JP2012005193A - Leakage cutoff unit and leakage detector - Google Patents

Leakage cutoff unit and leakage detector Download PDF

Info

Publication number
JP2012005193A
JP2012005193A JP2010135811A JP2010135811A JP2012005193A JP 2012005193 A JP2012005193 A JP 2012005193A JP 2010135811 A JP2010135811 A JP 2010135811A JP 2010135811 A JP2010135811 A JP 2010135811A JP 2012005193 A JP2012005193 A JP 2012005193A
Authority
JP
Japan
Prior art keywords
phase
leakage
current
circuit
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010135811A
Other languages
Japanese (ja)
Inventor
Katsumi Watanabe
克己 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2010135811A priority Critical patent/JP2012005193A/en
Publication of JP2012005193A publication Critical patent/JP2012005193A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a leakage cutoff unit and a leakage detector capable of detecting leak current resulting from ground resistance by easy and inexpensive configuration, and maintaining an operation sensitivity actual value between rating sensitivity current and rating non-operation current in a three-phase three-line type electric circuit of one line grounding to which delta connection is performed.SOLUTION: In the leakage cutoff unit which operates to detect a resistance component of the leak current in the three-phase three-line type electric circuit 2 which is connected to a system power supply 1 to which the delta connection is performed and grounded by one line, a variable resistor 37 for cancellation is serially connected to a magnetic coupling part 34a which is magnetically coupled to a zero-phase current transformer 34 which is connected to a leakage detection part 33 between two lines of T phase and R phase which are non-ground of the three-phase three-line type electric circuit 2, and leak current Iresulting from ground capacitance 5 of the leak current Iwhich is detected by the zero-phase current transformer 34 is canceled by current proportional to current Iwhich flows to the variable resistor 37 for cancellation.

Description

本発明は、デルタ結線された系統電源に接続され、かつ1線接地された3相3線式電路における漏れ電流の対地抵抗成分(無誘導成分)のみを検出して動作する漏電遮断器及び漏電検出装置に関するものである。   The present invention relates to an earth leakage circuit breaker and an earth leakage circuit that operate by detecting only a ground resistance component (non-inductive component) of a leakage current in a three-phase three-wire electric circuit connected to a delta-connected system power source and grounded on one line. The present invention relates to a detection device.

近年において、コンピュータは社会の各方面に利用されており、インテリジェントビルの普及拡大及び工場のFA(ファクトリー・オートメーション)化により、機器同士を結線する際に電線路の長さが長大になることがある。この電線路の長大化により、対地静電容量(浮遊容量)が増大し、これに起因するトラブルも増加傾向にある。   In recent years, computers have been used in various areas of society, and the length of electric lines may become long when connecting devices due to the widespread use of intelligent buildings and factory automation (FA). is there. Due to the increase in the length of the electric line, the capacitance to ground (floating capacitance) increases, and troubles caused by this increase in the trend.

ところで、漏れ電流には、上記の対地静電容量を介して流れる漏れ電流と、対地抵抗を介して流れる漏れ電流とが含まれており、漏電遮断器や漏電検出装置では、対地抵抗を介して流れる漏れ電流のみを正確に検出することが求められている。
電源がスター結線されてその中性点が接地され、更に各相の対地静電容量が等しい場合には、電線路から対地静電容量を介して流れ出る漏れ電流のベクトル合計値はゼロとなり、漏電遮断器や漏電検出装置を動作させるための漏れ電流検出値に影響を与えることはない。しかし、1線接地されたデルタ結線の3相3線式電路では、非接地相である2相の対地静電容量を介した漏れ電流の位相差が60度であるため、そのベクトル合計値はゼロにならず一定の値を持つことになり、漏れ電流検出値は、この値と本来検出するべき対地抵抗に起因した漏れ電流とのベクトル和になってしまう。
By the way, the leakage current includes the leakage current flowing through the above-described ground capacitance and the leakage current flowing through the ground resistance. In the earth leakage breaker and the earth leakage detection device, It is required to accurately detect only the leakage current that flows.
If the power supply is star-connected, its neutral point is grounded, and the ground capacitance of each phase is equal, the total vector value of the leakage current that flows out of the wire through the ground capacitance is zero, and the leakage current It does not affect the leakage current detection value for operating the circuit breaker or leakage detection device. However, in a three-phase three-wire electric circuit with a delta connection that is grounded on one line, the phase difference of the leakage current through the two-phase ground capacitance, which is a non-grounded phase, is 60 degrees. The leakage current detection value becomes a vector sum of this value and the leakage current due to the ground resistance to be detected originally.

従って、一般の漏電遮断器や漏電検出装置においては、対地抵抗に起因した漏れ電流のみを効果的かつ簡素な手段によって検出できることが望まれている。
なお、1線接地されたデルタ結線の3相3線式電路における、対地抵抗に起因した漏れ電流の検出原理は、例えば特許文献1に記載されている。この従来技術は、零相変流器(ZCT)により検出した接地線を流れる漏れ電流と、非接地相である一相の基準電位とに基づいて、所定の演算式によって対地抵抗による漏れ電流のみを検出するものであり、漏れ電流がいかなる電路で発生した場合でも整定電流値に対して少ない誤差精度で絶縁状態を検出可能としたものである。
Therefore, in a general earth leakage breaker and earth leakage detection device, it is desired that only the leakage current caused by the ground resistance can be detected by an effective and simple means.
Note that, for example, Patent Document 1 discloses a detection principle of leakage current caused by ground resistance in a delta-connected three-phase three-wire circuit that is grounded on one line. This prior art is based on the leakage current flowing through the ground line detected by the zero-phase current transformer (ZCT) and the one-phase reference potential that is a non-grounded phase, and only the leakage current due to ground resistance is determined by a predetermined arithmetic expression. In this case, the insulation state can be detected with a small error accuracy with respect to the settling current value even when a leakage current occurs in any electric circuit.

特開2001−242205号公報(段落[0043]〜[0051]、図3等)JP 2001-242205 A (paragraphs [0043] to [0051], FIG. 3 and the like)

特許文献1に係る従来技術では、抵抗性の地絡電流を検出するために複雑なベクトル解析を行う必要があり、装置が大形となるばかりか、高価になってしまうという問題があった。   In the prior art according to Patent Document 1, it is necessary to perform complicated vector analysis in order to detect a resistive ground fault current, and there is a problem that the apparatus becomes large and expensive.

一方、漏電遮断器の試験回路は、負荷側で定格不動作電流、すなわち定格感度電流IΔnの1/2の地絡電流が流れていても確実にテスト釦によるトリップ動作が行えるように、テスト電流を定格感度電流IΔnの1.5倍以上に設定するのが一般的である。ここで、定格感度電流IΔnとは、漏電遮断器がこの電流以上では必ず漏電を検出して遮断動作する電流(例えば、30[mA])であり、また、定格不動作電流とは、漏電遮断器がこの電流未満では漏電を検出せずに遮断動作をしない電流(例えば、15[mA])をいう。
しかし、これはとりもなおさず、定格感度電流IΔnの1.5倍を超える値で動作することをテストしているに過ぎず、定格感度電流IΔnにおける動作検証を行ったことにはならないのが実情である。
On the other hand, the test circuit of the earth leakage breaker is tested to ensure that the trip operation by the test button can be performed even if the rated inactive current on the load side, that is, the ground fault current that is 1/2 of the rated sensitivity current I Δn flows. Generally, the current is set to 1.5 times or more than the rated sensitivity current I Δn . Here, the rated sensitivity current I Δn is a current (for example, 30 [mA]) at which the leakage breaker always detects a leakage when the leakage breaker exceeds this current, and the rated inoperative current is a leakage current. When the breaker is less than this current, it means a current (for example, 15 [mA]) that does not detect a leakage and does not perform a breaking operation.
However, this is not cured also take, only to have tested that it works with a value of more than 1.5 times the rated sensitivity current I Δn, not to be subjected to operation verification at the rated sensitivity current I Δn Is the actual situation.

そこで、本発明の解決課題は、デルタ結線の1線接地された3相3線式電路において、対地抵抗に起因した漏れ電流を簡単かつ安価な構成により検出可能とし、また、動作感度実力値を定格感度電流と定格不動作電流との間に保つことができる漏電遮断器及び漏電検出装置を提供することにある。   Therefore, the problem to be solved by the present invention is that it is possible to detect a leakage current caused by ground resistance with a simple and inexpensive configuration in a one-phase grounded three-phase electric circuit with a delta connection, and the operation sensitivity capability value is determined. An object of the present invention is to provide a leakage breaker and a leakage detection device that can be maintained between a rated sensitivity current and a rated inoperative current.

上記課題を解決するため、請求項1に係る漏電遮断器は、デルタ結線された系統電源に接続されて1線接地された3相3線式電路における漏れ電流の抵抗成分を検出して動作する漏電遮断器において、
前記3相3線式電路のうち非接地の2線間に、可変抵抗と、漏電検出部に接続された零相変流器に磁気的に結合する磁気結合部と、を直列に接続し、
前記零相変流器により検出される漏れ電流のうち前記3相3線式電路の対地静電容量に起因する漏れ電流を、前記可変抵抗を流れる電流に比例した電流により相殺するものである。
In order to solve the above-described problem, the leakage breaker according to claim 1 operates by detecting a resistance component of leakage current in a three-phase three-wire electric circuit connected to a delta-connected system power source and grounded by one line. In the earth leakage breaker,
A variable resistor and a magnetic coupling unit that is magnetically coupled to a zero-phase current transformer connected to the leakage detection unit are connected in series between two ungrounded wires of the three-phase three-wire circuit.
Of the leakage current detected by the zero-phase current transformer, the leakage current caused by the ground capacitance of the three-phase three-wire circuit is canceled by a current proportional to the current flowing through the variable resistor.

本発明は、3相3線式電路のうち非接地相である2相の対地静電容量は一般にほぼ等しく、これらの対地静電容量による漏れ電流は非接地の2相間の電圧に対して逆位相(180度の位相差)となることに着目したものである。すなわち、非接地の2相間に可変抵抗と磁気結合部とを直列に接続し、この磁気結合部を零相変流器(以下、ZCTともいう)に周回または貫通させて磁気的に結合させる。これにより、上記可変抵抗を流れる電流によって対地静電容量による漏れ電流を相殺し、対地抵抗による漏れ電流のみを効果的に検出することができる。   In the present invention, the two-phase ground capacitance, which is a non-grounded phase in a three-phase three-wire circuit, is generally substantially equal, and the leakage current due to these ground capacitances is opposite to the voltage between the two ungrounded phases. The focus is on the phase (180 degree phase difference). That is, a variable resistor and a magnetic coupling unit are connected in series between two ungrounded phases, and this magnetic coupling unit is circulated or penetrated through a zero-phase current transformer (hereinafter also referred to as ZCT) to be magnetically coupled. Thereby, the leakage current due to the ground capacitance is canceled by the current flowing through the variable resistor, and only the leakage current due to the ground resistance can be detected effectively.

請求項2に係る漏電遮断器は、請求項1に記載した漏電遮断器において、前記3相3線式電路のうち非接地の1線と接地された1線との間に、前記漏電検出部の試験時に定格感度電流を流すための第1のスイッチ手段を有する第1のテスト回路と、前記漏電検出部の試験時に定格不動作電流を流すための第2のスイッチ手段を有する第2のテスト回路と、を互いに並列に接続したものである。   The earth leakage breaker according to claim 2 is the earth leakage breaker according to claim 1, wherein the earth leakage detection unit is provided between an ungrounded one line and a grounded one line in the three-phase three-wire electric circuit. A first test circuit having a first switch means for flowing a rated sensitivity current during the test of the second test, and a second test having a second switch means for flowing a rated inoperative current during the test of the leakage detection unit The circuit is connected in parallel with each other.

上記第1のテスト回路及び第2のテスト回路を使用することにより、漏電遮断器が、定格感度電流IΔnで動作して定格不動作電流(IΔn/2)で不動作であること、すなわち、IΔn>漏電遮断器の動作レベル>(IΔn/2)であることの確認が可能になる。 By using the first test circuit and the second test circuit, the earth leakage circuit breaker operates at the rated sensitivity current I Δn and does not operate at the rated inoperative current (I Δn / 2). , I Δn > Electric leakage breaker operating level> (I Δn / 2).

請求項3に係る漏電検出装置は、デルタ結線された系統電源に接続されて1線接地された3相3線式電路における漏れ電流の抵抗成分を検出する漏電検出装置において、
前記3相3線式電路のうち非接地の2線間に、可変抵抗と、漏電検出部に接続された零相変流器に磁気的に結合する磁気結合部と、を直列に接続し、
前記零相変流器により検出される漏れ電流のうち前記3相3線式電路の対地静電容量に起因する漏れ電流を、前記可変抵抗を流れる電流に比例した電流により相殺するとともに、
前記漏電検出部に、漏れ電流のレベルを表示する手段を接続したものである。
The leakage detection device according to claim 3 is a leakage detection device that detects a resistance component of leakage current in a three-phase three-wire circuit connected to a delta-connected system power supply and grounded on one line.
A variable resistor and a magnetic coupling unit that is magnetically coupled to a zero-phase current transformer connected to the leakage detection unit are connected in series between two ungrounded wires of the three-phase three-wire circuit.
Of the leakage current detected by the zero-phase current transformer, the leakage current due to the ground capacitance of the three-phase three-wire circuit is canceled by a current proportional to the current flowing through the variable resistor,
Means for displaying the level of leakage current is connected to the leakage detection unit.

本発明の漏電遮断器によれば、非接地相である2相間に可変抵抗と磁気結合部とを直列に接続するだけの簡単な構成により、対地静電容量による漏れ電流を打ち消して対地抵抗による漏れ電流のみを正確に検出し、所定の遮断動作を行うことができる。
また、本発明の漏電検出装置によれば、漏電遮断器と同様の原理によって対地抵抗による漏れ電流のみを正確に検出可能であるとともに、漏れ電流のレベル表示により絶縁性能の確認や対地静電容量による漏れ電流の相殺状況の確認が可能になる。
According to the earth leakage circuit breaker of the present invention, the leakage current due to the ground capacitance is canceled by the simple configuration in which the variable resistor and the magnetic coupling unit are simply connected in series between the two phases which are non-grounded phases. Only the leakage current can be accurately detected and a predetermined interruption operation can be performed.
Further, according to the leakage detection device of the present invention, it is possible to accurately detect only the leakage current due to ground resistance based on the same principle as the leakage breaker, and also to confirm insulation performance and ground capacitance by displaying the leakage current level. It is possible to check the cancellation status of leakage current due to.

上記のように本発明によれば、対地抵抗に起因する漏れ電流のみを検出し、この検出値に基づいて被測定電路を遮断するI0r動作対応型の漏電遮断器を実現することができ、また、漏れ電流のレベル表示や警報出力が可能な漏電検出装置を提供することができる。 As described above, according to the present invention, it is possible to realize an I 0r operation compatible type earth leakage circuit breaker that detects only the leakage current due to ground resistance and blocks the circuit under measurement based on the detected value. Further, it is possible to provide a leakage detection device capable of displaying a leakage current level and outputting an alarm.

本発明の第1実施形態に係る漏電遮断器の構成図である。It is a lineblock diagram of an earth-leakage circuit breaker concerning a 1st embodiment of the present invention. 図1における電圧、電流を示すベクトル図である。It is a vector diagram which shows the voltage and electric current in FIG. 本発明の第2実施形態に係る漏電検出装置の構成図である。It is a block diagram of the leak detection apparatus which concerns on 2nd Embodiment of this invention.

以下、図に沿って本発明の実施形態を説明する。
図1は、本発明の第1実施形態に係る漏電遮断器(I0r動作型漏電遮断器という)の構成図であり、図2は図1における電圧、電流を示すベクトル図である。
図1において、1はデルタ結線された系統電源、2は系統電源1に接続された3相3線式電路であり、この電路2のうちの1線、例えば、S相が接地されているものとする。また、上記電路2には、本実施形態の漏電遮断器3を介して負荷(図示せず)が接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an earth leakage circuit breaker (referred to as an I 0r operation type earth leakage circuit breaker) according to a first embodiment of the present invention, and FIG. 2 is a vector diagram showing voltage and current in FIG.
In FIG. 1, 1 is a system power supply connected in delta connection, 2 is a three-phase three-wire circuit connected to the system power supply 1, and one of the circuits 2, for example, the S phase is grounded And In addition, a load (not shown) is connected to the electric circuit 2 via the leakage breaker 3 of the present embodiment.

漏電遮断器3は、電路2の零相電流を検出するZCT(零相変流器)34と、ZCT34にN回周回して磁気的に結合された巻数Nの磁気結合部34aと、ZCT34の出力を増幅してレベル検出する漏電検出部33と、この漏電検出部33により駆動される遮断部31及び過電流引き外し部32と、を備えている。
また、磁気結合部34aの一端はR相の電路2と漏電検出部33に接続されていると共に、その他端は、第1,第2のテスト抵抗35,36及び相殺用可変抵抗37の各一端に接続されている。更に、テスト抵抗35,36の各他端は、第1,第2のテスト釦38,39を介してS相の電路2に接続され、相殺用可変抵抗37の他端はT相の電路2に接続されている。
The earth leakage circuit breaker 3 includes a ZCT (zero phase current transformer) 34 for detecting a zero phase current in the electric circuit 2, a magnetic coupling portion 34 a having N turns and magnetically coupled around the ZCT 34 N times, A leakage detection unit 33 that amplifies the output and detects a level, and a blocking unit 31 and an overcurrent tripping unit 32 that are driven by the leakage detection unit 33 are provided.
One end of the magnetic coupling part 34 a is connected to the R-phase electric circuit 2 and the leakage detection part 33, and the other end is one end of each of the first and second test resistors 35 and 36 and the canceling variable resistor 37. It is connected to the. Further, the other ends of the test resistors 35 and 36 are connected to the S-phase circuit 2 via the first and second test buttons 38 and 39, and the other end of the canceling variable resistor 37 is connected to the T-phase circuit 2. It is connected to the.

すなわち、磁気結合部34aは、非接地相であるR相,T相の電路2間に相殺用可変抵抗37を介して接続され、かつ、非接地相であるR相の電路2と接地相であるS相の電路2との間に、第1のテスト抵抗35と第1のテスト釦38との直列回路、及び、第2のテスト抵抗36と第2のテスト釦39との直列回路が、互いに並列に接続されている。
ここで、第1,第2のテスト釦38,39は請求項における第1,第2のスイッチ手段を構成し、第1のテスト抵抗35と第1のテスト釦38との直列回路は第1のテスト回路を構成し、第2のテスト抵抗36と第2のテスト釦39との直列回路は第2のテスト回路を構成している。
That is, the magnetic coupling portion 34a is connected between the R-phase and T-phase electric circuits 2 that are non-grounded phases via the canceling variable resistor 37, and is connected to the R-phase electric circuit 2 that is the non-grounded phase and the ground phase. A series circuit of the first test resistor 35 and the first test button 38 and a series circuit of the second test resistor 36 and the second test button 39 are provided between the S-phase electric circuit 2 and They are connected to each other in parallel.
Here, the first and second test buttons 38 and 39 constitute the first and second switch means in the claims, and the series circuit of the first test resistor 35 and the first test button 38 is the first. The series circuit of the second test resistor 36 and the second test button 39 constitutes a second test circuit.

また、第1のテスト釦38をオンしたときに第1のテスト抵抗35を介してR,S相間に定格不動作電流(IΔn/2)が流れ、第2のテスト釦39をオンしたときに第2のテスト抵抗36を介してR,S相間に定格感度電流IΔnが流れるように、各テスト抵抗35,36の抵抗値がそれぞれ設定されている。
なお、図1において、5は各相の電路2の対地静電容量(浮遊容量)を示している。
When the first test button 38 is turned on, a rated inoperative current (I Δn / 2) flows between the R and S phases via the first test resistor 35, and the second test button 39 is turned on. The resistance values of the test resistors 35 and 36 are set so that the rated sensitivity current I Δn flows between the R and S phases via the second test resistor 36.
In addition, in FIG. 1, 5 has shown the earth | ground electrostatic capacitance (floating capacitance) of the electric circuit 2 of each phase.

以下、この実施形態の動作を説明する。
いま、図1の地絡点Fで漏電が起きると、漏電遮断器が本来検出するべき対地抵抗に起因した漏れ電流I0rに、対地静電容量5を介した漏れ電流I(=ICR+ICT)が加わるため、ZCT34は漏れ電流としてI=I0r+Iを検出する。
なお、これらの電流はベクトル量であるが、この明細書の本文中では、電流Iがベクトル量であることを示す「・」を便宜的に省略する。
The operation of this embodiment will be described below.
Now, when a leakage occurs at the ground fault point F in FIG. 1, a leakage current I C (= I CR) via the ground capacitance 5 is added to the leakage current I 0r caused by the ground resistance that should be detected by the leakage breaker. Since + I CT ) is added, the ZCT 34 detects I 0 = I 0r + I C as a leakage current.
Note that these currents are vector quantities, but in the text of this specification, “·” indicating that the current I is a vector quantity is omitted for convenience.

ところで、系統電源1が1線接地されたデルタ結線(図示例ではS相接地)の対地静電容量5による漏れ電流Iは、各相電路2の対地静電容量が全てほぼ等しいとすると、図2に示す如く、S相,T相間の線間電圧VSTに対する90度進み位相電流ICTと、R相,S相間の線間電圧VRSの逆位相電圧(−VRS)に対する90度進み位相電流ICRとの合成電流となり、漏れ電流Iの位相は、T相,R相間の線間電圧VTRに対して逆位相となる。 However, the leakage current I C by the earth capacitance 5 of the delta connection to the system power source 1 is grounded 1 line (S-phase ground in the illustrated example), the capacitance to ground of each phase path 2 is approximately equal for all As shown in FIG. 2, a 90-degree advance phase current I CT with respect to the line voltage V ST between the S phase and the T phase and a 90 phase against the reverse phase voltage (−V RS ) of the line voltage V RS between the R phase and the S phase. degrees proceeds be combined current of the phase current I CR, the phase of the leakage current I C is, T phase, the opposite phase to the line voltage V TR of the R phase.

そこで、非接地相であるT相,R相の2つの電路2間に挿入した相殺用可変抵抗37を介して流れる電流ITR(線間電圧VTRと同位相)により、対地静電容量5に起因した漏れ電流Iを相殺することができる。すなわち、ITR×N=−Iとなるように相殺用可変抵抗37を調整すれば、ZCT34が検出する漏れ電流IからIを相殺して対地抵抗に起因した漏れ電流I0rのみを検出することが可能になる。 Therefore, the capacitance to ground 5 is reduced by a current I TR (in the same phase as the line voltage V TR ) flowing through the canceling variable resistor 37 inserted between the two electric paths 2 of the T phase and the R phase which are non-ground phases. It is possible to cancel the leakage current I C caused by. In other words, if the canceling variable resistor 37 is adjusted so that I TR × N = −I C , the leakage current I 0 to I C detected by the ZCT 34 are canceled and only the leakage current I 0r caused by the ground resistance is obtained. It becomes possible to detect.

対地静電容量5に起因した漏れ電流Iが相殺されたかどうかは、第1のテスト釦38をオンして定格不動作電流(IΔn/2)が流れたときに漏電検出部33、遮断部31が遮断動作せず、第2のテスト釦39をオンして定格感度電流IΔnが流れたときに漏電検出部33、遮断部31が遮断動作すれば、漏電遮断器の動作レベルが確実にIΔn>動作レベル>(IΔn/2)となっていることから確認可能である。 Whether or not the leakage current I C caused by the ground capacitance 5 has been canceled is determined when the first test button 38 is turned on and the rated inoperative current (I Δn / 2) flows, If the leakage detection unit 33 and the cutoff unit 31 perform a cutoff operation when the rated sensitivity current I Δn flows when the second test button 39 is turned on without the cutoff operation of the unit 31, the operation level of the leakage breaker is ensured. It can be confirmed that I Δn > operation level> (I Δn / 2).

なお、図1では磁気結合部34aの一端をR相の接続点「イ」に接続し、相殺用可変抵抗37の一端をT相の接続点「ロ」に接続してあるが、磁気結合部34aの一端をT相の接続点「ロ」に接続し、相殺用可変抵抗37の一端をR相の接続点「イ」に接続しても良い。
また、負荷側の絶縁劣化等により定格不動作電流(IΔn/2)が地絡電流として流れていて、テスト時に定格感度電流IΔnでは動作しない場合でも、第1,第2のテスト釦38,39を同時に押せば(1.5×IΔn)のテスト電流を流すことができるから、従来と同様のテスト動作確認は可能である。
In FIG. 1, one end of the magnetic coupling portion 34 a is connected to the R-phase connection point “A” and one end of the canceling variable resistor 37 is connected to the T-phase connection point “RO”. One end of 34 a may be connected to the T-phase connection point “B”, and one end of the cancellation variable resistor 37 may be connected to the R-phase connection point “A”.
Even if the rated inactive current (I Δn / 2) flows as a ground fault current due to insulation degradation on the load side and the like and does not operate at the rated sensitivity current I Δn during the test, the first and second test buttons 38 , 39 can be pressed simultaneously, a test current of (1.5 × I Δn ) can be passed, so that the test operation can be confirmed in the same manner as in the prior art.

次に、図3は本発明の第2実施形態に係る漏電検出装置の構成図である。
図3において、漏電検出装置4は、漏電検出部41と、電路2の零相電流を検出するZCT42と、このZCT42にN回周回されて一端がR相の電路2に接続された磁気結合部42aと、磁気結合部42aの他端とT相の電路2との間に接続された相殺用可変抵抗47と、漏電検出部41から出力されるアナログ信号をA/D変換するA/D変換部43と、そのディジタル出力信号により漏れ電流検出信号のレベルを表示するレベル表示部44と、漏れ電流検出信号のレベルが設定値を超えたときに警報を出力するリレー等の警報出力部45及び接点46と、を備えている。
Next, FIG. 3 is a configuration diagram of a leakage detecting apparatus according to the second embodiment of the present invention.
In FIG. 3, the leakage detection device 4 includes a leakage detection unit 41, a ZCT 42 that detects a zero-phase current in the electric circuit 2, and a magnetic coupling unit that is turned N times around the ZCT 42 and connected to the R-phase electric circuit 2. A / D conversion that performs A / D conversion on the analog signal output from the leakage detecting unit 41 and the canceling variable resistor 47 connected between the other end of the magnetic coupling unit 42a and the T-phase circuit 2 Unit 43, a level display unit 44 for displaying the level of the leakage current detection signal by its digital output signal, an alarm output unit 45 such as a relay for outputting an alarm when the level of the leakage current detection signal exceeds a set value, and And a contact 46.

この実施形態において、対地静電容量5による漏れ電流Iを相殺するには、相殺用可変抵抗47を調整してレベル表示部44により表示される漏れ電流が最小となるようにすればよい。この漏れ電流が最小になったときにはITR×N=−Iが成り立っており、ZCT42が検出する漏れ電流IはI0rのみとなって対地静電容量5による漏れ電流Iが打ち消されている。
漏電検出部41では、検出した漏れ電流I0rのレベルが設定値を超えると警報出力部45を動作させ、接点46を閉じて警報を出力させることとなる。
In this embodiment, to offset the leakage current I C by the capacitance to ground 5, it suffices to leakage current to be displayed is minimized by the level display unit 44 to adjust the offset variable resistor 47. When this leakage current is minimized, I TR × N = −I C holds, and the leakage current I 0 detected by the ZCT 42 becomes only I 0r, and the leakage current I C due to the ground capacitance 5 is canceled out. ing.
In the leakage detection unit 41, when the level of the detected leakage current I 0r exceeds the set value, the alarm output unit 45 is operated, the contact 46 is closed, and an alarm is output.

1:系統電源
2:3相3線式電路
3:漏電遮断器
31:遮断部
32:過電流引き外し部
33:漏電検出部
34:ZCT
34a:磁気結合部
35,36:テスト抵抗
37:相殺用可変抵抗
38,39:テスト釦
4:漏電検出装置
41:漏電検出部
42:ZCT
42a:磁気結合部
43:A/D変換部
44:レベル表示部
45:警報出力部
46:接点
47:相殺用可変抵抗
5:対地静電容量(浮遊容量)
1: System power supply 2: Three-phase three-wire circuit 3: Earth leakage breaker 31: Breaker 32: Overcurrent tripping part 33: Earth leakage detector 34: ZCT
34a: Magnetic coupling unit 35, 36: Test resistor 37: Countering variable resistor 38, 39: Test button 4: Earth leakage detection device 41: Earth leakage detection unit 42: ZCT
42a: Magnetic coupling unit 43: A / D conversion unit 44: Level display unit 45: Alarm output unit 46: Contact 47: Variable resistance for cancellation 5: Ground capacitance (floating capacitance)

Claims (3)

デルタ結線された系統電源に接続されて1線接地された3相3線式電路における漏れ電流の抵抗成分を検出して動作する漏電遮断器において、
前記3相3線式電路のうち非接地の2線間に、可変抵抗と、漏電検出部に接続された零相変流器に磁気的に結合する磁気結合部と、を直列に接続し、
前記零相変流器により検出される漏れ電流のうち前記3相3線式電路の対地静電容量に起因する漏れ電流を、前記可変抵抗を流れる電流に比例した電流により相殺することを特徴とする漏電遮断器。
In the earth leakage circuit breaker which operates by detecting the resistance component of the leakage current in the three-phase three-wire electric circuit connected to the delta-connected system power source and grounded by one line,
A variable resistor and a magnetic coupling unit that is magnetically coupled to a zero-phase current transformer connected to the leakage detection unit are connected in series between two ungrounded wires of the three-phase three-wire circuit.
Of the leakage current detected by the zero-phase current transformer, the leakage current caused by the ground capacitance of the three-phase three-wire circuit is canceled by a current proportional to the current flowing through the variable resistor. Earth leakage circuit breaker.
請求項1に記載した漏電遮断器において、
前記3相3線式電路のうち非接地の1線と接地された1線との間に、前記漏電検出部の試験時に定格感度電流を流すための第1のスイッチ手段を有する第1のテスト回路と、前記漏電検出部の試験時に定格不動作電流を流すための第2のスイッチ手段を有する第2のテスト回路と、を互いに並列に接続したことを特徴とする漏電遮断器。
In the earth leakage circuit breaker according to claim 1,
A first test having a first switch means for allowing a rated sensitivity current to flow between the ungrounded one wire and the grounded one wire in the three-phase three-wire electric circuit when the leakage detecting unit is tested. An earth leakage circuit breaker characterized in that a circuit and a second test circuit having a second switch means for causing a rated inoperative current to flow during a test of the earth leakage detector are connected in parallel to each other.
デルタ結線された系統電源に接続されて1線接地された3相3線式電路における漏れ電流の抵抗成分を検出する漏電検出装置において、
前記3相3線式電路のうち非接地の2線間に、可変抵抗と、漏電検出部に接続された零相変流器に磁気的に結合する磁気結合部と、を直列に接続し、
前記零相変流器により検出される漏れ電流のうち前記3相3線式電路の対地静電容量に起因する漏れ電流を、前記可変抵抗を流れる電流に比例した電流により相殺するとともに、
前記漏電検出部に、漏れ電流のレベルを表示する手段を接続したことを特徴とする漏電検出装置。
In a leakage detection device for detecting a resistance component of leakage current in a three-phase three-wire circuit connected to a delta-connected system power source and grounded on one line,
A variable resistor and a magnetic coupling unit that is magnetically coupled to a zero-phase current transformer connected to the leakage detection unit are connected in series between two ungrounded wires of the three-phase three-wire circuit.
Of the leakage current detected by the zero-phase current transformer, the leakage current due to the ground capacitance of the three-phase three-wire circuit is canceled by a current proportional to the current flowing through the variable resistor,
A leakage detecting apparatus, wherein a means for displaying a leakage current level is connected to the leakage detecting section.
JP2010135811A 2010-06-15 2010-06-15 Leakage cutoff unit and leakage detector Withdrawn JP2012005193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135811A JP2012005193A (en) 2010-06-15 2010-06-15 Leakage cutoff unit and leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135811A JP2012005193A (en) 2010-06-15 2010-06-15 Leakage cutoff unit and leakage detector

Publications (1)

Publication Number Publication Date
JP2012005193A true JP2012005193A (en) 2012-01-05

Family

ID=45536549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135811A Withdrawn JP2012005193A (en) 2010-06-15 2010-06-15 Leakage cutoff unit and leakage detector

Country Status (1)

Country Link
JP (1) JP2012005193A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021088A1 (en) * 2014-08-07 2016-02-11 パナソニックIpマネジメント株式会社 Electric leakage protection device and feed control device
CN109116175A (en) * 2018-10-16 2019-01-01 浙江强泰能源科技有限公司 A kind of fire-disaster monitoring device circuit
CN110045313A (en) * 2019-03-19 2019-07-23 江苏固德威电源科技股份有限公司 Three-phase energy-storage system ammeter current transformer connecting detection method
JP2021056066A (en) * 2019-09-30 2021-04-08 佐鳥電機株式会社 Monitoring device, monitoring method, and monitoring program
KR20220164872A (en) * 2021-06-07 2022-12-14 대구교통공사 Elb precision tester

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021088A1 (en) * 2014-08-07 2016-02-11 パナソニックIpマネジメント株式会社 Electric leakage protection device and feed control device
JP2016039703A (en) * 2014-08-07 2016-03-22 パナソニックIpマネジメント株式会社 Electric leakage protection device and power supply control device
US10367346B2 (en) 2014-08-07 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Electric leakage protection device and feed control device
CN109116175A (en) * 2018-10-16 2019-01-01 浙江强泰能源科技有限公司 A kind of fire-disaster monitoring device circuit
CN110045313A (en) * 2019-03-19 2019-07-23 江苏固德威电源科技股份有限公司 Three-phase energy-storage system ammeter current transformer connecting detection method
CN110045313B (en) * 2019-03-19 2021-08-24 江苏固德威电源科技股份有限公司 Three-phase energy storage system ammeter current transformer connection detection method
JP2021056066A (en) * 2019-09-30 2021-04-08 佐鳥電機株式会社 Monitoring device, monitoring method, and monitoring program
KR20220164872A (en) * 2021-06-07 2022-12-14 대구교통공사 Elb precision tester
KR102594913B1 (en) 2021-06-07 2023-10-27 대구교통공사 Elb precision tester

Similar Documents

Publication Publication Date Title
JP5140012B2 (en) Electric leakage test device, electric leakage circuit breaker, circuit breaker, and electric leakage monitoring device provided with the same
AU2002310615B2 (en) Measuring devices
JP5466302B2 (en) System and method for a multiphase ground fault circuit breaker
KR101650615B1 (en) Apparatus and method for measuring leakage current and performing self-testing
US8717038B2 (en) Wiring testing device
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
US7944213B2 (en) Ground fault detection device
WO2015048095A1 (en) Ratio metric current measurement
US7995315B2 (en) Ground fault protection circuit for multi-source electrical distribution system
JP2012005193A (en) Leakage cutoff unit and leakage detector
JP2009081928A (en) Apparatus for detecting leakage current
KR102021813B1 (en) Ground fault overvoltage relay
US20240103053A1 (en) Position Sensing Modules and Related Devices and Methods
Calero Rebirth of negative-sequence quantities in protective relaying with microprocessor-based relays
JP2011058826A (en) Method and device for detecting ground fault current
US10320184B2 (en) Method and means for complex, universal earth fault protection in power high and medium voltage system
JPS5893422A (en) Protecting device for high voltage transmission line
US7221548B2 (en) Residual-current circuit breaker and a method for testing the reliability performance of a residual-current circuit breaker
JP2011015583A (en) Leakage detection method, leakage detection device, and earth leakage breaker
JP5072084B2 (en) Device for detecting resistance ground fault current
JP5190635B2 (en) Device for detecting resistance ground fault current
Voloh et al. Fault locator based on line current differential relays synchronized measurements
JP5072086B2 (en) Device for detecting resistance ground fault current
Lavorin et al. Selecting directional elements for impedance-grounded distribution systems
JP5072085B2 (en) Device for detecting resistance ground fault current

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903