JP2009080452A5 - - Google Patents

Download PDF

Info

Publication number
JP2009080452A5
JP2009080452A5 JP2008112835A JP2008112835A JP2009080452A5 JP 2009080452 A5 JP2009080452 A5 JP 2009080452A5 JP 2008112835 A JP2008112835 A JP 2008112835A JP 2008112835 A JP2008112835 A JP 2008112835A JP 2009080452 A5 JP2009080452 A5 JP 2009080452A5
Authority
JP
Japan
Prior art keywords
group
general formula
photobase generator
resin composition
photosensitive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008112835A
Other languages
Japanese (ja)
Other versions
JP5071803B2 (en
JP2009080452A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008112835A priority Critical patent/JP5071803B2/en
Priority claimed from JP2008112835A external-priority patent/JP5071803B2/en
Publication of JP2009080452A publication Critical patent/JP2009080452A/en
Publication of JP2009080452A5 publication Critical patent/JP2009080452A5/ja
Application granted granted Critical
Publication of JP5071803B2 publication Critical patent/JP5071803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

感光性樹脂組成物Photosensitive resin composition

本発明は、活性エネルギー線の照射により、塩基を発生する光塩基発生剤を含む感光性樹脂組成物に関する。   The present invention relates to a photosensitive resin composition containing a photobase generator that generates a base upon irradiation with active energy rays.

光、赤外線、遠赤外線、電子線、又はX線等の活性エネルギー線の照射により、化学的な構造変化を起こす感光性樹脂組成物は、レジスト材料や光硬化材料として、多方面で用いられている。活性エネルギー線のうち、特に広く利用されているものが光である。以下、活性エネルギー線を単に光として説明するが、本発明における活性エネルギー線は光に限定されるものではない。   Photosensitive resin compositions that undergo chemical structural changes upon irradiation with active energy rays such as light, infrared rays, far-infrared rays, electron beams, or X-rays are widely used as resist materials and photo-curing materials. Yes. Of the active energy rays, light is particularly widely used. Hereinafter, although an active energy ray is demonstrated only as light, the active energy ray in this invention is not limited to light.

例えば、活性エネルギー線の照射により強酸を発生する光酸発生剤を配合した化学増幅型レジスト材料が知られている。この化学増幅型レジスト材料では、活性エネルギー線の照射により発生する強酸を触媒として樹脂成分を化学変性し、現像液に対する溶解性を変化させることでパターン形成が行われる。高感度・高解像性を目指して様々なレジスト材料の開発が進められてきたが、光酸発生剤と樹脂との組み合わせの種類は限定されてきており、新たな感光システムの開発が求められている。   For example, a chemically amplified resist material containing a photoacid generator that generates a strong acid upon irradiation with active energy rays is known. In this chemically amplified resist material, pattern formation is performed by chemically modifying a resin component using a strong acid generated by irradiation of active energy rays as a catalyst to change the solubility in a developing solution. Although various resist materials have been developed with the aim of high sensitivity and high resolution, the types of combinations of photoacid generators and resins have been limited, and the development of new photosensitive systems is required. ing.

また、活性エネルギー線の照射によるモノマーやプレポリマーの光硬化を利用した表面被覆材料が知られている。このような表面被覆材料の開発にあたり、モノマー、オリゴマー、さらにはポリマーの光硬化速度を向上させるべく、様々な試みがなされてきた。最も広く開発の対象となっているのが、光の作用で発生するラジカル種を開始剤として、多数のビニルモノマーを重合させるラジカル重合系の材料である。また、光の作用で酸を発生させ、この酸を触媒とするカチオン重合系の材料も盛んに研究が進められている。   Further, surface coating materials using photocuring of monomers and prepolymers by irradiation with active energy rays are known. In developing such surface coating materials, various attempts have been made to improve the photocuring rate of monomers, oligomers, and polymers. The most widely developed object is a radical polymerization material that polymerizes a large number of vinyl monomers using radical species generated by the action of light as initiators. In addition, active research has been conducted on cationic polymerization materials that generate an acid by the action of light and use this acid as a catalyst.

しかしながら、ラジカル重合系の場合には、空気中の酸素により重合反応が限害される。このため、酸素を遮断するための特別な工夫が必要とされる。カチオン重合系の場合には、このような酸素による阻害が無い点で有利であるものの、光酸発生剤から発生した強酸が硬化後も残存するため、その腐食性や樹脂の変性のおそれが指摘されている。このため、強酸のような腐食性物質を含まず、空気中の酸素による阻害を受けることなく、高効率で迅速に反応が進行する感光性樹脂組成物の開発が強く望まれていた。   However, in the case of a radical polymerization system, the polymerization reaction is limited by oxygen in the air. For this reason, a special device for blocking oxygen is required. In the case of a cationic polymerization system, although it is advantageous in that there is no such inhibition by oxygen, the strong acid generated from the photoacid generator remains after curing, indicating that it may corrode or modify the resin. Has been. For this reason, development of the photosensitive resin composition which does not contain corrosive substances, such as a strong acid, and does not receive the inhibition by the oxygen in the air but progresses rapidly with high efficiency has been strongly desired.

そこで、光の作用により発生した塩基を、重合反応や化学反応に利用した感光性樹脂組成物が提案されている。例えば特許文献1では、光の作用により塩基を発生する光塩基発生剤と、ポリイミド前駆体と、溶媒とを含有する感光性樹脂組成物が開示されている。この感光性樹脂組成物によれば、先ず、光を照射することにより塩基のアミン化合物が発生し、次いで加熱処理を施すことにより、発生したアミン化合物とポリイミド前駆体とが反応して硬化膜が得られる。
特開2006−189591号公報
Therefore, a photosensitive resin composition has been proposed in which a base generated by the action of light is used for a polymerization reaction or a chemical reaction. For example, Patent Document 1 discloses a photosensitive resin composition containing a photobase generator that generates a base by the action of light, a polyimide precursor, and a solvent. According to this photosensitive resin composition, first, a basic amine compound is generated by irradiating light, and then by heat treatment, the generated amine compound and the polyimide precursor react to form a cured film. can get.
JP 2006-189591 A

しかしながら、特許文献1で用いられているような従来の光塩基発生剤では、光の照射により塩基を発生する際に、脱炭酸反応を伴うため炭酸ガスも同時に発生する。発生した炭酸ガスが気泡として硬化膜中に残存した場合には、硬化膜強度の低下を招く。特に、硬化膜の膜厚が厚い場合には、炭酸ガスが硬化膜中に残存する可能性が高い。   However, in the conventional photobase generator as used in Patent Document 1, when a base is generated by light irradiation, a carbon dioxide gas is generated at the same time because it involves a decarboxylation reaction. When the generated carbon dioxide gas remains in the cured film as bubbles, the strength of the cured film is reduced. In particular, when the thickness of the cured film is thick, there is a high possibility that carbon dioxide gas remains in the cured film.

さらには、特許文献1で用いられているような従来の光塩基発生剤は、エステル結合を有するため高温耐性に難があり、高温条件下では光を照射しなくても塩基が発生してしまう。このため、特に、高温での反応を必要とするポリイミド前駆体等を配合した感光性樹脂組成物をレジスト材料として用いた場合には、未露光部分においても加熱により塩基が発生してしまい、パターン形成が困難である。   Furthermore, the conventional photobase generator as used in Patent Document 1 has an ester bond, and thus has a high resistance to high temperatures, and a base is generated even when no light is irradiated under high temperature conditions. . For this reason, in particular, when a photosensitive resin composition containing a polyimide precursor that requires a reaction at a high temperature is used as a resist material, a base is generated by heating even in an unexposed portion, It is difficult to form.

本発明は以上のような課題に鑑みてなされたものであり、その目的は、光の照射により塩基を発生させる際に脱炭酸反応を伴うことがなく、膜強度の高い硬化膜が得られるうえ、高温耐性に優れた感光性樹脂組成物を提供することにある。   The present invention has been made in view of the problems as described above, and the object thereof is to obtain a cured film having high film strength without accompanying a decarboxylation reaction when generating a base by irradiation with light. It is in providing the photosensitive resin composition excellent in high temperature tolerance.

本発明者は、上記課題を解決するために鋭意研究を重ねた。その結果、光の照射により、脱炭酸反応を伴うことなくアミン化合物を発生する光環化型の光塩基発生剤を用いることにより、膜強度の高い硬化膜が得られるとともに、高温耐性に優れた感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。   This inventor repeated earnest research in order to solve the said subject. As a result, a cured film with high film strength can be obtained by using a photocyclization type photobase generator that generates an amine compound by light irradiation without decarboxylation reaction. The present inventors have found that a functional resin composition can be obtained and have completed the present invention. More specifically, the present invention provides the following.

(1) 塩基反応性樹脂と、下記一般式(1)で表される光塩基発生剤と、を含むことを特徴とする感光性樹脂組成物。

Figure 2009080452
[一般式(1)中、Zはアミノ基を表す。] (1) A photosensitive resin composition comprising a base-reactive resin and a photobase generator represented by the following general formula (1).
Figure 2009080452
[In General Formula (1), Z represents an amino group. ]

(2) 前記一般式(1)において、Zが下記一般式(z1)で表される基であることを特徴とする(1)記載の感光性樹脂組成物。

Figure 2009080452
[一般式(z1)中、R及びRは、同一でも異なっていてもよく、水素、若しくは置換基を有していてもよい炭素数が1〜18の有機基を表すか、又はR 及びR が互いに連結して、構成原子数が3〜12の含窒素環を形成するものを表す。有機基は、アルキル基、シクロアルキル基、アリール基、及びアリールアルキル基よりなる群から選ばれる。] (2) In the said General formula (1), Z is group represented by the following general formula (z1), The photosensitive resin composition of (1) description characterized by the above-mentioned.
Figure 2009080452
[In General Formula (z1), R 1 and R 2 may be the same or different and each represents hydrogen or an organic group having 1 to 18 carbon atoms which may have a substituent , or R 1 and R 2 are connected to each other to form a nitrogen-containing ring having 3 to 12 constituent atoms. The organic group is selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and an arylalkyl group. ]

(3) 前記一般式(1)において、Zが下記一般式(z2)で表される基であることを特徴とする(1)記載の感光性樹脂組成物。

Figure 2009080452
[一般式(z2)中、n及びmはそれぞれ独立した1〜6の整数であり、Rは水素、炭化水素基、炭化水素オキシ基、又はアシル基を表す。] (3) In the said General formula (1), Z is group represented by the following general formula (z2), The photosensitive resin composition of (1) description characterized by the above-mentioned.
Figure 2009080452
[In General Formula (z2), n and m are each independently an integer of 1 to 6, and R 3 represents hydrogen, a hydrocarbon group, a hydrocarbon oxy group, or an acyl group. ]

(4) 前記一般式(1)で表される光塩基発生剤が、下記化学式(II)、下記化学式(III)、又は下記化学式(IV)で表されるものであることを特徴とする(1)記載の感光性樹脂組成物。(4) The photobase generator represented by the general formula (1) is represented by the following chemical formula (II), the following chemical formula (III), or the following chemical formula (IV) ( 1) The photosensitive resin composition of description.

Figure 2009080452
Figure 2009080452
Figure 2009080452
Figure 2009080452
Figure 2009080452
Figure 2009080452

) 前記塩基反応性樹脂が、エポキシ樹脂、含ケイ素樹脂、及びポリアミド酸樹脂よりなる群から選ばれる少なくとも一種であることを特徴とする(1)から()いずれか記載の感光性樹脂組成物。 ( 5 ) The photosensitive resin according to any one of (1) to ( 4 ), wherein the base-reactive resin is at least one selected from the group consisting of an epoxy resin, a silicon-containing resin, and a polyamic acid resin. Composition.

) (1)から()いずれか記載の感光性樹脂組成物を支持体上に塗布し、乾燥させてから所定のパターン露光をした後、加熱処理して現像することにより、所定形状の硬化樹脂パターンを得ることを特徴とするパターン形成方法。 ( 6 ) The photosensitive resin composition according to any one of (1) to ( 5 ) is coated on a support, dried, and exposed to a predetermined pattern, followed by heat treatment and development to obtain a predetermined shape. A pattern forming method comprising obtaining a cured resin pattern.

本発明によれば、光の照射により塩基を発生させる際に脱炭酸反応を伴うことがなく、膜強度の高い硬化膜が得られるうえ、高温耐性に優れた感光性樹脂組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, when generating a base by irradiation of light, a decarboxylation reaction is not accompanied, a cured film with high film | membrane intensity | strength is obtained, and the photosensitive resin composition excellent in high temperature tolerance can be provided.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[光塩基発生剤]
本発明の感光性樹脂組成物で用いられる光塩基発生剤は、光の照射により、脱炭酸反応を伴うことなく塩基のアミン化合物を発生することを特徴とする。具体的には、本発明の感光性樹脂組成物で用いられる光塩基発生剤は、下記一般式(1)で表される。

Figure 2009080452
[Photobase generator]
The photobase generator used in the photosensitive resin composition of the present invention is characterized in that it generates a basic amine compound by light irradiation without decarboxylation. Specifically, the photobase generator used in the photosensitive resin composition of the present invention is represented by the following general formula (1).
Figure 2009080452

上記一般式(1)中、Zはアミノ基を表す。アミノ基には、未置換アミノ基及び置換アミノ基が含まれる。置換アミノ基には、モノ置換アミノ基及びジ置換アミノ基が含まれる。   In the general formula (1), Z represents an amino group. The amino group includes an unsubstituted amino group and a substituted amino group. The substituted amino group includes a mono-substituted amino group and a di-substituted amino group.

上記一般式(1)において、Zが下記一般式(z1)で表される基である光塩基発生剤が好ましく用いられる。

Figure 2009080452
In the general formula (1), a photobase generator in which Z is a group represented by the following general formula (z1) is preferably used.
Figure 2009080452

上記一般式(z1)中、R及びRは、同一でも異なっていてもよく、水素、又は置換基を有していてもよい炭素数が1〜18の有機基を表す。有機基の炭素数は、好ましくは6〜12である。有機基は、アルキル基、シクロアルキル基、アリール基、及びアリールアルキル基よりなる群から選ばれる。 In the general formula (z1), R 1 and R 2 may be the same or different, and represent hydrogen or an organic group having 1 to 18 carbon atoms that may have a substituent. Preferably carbon number of an organic group is 6-12. The organic group is selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and an arylalkyl group.

アルキル基としては、炭素数1〜12、特に2〜6のものが好ましく用いられ、例えば、エチル、プロピル、ブチル、ヘキシル等が挙げられる。シクロアルキル基としては、炭素数5〜10、特に6〜8のものが好ましく用いられ、例えば、シクロヘキシル、シクロオクチル等が挙げられる。アリール基としては、炭素数6〜14、特に6〜10のものが好ましく用いられ、例えば、フェニル、トリル、ナフチル等が挙げられる。アリールアルキル基としては、炭素数が7〜15、特に7〜11のものが好ましく用いられ、例えば、ベンジル、フェネチル、ナフチルメチル等が挙げられる。これら有機基は、アミノ基、アルコキシ基、アルコキシカルボニル基、アシル基、アシルオキシ基、ヒドロキシ基等の置換基を有していてもよい。   As the alkyl group, those having 1 to 12, particularly 2 to 6 carbon atoms are preferably used, and examples thereof include ethyl, propyl, butyl, hexyl and the like. As the cycloalkyl group, those having 5 to 10 carbon atoms, particularly 6 to 8 carbon atoms are preferably used, and examples thereof include cyclohexyl, cyclooctyl and the like. As the aryl group, those having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms are preferably used, and examples thereof include phenyl, tolyl, naphthyl and the like. As the arylalkyl group, those having 7 to 15 carbon atoms, particularly 7 to 11 carbon atoms are preferably used, and examples thereof include benzyl, phenethyl, naphthylmethyl and the like. These organic groups may have a substituent such as an amino group, an alkoxy group, an alkoxycarbonyl group, an acyl group, an acyloxy group, or a hydroxy group.

上記一般式(z1)中、R及びRは、互いに連結して含窒素環を形成するものであってもよい。この場合の含窒素環を構成する原子の数は3〜12、好ましくは5〜8である。また、この含窒素環を構成する原子に、複数のヘテロ原子(N、O、S等)が含まれていてもよい。 In the general formula (z1), R 1 and R 2 may be linked to each other to form a nitrogen-containing ring. In this case, the number of atoms constituting the nitrogen-containing ring is 3 to 12, preferably 5 to 8. In addition, a plurality of heteroatoms (N, O, S, etc.) may be contained in the atoms constituting this nitrogen-containing ring.

また、上記一般式(1)において、Zが下記一般式(z2)で表される基である光塩基発生剤が好ましく用いられる。

Figure 2009080452
In the general formula (1), a photobase generator in which Z is a group represented by the following general formula (z2) is preferably used.
Figure 2009080452

上記一般式(z2)中、n及びmはそれぞれ独立した1〜6の整数であり、好ましくは2〜4の整数である。n+mは4〜12であることが好ましく、より好ましくは4〜8である。Rは水素、炭化水素基、炭化水素オキシ基、又はアシル基を表し、上記一般式(1)で表される光塩基発生剤からアミノ基が脱離した残基であってもよい。炭化水素基、炭化水素オキシ基における炭化水素基、及びアシル基における炭化水素基の炭素数は1〜12であることが好ましく、より好ましくは1〜8である。この炭化水素基には、アルキル、シクロアルキル、アリール、アリールアルキルが含まれる。 In the general formula (z2), n and m are each independently an integer of 1 to 6, preferably an integer of 2 to 4. n + m is preferably 4 to 12, and more preferably 4 to 8. R 3 represents hydrogen, a hydrocarbon group, a hydrocarbon oxy group, or an acyl group, and may be a residue in which an amino group is eliminated from the photobase generator represented by the general formula (1). The hydrocarbon group, the hydrocarbon group in the hydrocarbon oxy group, and the hydrocarbon group in the acyl group preferably have 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms. This hydrocarbon group includes alkyl, cycloalkyl, aryl, arylalkyl.

本発明で用いられる光塩基発生剤においては、光の照射により、下記化学反応式(1)で示されるような光環化反応が進行する。この光環化反応では、脱炭酸反応を伴うことがなく、1級又は2級のアミン化合物が発生する。このため、下記化学反応式(2)で示されるような脱炭酸反応を伴う従来の光塩基発生剤と異なり、炭酸ガスの発生による硬化膜の強度低下を抑制できる。

Figure 2009080452
In the photobase generator used in the present invention, a photocyclization reaction proceeds as shown by the following chemical reaction formula (1) by light irradiation. In this photocyclization reaction, a primary or secondary amine compound is generated without decarboxylation. For this reason, unlike the conventional photobase generator with a decarboxylation reaction as shown by the following chemical reaction formula (2), it is possible to suppress a decrease in strength of the cured film due to the generation of carbon dioxide gas.
Figure 2009080452

また、本発明で用いられる光塩基発生剤は、その骨格中にエステル結合を有さないため、従来の光塩基発生剤に比して優れた高温耐性を有する。従って、この光塩基発生剤と、高温で反応が進行するポリイミド前駆体(ポリアミド酸)等と、を含む感光性樹脂組成物をレジスト材料として用いた場合であっても、加熱により未露光部分において塩基が発生してしまうことがなく、良好なパターン形成が可能である。   Moreover, since the photobase generator used in the present invention does not have an ester bond in its skeleton, it has excellent high temperature resistance as compared with conventional photobase generators. Therefore, even when a photosensitive resin composition containing this photobase generator and a polyimide precursor (polyamic acid) that reacts at a high temperature is used as a resist material, in the unexposed portion by heating. A good pattern can be formed without generating a base.

具体的には、本発明で用いられる光塩基発生剤としては、以下のものが好ましく例示される。

Figure 2009080452
Specifically, the following are preferably exemplified as the photobase generator used in the present invention.
Figure 2009080452

[塩基反応性樹脂]
本発明で用いられる塩基反応性樹脂としては、上記光塩基発生剤から生ずるアミン化合物と反応するものであればよく、特に限定されない。従来公知のレジスト組成物や光硬化樹脂に利用されている塩基反応性樹脂が用いられる。以下、本発明の感光性樹脂組成物に用いられる塩基反応性樹脂の例を、化学式(a1)〜(a10)に示す。

Figure 2009080452
[Base-reactive resin]
The base-reactive resin used in the present invention is not particularly limited as long as it reacts with the amine compound generated from the photobase generator. A base-reactive resin used for a conventionally known resist composition or photo-curing resin is used. Hereinafter, examples of the base-reactive resin used in the photosensitive resin composition of the present invention are shown in chemical formulas (a1) to (a10).
Figure 2009080452

化学式(a1)〜(a6)で表される塩基反応性樹脂のうち、化学式(a1)〜(a4)で表される塩基反応性樹脂は、塩基の作用により、脱離及び脱炭酸反応を生じる。また、化学式(a5)〜(a6)で表される塩基反応性樹脂は、塩基の作用により脱離反応を生じる。   Of the base-reactive resins represented by the chemical formulas (a1) to (a6), the base-reactive resins represented by the chemical formulas (a1) to (a4) cause elimination and decarboxylation by the action of the base. . In addition, the base-reactive resins represented by the chemical formulas (a5) to (a6) cause elimination reaction by the action of the base.

化学式(a7)〜(a10)で表される塩基反応性樹脂のうち、化学式(a7)、(a8)で表される塩基反応性樹脂(混合物)は、塩基の作用により、脱水縮合及び架橋反応を生じる。化学式(a9)で表される塩基反応性樹脂(ポリマー)は、塩基の作用により、脱炭酸反応を生じる。化学式(a10)で表される塩基反応性樹脂は、塩基の作用により、ポリイミド形成反応を生じる。   Among the basic reactive resins represented by the chemical formulas (a7) to (a10), the basic reactive resins (mixtures) represented by the chemical formulas (a7) and (a8) are subjected to dehydration condensation and crosslinking reaction by the action of the base. Produce. The base-reactive resin (polymer) represented by the chemical formula (a9) generates a decarboxylation reaction by the action of a base. The base-reactive resin represented by the chemical formula (a10) causes a polyimide forming reaction by the action of a base.

また、本発明の感光性樹脂組成物では、塩基反応性樹脂として、エポキシ樹脂、含ケイ素樹脂、及びポリアミド酸樹脂よりなる群から選ばれる少なくとも一種であることが好ましい。ポリアミド酸樹脂については上述した通りである。例えば、少なくとも2つのエポキシ基を有する樹脂に、光の照射により生じた塩基(アミン)を作用させることにより、エポキシ基の開環重合を起こすことができる。また、光の照射により生じたアミンをエポキシ樹脂に付加させることにより、エポキシ樹脂を化学変性させることができる。エポキシ基を有する塩基反応性樹脂の具体例を、化学式(a11)〜(a22)に示す。

Figure 2009080452
In the photosensitive resin composition of the present invention, the base reactive resin is preferably at least one selected from the group consisting of epoxy resins, silicon-containing resins, and polyamic acid resins. The polyamic acid resin is as described above. For example, ring opening polymerization of an epoxy group can be caused by allowing a base (amine) generated by light irradiation to act on a resin having at least two epoxy groups. Moreover, the epoxy resin can be chemically modified by adding an amine generated by light irradiation to the epoxy resin. Specific examples of the base-reactive resin having an epoxy group are shown in chemical formulas (a11) to (a22).
Figure 2009080452

また、含ケイ素樹脂として、例えば、シラノール基又はアルコキシシリル基を有する樹脂が用いられる。少なくとも2つのシラノール基又はアルコキシシリル基を有する樹脂に、光の照射により生じた塩基(アミン)を作用させることにより、シラノール基又はアルコキシシリル基の縮重合を起こすことができる。シラノール基又はアルコキシシリル基を有する塩基反応性樹脂の具体例を、化学式(a23)〜(a26)に示す。

Figure 2009080452
Further, as the silicon-containing resin, for example, a resin having a silanol group or an alkoxysilyl group is used. By causing a base (amine) generated by light irradiation to act on a resin having at least two silanol groups or alkoxysilyl groups, polycondensation of the silanol groups or alkoxysilyl groups can be caused. Specific examples of the base reactive resin having a silanol group or an alkoxysilyl group are shown in chemical formulas (a23) to (a26).
Figure 2009080452

本発明の感光性樹脂組成物では、上記光塩基発生剤の含有量は、上記塩基反応性樹脂に対して、1質量%〜60質量%であることが好ましく、より好ましくは2質量%〜30質量%である。光塩基発生剤の含有量が1質量%未満であると、反応が不十分となり、60質量%を超えると、光塩基発生剤自体が塩基反応性樹脂の溶解性に大きな影響を与えるうえ、価格的に不利である。   In the photosensitive resin composition of this invention, it is preferable that content of the said photobase generator is 1 mass%-60 mass% with respect to the said base reactive resin, More preferably, it is 2 mass%-30%. % By mass. When the content of the photobase generator is less than 1% by mass, the reaction becomes insufficient. When the content exceeds 60% by mass, the photobase generator itself has a great influence on the solubility of the base-reactive resin, and the price. Disadvantageous.

なお、本発明で用いられる塩基反応性樹脂は、光により重合反応を開始する樹脂であることが好ましい。従って、本発明の感光性樹脂組成物は、重合性エポキシ樹脂、重合性含ケイ素化合物(樹脂)、又はポリアミド酸樹脂と、上記光塩基発生剤と、を含む組成物であることが好ましい。また、必要に応じて、溶媒や硬化促進剤、その他の充填剤等の補助成分を配合することができる。上記光塩基発生剤の感光波長領域を拡大するために、適宜、光増感剤を共存させることもできる。   The base reactive resin used in the present invention is preferably a resin that initiates a polymerization reaction by light. Therefore, the photosensitive resin composition of the present invention is preferably a composition comprising a polymerizable epoxy resin, a polymerizable silicon-containing compound (resin), or a polyamic acid resin, and the photobase generator. Moreover, auxiliary components, such as a solvent, a hardening accelerator, and another filler, can be mix | blended as needed. In order to expand the photosensitive wavelength region of the photobase generator, a photosensitizer can be appropriately present together.

[パターン形成方法]
本発明のパターン形成方法は、上述した光塩基発生剤と、塩基反応性樹脂と、を含む感光性樹脂組成物を用いることを特徴とする。例えば、この感光性樹脂組成物を有機溶媒に溶解して塗布液を作製し、この塗布液を基板等の支持体上に塗布し、乾燥して塗膜を形成する。次いで、この塗膜に対してパターン露光を行い、塩基を発生させる。続いて、加熱処理を行い、塩基反応性樹脂の反応を進行させる。反応終了後、露光部と未露光部とで溶解度に差が生じる溶媒(現像液)中に浸漬して現像を行うことにより、所定形状の硬化樹脂パターンが得られる。
[Pattern formation method]
The pattern forming method of the present invention is characterized by using a photosensitive resin composition containing the above-described photobase generator and a base-reactive resin. For example, the photosensitive resin composition is dissolved in an organic solvent to prepare a coating solution, and the coating solution is applied onto a support such as a substrate and dried to form a coating film. Subsequently, pattern exposure is performed with respect to this coating film, and a base is generated. Subsequently, heat treatment is performed to advance the reaction of the base-reactive resin. After completion of the reaction, a cured resin pattern having a predetermined shape is obtained by performing development by immersing in a solvent (developer) in which a difference in solubility occurs between the exposed portion and the unexposed portion.

なお、加熱処理の条件は、露光エネルギー、用いた光塩基発生剤の種類、塩基反応性樹脂の種類に応じて適宜設定される。加熱温度は50℃〜250℃が好ましく、より好ましくは60℃〜130℃である。加熱時間は10秒〜60分が好ましく、より好ましくは60秒〜30分である。   In addition, the conditions of heat processing are suitably set according to the exposure energy, the kind of used photobase generator, and the kind of base reactive resin. The heating temperature is preferably 50 ° C to 250 ° C, more preferably 60 ° C to 130 ° C. The heating time is preferably 10 seconds to 60 minutes, more preferably 60 seconds to 30 minutes.

以下、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

<合成例1>
o−ヒドロキシ−trans−桂皮酸1.8g、シクロヘキシルアミン0.99g、縮合剤の1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(以下、EDC)2.1gを、溶媒のTHF中に溶解させ、室温で15時間、反応させた。反応終了後、クロロホルムで希釈し、有機層を希塩酸、水、飽和炭酸水素ナトリウム水溶液の順で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒除去し、クロロホルムで再結晶することにより、白色結晶を得た。収率は46%であり、得られた白色結晶の融点(分解点)はDSC測定の結果、240〜241℃で非常に高温であったことから、高温耐性に優れたものであると考えられた。得られた白色結晶の同定は、H−NMR、IR、UV、元素分析により行った。
<Synthesis Example 1>
o-Hydroxy-trans-cinnamic acid 1.8 g, cyclohexylamine 0.99 g, condensing agent 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (hereinafter referred to as EDC) 2.1 g, THF solvent It was dissolved in and allowed to react at room temperature for 15 hours. After completion of the reaction, the reaction mixture was diluted with chloroform, and the organic layer was washed with diluted hydrochloric acid, water, and saturated aqueous sodium hydrogen carbonate solution in that order. After drying over anhydrous magnesium sulfate, the solvent was removed, and recrystallization with chloroform gave white crystals. It was. The yield was 46%, and the melting point (decomposition point) of the obtained white crystals was very high at 240 to 241 ° C. as a result of DSC measurement. It was. The obtained white crystals were identified by 1 H-NMR, IR, UV, and elemental analysis.

H−NMR(300MHz,acetone−d)δ(ppm)=8.96(s,1H,OH)、7.85(d,1H,J=16Hz,C=CHCO)、7.46(dd,1H,J=7.7Hz,1.5Hz,−NH−)、7.20〜6.82(m,4H,Ar−H)、6.71(d,1H,J=16Hz,CH=CCO)、3.80(m,1H,−N−CH−)、2.09〜1.71(m,10H,Ar−H)。
IR(KBr,cm−1):3300(νO−H)、3100,2900,2850(νC−H)、1650(νCO−NH)、1550(νC−H)。
λmax(nm):270(methanol)。
1519NOとしての計算値=C:73.4%,H:7.81%,N:5.71%、分析値=C:73.5%,H:8.00%,N:5.70%。
1 H-NMR (300 MHz, acetone-d 6 ) δ (ppm) = 8.96 (s, 1H, OH), 7.85 (d, 1H, J = 16 Hz, C H = CHCO), 7.46 ( dd, 1H, J = 7.7 Hz, 1.5 Hz, -NH-), 7.20 to 6.82 (m, 4H, Ar-H), 6.71 (d, 1H, J = 16 Hz, CH = C H CO), 3.80 (m , 1H, -N-CH -), 2.09~1.71 (m, 10H, Ar-H).
IR (KBr, cm −1 ): 3300 (ν O—H ), 3100, 2900, 2850 (ν C—H ), 1650 (ν CO—NH ), 1550 (ν C—H ).
λ max (nm): 270 (methanol).
Calculated value for C 15 H 19 NO 2 = C: 73.4%, H: 7.81%, N: 5.71%, Analytical value = C: 73.5%, H: 8.00%, N : 5.70%.

上記分析結果から、合成例1で得られた白色結晶は、下記化学式(I)で表される光塩基発生剤Iであることが確認された。

Figure 2009080452
From the above analysis results, it was confirmed that the white crystal obtained in Synthesis Example 1 was a photobase generator I represented by the following chemical formula (I).
Figure 2009080452

<合成例2>
o−ヒドロキシ−trans−桂皮酸3.6g、1,3−ジ−4−ピペリジルプロパン2.0g、縮合剤のEDC2.1gを、THF/ジクロロメタン混合溶媒中に溶解させ、室温で15時間、反応させた。反応終了後、クロロホルムで希釈し、有機層を希塩酸、水、飽和炭酸水素ナトリウム水溶液の順で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒除去し、クロロホルムで再結晶することにより、白色結晶を得た。収率は11%であった。得られた白色結晶の融点(分解点)はDSC測定の結果、241℃で非常に高温であったことから、高温耐性に優れたものであると考えられた。得られた白色結晶の同定は、H−NMR、IRにより行った。
<Synthesis Example 2>
3.6 g of o-hydroxy-trans-cinnamic acid, 2.0 g of 1,3-di-4-piperidylpropane, and 2.1 g of EDC as a condensing agent were dissolved in a THF / dichloromethane mixed solvent and reacted at room temperature for 15 hours. I let you. After completion of the reaction, the reaction mixture was diluted with chloroform, and the organic layer was washed with diluted hydrochloric acid, water, and saturated aqueous sodium hydrogen carbonate solution in that order. After drying over anhydrous magnesium sulfate, the solvent was removed, and recrystallization with chloroform gave white crystals. It was. The yield was 11%. The melting point (decomposition point) of the obtained white crystals was very high at 241 ° C. as a result of DSC measurement, and thus was considered to have excellent high temperature resistance. The white crystals obtained were identified by 1 H-NMR and IR.

H−NMR(300MHz,DMSO−d)δ(ppm)=10.0(s,2H,OH)、7.4(d,2H,J=15Hz,C=CHCO)、7.2(d,2H,J=15Hz,CH=CCO)、7.7〜6.8(m,8H,Ar−H)、4.5(d,2H,Ar−H)、4.2(d,2H,Ar−H)、3.0(m,2H)、1.7〜1.0(m,18H,Ar−H)。
13C−NMR(75MHz,DMSO−d)δ(ppm)=27.86,30.40,39.34,40.40(CH)、116.97(CH)、120.69,121.76,123.16,129.73,131.79,137.44(ArH)、157.84(CH)、169.25(C=O)。
IR(KBr,cm−1):3400(νO−H)、2900,2850(νC−H)、1630(νCO−NH)、1560(νC−H)。
3138としての計算値=C:74.07%,H:7.62%,N:5.57%、分析値=C:74.13%,H:7.58%,N:5.30%。
1 H-NMR (300 MHz, DMSO-d 6 ) δ (ppm) = 10.0 (s, 2H, OH), 7.4 (d, 2H, J = 15 Hz, C H = CHCO), 7.2 ( d, 2H, J = 15 Hz, CH = C H CO), 7.7 to 6.8 (m, 8H, Ar—H), 4.5 (d, 2H, Ar—H), 4.2 (d , 2H, Ar-H), 3.0 (m, 2H), 1.7 to 1.0 (m, 18H, Ar-H).
13 C-NMR (75 MHz, DMSO-d 6 ) δ (ppm) = 27.86, 30.40, 39.34, 40.40 (CH 2 ), 116.97 (CH), 120.69, 121. 76, 123.16, 129.73, 131.79, 137.44 (ArH), 157.84 (CH), 169.25 (C = O).
IR (KBr, cm < -1 >): 3400 ((nu) O-H ), 2900,2850 ((nu) C-H ), 1630 ((nu) CO-NH ), 1560 ((nu) C-H ).
Calculated as C 31 H 38 N 2 O 4 = C: 74.07%, H: 7.62%, N: 5.57%, Analytical = C: 74.13%, H: 7.58% , N: 5.30%.

上記分析結果から、合成例2で得られた白色結晶は、下記化学式(II)で表される光塩基発生剤IIであることが確認された。

Figure 2009080452
From the above analysis results, it was confirmed that the white crystal obtained in Synthesis Example 2 was a photobase generator II represented by the following chemical formula (II).
Figure 2009080452

<合成例3>
o−ヒドロキシ−trans−桂皮酸2.1g、ヘキサメチレンジアミン1.2g、縮合剤のEDC4.3gを、溶媒のDMF中に溶解させ、室温で24時間、反応させた。反応終了後、クロロホルムで希釈し、有機層を希塩酸、水、飽和炭酸水素ナトリウム水溶液の順で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒除去し、クロロホルムで再結晶することにより、白色結晶を得た。収率は16%であり、得られた白色結晶の融点(分解点)はDSC測定の結果、220℃で非常に高温であったことから、高温耐性に優れたものであると考えられた。得られた白色結晶の同定は、H−NMR、13C−NMR、IR、元素分析により行った。
<Synthesis Example 3>
2.1 g of o-hydroxy-trans-cinnamic acid, 1.2 g of hexamethylenediamine and 4.3 g of condensing agent EDC were dissolved in DMF as a solvent and reacted at room temperature for 24 hours. After completion of the reaction, the reaction mixture was diluted with chloroform, and the organic layer was washed with diluted hydrochloric acid, water, and saturated aqueous sodium hydrogen carbonate solution in that order. After drying over anhydrous magnesium sulfate, the solvent was removed, and recrystallization with chloroform gave white crystals. It was. The yield was 16%, and the melting point (decomposition point) of the obtained white crystal was very high at 220 ° C. as a result of DSC measurement. Therefore, it was considered that the white crystal was excellent in high temperature resistance. The obtained white crystals were identified by 1 H-NMR, 13 C-NMR, IR, and elemental analysis.

H−NMR(300MHz,DMSO−d)δ(ppm)=1.18〜1.45(m,8H,C )、3.16(d,4H,J=5.8Hz,NH−C )、6.68(d,1H,J=16Hz,C=CHCO)、6.78〜7.59(m,10H,ArH)、7.87(d,1H,J=16Hz,CH=CCO)、8.12(t,2H,J=5.8Hz,N)、10.12(s,2H,OH)。
13C−NMR(75MHz,DMSO−d)δ(ppm)=27.86,30.40,39.34,40.40(CH)、116.97(CH)、120.69,121.76,123.16,129.73,131.79,137.44(ArH)、157.84(CH)、169.25(C=O)。
IR(KBr,cm−1):3330(νN−H)、3080(νO−H)、2940(νC−H)、2880(νC−H)、1650(νC=O)、860(νC−N)。
2428としての計算値=C:70.58%,H:6.91%,N:6.86%、分析値=C:69.87%,H:6.75%,N:7.04%。
1 H-NMR (300 MHz, DMSO-d 6 ) δ (ppm) = 1.18 to 1.45 (m, 8H, C H 2 ), 3.16 (d, 4H, J = 5.8 Hz, NH— C H 2 ), 6.68 (d, 1 H, J = 16 Hz, C H = CHCO), 6.78-7.59 (m, 10 H , ArH), 7.87 (d, 1 H, J = 16 Hz, CH = C H CO), 8.12 (t, 2H, J = 5.8Hz, N H), 10.12 (s, 2H, OH).
13 C-NMR (75 MHz, DMSO-d 6 ) δ (ppm) = 27.86, 30.40, 39.34, 40.40 (CH 2 ), 116.97 (CH), 120.69, 121. 76, 123.16, 129.73, 131.79, 137.44 (ArH), 157.84 (CH), 169.25 (C = O).
IR (KBr, cm −1 ): 3330 (ν N—H ), 3080 (ν O—H ), 2940 (ν C—H ), 2880 (ν C—H ), 1650 (ν C═O ), 860 (Ν C-N ).
Calculated for C 24 H 28 N 2 O 4 = C: 70.58%, H: 6.91%, N: 6.86%, analysis = C: 69.87%, H: 6.75% , N: 7.04%.

上記分析結果から、合成例3で得られた白色結晶は、下記化学式(III)で表される光塩基発生剤IIIであることが確認された。

Figure 2009080452
From the above analysis results, it was confirmed that the white crystal obtained in Synthesis Example 3 was a photobase generator III represented by the following chemical formula (III).
Figure 2009080452

<合成例4>
o−ヒドロキシ−trans−桂皮酸2.1g、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン1.7mL、縮合剤のEDC4.3gを、溶媒のDMF中に溶解させ、室温で24時間、反応させた。反応終了後、クロロホルムで希釈し、有機層を希塩酸、水、飽和炭酸水素ナトリウム水溶液の順で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒除去し、クロロホルムで再結晶することにより、白色結晶を得た。収率は31%であり、得られた白色結晶の融点(分解点)はDSC測定の結果、226℃で非常に高温であったことから、高温耐性に優れたものであると考えられた。得られた白色結晶の同定は、H−NMR、29Si−NMR、IR、元素分析により行った。
<Synthesis Example 4>
o-Hydroxy-trans-cinnamic acid 2.1 g, 1,3-bis (3-aminopropyl) tetramethyldisiloxane 1.7 mL, condensing agent EDC 4.3 g were dissolved in solvent DMF and dissolved at room temperature. Reacted for hours. After completion of the reaction, the reaction mixture was diluted with chloroform, and the organic layer was washed with diluted hydrochloric acid, water, and saturated aqueous sodium hydrogen carbonate solution in that order. After drying over anhydrous magnesium sulfate, the solvent was removed, and recrystallization with chloroform gave white crystals. It was. The yield was 31%, and the melting point (decomposition point) of the obtained white crystals was a very high temperature of 226 ° C. as a result of DSC measurement, which was considered to be excellent in high temperature resistance. The obtained white crystals were identified by 1 H-NMR, 29 Si-NMR, IR, and elemental analysis.

H−NMR(300MHz,DMSO−d)δ(ppm)=0.0(s,12H,−C )、0.44〜0.47(t,4H,J=6.6Hz,Si−C −)、1.37〜1.44(dt,4H,J=6.6Hz,J=8.2Hz,CH−C −CH)、3.07〜3.32(q,1H,J=16Hz,CH=CCO)、8.04(t,2H,J=5.8Hz,−N−)、9.94(s,2H,O)。
29Si−NMR(99MHz,DMSO−d)δ(ppm)=−8.44。
IR(KBr,cm−1):3330(νN−H)、3080(νO−H)、2950(νC−H)、2870(νC−H)、1650(νC=O)、1400(νSi−CH3)、1100(νSi−O−Si)、880(νC−N)。
2428としての計算値=C:61.89%,H:7.64%,N:5.25%、分析値=C:62.19%,H:7.46%,N:5.18%。
1 H-NMR (300 MHz, DMSO-d 6 ) δ (ppm) = 0.0 (s, 12 H , —C H 3 ), 0.44 to 0.47 (t, 4 H, J = 6.6 Hz, Si -C H 2 -), 1.37~1.44 ( dt, 4H, J = 6.6Hz, J = 8.2Hz, CH 2 -C H 2 -CH 2), 3.07~3.32 ( q, 1H, J = 16 Hz, CH = C H CO), 8.04 (t, 2H, J = 5.8 Hz, -N H- ), 9.94 (s, 2H, O H ).
29 Si-NMR (99 MHz, DMSO-d 6 ) δ (ppm) = − 8.44.
IR (KBr, cm −1 ): 3330 (ν N—H ), 3080 (ν O—H ), 2950 (ν C—H ), 2870 (ν C—H ), 1650 (ν C═O ), 1400 (Ν Si—CH 3 ), 1100 (ν Si—O—Si ), 880 (ν C—N ).
C 24 H 28 N 2 Calculated as O 4 = C: 61.89%, H: 7.64%, N: 5.25%, analysis = C: 62.19%, H: 7.46% , N: 5.18%.

上記分析結果から、合成例4で得られた白色結晶は、下記化学式(IV)で表される光塩基発生剤IVであることが確認された。

Figure 2009080452
From the above analysis results, it was confirmed that the white crystal obtained in Synthesis Example 4 was a photobase generator IV represented by the following chemical formula (IV).
Figure 2009080452

<試験例1>
合成例1で得られた光塩基発生剤について、溶液中における光分解挙動に関する検討を行った。具体的には、先ず、合成例1で得られた光塩基発生剤を、濃度が3.7×10−5mol/lとなるようにメタノール中に溶解させた溶液を調製した。次いで、調製した溶液に対して、254nmの光を照射した後、溶液のUVスペクトル測定を実施した。光の照射量を段階的に変化させたときのUVスペクトルの変化を図1に示した。
<Test Example 1>
The photobase generator obtained in Synthesis Example 1 was examined for photodegradation behavior in solution. Specifically, first, a solution was prepared by dissolving the photobase generator obtained in Synthesis Example 1 in methanol so as to have a concentration of 3.7 × 10 −5 mol / l. Next, the prepared solution was irradiated with light of 254 nm, and then the UV spectrum of the solution was measured. FIG. 1 shows the change in the UV spectrum when the amount of light irradiation is changed stepwise.

図1に示されるように、光の照射量が増大するにつれて、270nm付近の吸収と320nm付近の吸収が減少している一方で、210nm付近の吸収が増加していることが分かった。270nm付近の吸収と320nm付近の吸収は、いずれも合成例1で得られた光塩基発生剤由来の吸収であり、210nm付近の吸収は、光塩基発生剤の光環化反応により生じたクマリン由来の吸収である。このことから、光の照射により、合成例1で得られた光塩基発生剤の光環化反応が起こり、シクロヘキシルアミンが発生していることが確認された。   As shown in FIG. 1, it was found that the absorption near 270 nm and the absorption near 320 nm decreased while the absorption near 210 nm increased as the light irradiation amount increased. The absorption near 270 nm and the absorption near 320 nm are both derived from the photobase generator obtained in Synthesis Example 1, and the absorption near 210 nm is derived from the coumarin derived from the photocyclization reaction of the photobase generator. Absorption. From this, it was confirmed that by photoirradiation, the photocyclization reaction of the photobase generator obtained in Synthesis Example 1 occurred to generate cyclohexylamine.

<試験例2>
合成例1で得られた光塩基発生剤について、固体中における光分解挙動に関する検討を行った。具体的には、ポリグリシジルメタクリレート(PGMA)に対して、合成例1で得られた光塩基発生剤を20質量%含むTHF溶液を調製し、Siウエハ上にキャストした。これを、100℃のホットプレートで1分、プリベークすることにより、厚さ0.8μmの膜を得た。得られた膜に対して、254nmの光を照射した後、膜のUVスペクトル測定を実施した。光の照射量を段階的に変化させたときのUVスペクトルの変化を図2に示した。
<Test Example 2>
The photobase generator obtained in Synthesis Example 1 was examined for photodegradation behavior in solids. Specifically, a THF solution containing 20% by mass of the photobase generator obtained in Synthesis Example 1 with respect to polyglycidyl methacrylate (PGMA) was prepared and cast on a Si wafer. This was prebaked for 1 minute on a hot plate at 100 ° C. to obtain a film having a thickness of 0.8 μm. The obtained film was irradiated with light of 254 nm, and then the UV spectrum of the film was measured. FIG. 2 shows the change of the UV spectrum when the light irradiation amount is changed stepwise.

図2に示される通り、合成例1で得られた光塩基発生剤の固体中における光分解挙動は、溶液中における光分解挙動とほぼ同様の結果であった。この結果から、合成例1で得られた光塩基発生剤は、エポキシ樹脂等の塩基反応性樹脂を含む感光性樹脂組成物中において、光塩基発生剤として有効に機能することが確認された。   As shown in FIG. 2, the photodecomposition behavior of the photobase generator obtained in Synthesis Example 1 in the solid was almost the same as the photodecomposition behavior in the solution. From this result, it was confirmed that the photobase generator obtained in Synthesis Example 1 effectively functions as a photobase generator in a photosensitive resin composition containing a base-reactive resin such as an epoxy resin.

<試験例3>
合成例1、3、及び4で得られた各光塩基発生剤について、各種溶剤に対する溶解性を調べた。具体的には、光塩基発生剤0.01gに対して、1ml未満の溶剤で容易に溶解できるものを++、1〜5mlの溶剤で溶解できるものを+、5〜10mlの溶剤にわずかに溶解するものを−、10mlを超える溶剤量でも溶解できないものを−−として評価した。その結果を表1に示す。表1に示されるように、合成例1、3、及び4で得られた各光塩基発生剤のうち、合成例4で得られた光塩基発生剤IVが特に溶解性に優れており、様々なアプリケーションへの応用が可能であることが分かった。
<Test Example 3>
Each photobase generator obtained in Synthesis Examples 1, 3, and 4 was examined for solubility in various solvents. Specifically, it can be easily dissolved in less than 1 ml of solvent with respect to 0.01 g of the photobase generator ++, slightly soluble in 1-5 ml of solvent, and slightly dissolved in 5-10 ml of solvent. The thing which cannot be melt | dissolved even if the amount of solvent exceeds 10 ml was evaluated as-. The results are shown in Table 1. As shown in Table 1, among the photobase generators obtained in Synthesis Examples 1, 3, and 4, the photobase generator IV obtained in Synthesis Example 4 is particularly excellent in solubility. It was found that it can be applied to various applications.

Figure 2009080452
Figure 2009080452

<実施例1>
PGMAに対して、合成例1で得られた光塩基発生剤を20質量%含むTHF溶液を調製し、Siウエハ上に3000rpmで30秒、スピンキャストした。これを、100℃のホットプレートで1分、プリベークすることにより、厚さ0.8μm〜1.0μmの未硬化膜を得た。得られた未硬化膜の一部にマスクを配置し、マスク上から254nmの光を60J/cm照射した。照射後、マスクを除去し、140℃で所定時間、加熱処理を行った。加熱時間は、2.5分、5分、7.5分の3水準とした。このときの露光部分のIRスペクトル(800〜1100cm−1)を図3に示した。また、900cm−1付近におけるエポキシ基由来のピーク面積比と加熱時間との関係を図4に示した。
<Example 1>
A THF solution containing 20% by mass of the photobase generator obtained in Synthesis Example 1 was prepared with respect to PGMA, and spin cast on a Si wafer at 3000 rpm for 30 seconds. This was prebaked for 1 minute on a 100 ° C. hot plate to obtain an uncured film having a thickness of 0.8 μm to 1.0 μm. A mask was placed on a part of the obtained uncured film, and light at 254 nm was irradiated from the top of the mask at 60 J / cm 2 . After the irradiation, the mask was removed and heat treatment was performed at 140 ° C. for a predetermined time. The heating time was set at three levels of 2.5 minutes, 5 minutes, and 7.5 minutes. The IR spectrum (800-1100 cm < -1 >) of the exposure part at this time was shown in FIG. Moreover, the relationship between the peak area ratio derived from an epoxy group in the vicinity of 900 cm −1 and the heating time is shown in FIG.

図3、4から明らかであるように、加熱処理により、露光部分のエポキシ基が減少していることが分かった。この結果から、合成例1で得られた光塩基発生剤は、エポキシ樹脂等の塩基反応性樹脂を含む感光性樹脂組成物中において、光塩基発生剤として有効に機能し、発生した塩基とエポキシ基との架橋反応が進行して、目的とする硬化膜が得られることが確認された。即ち、合成例1で得られた光塩基発生剤と、塩基反応性樹脂と、を含む感光性樹脂組成物は、ネガ型レジストとして有効に機能することが確認された。   As apparent from FIGS. 3 and 4, it was found that the epoxy groups in the exposed portion were reduced by the heat treatment. From this result, the photobase generator obtained in Synthesis Example 1 functions effectively as a photobase generator in a photosensitive resin composition containing a base-reactive resin such as an epoxy resin. It was confirmed that the cross-linking reaction with the group proceeded and the desired cured film was obtained. That is, it was confirmed that the photosensitive resin composition containing the photobase generator obtained in Synthesis Example 1 and the base-reactive resin functions effectively as a negative resist.

<実施例2>
実施例1と同様の操作を行い、実施例1と同様の未硬化膜を得た。得られた未硬化膜の一部にマスクを配置し、マスク上から254nmの光を所定量、照射した。次いで、THFで30秒、現像処理して得られた膜の厚さを測定し、感度評価を行った。感度評価は、加熱温度依存性と加熱時間依存性の観点から行った。加熱温度依存性については、加熱時間を10分に固定し、加熱温度を100℃、120℃、140℃の3水準で行った。また、加熱時間依存性については、加熱温度を120℃に固定し、5分、10分、15分の3水準で行った。その結果を図5、6に示した。
<Example 2>
The same operation as in Example 1 was performed to obtain an uncured film similar to that in Example 1. A mask was placed on a portion of the obtained uncured film, and a predetermined amount of light at 254 nm was irradiated from above the mask. Next, the film thickness obtained by developing with THF for 30 seconds was measured, and the sensitivity was evaluated. Sensitivity evaluation was performed from the viewpoint of heating temperature dependency and heating time dependency. Regarding the heating temperature dependency, the heating time was fixed at 10 minutes and the heating temperature was set at three levels of 100 ° C., 120 ° C. and 140 ° C. Regarding the heating time dependency, the heating temperature was fixed at 120 ° C., and the measurement was performed at three levels of 5 minutes, 10 minutes, and 15 minutes. The results are shown in FIGS.

感度評価は、残膜率(露光、現像後の膜厚/未硬化膜の膜厚を表し、本明細書では正規化膜厚と同義)が0.5以上となるのに必要な光の照射量を比較することにより行った。図5に示される通り、加熱時間を10分に固定して加熱温度を100℃としたときには、照射量が610mJ/cm必要であったのに対して、加熱温度が120℃のときに必要な照射量は270mJ/cm、140℃のときは220mJ/cmと大きく減少していた。この結果から、加熱時間を10分としたときには、加熱温度は120℃以上が好ましいことが分かった。 Sensitivity evaluation is the irradiation of light necessary for the residual film ratio (representing the film thickness after exposure and development / film thickness of the uncured film, which is synonymous with the normalized film thickness in this specification) to be 0.5 or more. This was done by comparing the amounts. As shown in FIG. 5, when the heating time is fixed at 10 minutes and the heating temperature is 100 ° C., the irradiation amount is 610 mJ / cm 2 , whereas it is necessary when the heating temperature is 120 ° C. The amount of irradiation was 270 mJ / cm 2 , and at 140 ° C., it was greatly reduced to 220 mJ / cm 2 . From this result, it was found that the heating temperature is preferably 120 ° C. or higher when the heating time is 10 minutes.

また、図6に示される通り、加熱温度を120℃に固定して加熱時間を5分としたときには、10000mJ/cmもの照射量が必要であったのに対して、加熱時間を10分としたときには上述の通りであり、15分としたときには80mJ/cmと大きく減少していた。この結果から、加熱温度を120℃としたときには、加熱時間は10分以上が好ましいことが分かった。 Further, as shown in FIG. 6, when the heating temperature was fixed at 120 ° C. and the heating time was 5 minutes, an irradiation amount of 10,000 mJ / cm 2 was required, whereas the heating time was 10 minutes. When it was done, it was as described above, and when it was 15 minutes, it was greatly reduced to 80 mJ / cm 2 . From this result, it was found that when the heating temperature was 120 ° C., the heating time was preferably 10 minutes or more.

<実施例3>
合成例1で得られた光塩基発生剤の代わりに合成例2で得られた光塩基発生剤を用い、THF溶液の代わりに1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(以下、HFIPという)を用いた以外は、実施例2と同様の操作を行い、未硬化膜を得た。得られた未硬化膜に対して、実施例2と同様に、一部にマスクを介した露光、現像処理を行い、感度評価を行った。その結果を図7、8に示した。
<Example 3>
The photobase generator obtained in Synthesis Example 2 was used instead of the photobase generator obtained in Synthesis Example 1, and 1,1,1,3,3,3-hexafluoro-2- An uncured film was obtained in the same manner as in Example 2 except that propanol (hereinafter referred to as HFIP) was used. The obtained uncured film was partially exposed to light through a mask and developed in the same manner as in Example 2 to evaluate the sensitivity. The results are shown in FIGS.

図7に示される通り、加熱時間を10分に固定して加熱温度を120℃としたときには、わずか6.8mJ/cmの照射量で残膜率0.5が得られた。なお、加熱温度を100℃としたときには、照射量をいくら増加させても残膜率0.5以上は得られず、加熱温度を140℃としたときには、極微量の照射量でも残膜率0.5以上が得られることが分かった。この結果から、加熱時間を10分としたときには、加熱温度は120℃以上が好ましいことが分かった。 As shown in FIG. 7, when the heating time was fixed at 10 minutes and the heating temperature was 120 ° C., a residual film ratio of 0.5 was obtained with an irradiation amount of only 6.8 mJ / cm 2 . When the heating temperature is 100 ° C., the remaining film rate of 0.5 or more cannot be obtained no matter how much the irradiation amount is increased. When the heating temperature is 140 ° C., the remaining film rate is 0 even with a very small irradiation amount. It was found that 5 or more were obtained. From this result, it was found that the heating temperature is preferably 120 ° C. or higher when the heating time is 10 minutes.

また、図8に示される通り、加熱温度を120℃に固定して加熱時間を5分としたときには、20mJ/cmの照射量で残膜率0.5が得られ、加熱時間を10分としたときには上述の通りであった。なお、加熱時間を15分としたときには、極微量の照射量でも残膜率0.5以上が得られることが分かった。この結果から、加熱温度を120℃としたときには、加熱時間は5分以上が好ましいことが分かった。 Further, as shown in FIG. 8, when the heating temperature is fixed at 120 ° C. and the heating time is 5 minutes, a residual film ratio of 0.5 is obtained with an irradiation amount of 20 mJ / cm 2 and the heating time is 10 minutes. Was as described above. It was found that when the heating time was 15 minutes, a residual film ratio of 0.5 or more was obtained even with a very small dose. From this result, it was found that when the heating temperature was 120 ° C., the heating time was preferably 5 minutes or more.

実施例3の結果から、合成例2で得られた光塩基発生剤についても、合成例1で得られた光塩基発生剤と同様に、光塩基発生剤として有効に機能することが確認された。また、実施例2と実施例3との結果を比較すると、合成例1で得られた光塩基発生剤に比して、合成例2で得られた光塩基発生剤は格段に感度が高いことも分かった。   From the results of Example 3, it was confirmed that the photobase generator obtained in Synthesis Example 2 also functions effectively as a photobase generator, similarly to the photobase generator obtained in Synthesis Example 1. . Further, when the results of Example 2 and Example 3 are compared, the photobase generator obtained in Synthesis Example 2 is much more sensitive than the photobase generator obtained in Synthesis Example 1. I understand.

<実施例4>
PGMA(Mw=28000、Mw/Mn=3.4)モノマーユニットに対して、合成例1〜4で得られた各光塩基発生剤I〜IVを各6.3mol%配合したHFIP溶液をそれぞれ調製し、Siウエハ上に3000rpmで30秒、スピンキャストした。これらを、100℃のホットプレートで1分、プリベークすることにより、厚さ0.7μmの未硬化膜を得た。得られた未硬化膜の一部にマスクを配置し、マスク上から254nm又は365nmの光を照射した。次いで、マスクを除去し、100℃で15分間、加熱処理を行った後、THFによる30秒間の現像処理を実施した。
<Example 4>
Prepare HFIP solutions each containing 6.3 mol% of each photobase generator I-IV obtained in Synthesis Examples 1-4 for PGMA (Mw = 28000, Mw / Mn = 3.4) monomer units. Then, spin casting was performed on a Si wafer at 3000 rpm for 30 seconds. These were prebaked on a hot plate at 100 ° C. for 1 minute to obtain an uncured film having a thickness of 0.7 μm. A mask was placed on a part of the obtained uncured film, and light of 254 nm or 365 nm was irradiated from above the mask. Next, the mask was removed, heat treatment was performed at 100 ° C. for 15 minutes, and then development treatment with THF was performed for 30 seconds.

また、上記で調製した溶液を利用して、石英ガラス板上に未硬化膜を作製した。作製した未硬化膜について、紫外可視分光光度計(島津製作所製「MultiSpec−1500」)を用いて254nm光及び365nm光の透過率測定を実施した。   Further, an uncured film was produced on a quartz glass plate using the solution prepared above. About the produced uncured film | membrane, the transmittance | permeability measurement of 254 nm light and 365 nm light was implemented using the ultraviolet visible spectrophotometer (Shimadzu "MultiSpec-1500").

露光波長254nm及び365nmそれぞれにおける露光エネルギーと、露光部分の残膜率との関係を図9及び図10に示した。また、残膜率が0.3となる露光量を感度と定義し、各光塩基発生剤の感度評価結果を表2に示した。   FIG. 9 and FIG. 10 show the relationship between the exposure energy at the exposure wavelengths of 254 nm and 365 nm, respectively, and the remaining film ratio of the exposed portion. The exposure amount at which the residual film ratio was 0.3 was defined as sensitivity, and the sensitivity evaluation results of each photobase generator are shown in Table 2.

Figure 2009080452
Figure 2009080452

透過率測定の結果、254nm光の透過率は30%であり、365nm光の透過率は80%であった。図9、図10、及び表2に示されるように、1官能の光塩基発生剤Iに比して、2官能の光塩基発生剤II、III、及びIVの方が高感度であることが分かった。また、2官能の光塩基発生剤II、III、及びIVでは、露光波長365nmにおいて、露光エネルギーを大きくするとより高い残膜率が得られることが分かった。   As a result of the transmittance measurement, the transmittance of 254 nm light was 30%, and the transmittance of 365 nm light was 80%. As shown in FIGS. 9 and 10 and Table 2, the bifunctional photobase generators II, III, and IV are more sensitive than the monofunctional photobase generator I. I understood. In addition, it was found that with the bifunctional photobase generators II, III, and IV, a higher residual film ratio can be obtained by increasing the exposure energy at an exposure wavelength of 365 nm.

ここで、光塩基発生剤IVを配合した未硬化膜に、365nmの光を1000mJ/cm照射したとき、及び照射後に100℃で15分間加熱したときのIRスペクトルを図11に示した。図11において見られる、900cm−1付近におけるエポキシ基由来のピーク面積比と加熱時間との関係を、加熱前を1として図12に示した。 Here, FIG. 11 shows IR spectra when an uncured film containing the photobase generator IV was irradiated with 1000 mJ / cm 2 of 365 nm light and after heating at 100 ° C. for 15 minutes. The relationship between the peak area ratio derived from the epoxy group in the vicinity of 900 cm −1 and the heating time seen in FIG. 11 is shown in FIG.

図11及び図12に示されるように、加熱を進めていくことにより、エポキシ基由来のピーク面積が減少していくことが分かり、下記化学反応式(3)に示される化学反応が進行していると考えられた。

Figure 2009080452
As shown in FIGS. 11 and 12, it can be seen that the peak area derived from the epoxy group decreases as the heating proceeds, and the chemical reaction shown in the following chemical reaction formula (3) proceeds. It was thought that there was.
Figure 2009080452

<実施例5>
PGMA(Mw=28000、Mw/Mn=3.4)モノマーユニットに対して、合成例4で得られた光塩基発生剤IVを6.3mol%、塩基増殖剤(BA)の1,3−ビス[1−(9−フルオレニルメトキシカルボニル)−4−ピペリジル]プロパンを所定量配合したHFIP溶液を調製し、Siウエハ上に3000rpmで30秒、スピンキャストした。これを、100℃のホットプレートで1分、プリベークすることにより、厚さ0.6μmの未硬化膜を得た。得られた未硬化膜の一部にマスクを配置し、マスク上から365nmの光を照射した。次いで、マスクを除去し、100℃で所定時間、加熱処理を行った後、THFによる30秒間の現像処理を実施した。
<Example 5>
6.3 mol% of the photobase generator IV obtained in Synthesis Example 4 and 1,3-bis of the base proliferating agent (BA) with respect to the PGMA (Mw = 28000, Mw / Mn = 3.4) monomer unit. An HFIP solution containing a predetermined amount of [1- (9-fluorenylmethoxycarbonyl) -4-piperidyl] propane was prepared and spin-cast on a Si wafer at 3000 rpm for 30 seconds. This was prebaked for 1 minute on a hot plate at 100 ° C. to obtain an uncured film having a thickness of 0.6 μm. A mask was placed on a portion of the resulting uncured film, and 365 nm light was irradiated from above the mask. Next, the mask was removed, heat treatment was performed at 100 ° C. for a predetermined time, and then development treatment with THF was performed for 30 seconds.

塩基増殖剤の配合量を0質量%、10質量%、20質量%と変化させたときの露光エネルギーと残膜率との関係を図13に示した。また、塩基増殖剤の配合量を20質量%とし、加熱時間を10分、15分、20分と変化させたときの露光エネルギーと残膜率との関係を図14に示した。ここで、塩基増殖反応を組み込んだ本実施例では、下記化学反応式(4)に示される化学反応が進行していると考えられた。また、図13より、塩基増殖剤を20質量%配合することにより高い残膜率が得られ、また、図14より、加熱時間を10分、15分、20分を長くするにつれて高い残膜率が得られることが分かった。これらの結果から、塩基増殖剤を配合することにより、さらなる高感度化が可能であると考えられた。

Figure 2009080452
FIG. 13 shows the relationship between the exposure energy and the remaining film ratio when the blending amount of the base proliferating agent is changed to 0 mass%, 10 mass%, and 20 mass%. FIG. 14 shows the relationship between the exposure energy and the remaining film ratio when the blending amount of the base proliferating agent is 20 mass% and the heating time is changed to 10 minutes, 15 minutes, and 20 minutes. Here, in this example incorporating the base growth reaction, it was considered that the chemical reaction represented by the following chemical reaction formula (4) progressed. Further, from FIG. 13, a high residual film rate can be obtained by adding 20% by mass of the base proliferating agent, and from FIG. 14, a higher residual film rate as the heating time is increased by 10 minutes, 15 minutes, and 20 minutes. Was found to be obtained. From these results, it was considered that higher sensitivity could be achieved by adding a base proliferating agent.
Figure 2009080452

<実施例6>
ポリメタクリロキシプロピルトリメトキシシラン(以下、PMASという)0.1gと、PMASに対して30質量%の光塩基発生剤IV(2.5×10−4mol)、又は従来型の光塩基発生剤であるオルトニトロベンジルエステル(2.5×10−4mol)をTHF1.5gに溶解させた。この溶液をそれぞれガラス基板上に2滴滴下し、60℃のホットプレートで1分間プリベークし、ガラス基板で蓋をし、隙間をテフロン(登録商標)シートで塞いで膜を作製した。それぞれの膜に、Hg−Xeランプを用いて400秒間、光照射し、気泡発生の有無を調べた。光照射後の外観を図15(従来型)及び図16(光塩基発生材IV)に示した。
<Example 6>
0.1 g of polymethacryloxypropyltrimethoxysilane (hereinafter referred to as PMAS) and 30% by mass of photobase generator IV (2.5 × 10 −4 mol) with respect to PMAS, or a conventional photobase generator Orthonitrobenzyl ester (2.5 × 10 −4 mol) was dissolved in 1.5 g of THF. Two drops of this solution were dropped on each glass substrate, pre-baked with a hot plate at 60 ° C. for 1 minute, covered with a glass substrate, and the gap was closed with a Teflon (registered trademark) sheet to form a film. Each film was irradiated with light for 400 seconds using an Hg-Xe lamp to examine whether bubbles were generated. The appearance after light irradiation is shown in FIG. 15 (conventional type) and FIG. 16 (photobase generator IV).

下記化学反応式(5)に示すように、従来型では化学反応の進行により炭酸ガスが発生するのに対して、光塩基発生剤IVを配合したものでは、下記化学反応式(6)に示されるように、化学反応が進行しても炭酸ガスが生ずることがない。このため、図15及び図16に示されるように、従来型では光照射により気泡が多数発生していたのが確認されたのに対して、光塩基発生剤IVを配合したものでは気泡の発生がほとんど見られなかった。この結果から、光塩基発生剤IVを配合した系であれば、膜強度のより高い硬化膜が得られることが分かった。

Figure 2009080452
Figure 2009080452
As shown in the following chemical reaction formula (5), carbon dioxide gas is generated by the progress of the chemical reaction in the conventional type, whereas in the case where the photobase generator IV is blended, it is shown in the following chemical reaction formula (6). As shown, carbon dioxide gas is not generated even when the chemical reaction proceeds. For this reason, as shown in FIGS. 15 and 16, it was confirmed that many bubbles were generated by light irradiation in the conventional type, whereas in the case where the photobase generator IV was blended, bubbles were generated. Was hardly seen. From this result, it was found that a cured film having higher film strength can be obtained with a system in which the photobase generator IV is blended.
Figure 2009080452
Figure 2009080452

光塩基発生剤Iの溶液中における光分解挙動を説明するための図である。It is a figure for demonstrating the photodegradation behavior in the solution of the photobase generator I. 光塩基発生剤Iの固体中における光分解挙動を説明するための図である。It is a figure for demonstrating the photodegradation behavior in the solid of the photobase generator I. 光塩基発生剤I/PGMA膜のエポキシ基由来のIRピーク変化を示す図である。It is a figure which shows IR peak change derived from the epoxy group of a photobase generator I / PGMA film | membrane. 図3のエポキシ基由来のピーク面積比と加熱時間との関係を示す図である。It is a figure which shows the relationship between the peak area ratio derived from the epoxy group of FIG. 3, and heating time. 光塩基発生剤I/PGMA膜の加熱温度依存性を説明するための図である。It is a figure for demonstrating the heating temperature dependence of a photobase generator I / PGMA film | membrane. 光塩基発生剤I/PGMA膜の加熱時間依存性を説明するための図である。It is a figure for demonstrating the heating time dependence of a photobase generator I / PGMA film | membrane. 光塩基発生剤II/PGMA膜の加熱温度依存性を説明するための図である。It is a figure for demonstrating the heating temperature dependence of a photobase generator II / PGMA film | membrane. 光塩基発生剤II/PGMA膜の加熱時間依存性を説明するための図である。It is a figure for demonstrating the heating time dependence of a photobase generator II / PGMA film | membrane. 254nmにおける露光エネルギーと残膜率との関係を示す図である。It is a figure which shows the relationship between the exposure energy in 254 nm, and a remaining film rate. 365nmにおける露光エネルギーと残膜率との関係を示す図である。It is a figure which shows the relationship between the exposure energy in 365 nm, and a residual film rate. 光塩基発生剤IV/PGMA膜におけるIRスペクトル変化図である。It is IR spectrum change figure in a photobase generator IV / PGMA film | membrane. 図11のエポキシ基由来のピーク面積比と加熱時間との関係を示す図である。It is a figure which shows the relationship between the peak area ratio derived from the epoxy group of FIG. 11, and heating time. 塩基増殖剤の添加効果を説明するための図である。It is a figure for demonstrating the addition effect of a base proliferating agent. 塩基増殖剤の加熱時間依存性を説明するための図である。It is a figure for demonstrating the heating time dependence of a base growth agent. 従来型の光塩基発生剤を配合した系の外観(a)、光塩基発生剤IVを配合した系の外観(b)を示す図である。It is a figure which shows the external appearance (a) of the type | system | group which mix | blended the conventional photobase generator, and the external appearance (b) of the type | system | group which mix | blended the photobase generator IV.

Claims (6)

塩基反応性樹脂と、下記一般式(1)で表される光塩基発生剤と、を含むことを特徴とする感光性樹脂組成物。
Figure 2009080452
[一般式(1)中、Zはアミノ基を表す。]
A photosensitive resin composition comprising a base-reactive resin and a photobase generator represented by the following general formula (1).
Figure 2009080452
[In General Formula (1), Z represents an amino group. ]
前記一般式(1)において、Zが下記一般式(z1)で表される基であることを特徴とする請求項1記載の感光性樹脂組成物。
Figure 2009080452
[一般式(z1)中、R及びRは、同一でも異なっていてもよく、水素、若しくは置換基を有していてもよい炭素数が1〜18の有機基を表すか、又はR 及びR が互いに連結して、構成原子数が3〜12の含窒素環を形成するものを表す。有機基は、アルキル基、シクロアルキル基、アリール基、及びアリールアルキル基よりなる群から選ばれる。]
In the said General formula (1), Z is group represented by the following general formula (z1), The photosensitive resin composition of Claim 1 characterized by the above-mentioned.
Figure 2009080452
[In General Formula (z1), R 1 and R 2 may be the same or different and each represents hydrogen or an organic group having 1 to 18 carbon atoms which may have a substituent , or R 1 and R 2 are connected to each other to form a nitrogen-containing ring having 3 to 12 constituent atoms. The organic group is selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and an arylalkyl group. ]
前記一般式(1)において、Zが下記一般式(z2)で表される基であることを特徴とする請求項1記載の感光性樹脂組成物。
Figure 2009080452
[一般式(z2)中、n及びmはそれぞれ独立した1〜6の整数であり、Rは水素、炭化水素基、炭化水素オキシ基、又はアシル基を表す。]
In the said General formula (1), Z is group represented by the following general formula (z2), The photosensitive resin composition of Claim 1 characterized by the above-mentioned.
Figure 2009080452
[In General Formula (z2), n and m are each independently an integer of 1 to 6, and R 3 represents hydrogen, a hydrocarbon group, a hydrocarbon oxy group, or an acyl group. ]
前記一般式(1)で表される光塩基発生剤が、下記化学式(II)、下記化学式(III)、又は下記化学式(IV)で表されるものであることを特徴とする請求項1記載の感光性樹脂組成物。The photobase generator represented by the general formula (1) is represented by the following chemical formula (II), the following chemical formula (III), or the following chemical formula (IV). Photosensitive resin composition.
Figure 2009080452
Figure 2009080452
Figure 2009080452
Figure 2009080452
Figure 2009080452
Figure 2009080452
前記塩基反応性樹脂が、エポキシ樹脂、含ケイ素樹脂、及びポリアミド酸樹脂よりなる群から選ばれる少なくとも一種であることを特徴とする請求項1からいずれか記載の感光性樹脂組成物。 The base-reactive resin, epoxy resin, silicon-containing resin, and a photosensitive resin composition according to any one of claims 1, wherein 4 is at least one selected from the group consisting of polyamic acid resin. 請求項1からいずれか記載の感光性樹脂組成物を支持体上に塗布し、乾燥させてから所定のパターン露光をした後、加熱処理して現像することにより、所定形状の硬化樹脂パターンを得ることを特徴とするパターン形成方法。 A photosensitive resin composition according to any one of claims 1 to 5 is coated on a support, dried, and exposed to a predetermined pattern, followed by heat treatment and development to form a cured resin pattern having a predetermined shape. A pattern forming method characterized in that it is obtained.
JP2008112835A 2007-09-03 2008-04-23 Photosensitive resin composition Active JP5071803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112835A JP5071803B2 (en) 2007-09-03 2008-04-23 Photosensitive resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007228154 2007-09-03
JP2007228154 2007-09-03
JP2008112835A JP5071803B2 (en) 2007-09-03 2008-04-23 Photosensitive resin composition

Publications (3)

Publication Number Publication Date
JP2009080452A JP2009080452A (en) 2009-04-16
JP2009080452A5 true JP2009080452A5 (en) 2011-05-19
JP5071803B2 JP5071803B2 (en) 2012-11-14

Family

ID=40655213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112835A Active JP5071803B2 (en) 2007-09-03 2008-04-23 Photosensitive resin composition

Country Status (1)

Country Link
JP (1) JP5071803B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747431B2 (en) * 2008-03-31 2015-07-15 大日本印刷株式会社 Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method, article using the photosensitive resin composition, and base generator
CN101981154B (en) 2008-03-31 2014-03-19 大日本印刷株式会社 Base-generating agent, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, pattern formation method using the photosensitive resin composition, and article
JP5515560B2 (en) * 2008-09-30 2014-06-11 大日本印刷株式会社 Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method, article using the photosensitive resin composition, and photolatent resin curing accelerator
JP5598031B2 (en) * 2009-03-11 2014-10-01 大日本印刷株式会社 Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
JP5505036B2 (en) * 2009-03-31 2014-05-28 大日本印刷株式会社 Base generator, resin composition, pattern forming material comprising the resin composition, pattern forming method using the resin composition, and article
US8697332B2 (en) 2009-03-31 2014-04-15 Dai Nippon Printing Co., Ltd. Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method using the photosensitive resin composition and products comprising the same
JP5644274B2 (en) * 2009-08-31 2014-12-24 大日本印刷株式会社 Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
JP5768348B2 (en) * 2009-09-17 2015-08-26 大日本印刷株式会社 Thermal base generator, polymer precursor composition, and article using the composition
WO2011040462A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Base-generating agent, photosensitive resin composition, material for pattern-forming comprising said photosensitive resin composition, pattern-forming method using said photosensitive resin composition, and article
JP5581775B2 (en) * 2010-03-31 2014-09-03 大日本印刷株式会社 Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, method for producing relief pattern using the photosensitive resin composition, and article
WO2011126076A1 (en) * 2010-04-09 2011-10-13 大日本印刷株式会社 Thin-film transistor substrate
JP5681942B2 (en) * 2010-04-15 2015-03-11 学校法人東京理科大学 Water-based epoxy resin curing fine particles and method for producing water-based epoxy resin curing fine particles
JP5924885B2 (en) * 2010-08-24 2016-05-25 Hoya株式会社 Manufacturing method of substrate with resist, manufacturing method of substrate with resist pattern, manufacturing method of substrate with pattern, and resist processing method
JP5750855B2 (en) * 2010-09-30 2015-07-22 大日本印刷株式会社 Curable resin composition and cured product thereof
JP6151475B2 (en) * 2010-09-30 2017-06-21 大日本印刷株式会社 Photosensitive resin composition, pattern forming material, and pattern forming method
JP5617564B2 (en) * 2010-11-26 2014-11-05 和光純薬工業株式会社 Photosensitive resin composition
JP5898985B2 (en) * 2011-05-11 2016-04-06 東京応化工業株式会社 Resist pattern forming method
US9244346B2 (en) 2011-06-24 2016-01-26 Tokyo Ohka Kogyo Co., Ltd. Negative-type photosensitive resin composition, pattern forming method, cured film, insulating film, color filter, and display device
KR101913865B1 (en) 2011-09-22 2018-10-31 도오꾜오까고오교 가부시끼가이샤 Resist composition and method of forming resist pattern
KR101936435B1 (en) 2011-09-22 2019-01-08 도오꾜오까고오교 가부시끼가이샤 Resist composition and method of forming resist pattern
JP5974446B2 (en) * 2011-10-14 2016-08-23 大日本印刷株式会社 Photosensitive resin composition and adhesive sheet
JP2013087154A (en) * 2011-10-14 2013-05-13 Dainippon Printing Co Ltd Base generator and photosensitive resin composition
JP5965129B2 (en) * 2011-11-01 2016-08-03 旭化成株式会社 Photobase generator and photosensitive resin composition containing the same
TWI634135B (en) 2015-12-25 2018-09-01 日商富士軟片股份有限公司 Resin, composition, cured film, method for producing cured film, and semiconductor element
JP6808829B2 (en) 2017-05-31 2021-01-06 富士フイルム株式会社 Photosensitive resin compositions, polymer precursors, cured films, laminates, cured film manufacturing methods and semiconductor devices
JP7351896B2 (en) * 2019-02-22 2023-09-27 富士フイルム株式会社 Curable resin composition, cured film, laminate, method for producing cured film, semiconductor device, and thermal base generator
US11873354B2 (en) * 2019-09-10 2024-01-16 Tokyo University Of Science Foundation Photobase generator, compound, photoreactive composition, and reaction product
TW202128839A (en) 2019-11-21 2021-08-01 日商富士軟片股份有限公司 Pattern forming method, photocurable resin composition, layered body manufacturing method, and electronic device manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250650A (en) * 2003-02-19 2004-09-09 Kunihiro Ichimura Base-increasing siloxane resin and photosensitive resin composition
JP5747431B2 (en) * 2008-03-31 2015-07-15 大日本印刷株式会社 Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method, article using the photosensitive resin composition, and base generator

Similar Documents

Publication Publication Date Title
JP5071803B2 (en) Photosensitive resin composition
JP2009080452A5 (en)
JP5516574B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
US8778596B2 (en) Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, and pattern forming method and article using the photosensitive resin composition
JP5386789B2 (en) Photobase generator, photosensitive resin composition, and negative pattern forming method
JP6190805B2 (en) Negative photosensitive resin composition, method for producing cured relief pattern, and semiconductor device
JP4853594B2 (en) Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method, article using the photosensitive resin composition, and base generator
JP5505036B2 (en) Base generator, resin composition, pattern forming material comprising the resin composition, pattern forming method using the resin composition, and article
JP5644274B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
JP5446793B2 (en) Photosensitive resin composition, article using the same, and negative pattern forming method
JP7232241B2 (en) Novel compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
JP5224016B2 (en) Active energy ray base generator, active energy ray base generator composition, base-reactive composition, and pattern forming method
JP5515560B2 (en) Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method, article using the photosensitive resin composition, and photolatent resin curing accelerator
JP2011089119A (en) Base generating agent, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method for forming pattern and article using the photosensitive resin composition
TW201629630A (en) Photosensitive resin composition, dry film and cured product thereof, electronic component or optical product comprising cured product, and adhesive comprising photosensitive resin composition
JP5581775B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, method for producing relief pattern using the photosensitive resin composition, and article
JP2012092328A (en) Base generator, photosensitive resin composition, pattern formation material comprising the photosensitive resin composition, and method for producing relief pattern and article using the composition
JP2012093744A (en) Photosensitive resin composition, material for forming pattern comprising the photosensitive resin composition, method for manufacturing relief pattern using the photosensitive resin composition, and article using the composition
JP5598031B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
TW201920359A (en) Photosensitive resin composition dry film cured product semiconductor element printed wiring board and electronic component
KR20190007387A (en) Photosensitive resin composition, dry film, cured product, semiconductor element, printed wiring board, and electronic component
JP6138943B2 (en) Photosensitive resin composition, relief pattern film thereof, method for producing relief pattern film, electronic component or optical product including relief pattern film, and adhesive including photosensitive resin composition
JP2012241064A (en) Base generator, photosensitive resin composition, pattern formation material comprising the photosensitive resin composition, and method for producing relief pattern and article using the composition
JP5994235B2 (en) Photobase generator, photosensitive polyimide resin composition, method for producing relief pattern, and article
TW201938532A (en) Novel compound, photopolymerization initiator comprising the compound, and photosensitive resin composition containing the photopolymerization initiator