がないので,瞬時値同士を掛け合わせた場合,値は0以上のプラス側の範囲で周波数が2倍の信号になり,その平均値が抵抗分地絡電流の大きさに比例する。 FIG. 3 shows another method. FIG. 3 shows a method of calculating the magnitude of the resistance ground fault current 12 by integrating the instantaneous values of the circuit voltage 10 and the zero-phase current 11. (A) is an example where there is no phase difference between the circuit voltage and the zero-phase current. Since there is no phase difference, when the instantaneous values are multiplied, the value is doubled in the positive range of 0 or more. The average value is proportional to the magnitude of the resistance ground fault current.

(b)は電路電圧と零相電流の位相差が90度の事例で,瞬時値同士を掛け合わせた場合,値は平均値がゼロで周波数が2倍の信号になる。図3はいわゆる同期整流による方法と同じである。 (B) is an example in which the phase difference between the circuit voltage and the zero-phase current is 90 degrees. When the instantaneous values are multiplied, the average value is zero and the frequency is doubled. FIG. 3 is the same as the method by so-called synchronous rectification.

ここで,電路電圧と漏洩電流の位相差の検出精度と抵抗分地絡電流の検出精度について図4で述べる。図4において電路電圧位相15に対し小さい位相差θ1の零相漏洩電流16があるとき,その位相差の検出誤差の範囲を±αとした場合,検出すべき抵抗分地絡電流17に対する誤差αの影響は±18となって17に対して相対的に小さい。しかし,電路電圧位相15に対し漏洩電流16’の位相差がθ2と大きい場合は,位相差の検出誤差の範囲が±αと同じでも,抵抗分地絡電流17’は小さく,誤差αの影響は±18’と大きくなるから17’に対して相対的に大きくなり,位相差の検出精度が同じであっても抵抗分地絡電流の検出精度は大きく変わる。 Here, the detection accuracy of the phase difference between the circuit voltage and the leakage current and the detection accuracy of the resistance ground fault current will be described with reference to FIG. In FIG. 4, when there is a zero-phase leakage current 16 having a small phase difference θ1 with respect to the circuit voltage phase 15, if the detection error range of the phase difference is ± α, the error α with respect to the resistance ground fault current 17 to be detected The effect of is 18 and is relatively small with respect to 17. However, when the phase difference of the leakage current 16 ′ is large as θ2 with respect to the circuit voltage phase 15, the resistance ground fault current 17 ′ is small even if the phase difference detection error range is the same as ± α and the influence of the error α. Since it becomes as large as ± 18 ', it becomes relatively large with respect to 17', and even if the detection accuracy of the phase difference is the same, the detection accuracy of the resistance ground fault current greatly changes.

従って,検出しようとする抵抗分地絡電流の大きさと精度の要求によって,検出精度を保証できる電路電圧と漏洩電流の位相差,言い換えれば常時漏洩電流の大きさが制約されることになる。前述のとおり,位相差の検出精度が±1度の場合,抵抗分地絡電流17が1mAのときの検出精度18を17の10%の0.1mAに保証しようとすれば,1mAの抵抗分地絡電流に対し電路電圧と零相漏洩電流の位相差は81度以内であること,あるいは抵抗分地絡電流が1mAのとき零相漏洩電流の大きさは6.4mA以内でなければ要求に答えられないことになる。より厳密に言えば,図1に示す抵抗分地絡電流検出機能付き配線用遮断器のような装置の場合,上述の抵抗分地絡電流1mAの検出を±0.1mAの精度で保証する場合の常時漏洩電流は6.3mA以内でなければならない。すなわち,常時漏洩電流の最大値は6.3mA以内であってそのときの零相漏洩電流は抵抗分地絡電流の大きさに応じ6.3mA(抵抗分地絡電流0mA時)から6.4mA(抵抗分地絡電流1mA時)以内でなければならないことになる。 Therefore, the phase difference between the circuit voltage and the leakage current that can guarantee the detection accuracy, in other words, the magnitude of the leakage current at all times, is limited by the requirement of the magnitude and accuracy of the resistance ground fault current to be detected. As described above, when the detection accuracy of the phase difference is ± 1 degree, if the detection accuracy 18 when the resistance ground fault current 17 is 1 mA is to be guaranteed to 0.1 mA, 10% of 17, the resistance component of 1 mA. The phase difference between the circuit voltage and the zero-phase leakage current with respect to the ground fault current is within 81 degrees, or when the resistance ground fault current is 1 mA, the magnitude of the zero-phase leakage current is not within 6.4 mA. You will not be able to answer. Strictly speaking, in the case of a device such as a circuit breaker with a resistance ground fault current detection function shown in FIG. 1, the detection of the above resistance ground fault current 1 mA is guaranteed with an accuracy of ± 0.1 mA. The constant leakage current must be within 6.3 mA. That is, the maximum value of the constant leakage current is within 6.3 mA, and the zero-phase leakage current at that time is 6.3 mA (at the time of resistance ground fault current 0 mA) to 6.4 mA depending on the magnitude of the resistance ground fault current. (Resistance ground fault current 1 mA) must be within.

また,位相差の検出精度が±5度の場合は,1mAの抵抗分地絡電流時に電路電圧と零相漏洩電流の位相差は45度以内の範囲であること,あるいは零相漏洩電流の大きさは1.4mA以内でなければ前述の検出精度の要求に答えられず,そのとき常時漏洩電流は1mA以内である必要がある。従って,零相漏洩電流の範囲は,抵抗分地絡電流の大きさに応じ,抵抗分地絡電流がない場合の1mAから抵抗分地絡電流が1mAの場合の1.4mAまでの範囲内である必要がある。 When the phase difference detection accuracy is ± 5 degrees, the phase difference between the circuit voltage and the zero-phase leakage current is within 45 degrees when the resistance ground fault current is 1 mA, or the magnitude of the zero-phase leakage current is large. If it is not within 1.4 mA, the above-mentioned requirement for detection accuracy cannot be answered, and at that time, the leakage current must always be within 1 mA. Therefore, the range of the zero-phase leakage current is within the range from 1 mA when there is no resistance ground fault current to 1.4 mA when the resistance ground fault current is 1 mA, depending on the magnitude of the resistance ground fault current. There must be.

図5は,抵抗分地絡電流の検出精度を保証し得る常時漏洩電流と,抵抗分地絡電流の大きさに応じ,検出精度を保証しうる対地漏洩電流が変化する様子を説明している。また,前述の例に挙げた1mAの抵抗分地絡電流を±10%の精度で検出しようとした場合,位相差の検出誤差以外の誤差を無視できれば,位相差が45度では,位相差の検出精度の許容値は±約5度であるが,位相差が85度では,必要な位相差の検出精度は±約0.5度であって位相差が90度に近づくほど位相差の検出精度への要求が厳しくなって装置コストが高くなる。しかし,一般的な電路において検知したい抵抗分地絡電流が流れている場合に位相差が45度以内の場合が多いということであれば,位相差の検出精度は±約5度の装置で充分であり,万一位相差を超える場合には警報により精度を保証しえない状況であるということを知りえることで実用上は充分である。 FIG. 5 explains how the constant leakage current that can guarantee the detection accuracy of the resistance ground fault current and the ground leakage current that can guarantee the detection accuracy change according to the magnitude of the resistance ground fault current. . In addition, when trying to detect the 1 mA resistance ground fault current given in the above example with an accuracy of ± 10%, if errors other than the phase difference detection error can be ignored, the phase difference is 45 degrees. The permissible detection accuracy is ± 5 degrees, but if the phase difference is 85 degrees, the required phase difference detection accuracy is ± 0.5 degrees, and the phase difference is detected as the phase difference approaches 90 degrees. The demand for accuracy becomes stricter and the cost of the apparatus increases. However, if there are many cases where the phase difference is within 45 degrees when the resistance ground fault current to be detected is flowing in a general circuit, a device with a phase difference detection accuracy of ± about 5 degrees is sufficient. In the unlikely event that the phase difference is exceeded, it is practically sufficient to know that the accuracy cannot be guaranteed by an alarm.

図1において,1008は演算回路1007による抵抗分地絡電流の演算結果の出力手段であり,所定の値を演算結果が超えた場合に音声やランプで出力を発生したり接点で出力する。また1009は演算結果が要求される精度を満たしているかどうかを判定可能とする警報出力手段で,対地漏洩電流の大きさが抵抗分地絡電流の検知感度に応じて設定される値以下であるかどうかを演算回路1007で判定して表示・出力する。表示出力は精度を保証できることを出力しても,保証できないことを出力してもいずれでもよい。さらに1009は直接入力回路1005の出力を受けて対地漏洩電流が前述の抵抗分地絡電流の検知感度に応じて設定される値以下かどうかを判断してもよい。1012は,警報出力手段を一時的に機能させる手段で例えば押し釦SWのようなものであり,SWを押したときだけ,対地漏洩電流が前述の抵抗分地絡電流の検知感度に応じて設定される値以下であるかどうかを判定し警報出力する。なおこの場合の抵抗分地絡電流の検知感度に応じて設定される値は,前述の検出精度を保証しうる常時漏洩電流値とする。 In FIG. 1, reference numeral 1008 denotes a means for outputting the result of the resistance ground fault current calculation by the arithmetic circuit 1007. When the calculation result exceeds a predetermined value, an output is generated by voice or a lamp or output at a contact. Reference numeral 1009 denotes an alarm output means for determining whether or not the calculation result satisfies the required accuracy, and the magnitude of the ground leakage current is not more than a value set in accordance with the detection sensitivity of the resistance ground fault current. Is determined by the arithmetic circuit 1007 and displayed / outputted. The display output may either output that the accuracy can be guaranteed or output that the accuracy cannot be guaranteed. Further, 1009 may receive the output of the direct input circuit 1005 and determine whether the ground leakage current is equal to or less than a value set in accordance with the detection sensitivity of the resistance ground fault current. Reference numeral 1012 denotes a means for temporarily functioning the alarm output means, such as a push button SW. Only when the SW is pressed, the ground leakage current is set according to the detection sensitivity of the resistance ground fault current. It is judged whether or not the value is below the specified value, and an alarm is output. In this case, the value set according to the detection sensitivity of the resistance ground fault current is a constant leakage current value that can guarantee the detection accuracy described above.

図1のような配線用遮断器は,次のようにして使用する。最初に健全な電路に設置した時に,まず1012を操作する。前提として電路は健全なので,抵抗分地絡電流は零に近く,ほぼ常時漏洩電流だけが流れている。常時漏洩電流が検知しようとする抵抗分地絡電流の精度を保証し得る値以下であれば,警報は発生しないから,そのまま遮断器を設置でき,その後所定の抵抗分地絡電流が発生すれば必要な精度で検知し検知出力が発生する。もし,1012を操作した際に警報が発生すれば,その検知感度では抵抗分地絡電流の検出精度を保証できないから,検知感度の鈍いものに変更するか,遮断器に抵抗分地絡電流の検知感度電流の切替手段が付いている場合は,感度を鈍い方向に設定しなおす。 The circuit breaker as shown in Fig. 1 is used as follows. When it is first installed on a healthy electrical circuit, 1012 is first operated. As a premise, since the electric circuit is healthy, the resistance ground fault current is close to zero, and almost always leakage current flows. If the leakage current is less than the value that can guarantee the accuracy of the resistance ground fault current to be detected, an alarm will not be generated, so a circuit breaker can be installed as it is, and then if a predetermined resistance ground fault current occurs. A detection output is generated with the required accuracy. If an alarm is generated when 1012 is operated, the detection sensitivity of the resistance ground fault current cannot be guaranteed with the detection sensitivity, so change to one with low detection sensitivity, or the resistance ground fault current of the circuit breaker If there is a means for switching the detection sensitivity current, reset the sensitivity to a slower direction.

図1における1012の機能を省くことも可能である。その場合は,演算回路1007において,図5に示すように精度を保証しうる常時漏洩電流と演算回路1007が計算した抵抗分地絡電流のベクトル合成をして,その大きさを前述の抵抗分地絡電流の検知感度に応じて設定される値とし,対地漏洩電流と比較する。対地漏洩電流が設定される値を超えていれば,警報を発するようにする。そのようにした図1の配線用遮断器では,結果的に常に常時漏洩電流が精度を保証しうる範囲かどうかをチェックできるから,設置時から使用時に渡り,その遮断器が必要な精度で抵抗分地絡電流を検知し得るかどうかを判別できる。 It is possible to omit the function 1012 in FIG. In that case, in the arithmetic circuit 1007, as shown in FIG. 5, the vector of the constant leakage current that can guarantee the accuracy and the resistance ground fault current calculated by the arithmetic circuit 1007 is combined, and the magnitude is set to the above-mentioned resistance component. The value set according to the detection sensitivity of the ground fault current is compared with the ground leakage current. If the ground leakage current exceeds the set value, an alarm is issued. As a result, the circuit breaker shown in Fig. 1 can always check whether the leakage current is always within a range where accuracy can be guaranteed, so that the circuit breaker can be used with the required accuracy from installation to use. Whether or not the ground fault current can be detected can be determined.

なお,前述の精度を保証しうる常時漏洩電流は,抵抗分地絡電流の検知感度を段階的に切り替えられるようにした場合は,検知感度毎に設定する必要がある。また,対地漏洩電流と比較する設定値は,前述のように都度ベクトル合成により演算しなくとも,検出した抵抗分地絡電流ごとに対応した値を予め演算回路に設定しておき,都度対地漏洩電流と比較するようにしてもよい。 Note that the constant leakage current that can guarantee the above-mentioned accuracy needs to be set for each detection sensitivity when the detection sensitivity of the resistance ground fault current can be switched in stages. In addition, as described above, the setting value to be compared with the ground leakage current does not need to be calculated by vector synthesis each time, but a value corresponding to each detected resistance ground fault current is set in the arithmetic circuit in advance. You may make it compare with an electric current.

なお,前述のように,位相差の検出精度が±1度で抵抗分地絡電流1mAを±10%の精度で検出しようとする場合は,抵抗分地絡電流がない場合の零相漏洩電流の上限6.3mAと抵抗分地絡電流が1mAある場合の零相電流上限6.4mAの差がほとんどないので,零相漏洩電流の上限を常に6.3〜6.4mAの範囲で一定としてもおおよそ差し支えない。 As described above, when the detection accuracy of the phase difference is ± 1 degree and the resistance ground fault current 1 mA is to be detected with an accuracy of ± 10%, the zero-phase leakage current when there is no resistance ground fault current Since there is almost no difference between the upper limit of 6.3 mA and the zero-phase current upper limit of 6.4 mA when the resistance ground fault current is 1 mA, the upper limit of the zero-phase leakage current is always constant in the range of 6.3 to 6.4 mA. There is no problem.

図6と図7は,漏洩電流の大きさによって回路を遮断する漏電遮断器に抵抗分地絡電流検出機能を付加した場合の実施例であり,漏洩電流に対して段階的に機能する。図6の実施例における1001から1009及び1012は図1の実施例と同一の機能である。図において1010は図示しない開閉機構に作用し,接点1001と1002を開離するトリップ装置で,演算回路1007の判定結果で作動するようにしている。この場合,漏洩電流は対地漏洩電流としても抵抗分地絡電流としてもいずれでも可能である。図7の実施例は,トリップ装置1010を駆動するための漏洩電流検出回路1011を演算回路1007とは別に設けた例である。図6や図7の漏電遮断器は,緊急を要しない絶縁不良では抵抗分地絡電流の大きさが,例えば 1mA以上あるかどうかを検知し,漏洩電流が30mAを超えるような感電等の緊急を要する事故である場合は電路を遮断するよう段階的に動作するものである。その際,遮断動作前の抵抗分地絡電流の検知の表示出力については検知が精度を保証し得る範囲で行われたかどうかを知り得る。 6 and 7 show an embodiment in which a resistance ground fault current detection function is added to an earth leakage breaker that breaks the circuit depending on the magnitude of the leakage current, and functions in stages with respect to the leakage current. Reference numerals 1001 to 1009 and 1012 in the embodiment of FIG. 6 have the same functions as those of the embodiment of FIG. In the figure, reference numeral 1010 denotes a trip device that acts on an opening / closing mechanism (not shown) and separates the contacts 1001 and 1002 and operates according to the determination result of the arithmetic circuit 1007. In this case, the leakage current can be either a ground leakage current or a resistance ground fault current. The embodiment in FIG. 7 is an example in which a leakage current detection circuit 1011 for driving the trip device 1010 is provided separately from the arithmetic circuit 1007. The earth leakage breakers shown in Figs. 6 and 7 detect whether the resistance ground fault current is 1 mA or more, for example, if the insulation failure does not require urgent, and the emergency such as electric shock that the leakage current exceeds 30 mA. In the case of an accident that requires an operation, it operates in stages so as to interrupt the electric circuit. At that time, it is possible to know whether or not the detection output of the resistance ground fault current detection before the interruption operation is performed within a range in which the accuracy can be guaranteed.

図6と図7において表示手段1008を省略し,演算回路1007が所定の抵抗分地絡電流を検知した場合,いきなりトリップコイル1010を駆動するようにも構成できる。この場合1009の表示に電気的なバックアップを持たせるか,あるいはメカ的なラッチ機構を用いれば,トリップコイル1010の駆動による回路の遮断についても,事後にその遮断が要求される検出精度の元に行われたかどうかを判断できる。また,対地漏洩電流が要求される検出精度を保証し得る範囲を超えている場合にもトリップコイル1010を駆動させるようにすることが可能である。 6 and 7, the display unit 1008 can be omitted, and the trip coil 1010 can be suddenly driven when the arithmetic circuit 1007 detects a predetermined resistance ground fault current. In this case, if the display of 1009 is electrically backed up or a mechanical latch mechanism is used, the circuit can be shut off by driving the trip coil 1010 based on the detection accuracy required to be shut off later. You can determine whether it was done. It is also possible to drive the trip coil 1010 even when the ground leakage current exceeds the range in which the required detection accuracy can be guaranteed.

図8は,回路を遮断する主回路接点を有しない漏電継電器である。図において1004から1009は図1のものと同じ構成である。但し,零相変流器は継電器のケーシング外に設置しても内蔵してもよい。また零相変流器は電路に設けるものでなく変圧器のB種接地線の対地漏洩電流を検出するようにしたものでもよい。1010’は継電器で,図6や図7の漏電遮断器が回路を遮断する代わりに,外部に接点出力する。あるいは,演算回路1007から信号が外部に出力されてもよい。 FIG. 8 shows an earth leakage relay that does not have a main circuit contact that interrupts the circuit. In the figure, reference numerals 1004 to 1009 are the same as those in FIG. However, the zero-phase current transformer may be installed outside the relay casing or built in. Further, the zero-phase current transformer is not provided in the electric circuit, but may be one that detects the ground leakage current of the B-type ground wire of the transformer. Reference numeral 1010 'denotes a relay, which outputs a contact to the outside instead of the circuit breaker of FIG. 6 or 7 interrupting the circuit. Alternatively, a signal may be output from the arithmetic circuit 1007 to the outside.

このような継電器では,1010’の継電動作のほかに,事前の電路の抵抗分地絡電流を検知でき,また検知された抵抗分地絡電流が抵抗分地絡電流が要求された精度によるものかどうかを一目で判別できる。また,表示手段1008を省略し,継電器1010’は「0034」に記載のように抵抗分地絡電流が所定の値を超えた場合に動作するようにして,警報手段1009は継電動作時の対地漏洩電流が所定の範囲を超えていたことを示すようにしてもよい。 In such a relay, in addition to the relay operation of 1010 ′, it is possible to detect the resistance ground fault current of the prior circuit, and the detected resistance ground fault current depends on the accuracy with which the resistance ground fault current is required. You can determine at a glance whether it is a thing. Further, the display unit 1008 is omitted, and the relay unit 1010 ′ is operated when the resistance ground fault current exceeds a predetermined value as described in “0034”, and the alarm unit 1009 is operated during the relay operation. You may make it show that the ground leakage current exceeded the predetermined range.

なお,以上の説明において,1008の表示手段は,抵抗分地絡電流の検知感度はひとつの場合で説明したが,段階的に複数設け,選択的に切替えるようにしてもよい。また演算回路1007で常時漏洩電流を演算しその値を表示するような手段を別途付加することも任意である。 In the above description, the display means 1008 has been described in the case where the detection sensitivity of the resistance ground fault current is one, but a plurality of display means may be provided in stages and selectively switched. In addition, it is optional to add a means for calculating the leakage current constantly by the arithmetic circuit 1007 and displaying the value.

配線用遮断器や漏電遮断器,継電器のほか,その他の機能を有する監視装置などに付加して用いることができる。 In addition to circuit breakers, earth leakage circuit breakers, relays, and other monitoring devices with other functions can be used.

本件発明による抵抗分地絡電流警報機能付きの配線用遮断器の構成図Configuration diagram of circuit breaker with resistance ground fault current alarm function according to the present invention 対地漏洩電流から抵抗分地絡電流を検出する方法の説明図Explanatory drawing of the method to detect the resistance ground fault current from the ground leakage current 対地漏洩電流から抵抗分地絡電流を検出する方法の説明図Explanatory drawing of the method to detect the resistance ground fault current from the ground leakage current 電圧と対地漏洩電流の位相差による検出誤差を説明する図Diagram explaining detection error due to phase difference between voltage and ground leakage current 精度を保証しうる常時漏洩電流と検出した抵抗分地絡電流による対地漏洩電流の変化の図Diagram of change in ground leakage current due to constant leakage current that can guarantee accuracy and detected resistance ground fault current 本件発明による抵抗分地絡電流警報機能付きの漏電遮断器の構成図Configuration diagram of earth leakage breaker with resistance ground fault current alarm function according to the present invention 本件発明による抵抗分地絡電流警報機能付きの漏電遮断器の構成図Configuration diagram of earth leakage breaker with resistance ground fault current alarm function according to the present invention 本件発明による抵抗分地絡電流警報機能付きの継電器の構成図Configuration diagram of relay with resistance ground fault current alarm function according to the present invention

符号の説明Explanation of symbols

1・・・変圧器
2,2’・・・電路
3・・・接地
4・・・電路の対地静電容量
5・・・地絡抵抗
6・・・電圧ベクトル
7・・・対地漏洩電流ベクトル
8・・・抵抗分地絡電流ベクトル
9・・・常時漏洩電流ベクトル
10・・・電路電圧の単位波形
11,13・・・対地漏洩電流の波形
12,14・・・電路電圧の単位波形の瞬時値と対地漏洩電流の瞬時値の積算波形
15・・・電圧ベクトル
16,16’・・・対地漏洩電流ベクトル
17,17’・・・抵抗分地絡電流
18,18’・・・検出誤差
1001,1002・・・主回路接点
1003・・・過電流検出素子
1004・・・変流器
1005・・・波形整形回路
1006・・・波形整形回路
1007・・・演算回路
1008・・・表示手段
1009・・・警報手段
1010・・・トリップコイル
1010’・・・継電器
1011・・・漏電検知器
1012・・・一時機能手段







DESCRIPTION OF SYMBOLS 1 ... Transformer 2, 2 '... Electric circuit 3 ... Grounding 4 ... Ground capacitance of electric circuit 5 ... Ground fault resistance 6 ... Voltage vector 7 ... Ground leakage current vector 8: Resistance ground fault current vector 9: Constant leakage current vector 10: Circuit waveform unit waveform 11, 13: Ground leakage current waveform 12, 14: Circuit voltage unit waveform Accumulated waveform of instantaneous value and instantaneous value of ground leakage current 15... Voltage vector 16, 16 '.. ground leakage current vector 17, 17' .. resistance ground fault current 18, 18 '.. detection error 1001, 1002 ... Main circuit contact 1003 ... Overcurrent detection element 1004 ... Current transformer 1005 ... Waveform shaping circuit 1006 ... Waveform shaping circuit 1007 ... Arithmetic circuit 1008 ... Display means 1009 ... Alarm means 1010 ... Trip carp 1010 '... relay 1011 ... leakage detector 1012 ... temporary function means







Claims (5)

電路の対地漏洩電流を検出し,その大きさと電路電圧との位相ずれを元にして抵抗分地絡電流を計算し,該抵抗分地絡電流が所定の大きさを超えたことを検知する手段を備えた装置において,対地漏洩電流が抵抗分地絡電流の検知感度に応じて設定される値を超えている場合は警報を発する手段を備えたことを特徴とする抵抗分地絡電流を検出する装置。 Means for detecting a ground leakage current of a circuit, calculating a resistance ground fault current based on a phase shift between the magnitude and the circuit voltage, and detecting that the resistance ground fault current exceeds a predetermined magnitude Detects a resistance ground fault current characterized by having a means to issue an alarm when the ground leakage current exceeds a value set according to the detection sensitivity of the resistance ground fault current. Device to do. 前記の警報を発生する手段は,一時的に機能させる手段を有することを特徴とする請求項1の抵抗分地絡電流を検出する装置。 2. The apparatus for detecting a resistance ground fault current according to claim 1, wherein said alarm generating means includes means for temporarily functioning. 前記の抵抗分地絡電流の検知感度に応じて設定される対地漏洩電流の値は,対地漏洩電流と電路電圧との位相ずれを元にして計算した抵抗分地絡電流の現在値と,抵抗分地絡電流の検知感度に応じて設定される常時漏洩電流のベクトル合成から可変的に設定されるものであることを特徴とする抵抗分地絡電流を検出する装置。 The value of the ground leakage current set according to the detection sensitivity of the resistance ground fault current is the current value of the resistance ground fault current calculated based on the phase shift between the ground leakage current and the circuit voltage, and the resistance An apparatus for detecting a resistance ground fault current, wherein the resistance ground fault current is variably set based on a vector composition of a constant leakage current set in accordance with a detection sensitivity of the ground fault current. 前記の抵抗分地絡電流を検出する装置は,抵抗分地絡電流が所定の大きさを超えている場合に警報を発生する配線用遮断器または該警報が事前警報である漏電遮断器または漏電継電器であることを特徴とする請求項1乃至請求項3の抵抗分地絡電流を検出する装置。 The device for detecting a resistance ground fault current is a circuit breaker for wiring that generates an alarm when the resistance ground fault current exceeds a predetermined magnitude, or a ground fault circuit breaker or a ground fault for which the alarm is a prior warning. 4. The device for detecting a resistance ground fault current according to claim 1, wherein the device is a relay. 前記の抵抗分地絡電流を検出する手段を備えた装置は,抵抗分地絡電流が所定の大きさを越えている場合に,回路を遮断する漏電遮断器,あるいは出力を発生する漏電継電器であることを特徴とする請求項1乃至請求項3の抵抗分地絡電流を検出する手段を備えた装置。

The device provided with the means for detecting the resistance ground fault current is an earth leakage breaker that interrupts the circuit or an earth leakage relay that generates an output when the resistance ground fault current exceeds a predetermined magnitude. 4. An apparatus comprising means for detecting a resistance ground fault current according to claim 1, wherein said resistance ground fault current is detected.

JP2007248416A 2007-09-26 2007-09-26 Device for detecting resistance ground fault current Active JP5072085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248416A JP5072085B2 (en) 2007-09-26 2007-09-26 Device for detecting resistance ground fault current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248416A JP5072085B2 (en) 2007-09-26 2007-09-26 Device for detecting resistance ground fault current

Publications (2)

Publication Number Publication Date
JP2009081926A true JP2009081926A (en) 2009-04-16
JP5072085B2 JP5072085B2 (en) 2012-11-14

Family

ID=40656281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248416A Active JP5072085B2 (en) 2007-09-26 2007-09-26 Device for detecting resistance ground fault current

Country Status (1)

Country Link
JP (1) JP5072085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113970A1 (en) * 2013-01-25 2014-07-31 Suzhou Red Maple Wind Blade Mould Co., Ltd Electrostatic elimination from a mould

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755232U (en) * 1980-09-17 1982-03-31
JPH09171047A (en) * 1995-12-19 1997-06-30 Mitsubishi Electric Corp Assembled-type leak relay
JP2003202357A (en) * 2001-11-01 2003-07-18 Toshiba Corp Method and apparatus for insulation monitoring
JP2006071341A (en) * 2004-08-31 2006-03-16 Toshiba Corp Insulation monitoring device and method of electric installation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755232U (en) * 1980-09-17 1982-03-31
JPH09171047A (en) * 1995-12-19 1997-06-30 Mitsubishi Electric Corp Assembled-type leak relay
JP2003202357A (en) * 2001-11-01 2003-07-18 Toshiba Corp Method and apparatus for insulation monitoring
JP2006071341A (en) * 2004-08-31 2006-03-16 Toshiba Corp Insulation monitoring device and method of electric installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113970A1 (en) * 2013-01-25 2014-07-31 Suzhou Red Maple Wind Blade Mould Co., Ltd Electrostatic elimination from a mould

Also Published As

Publication number Publication date
JP5072085B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US8649131B2 (en) Method and device for supervising secondary circuit of instrument transformer in power system
US9106076B2 (en) Differential protection in electrical power networks
JP2009081928A (en) Apparatus for detecting leakage current
US20110149448A1 (en) Short-circuit distance relay
KR20160013717A (en) Apparatus and method for detecting residual current
EP2633595A2 (en) A protection relay for sensitive earth fault portection
CN101232172B (en) Circuit breaker
JP6509029B2 (en) Distribution board
JP2011015583A (en) Leakage detection method, leakage detection device, and earth leakage breaker
JP5072084B2 (en) Device for detecting resistance ground fault current
CN105359365A (en) Method and means for complex, universal earth fault protection in power high and medium voltage system
JP5072086B2 (en) Device for detecting resistance ground fault current
JP2012005193A (en) Leakage cutoff unit and leakage detector
JP5072085B2 (en) Device for detecting resistance ground fault current
JP5190635B2 (en) Device for detecting resistance ground fault current
KR101069637B1 (en) Apparatus and method for protecting overcurrent
JP2004015961A (en) Ground fault interrupter with three-phase phase-failure protector
KR101887457B1 (en) Apparatus for breaking leakage current and method for controlling thereof
JP2008277227A (en) Circuit breaker unit
JP2013113632A (en) Ground fault detecting method
JP2014199718A (en) Electric leakage detector
JP2001314031A (en) Earth leakage breaker
KR20170117750A (en) Relay for protecting electric system
JP2009295839A (en) Cross through current transformer, terminal block, and protective relay device
EP3062410A1 (en) A protection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5072085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250