JP2009080390A - Method for producing positive photosensitive resin composition - Google Patents

Method for producing positive photosensitive resin composition Download PDF

Info

Publication number
JP2009080390A
JP2009080390A JP2007250822A JP2007250822A JP2009080390A JP 2009080390 A JP2009080390 A JP 2009080390A JP 2007250822 A JP2007250822 A JP 2007250822A JP 2007250822 A JP2007250822 A JP 2007250822A JP 2009080390 A JP2009080390 A JP 2009080390A
Authority
JP
Japan
Prior art keywords
solution
resin
photosensitive resin
resin composition
positive photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007250822A
Other languages
Japanese (ja)
Other versions
JP4946757B2 (en
Inventor
Shinji Arimoto
真治 有本
Yoji Fujita
陽二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007250822A priority Critical patent/JP4946757B2/en
Publication of JP2009080390A publication Critical patent/JP2009080390A/en
Application granted granted Critical
Publication of JP4946757B2 publication Critical patent/JP4946757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a positive photosensitive resin composition, having high sensitivity and superior storage stability. <P>SOLUTION: The method for producing the positive photosensitive resin composition comprises (A) novolac resin, (B) a polyimide precursor which may contain a hydroxyl group and (C) a quinonediazide compound comprises (I) a step of preparing (a) a solution, obtained by dissolving the novolac resin in an organic solvent and (b) a solution, obtained by dissolving the polyimide precursor in an organic solvent, and (II) a step of mixing the solution (a) and the solution (b). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ポジ型感光性樹脂組成物の製造方法に関する。より詳しくは、半導体素子の表面保護膜、層間絶縁膜、有機電界発光素子の絶縁層などに適した、紫外線で露光した部分がアルカリ現像液に溶解するポジ型感光性樹脂組成物の製造方法に関する。   The present invention relates to a method for producing a positive photosensitive resin composition. More specifically, the present invention relates to a method for producing a positive photosensitive resin composition suitable for a surface protective film of a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescent element, etc., wherein a portion exposed to ultraviolet rays is dissolved in an alkaline developer. .

ポリイミドなどの耐熱性樹脂は、その優れた耐熱性、電気絶縁性などからLSIなどの半導体素子の表面保護膜、層間絶縁膜などに用いられている。半導体素子の微細化に伴い、表面保護膜、層間絶縁膜などにも数μmの解像度が要求されており、このような用途において、微細加工可能なポジ型感光性ポリイミドなどの感光性樹脂が用いられている。   A heat-resistant resin such as polyimide is used for a surface protective film, an interlayer insulating film, and the like of a semiconductor element such as an LSI because of its excellent heat resistance and electrical insulation. With the miniaturization of semiconductor elements, surface protection films, interlayer insulation films, etc. are required to have a resolution of several μm. In such applications, photosensitive resins such as positive photosensitive polyimide that can be finely processed are used. It has been.

ポリイミド前駆体であるポリアミド酸は、溶液を室温で放置すると系内のイミド化が進行することなどにより、特性が変化する。そこで、保存安定性を向上させるために、ポリアミド酸をエステル化する方法が提案されている(例えば、特許文献1参照)。また、高感度で高解像度のポジ型感光性樹脂組成物として、ノボラック樹脂とポリイミド前駆体、キノンジアジド化合物を含有するポジ型感光性樹脂組成物が提案されている(例えば、特許文献2〜3参照)。
特開平2−181149号公報 特開2005−352004号公報 特開2005−250160号公報
The properties of the polyamic acid, which is a polyimide precursor, change due to the progress of imidization in the system when the solution is allowed to stand at room temperature. Therefore, in order to improve storage stability, a method of esterifying polyamic acid has been proposed (see, for example, Patent Document 1). Moreover, as a positive photosensitive resin composition having high sensitivity and high resolution, a positive photosensitive resin composition containing a novolac resin, a polyimide precursor, and a quinonediazide compound has been proposed (for example, see Patent Documents 2 to 3). ).
Japanese Patent Laid-Open No. 2-181149 JP-A-2005-352004 JP-A-2005-250160

前記ポジ型感光性樹脂組成物において、ポリイミド前駆体としてポリアミド酸エステルを用いる場合、ポリアミド酸エステルを溶解するためにポリイミド酸エステルとノボラック樹脂を混合した状態で長時間加熱する必要があり、組成物の感度が低下する課題があった。また、ポリイミド前駆体としてポリアミド酸を用いる場合、保存安定性に劣り感度変化が大きいという課題があった。本発明は、かかる課題を解決し、高感度で保存安定性に優れるポジ型感光性樹脂組成物の製造方法を提供することを目的とする。   In the positive photosensitive resin composition, when a polyamic acid ester is used as a polyimide precursor, it is necessary to heat for a long time in a mixed state of the polyamic acid ester and a novolak resin in order to dissolve the polyamic acid ester. There was a problem that the sensitivity of the lowering. Moreover, when using a polyamic acid as a polyimide precursor, there existed a subject that it was inferior in storage stability and the sensitivity change was large. An object of the present invention is to provide a method for producing a positive photosensitive resin composition that solves such problems and has high sensitivity and excellent storage stability.

本発明は、(A)ノボラック樹脂、(B)一般式(1)で表される繰り返し単位を主成分とする樹脂および(C)キノンジアジド化合物を含有するポジ型感光性樹脂組成物の製造方法であって、少なくとも
(I)(a)前記ノボラック樹脂を有機溶剤に溶解してなる溶液、および(b)前記一般式(1)で表される繰り返し単位を主成分とする樹脂を有機溶剤に溶解してなる溶液を用意する工程、
(II)前記(a)溶液と(b)溶液を混合する工程、
を有するポジ型感光性樹脂組成物の製造方法である。
The present invention is a method for producing a positive photosensitive resin composition comprising (A) a novolak resin, (B) a resin mainly composed of a repeating unit represented by the general formula (1), and (C) a quinonediazide compound. And at least (I) (a) a solution obtained by dissolving the novolak resin in an organic solvent, and (b) a resin containing the repeating unit represented by the general formula (1) as a main component in the organic solvent. Preparing a solution comprising:
(II) a step of mixing the solution (a) and the solution (b),
It is a manufacturing method of the positive photosensitive resin composition which has this.

Figure 2009080390
Figure 2009080390

(一般式(1)中、Rは炭素数2以上の3価〜8価の有機基、Rは炭素数2以上の2価〜8価の有機基を示す。RおよびRはそれぞれ同じでも異なっていてもよく、水素または炭素数1〜20の有機基を示す。ただし、R、Rの各々50モル%以上は炭素数1〜20の有機基である。mは1または2、lは0〜2の整数を示す。pおよびqは0〜4の整数を示す。ただしp+q>0である。) (In the general formula (1), R 1 represents a trivalent to octavalent organic group having 2 or more carbon atoms, and R 2 represents a divalent to octavalent organic group having 2 or more carbon atoms. R 3 and R 4 represent Each may be the same or different and represents hydrogen or an organic group having 1 to 20 carbon atoms, provided that 50 mol% or more of each of R 3 and R 4 is an organic group having 1 to 20 carbon atoms. Or 2, l represents an integer of 0 to 2. p and q represent an integer of 0 to 4, provided that p + q> 0.

本発明によれば、高感度で保存安定性に優れるポジ型感光性樹脂組成物を得ることができる。   According to the present invention, a positive photosensitive resin composition having high sensitivity and excellent storage stability can be obtained.

本発明におけるポジ型感光性樹脂組成物は、(A)ノボラック樹脂、(B)一般式(1)で表される繰り返し単位を主成分とする樹脂および(C)キノンジアジド化合物を含有する。   The positive photosensitive resin composition in the present invention contains (A) a novolak resin, (B) a resin mainly composed of a repeating unit represented by the general formula (1), and (C) a quinonediazide compound.

まず、(A)ノボラック樹脂について説明する。ノボラック樹脂の種類は特に限定されず、一般的に電子材料用途に使用が可能なものであればどのようなものでもよい。ノボラック樹脂の重量平均分子量は、アルカリ現像液への溶解性の点から、1,000〜20,000であることが好ましく、2,000〜10,000であることが特に好ましいがこれに限定されない。なお、本発明における重量平均分子量は、ポリスチレン換算によるGPC(ゲルパーミエーションクロマトグラフィー)測定を用いて算出する値をいう。   First, (A) novolac resin will be described. The type of novolac resin is not particularly limited, and any type may be used as long as it can be generally used for electronic materials. The weight average molecular weight of the novolak resin is preferably 1,000 to 20,000, particularly preferably 2,000 to 10,000, but not limited thereto, from the viewpoint of solubility in an alkali developer. . In addition, the weight average molecular weight in this invention says the value computed using GPC (gel permeation chromatography) measurement by polystyrene conversion.

次に、(B)一般式(1)で表される繰り返し単位を主成分とする樹脂について説明する。一般式(1)で表される繰り返し単位を主成分とする樹脂は、加熱あるいは適当な触媒により、イミド環、その他の環状構造を有する樹脂となり得るものである。環状構造となることで、耐熱性、耐溶剤性が飛躍的に向上する。好ましくはポリイミド前駆体のポリアミド酸エステルが挙げられる。ここで、主成分とは、一般式(1)で表される繰り返し単位を、樹脂の繰り返し単位中50モル%以上有することを意味する。好ましくは70モル%以上、さらには90モル%以上有することがより好ましい。   Next, (B) the resin mainly composed of the repeating unit represented by the general formula (1) will be described. The resin containing the repeating unit represented by the general formula (1) as a main component can be a resin having an imide ring or other cyclic structure by heating or an appropriate catalyst. Due to the annular structure, the heat resistance and solvent resistance are dramatically improved. Preferably, a polyamic acid ester of a polyimide precursor is used. Here, the main component means that the repeating unit represented by the general formula (1) has 50 mol% or more in the repeating unit of the resin. Preferably it is 70 mol% or more, more preferably 90 mol% or more.

Figure 2009080390
Figure 2009080390

上記一般式(1)中、Rは炭素数2以上の3価〜8価の有機基を示し、酸の構造成分を表している。Rが3価となる酸としては、トリメリット酸、トリメシン酸などのトリカルボン酸、Rが4価となる酸としては、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ジフェニルエーテルテトラカルボン酸などのテトラカルボン酸を挙げることができる。また、ヒドロキシフタル酸、ヒドロキシトリメリット酸などの水酸基を有する酸も挙げることができる。これら酸成分は単独または2種以上併用しても構わないが、テトラカルボン酸を1〜40モル%含むことが好ましい。 In the general formula (1), R 1 represents a trivalent to octavalent organic group having 2 or more carbon atoms and represents an acid structural component. The acid R 1 is trivalent, as the acid, trimellitic acid, tricarboxylic acids such as trimesic acid, R 1 is tetravalent, pyromellitic acid, benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, diphenyl ether tetracarboxylic Mention may be made of tetracarboxylic acids such as acids. Moreover, the acid which has hydroxyl groups, such as a hydroxyphthalic acid and a hydroxy trimellitic acid, can also be mentioned. These acid components may be used alone or in combination of two or more, but preferably contain 1 to 40 mol% of tetracarboxylic acid.

は耐熱性の面から芳香族環を含有することが好ましく、炭素数6〜30の3価または4価の有機基がさらに好ましい。具体的には、一般式(1)のR(COOR(OH)が、下記に示す構造のものが好ましい。 R 1 preferably contains an aromatic ring from the viewpoint of heat resistance, and more preferably a trivalent or tetravalent organic group having 6 to 30 carbon atoms. Specifically, it is preferable that R 1 (COOR 3 ) m (OH) p in the general formula (1) has a structure shown below.

Figure 2009080390
Figure 2009080390

一般式(1)中、Rは炭素数2個以上の2価〜8価の有機基を示しており、ジアミンの構造成分を表している。この中で、得られるポリマーの耐熱性の点より、芳香族環を有するものが好ましい。ジアミンの具体的な例としては、フッ素原子を有した、ビス(アミノ−ヒドロキシ−フェニル)ヘキサフルオロプロパン、フッ素原子を有さない、ジアミノジヒドロキシピリミジン、ジアミノジヒドロキシピリジン、ヒドロキシ−ジアミノ−ピリミジン、ジアミノフェノール、ジヒドロキシベンチジン、ジアミノ安息香酸、ジアミノテレフタル酸などの化合物や、一般式(1)のR(COOR(OH)が、下記に示す構造のものを挙げることができる。 In the general formula (1), R 2 represents a divalent to octavalent organic group having 2 or more carbon atoms and represents a structural component of diamine. Of these, those having an aromatic ring are preferred from the viewpoint of the heat resistance of the resulting polymer. Specific examples of the diamine include bis (amino-hydroxy-phenyl) hexafluoropropane having a fluorine atom, diaminodihydroxypyrimidine, diaminodihydroxypyridine, hydroxy-diamino-pyrimidine, diaminophenol having no fluorine atom. , Dihydroxybenzidine, diaminobenzoic acid, diaminoterephthalic acid, and the like, and R 2 (COOR 4 ) l (OH) q in the general formula (1) can have the structures shown below.

Figure 2009080390
Figure 2009080390

Figure 2009080390
Figure 2009080390

さらに、基板との接着性を向上させるために、耐熱性を低下させない範囲で一般式(1)のRおよび/またはRにシロキサン構造を有する脂肪族の基を用いてもよい。具体的には、ジアミン成分として、ビス(3−アミノプロピル)テトラメチルジシロキサン、ビス(p−アミノ−フェニル)オクタメチルペンタシロキサンなどを1〜10モル%共重合したものなどが挙げられる。 Furthermore, in order to improve the adhesion to the substrate, an aliphatic group having a siloxane structure in R 1 and / or R 2 of the general formula (1) may be used as long as the heat resistance is not lowered. Specific examples of the diamine component include those obtained by copolymerizing 1 to 10 mol% of bis (3-aminopropyl) tetramethyldisiloxane, bis (p-amino-phenyl) octamethylpentasiloxane, and the like.

一般式(1)のRおよびRは同じでも異なっていてもよく、水素または炭素数1〜20の有機基を示している。得られる感光性樹脂組成物の保存安定性の観点からは、RおよびRは有機基が好ましいが、アルカリ現像液への溶解性の観点より、水素が好ましい。本発明においては、水素原子と有機基を混在させることができる。このRおよびRの水素と有機基の量を調整することで、アルカリ水溶液に対する溶解速度が変化するので、この調整により適度な溶解速度を有した感光性樹脂組成物を得ることができる。本発明における範囲は、R、Rの各々50モル%以上が炭素数1〜20の有機基である。R、Rの各々50モル%以上が炭素数1〜20の有機基であれば、保存安定性に優れ、アルカリ水溶液への適度な溶解速度を有した感光性樹脂組成物を得ることができる。RおよびRの炭素数が20を越えるとアルカリ水溶液に溶解しなくなる。以上よりRおよびRは、各々50モル%以上が炭素数1〜20の炭化水素基であることが必要である。 R 3 and R 4 in the general formula (1) may be the same or different, and represent hydrogen or an organic group having 1 to 20 carbon atoms. From the viewpoint of storage stability of the resulting photosensitive resin composition, R 3 and R 4 are preferably organic groups, but hydrogen is preferable from the viewpoint of solubility in an alkali developer. In the present invention, hydrogen atoms and organic groups can be mixed. By adjusting the amounts of hydrogen and organic groups of R 3 and R 4, the dissolution rate with respect to the aqueous alkali solution is changed, so that a photosensitive resin composition having an appropriate dissolution rate can be obtained by this adjustment. As for the range in this invention, 50 mol% or more of each of R < 3 >, R < 4 > is a C1-C20 organic group. If 50 mol% or more of each of R 3 and R 4 is an organic group having 1 to 20 carbon atoms, it is possible to obtain a photosensitive resin composition having excellent storage stability and an appropriate dissolution rate in an aqueous alkali solution. it can. When the number of carbon atoms in R 3 and R 4 exceeds 20, it will not dissolve in the alkaline aqueous solution. From the above, R 3 and R 4 are each required to be a hydrocarbon group having 1 to 20 carbon atoms in an amount of 50 mol% or more.

(B)一般式(1)で表される繰り返し単位を主成分とする樹脂において、一般式(1)で表される繰り返し単位の数は、10〜100,000の範囲が好ましい。ポリマーのアルカリ現像液への溶解性の面から、繰り返し単位数は1,000以下がより好ましく、100以下がより好ましい。また、伸度向上の面から、繰り返し単位は20以上がより好ましい。繰り返し単位数は、繰り返し単位の分子量をM、ポリマーの重量平均分子量をMwとすると、Mw/Mである。本発明における繰り返し単位数は、ポリスチレン換算によるGPC測定を用いて算出する値をいう。   (B) In the resin whose main component is the repeating unit represented by the general formula (1), the number of the repeating units represented by the general formula (1) is preferably in the range of 10 to 100,000. In view of solubility of the polymer in an alkali developer, the number of repeating units is more preferably 1,000 or less, and even more preferably 100 or less. Further, the number of repeating units is more preferably 20 or more from the viewpoint of improving the elongation. The number of repeating units is Mw / M, where M is the molecular weight of the repeating unit and Mw is the weight average molecular weight of the polymer. The number of repeating units in the present invention refers to a value calculated using GPC measurement in terms of polystyrene.

(B)一般式(1)で表される繰り返し単位を主成分とする樹脂は、次の方法により合成される。例えば、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミン化合物、モノアミノ化合物と縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸を酸クロリド化し、ジアミン化合物、モノアミノ化合物と反応させる方法、低温中でテトラカルボン酸二無水物とジアミン化合物、末端封止に用いるモノアミノ化合物を反応させた後に、グリシジル化合物、アセタール化合物などのエステル化剤でカルボン酸をエステル化する方法などがある。   (B) The resin mainly composed of the repeating unit represented by the general formula (1) is synthesized by the following method. For example, a method of reacting in the presence of a diamine compound, a monoamino compound and a condensing agent after obtaining a diester with a tetracarboxylic dianhydride and an alcohol, a diester being obtained with a tetracarboxylic dianhydride and an alcohol, and the remaining A method of acidifying dicarboxylic acid and reacting with diamine compound, monoamino compound, after reacting tetracarboxylic dianhydride and diamine compound, monoamino compound used for terminal blocking at low temperature, glycidyl compound, acetal compound, etc. There is a method of esterifying a carboxylic acid with an esterifying agent.

上記の方法で一般式(1)で表される繰り返し単位を主成分とする樹脂を重合させた後の重合液には、未反応のモノマーや、2量体や3量体などのオリゴマー成分や、縮合剤またはジカルボン酸の酸クロリド化に伴う塩化物あるいはエステル化剤などエステル化によって発生する不純物が含まれている。したがって、樹脂の純度を向上させるため多量の水やメタノール等の有機溶剤に投入し、沈殿させて濾別乾燥し、単離することがより好ましい。この場合、得られる樹脂は固体状のものとなり、ポジ型感光性樹脂組成物を得るためには有機溶剤に溶解させる必要がある。   In the polymerization liquid after polymerizing the resin mainly composed of the repeating unit represented by the general formula (1) by the above method, unreacted monomers, oligomer components such as dimers and trimers, In addition, impurities generated by esterification such as chlorides or esterification agents accompanying acid chloride conversion of a condensing agent or dicarboxylic acid are contained. Therefore, in order to improve the purity of the resin, it is more preferable to put it in a large amount of water or an organic solvent such as methanol, precipitate it, filter it, dry it and isolate it. In this case, the resulting resin is in a solid state and needs to be dissolved in an organic solvent in order to obtain a positive photosensitive resin composition.

(B)一般式(1)で表される繰り返し単位を主成分とする樹脂の含有量は、(A)ノボラック樹脂100重量部に対し、30重量部以上が好ましく、40重量部以上がより好ましい。この範囲であれば、熱硬化後の機械特性がより向上する。また、感度をより向上させるためには、100重量部以下が好ましく、80重量部以下がより好ましい。   (B) The content of the resin whose main component is the repeating unit represented by the general formula (1) is preferably 30 parts by weight or more, more preferably 40 parts by weight or more with respect to 100 parts by weight of the (A) novolak resin. . If it is this range, the mechanical characteristic after thermosetting will improve more. Moreover, in order to improve a sensitivity more, 100 weight part or less is preferable and 80 weight part or less is more preferable.

次に、(C)キノンジアジド化合物について説明する。キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。露光部と未露光部のコントラストの観点から、官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(365nm)、h線(405nm)、g線(436nm)に感光するポジ型の感光性樹脂組成物を得ることができる。   Next, (C) a quinonediazide compound will be described. The quinonediazide compound includes a polyhydroxy compound in which a sulfonic acid of quinonediazide is bonded with an ester, a polyamino compound in which a sulfonic acid of quinonediazide is bonded to a sulfonamide, a sulfonic acid of quinonediazide in an ester bond and / or sulfone Examples include amide-bonded ones. From the viewpoint of the contrast between the exposed area and the unexposed area, it is preferable that 50 mol% or more of the entire functional group is substituted with quinonediazide. By using such a quinonediazide compound, it is possible to obtain a positive photosensitive resin composition that is sensitive to i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp that is a general ultraviolet ray. it can.

本発明において、キノンジアジドは5−ナフトキノンジアジドスルホニル基、4−ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。また、同一分子中に4−ナフトキノンジアジドスルホニル基、5−ナフトキノンジアジドスルホニル基を併用した、ナフトキノンジアジドスルホニルエステル化合物を用いることもできるし、4−ナフトキノンジアジドスルホニルエステル化合物と5−ナフトキノンジアジドスルホニルエステル化合物を併用することもできる。   In the present invention, quinonediazide is preferably a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group. Further, a naphthoquinone diazide sulfonyl ester compound in which a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group are used in the same molecule can be used, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. Can also be used together.

また、キノンジアジド化合物の分子量は1500以下が好ましく、1200以下がより好ましい。分子量が1500以下であれば、パターン形成後の熱処理においてキノンジアジド化合物が十分に熱分解し、耐熱性、機械特性、接着性に優れた硬化膜を得ることができる。一方、300以上が好ましく、350以上がより好ましい。   In addition, the molecular weight of the quinonediazide compound is preferably 1500 or less, and more preferably 1200 or less. When the molecular weight is 1500 or less, the quinonediazide compound is sufficiently thermally decomposed in the heat treatment after pattern formation, and a cured film having excellent heat resistance, mechanical properties, and adhesiveness can be obtained. On the other hand, 300 or more is preferable and 350 or more is more preferable.

また、(C)キノンジアジド化合物の含有量は、(A)ノボラック樹脂と(B)成分の樹脂の総量100重量部に対し、好ましくは1重量部以上、より好ましくは3重量部以上であり、また、好ましくは50重量部以下、より好ましくは40重量部以下である。   The content of the (C) quinonediazide compound is preferably 1 part by weight or more, more preferably 3 parts by weight or more, with respect to 100 parts by weight of the total amount of the (A) novolak resin and the resin of the component (B). , Preferably 50 parts by weight or less, more preferably 40 parts by weight or less.

本発明に用いられるキノンジアジド化合物は、特定のフェノール化合物から、次の方法により合成される。例えば、5−ナフトキノンジアジドスルホニルクロライドとフェノール化合物をトリエチルアミン存在下で反応させる方法などがある。フェノール化合物の合成方法は、酸触媒下で、α−(ヒドロキシフェニル)スチレン誘導体を多価フェノール化合物と反応させる方法などがある。   The quinonediazide compound used in the present invention is synthesized from a specific phenol compound by the following method. For example, there is a method of reacting 5-naphthoquinonediazide sulfonyl chloride and a phenol compound in the presence of triethylamine. Examples of the method for synthesizing a phenol compound include a method in which an α- (hydroxyphenyl) styrene derivative is reacted with a polyhydric phenol compound under an acid catalyst.

本発明において、ポジ型感光性樹脂組成物は、加熱硬化したときに優れた機械特性を得るために、アルコキシメチル基を含有する化合物を含有してもよい。また、下地基板との接着性を向上させる目的でシラン化合物を含有してもよい。感度を向上させる目的でフェノール性水酸基を含有する化合物を含有してもよい。下地基板との塗れ性を向上させる目的で界面活性剤、乳酸エチルやプロピレングリコールモノメチルエーテルアセテートなどのエステル類、エタノールなどのアルコール類、シクロヘキサノン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類を含有してもよい。また、二酸化ケイ素、二酸化チタンなどの無機粒子、あるいはポリイミドの粉末などを含有することもできる。   In the present invention, the positive photosensitive resin composition may contain a compound containing an alkoxymethyl group in order to obtain excellent mechanical properties when heated and cured. Moreover, you may contain a silane compound in order to improve adhesiveness with a base substrate. You may contain the compound containing a phenolic hydroxyl group for the purpose of improving a sensitivity. Surfactants, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, alcohols such as ethanol, ketones such as cyclohexanone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane for the purpose of improving the coatability with the base substrate May also be included. Further, inorganic particles such as silicon dioxide and titanium dioxide, polyimide powder, and the like can also be contained.

本発明において、ポジ型感光性樹脂組成物は有機溶剤を含有してもよい。有機溶剤としては、N−メチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類などが挙げられる。   In the present invention, the positive photosensitive resin composition may contain an organic solvent. Organic solvents include polar aprotic solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether Ethers such as acetone, methyl ethyl ketone, diisobutyl ketone and diacetone alcohol, esters such as ethyl acetate, propylene glycol monomethyl ether acetate and ethyl lactate, and aromatic hydrocarbons such as toluene and xylene .

本発明においては、これらの溶剤を単独、または2種以上使用することができる。溶剤の含有量は、(a)ノボラック樹脂と(b)成分のポリマーの総量100重量部に対して、好ましくは50重量部以上、より好ましくは100重量部以上であり、また、好ましくは2000重量部以下、より好ましくは1500重量部以下である。   In the present invention, these solvents can be used alone or in combination of two or more. The content of the solvent is preferably 50 parts by weight or more, more preferably 100 parts by weight or more, and preferably 2000 parts by weight with respect to 100 parts by weight of the total amount of the polymer of (a) novolak resin and component (b). Part or less, more preferably 1500 parts by weight or less.

本発明のポジ型感光性樹脂組成物の製造方法を説明する。まず、(I)(a)前記ノボラック樹脂を有機溶剤に溶解してなる溶液、および(b)一般式(1)で表される繰り返し単位を主成分とする樹脂を有機溶剤に溶解してなる溶液を用意する工程について説明する。なお、いずれの溶液においても、有機溶剤としては先に挙げたものを用いることができる。   The manufacturing method of the positive photosensitive resin composition of this invention is demonstrated. First, (I) (a) a solution obtained by dissolving the novolak resin in an organic solvent, and (b) a resin containing a repeating unit represented by the general formula (1) as a main component in an organic solvent. The process for preparing the solution will be described. In any of the solutions, the organic solvents listed above can be used.

ノボラック樹脂を有機溶剤に溶解させ、(a)ノボラック樹脂を有機溶剤に溶解してなる溶液を用意する。ノボラック樹脂と有機溶剤との混合液を30〜60℃で溶解して得られる溶液が好ましい。溶解する際の温度が30℃以上であれば、溶解工程に必要な時間が短くなる。また、初期感度をより向上させるためには、60℃以下が好ましい。   A novolac resin is dissolved in an organic solvent, and (a) a solution prepared by dissolving the novolac resin in the organic solvent is prepared. A solution obtained by dissolving a mixed solution of a novolak resin and an organic solvent at 30 to 60 ° C. is preferable. If the temperature at the time of melting is 30 ° C. or higher, the time required for the melting step is shortened. Moreover, in order to improve initial sensitivity more, 60 degrees C or less is preferable.

一般式(1)で表される繰り返し単位を主成分とする樹脂を有機溶剤に溶解させ、(b)一般式(1)で表される繰り返し単位を主成分とする樹脂を有機溶剤に溶解してなる溶液を用意する。なお、先に述べたように(B)成分の樹脂は再沈殿することが好ましく、ここで得られる樹脂は固体状となることから、有機溶剤に溶解することが必要となる。一般式(1)で表される繰り返し単位を主成分とする樹脂と有機溶剤との混合液を30〜60℃で溶解して得られる溶液が好ましい。30℃以上であれば溶解工程に必要な時間が短くなる。また、初期感度をより向上させるためには、60℃以下が好ましく、50℃以下がより好ましい。   A resin mainly composed of the repeating unit represented by the general formula (1) is dissolved in an organic solvent, and (b) a resin mainly composed of the repeating unit represented by the general formula (1) is dissolved in the organic solvent. Prepare a solution. As described above, the resin of component (B) is preferably re-precipitated. Since the resin obtained here is in a solid state, it must be dissolved in an organic solvent. A solution obtained by dissolving a mixed solution of a resin mainly composed of the repeating unit represented by the general formula (1) and an organic solvent at 30 to 60 ° C. is preferable. If it is 30 degreeC or more, time required for a melt | dissolution process will become short. Moreover, in order to improve initial sensitivity more, 60 degrees C or less is preferable and 50 degrees C or less is more preferable.

また、上記(I)の工程において、生産効率の点から、溶解時間は20時間以下が好ましく、10時間以下がより好ましい。   In the step (I), from the viewpoint of production efficiency, the dissolution time is preferably 20 hours or less, and more preferably 10 hours or less.

次に、(II)前記(a)溶液と(b)溶液を混合する工程について説明する。(a)溶液と(b)溶液を混合する際の液温は、得られるポジ型感光性樹脂組成物の初期感度をより向上させるために、いずれも40℃以下が好ましい。より好ましくは10℃以上30℃以下である。初期感度をより向上させるためには、混合工程の時間は2時間以内が好ましく、1時間以内がより好ましい。   Next, (II) the step of mixing the solution (a) and the solution (b) will be described. In order to further improve the initial sensitivity of the obtained positive photosensitive resin composition, the liquid temperature at the time of mixing the (a) solution and the (b) solution is preferably 40 ° C. or lower. More preferably, it is 10 degreeC or more and 30 degrees C or less. In order to further improve the initial sensitivity, the time for the mixing step is preferably within 2 hours, more preferably within 1 hour.

本発明の特徴は、(A)ノボラック樹脂と(B)一般式(1)で表される繰り返し単位を主成分とする樹脂を別々に溶解することである。先に述べたように、(B)成分の樹脂は再沈殿して固体樹脂として用いられることが一般的である。このような固体樹脂とノボラック樹脂とを併用する場合、これらをまとめて有機溶剤に溶解するためには、(A)成分と(B)成分の併存条件下で加熱することが必要となる。かかる方法によって得られるポジ型感光性樹脂組成物は、十分な感度を得ることができなかった。その理由は明らかではないが、両樹脂の併存条件下で加熱することにより、ノボラック樹脂が酸化等の影響により劣化することがその原因の一つとして考えられる。そこで、本発明においては、各々の樹脂を別々に溶解させることにより、(A)ノボラック樹脂と(B)一般式(1)で表される繰り返し単位を主成分とする樹脂の混合工程を低温かつ短時間でできるので、混合状態で長時間加熱する必要がなくなり、高感度なポジ型感光性樹脂組成物を得ることができる。   A feature of the present invention is that (A) a novolak resin and (B) a resin mainly composed of a repeating unit represented by the general formula (1) are dissolved separately. As described above, the resin of component (B) is generally re-precipitated and used as a solid resin. When such a solid resin and a novolak resin are used in combination, it is necessary to heat them under the coexistence conditions of the component (A) and the component (B) in order to dissolve them together in an organic solvent. The positive photosensitive resin composition obtained by such a method could not obtain sufficient sensitivity. The reason is not clear, but it is considered that one reason is that the novolak resin deteriorates due to the influence of oxidation or the like by heating under the coexistence conditions of both resins. Therefore, in the present invention, by mixing each resin separately, the mixing step of (A) a novolac resin and (B) a resin mainly composed of a repeating unit represented by the general formula (1) is performed at a low temperature and Since it can be done in a short time, it is not necessary to heat in a mixed state for a long time, and a highly sensitive positive photosensitive resin composition can be obtained.

(C)キノンジアジド化合物および必要によりその他成分を有機溶剤に溶解する順序は、特に限定されない。(a)溶液または(b)溶液に加えてもよく、また、(a)溶液と(b)溶液を混合した後に加えもよい。   (C) The order in which the quinonediazide compound and, if necessary, other components are dissolved in an organic solvent is not particularly limited. You may add to (a) solution or (b) solution, and may add after mixing (a) solution and (b) solution.

各工程における溶解方法は、ガラス製のフラスコやステンレス製の容器に入れてメカニカルスターラーなどによって撹拌溶解させる方法、超音波で溶解させる方法、遊星式撹拌脱泡装置で撹拌溶解させる方法などが挙げられる。   Examples of the dissolution method in each step include a method of stirring and dissolving with a mechanical stirrer in a glass flask or stainless steel container, a method of dissolving with ultrasonic waves, a method of stirring and dissolving with a planetary stirring and deaerator, and the like. .

各工程において、異物を除去するために0.1μm〜5μmのポアサイズのフィルターで濾過してもよい。   In each step, filtration may be performed with a filter having a pore size of 0.1 μm to 5 μm in order to remove foreign substances.

次に、本発明のポジ型感光性樹脂組成物を用いて耐熱性樹脂パターンを形成する方法について説明する。   Next, a method for forming a heat-resistant resin pattern using the positive photosensitive resin composition of the present invention will be described.

ポジ型感光性樹脂組成物を基板上に塗布する。基板としては、シリコンウエハー、セラミックス類、ガリウムヒ素、金属、ガラス、金属酸化絶縁膜、窒化ケイ素、ITOなどが挙げられるが、これらに限定されない。塗布方法としては、スピンナを用いた回転塗布、スプレー塗布、ロールコーティング、スリットダイコーティングなどの方法が挙げられる。塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、0.1〜150μmになるように塗布する。   A positive photosensitive resin composition is applied on the substrate. Examples of the substrate include, but are not limited to, a silicon wafer, ceramics, gallium arsenide, metal, glass, metal oxide insulating film, silicon nitride, and ITO. Examples of the coating method include spin coating using a spinner, spray coating, roll coating, and slit die coating. The coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but is usually applied so that the film thickness after drying is 0.1 to 150 μm.

次に、ポジ型感光性樹脂組成物を塗布した基板を乾燥して、感光性樹脂膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃〜150℃の範囲で1分〜数時間行うことが好ましい。   Next, the substrate coated with the positive photosensitive resin composition is dried to obtain a photosensitive resin film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like in the range of 50 ° C. to 150 ° C. for 1 minute to several hours.

次に、この感光性樹脂膜上に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などが挙げられるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。   Next, the photosensitive resin film is exposed to actinic radiation through a mask having a desired pattern. Examples of actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays. In the present invention, i rays (365 nm), h rays (405 nm), and g rays (436 nm) of a mercury lamp are used. preferable.

感光性樹脂膜から耐熱性樹脂のパターンを形成するには、露光後、現像液を用いて露光部を除去すればよい。現像液は、テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像後は水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。   In order to form a pattern of a heat resistant resin from the photosensitive resin film, the exposed portion may be removed using a developer after exposure. The developer is an aqueous solution of tetramethylammonium, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylamino An aqueous solution of a compound exhibiting alkalinity such as ethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine and the like is preferable. In some cases, these alkaline aqueous solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, dimethylacrylamide, methanol, ethanol, Add alcohols such as isopropyl alcohol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone alone or in combination of several kinds. Also good. After development, it is preferable to rinse with water. Here, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.

現像後、200℃〜500℃の温度を加えて耐熱性樹脂被膜に変換する。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分〜5時間実施する。一例としては、130℃、200℃、350℃で各30分ずつ熱処理する。あるいは室温より320℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。   After development, a temperature of 200 ° C. to 500 ° C. is applied to convert it to a heat resistant resin film. This heat treatment is carried out for 5 minutes to 5 hours by selecting the temperature and increasing the temperature stepwise or by selecting a certain temperature range and continuously increasing the temperature. As an example, heat treatment is performed at 130 ° C., 200 ° C., and 350 ° C. for 30 minutes each. Alternatively, a method such as linearly raising the temperature from room temperature to 320 ° C. over 2 hours can be mentioned.

本発明のポジ型感光性樹脂組成物により形成した耐熱性樹脂被膜は、半導体のパッシベーション膜、半導体素子の表面保護膜、高密度実装用多層配線の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられる。   The heat-resistant resin film formed by the positive photosensitive resin composition of the present invention includes a semiconductor passivation film, a surface protection film of a semiconductor element, an interlayer insulating film of a multilayer wiring for high-density mounting, an insulating layer of an organic electroluminescent element, etc. It is suitably used for applications.

以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中のポジ型感光性樹脂組成物の評価は以下の方法で行った。   Hereinafter, the present invention will be described with reference to examples and the like, but the present invention is not limited to these examples. In addition, evaluation of the positive photosensitive resin composition in an Example was performed with the following method.

(1)溶解性評価
ポジ型感光性樹脂組成物(以下ワニスと呼ぶ)を作製する際の溶解工程において、ノボラック樹脂とポリイミド前駆体が溶解するまでの時間を目視にて評価した。樹脂が溶解する時間は短い方がよく、各々の樹脂が溶解するまでの時間がいずれも10時間以内であれば○、いずれかが10時間以上20時間未満であれば△、いずれかが20時間で溶解しない場合は×とした。
(1) Solubility Evaluation In the dissolution step when producing a positive photosensitive resin composition (hereinafter referred to as varnish), the time until the novolak resin and the polyimide precursor were dissolved was visually evaluated. The time for the resin to dissolve is better, and if the time until each resin dissolves is within 10 hours, ○, if any is 10 hours or more and less than 20 hours, Δ is either 20 hours When it was not dissolved, it was marked as x.

(2)パターン加工性評価
感光性樹脂膜の作製
6インチシリコンウエハー上に、ワニスをプリベーク後の膜厚T1=8.5μmとなるように塗布し、ついでホットプレート(東京エレクトロン(株)製の塗布現像装置Mark−7)を用いて、120℃で3分プリベークすることにより、感光性樹脂膜を得た。
(2) Evaluation of pattern processability Production of photosensitive resin film On a 6-inch silicon wafer, varnish was applied so that the film thickness after pre-baking was T1 = 8.5 μm, and then hot plate (manufactured by Tokyo Electron Ltd.) A photosensitive resin film was obtained by pre-baking at 120 ° C. for 3 minutes using a coating and developing apparatus Mark-7).

膜厚の測定
大日本スクリーン製造(株)製ラムダエースSTM−602を使用し、プリベーク後および現像後の膜の膜厚を、屈折率1.629で測定した。
Measurement of film thickness Using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd., the film thickness after pre-baking and after development was measured at a refractive index of 1.629.

露光
露光機(GCA社製i線ステッパーDSW−8570i)に、パターンの切られたレチクルをセットし、i線(365nm)の露光波長で、露光量を100mJ/cm〜800mJ/cmの範囲で20mJ/cm刻みで変化させて、感光性樹脂膜を露光した。
Exposure exposure machine (GCA Corp. i-line stepper DSW-8570i), sets the reticle cut the pattern, at the exposure wavelength of i-line (365 nm), the range the exposure amount of 100mJ / cm 2 ~800mJ / cm 2 The photosensitive resin film was exposed by changing in steps of 20 mJ / cm 2 .

現像
東京エレクトロン(株)製Mark−7の現像装置を用い、50回転で水酸化テトラメチルアンモニウムの2.38重量%水溶液を10秒間、露光後の膜に噴霧した。この後、0回転で30秒間静置し、400回転で水にてリンス処理、3000回転で10秒振り切り乾燥した。
Development A 2.38 wt% aqueous solution of tetramethylammonium hydroxide was sprayed on the exposed film for 10 seconds at 50 revolutions using a Mark-7 developing device manufactured by Tokyo Electron Ltd. Then, it was allowed to stand for 30 seconds at 0 rotation, rinsed with water at 400 rotation, and shaken and dried for 10 seconds at 3000 rotation.

感度の算出
露光および現像後、50μmのライン・アンド・スペースパターン(1L/1S)が、1対1の幅に形成される最小露光時間(以下、これを最適露光時間という)Eop1を求めた。このEop1の値が300mJ/cm以下なら良好、300mJ/cmを超える場合は不良とした。
Calculation of Sensitivity After exposure and development, the minimum exposure time (hereinafter referred to as the optimum exposure time) Eop1 at which a 50 μm line and space pattern (1L / 1S) is formed in a one-to-one width was determined. When the value of Eop1 was 300 mJ / cm 2 or less, it was good, and when it exceeded 300 mJ / cm 2 , it was regarded as defective.

(3)保存安定性評価
ワニスを黄色灯下23℃で14日間放置した後、上記の評価と同様に膜厚T1=8.5μmのプリベーク膜を作製し、露光、現像を行い、最適露光時間Eop2を求めた。Eop2−Eop1の値を算出し、この値の絶対値が50mJ/cm以下なら良好、50mJ/cmを超える場合は不良とした。
(3) Storage stability evaluation After leaving the varnish for 14 days at 23 ° C. under a yellow light, a prebaked film having a film thickness T1 = 8.5 μm was prepared, exposed and developed in the same manner as the above evaluation, and the optimal exposure time. Eop2 was determined. A value of Eop2-Eop1 was calculated, and if the absolute value of this value was 50 mJ / cm 2 or less, it was judged good, and if it exceeded 50 mJ / cm 2 , it was judged as bad.

合成例1 ヒドロキシル基含有ジアミンの合成
2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、−15℃に冷却した。ここに3−ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、−15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
Synthesis Example 1 Synthesis of hydroxyl group-containing diamine 18.3 g (0.05 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF) was added to 100 mL of acetone and 17.4 g of propylene oxide (0 3 mol) and cooled to -15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of dropping, the mixture was reacted at −15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.

固体30gを300mLのステンレスオートクレーブに入れ、メチルセルソルブ250mLに分散させ、5%パラジウム−炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミンを得た。   30 g of the solid was placed in a 300 mL stainless steel autoclave, dispersed in 250 mL of methyl cellosolve, and 2 g of 5% palladium-carbon was added. Hydrogen was introduced here with a balloon and the reduction reaction was carried out at room temperature. After about 2 hours, the reaction was terminated by confirming that the balloons did not squeeze any more. After completion of the reaction, the catalyst was filtered to remove the palladium compound as a catalyst, and the mixture was concentrated with a rotary evaporator to obtain a hydroxyl group-containing diamine represented by the following formula.

Figure 2009080390
Figure 2009080390

合成例2 ノボラック樹脂の合成
乾燥窒素気流下、m−クレゾール108.0g(1.00モル)、37重量%ホルムアルデヒド水溶液75.5g(ホルムアルデヒド0.93モル)、シュウ酸二水和物0.63g(0.005モル)、メチルイソブチルケトン264gを仕込んだ後、油浴中に浸し、反応液を還流させながら、4時間重縮合反応を行った。その後、油浴の温度を3時間かけて昇温し、その後に、フラスコ内の圧力を4.0kPa〜6.7kPaまで減圧し、揮発分を除去し、溶解している樹脂を室温まで冷却して、ノボラック樹脂のポリマー固体を得た。GPCから重量平均分子量は3,500であった。
Synthesis Example 2 Synthesis of Novolak Resin Under a dry nitrogen stream, 108.0 g (1.00 mol) of m-cresol, 75.5 g of 37 wt% formaldehyde aqueous solution (0.93 mol of formaldehyde), 0.63 g of oxalic acid dihydrate (0.005 mol) and 264 g of methyl isobutyl ketone were charged, followed by immersion in an oil bath, and a polycondensation reaction was performed for 4 hours while the reaction solution was refluxed. Thereafter, the temperature of the oil bath is raised over 3 hours, and then the pressure in the flask is reduced to 4.0 kPa to 6.7 kPa to remove volatile components, and the dissolved resin is cooled to room temperature. Thus, a polymer solid of novolak resin was obtained. From GPC, the weight average molecular weight was 3,500.

合成例3 ポリマーAの合成
乾燥窒素気流下、合成例1で得られたヒドロキシル基含有ジアミン化合物24.17g(0.040モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(SiDA)1.24g(0.005モル)をNMP50gに溶解させた。ここに3,3’,4,4’−ジフェニルエーテルテトラカルボン酸無水物(ODPA)15.51g(0.05モル)をNMP21gとともに加えて、20℃で1時間反応させ、次いで50℃で1時間反応させた。その後、末端封止剤として、4−エチニルアニリン1.17g(0.010モル)を加え、さらに50℃で1時間反応させた。その後、N,N−ジメチルホルムアミドジエチルアセタール13.2g(0.090モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で3時間攪拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。ポリマー固体を80℃の真空乾燥機で72時間乾燥しポリイミド前駆体のポリマーAを得た。GPCから繰り返し単位数を算出した結果、ポリマーAの繰り返し単位数は35であった。
Synthesis Example 3 Synthesis of Polymer A Under a dry nitrogen stream, 24.17 g (0.040 mol) of the hydroxyl group-containing diamine compound obtained in Synthesis Example 1 and 1,3-bis (3-aminopropyl) tetramethyldisiloxane ( 1.24 g (0.005 mol) of SiDA was dissolved in 50 g of NMP. To this, 15.51 g (0.05 mol) of 3,3 ′, 4,4′-diphenyl ether tetracarboxylic anhydride (ODPA) was added together with 21 g of NMP and reacted at 20 ° C. for 1 hour, and then at 50 ° C. for 1 hour. Reacted. Thereafter, 1.17 g (0.010 mol) of 4-ethynylaniline was added as a terminal blocking agent, and the mixture was further reacted at 50 ° C. for 1 hour. Thereafter, a solution obtained by diluting 13.2 g (0.090 mol) of N, N-dimethylformamide diethyl acetal with 15 g of NMP was added dropwise over 10 minutes. After dropping, the mixture was stirred at 40 ° C. for 3 hours. After completion of the reaction, the solution was poured into 2 L of water, and a polymer solid precipitate was collected by filtration. The polymer solid was dried in a vacuum dryer at 80 ° C. for 72 hours to obtain a polyimide precursor polymer A. As a result of calculating the number of repeating units from GPC, the number of repeating units of Polymer A was 35.

合成例4 ポリマーBの合成
乾燥窒素気流下、4,4’−ジアミノフェニルエーテル48.1g、SiDA25.6gをNMP820gに溶解させ、ODPA105gを加え、10℃以上30℃以下となるよう調節しながら8時間撹拌して、ポリイミド前駆体のポリマー溶液Bを得た。
Synthesis Example 4 Synthesis of Polymer B In a dry nitrogen stream, 48.1 g of 4,4′-diaminophenyl ether and 25.6 g of SiDA were dissolved in 820 g of NMP, and 105 g of ODPA was added, while adjusting the temperature to be 10 ° C. or higher and 30 ° C. or lower. By stirring for a time, a polymer solution B of polyimide precursor was obtained.

実施例1〜23
GBL15gに合成例2で得られたノボラック樹脂7gを投入し、表1記載のノボラック樹脂溶解温度に温調し、目視で溶解を確認しながらノボラック樹脂の溶解時間として表1に示す時間攪拌し、(a)液を得た。次に、GBL15gに、合成例3で得られたポリマーA4g、キノンジアジド化合物としてMG−300(商品名、東洋合成工業(株)製)2.2gを投入し、表1記載のポリイミド前駆体溶解温度に温調し、目視で溶解を確認しながらポリイミド前駆体の溶解時間として表1に示す時間攪拌し、(b)液を得た。なお、このときのそれぞれの樹脂の溶解時間から樹脂の溶解性評価を行った。
Examples 1-23
7 g of the novolak resin obtained in Synthesis Example 2 was added to 15 g of GBL, the temperature was adjusted to the melting temperature of the novolak resin described in Table 1, and stirring was performed for the time shown in Table 1 as the dissolution time of the novolak resin while visually confirming the dissolution. (A) A liquid was obtained. Next, 4 g of the polymer A4g obtained in Synthesis Example 3 and 2.2 g of MG-300 (trade name, manufactured by Toyo Gosei Co., Ltd.) as the quinonediazide compound were added to 15 g of GBL, and the polyimide precursor dissolution temperature described in Table 1 was added. The solution was stirred for the time shown in Table 1 as the dissolution time of the polyimide precursor while visually confirming dissolution, to obtain a liquid (b). The resin solubility was evaluated from the dissolution time of each resin at this time.

さらに、(a)液と(b)液を各々表1記載の(a)液+(b)液混合温度に温調し、(a)液と(b)液を混合して攪拌し、ワニスを得た。(a)液と(b)液の混合時間は表1記載の(a)液+(b)液混合時間とした。得られたワニスを用いて前記のように、パターン加工性評価、保存安定性評価を行った。評価結果を表1に示す。   Furthermore, the liquid (a) and the liquid (b) are respectively adjusted to the temperature of the liquid mixture (a) liquid + (b) described in Table 1, the liquid (a) and the liquid (b) are mixed and stirred, and the varnish Got. The mixing time of liquid (a) and liquid (b) was set to (a) liquid + (b) liquid mixing time described in Table 1. Using the obtained varnish, pattern processability evaluation and storage stability evaluation were performed as described above. The evaluation results are shown in Table 1.

比較例1〜3
GBL30gに、合成例2で得られたノボラック樹脂7gを投入し、40℃に温調して攪拌し、目視で溶解を確認しながらノボラック樹脂の溶解時間として表2に示す時間溶解させた。次に反応液を表2記載のポリイミド前駆体溶解温度に温調し、合成例3で得られたポリマーA4g、キノンジアジド化合物としてMG−300(商品名、東洋合成工業(株)製)2.2gを投入し、目視で溶解を確認しながらポリイミド前駆体の溶解時間として表2に示す時間攪拌してワニスを得た。なお、このときの樹脂の溶解時間から樹脂の溶解性評価を行った。得られたワニスを用いて前記のようにパターン加工性評価、保存安定性評価を行った。評価結果を表2に示す。
Comparative Examples 1-3
7 g of the novolak resin obtained in Synthesis Example 2 was added to 30 g of GBL, and the temperature was adjusted to 40 ° C. and stirred, and dissolved for the time shown in Table 2 as the dissolution time of the novolak resin while visually confirming dissolution. Next, the temperature of the reaction solution was adjusted to the polyimide precursor dissolution temperature described in Table 2, and the polymer A4g obtained in Synthesis Example 3 and MG-300 (trade name, manufactured by Toyo Gosei Co., Ltd.) 2.2 g as the quinonediazide compound. Was added and stirred for the time shown in Table 2 as dissolution time of the polyimide precursor while visually confirming dissolution to obtain a varnish. The resin solubility was evaluated from the resin dissolution time at this time. Using the obtained varnish, pattern processability evaluation and storage stability evaluation were performed as described above. The evaluation results are shown in Table 2.

比較例4
GBL30gに、合成例2で得られたノボラック樹脂7g、合成例3で得られたポリマーA4g、キノンジアジド化合物としてMG−300(商品名、東洋合成工業(株)製)2.2gを投入し、40℃に温調し目視で溶解を確認しながら5時間攪拌し、ワニスを得た。なお、このときの樹脂の溶解時間は5時間であり、溶解性は○と評価した。得られたワニスを用いて前記のように、パターン加工性評価、保存安定性評価を行った結果を表3に示す。
Comparative Example 4
Into 30 g of GBL, 7 g of the novolak resin obtained in Synthesis Example 2, 4 g of the polymer A obtained in Synthesis Example 3, and 2.2 g of MG-300 (trade name, manufactured by Toyo Gosei Co., Ltd.) as a quinonediazide compound were added. The mixture was stirred at 5 ° C. while visually confirming dissolution to obtain a varnish. At this time, the dissolution time of the resin was 5 hours, and the solubility was evaluated as ◯. Table 3 shows the results of pattern workability evaluation and storage stability evaluation as described above using the obtained varnish.

比較例5
GBL15gに合成例2で得られたノボラック樹脂7g、キノンジアジド化合物としてMG−300(商品名、東洋合成工業(株)製)2.2gを投入し、温度を40℃に温調し、目視で溶解を確認しながら4時間攪拌し、(a)液を得た。なお、このときの樹脂の溶解時間は4時間であり、溶解性は○と評価した。次に、合成例4で得られたポリマーB溶液20gと(a)液を各々25℃に温調し、ポリマーB溶液と(a)液を混合して30分攪拌し、ワニスを得た。得られたワニスを用いて前記のように、パターン加工性評価、保存安定性評価を行った結果を表3に示す。
Comparative Example 5
7 g of the novolak resin obtained in Synthesis Example 2 and 2.2 g of MG-300 (trade name, manufactured by Toyo Gosei Co., Ltd.) as the quinonediazide compound were added to 15 g of GBL, and the temperature was adjusted to 40 ° C. and dissolved visually. The mixture was stirred for 4 hours while confirming the above to obtain a liquid (a). At this time, the dissolution time of the resin was 4 hours, and the solubility was evaluated as ◯. Next, 20 g of the polymer B solution obtained in Synthesis Example 4 and the liquid (a) were temperature-controlled at 25 ° C., and the polymer B solution and the liquid (a) were mixed and stirred for 30 minutes to obtain a varnish. Table 3 shows the results of pattern workability evaluation and storage stability evaluation as described above using the obtained varnish.

Figure 2009080390
Figure 2009080390

Figure 2009080390
Figure 2009080390

Figure 2009080390
Figure 2009080390

Claims (3)

(A)ノボラック樹脂、(B)一般式(1)で表される繰り返し単位を主成分とする樹脂および(C)キノンジアジド化合物を含有するポジ型感光性樹脂組成物の製造方法であって、少なくとも
(I)(a)前記ノボラック樹脂を有機溶剤に溶解してなる溶液、および(b)前記一般式(1)で表される繰り返し単位を主成分とする樹脂を有機溶剤に溶解してなる溶液を用意する工程、
(II)前記(a)溶液と(b)溶液を混合する工程、
を有するポジ型感光性樹脂組成物の製造方法。
Figure 2009080390
(上記一般式(1)中、Rは炭素数2以上の3価〜8価の有機基、Rは炭素数2以上の2価〜8価の有機基を示す。RおよびRはそれぞれ同じでも異なっていてもよく、水素または炭素数1〜20の有機基を示す。ただし、R、Rの各々50モル%以上は炭素数1〜20の有機基である。mは1または2、lは0〜2の整数を示す。pおよびqは0〜4の整数を示す。ただしp+q>0である。)
(A) a novolak resin, (B) a resin having a repeating unit represented by the general formula (1) as a main component, and (C) a positive photosensitive resin composition containing a quinonediazide compound, (I) (a) a solution obtained by dissolving the novolak resin in an organic solvent, and (b) a solution obtained by dissolving a resin containing the repeating unit represented by the general formula (1) as a main component in an organic solvent. Preparing the process,
(II) a step of mixing the solution (a) and the solution (b),
The manufacturing method of the positive photosensitive resin composition which has this.
Figure 2009080390
(In the general formula (1), R 1 represents a trivalent to octavalent organic group having 2 or more carbon atoms, and R 2 represents a divalent to octavalent organic group having 2 or more carbon atoms. R 3 and R 4 May be the same or different and each represents hydrogen or an organic group having 1 to 20 carbon atoms, provided that 50 mol% or more of each of R 3 and R 4 is an organic group having 1 to 20 carbon atoms. 1 or 2, l represents an integer of 0 to 2. p and q represent an integer of 0 to 4, provided that p + q> 0.
前記(a)ノボラック樹脂を有機溶剤に溶解してなる溶液が、ノボラック樹脂と有機溶剤との混合液を30〜60℃で溶解して得られた溶液であり、かつ、前記(b)一般式(1)で表される繰り返し単位を主成分とする樹脂を有機溶剤に溶解してなる溶液が、一般式(1)で表される繰り返し単位を主成分とする樹脂と有機溶剤との混合液を30〜60℃で溶解して得られた溶液である請求項1記載のポジ型感光性樹脂組成物の製造方法。 The solution obtained by dissolving (a) novolak resin in an organic solvent is a solution obtained by dissolving a mixed solution of novolak resin and organic solvent at 30 to 60 ° C., and (b) the general formula A solution obtained by dissolving a resin having a repeating unit represented by (1) as a main component in an organic solvent is a mixture of a resin having a repeating unit represented by general formula (1) as a main component and an organic solvent. The method for producing a positive photosensitive resin composition according to claim 1, wherein the solution is a solution obtained by dissolving at 30 to 60 ° C. 前記(II)(a)溶液と(b)溶液を混合する工程における(a)溶液と(b)溶液の液温がいずれも40℃以下であることを特徴とする請求項2記載のポジ型感光性樹脂組成物の製造方法。 The positive type according to claim 2, wherein the liquid temperatures of the (a) solution and the (b) solution in the step of mixing the (II) (a) solution and the (b) solution are both 40 ° C. or less. A method for producing a photosensitive resin composition.
JP2007250822A 2007-09-27 2007-09-27 Method for producing positive photosensitive resin composition Active JP4946757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250822A JP4946757B2 (en) 2007-09-27 2007-09-27 Method for producing positive photosensitive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250822A JP4946757B2 (en) 2007-09-27 2007-09-27 Method for producing positive photosensitive resin composition

Publications (2)

Publication Number Publication Date
JP2009080390A true JP2009080390A (en) 2009-04-16
JP4946757B2 JP4946757B2 (en) 2012-06-06

Family

ID=40655163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250822A Active JP4946757B2 (en) 2007-09-27 2007-09-27 Method for producing positive photosensitive resin composition

Country Status (1)

Country Link
JP (1) JP4946757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120344A (en) * 2011-12-08 2013-06-17 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition manufacturing method, patterned cured film manufacturing method and electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248626A (en) * 1994-01-21 1995-09-26 Shin Etsu Chem Co Ltd Photosensitive resin composition
JP2004189849A (en) * 2002-12-10 2004-07-08 Sumitomo Bakelite Co Ltd Method for producing photosensitive resin composition
JP2005266673A (en) * 2004-03-22 2005-09-29 Kyocera Chemical Corp Color filter, liquid crystal display apparatus, positive photosensitive resin composition and method for manufacturing spacer
JP2005352004A (en) * 2004-06-09 2005-12-22 Toray Ind Inc Positive photosensitive resin precursor composition
JP2007156243A (en) * 2005-12-07 2007-06-21 Nissan Chem Ind Ltd Positive photosensitive resin composition and its cured film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248626A (en) * 1994-01-21 1995-09-26 Shin Etsu Chem Co Ltd Photosensitive resin composition
JP2004189849A (en) * 2002-12-10 2004-07-08 Sumitomo Bakelite Co Ltd Method for producing photosensitive resin composition
JP2005266673A (en) * 2004-03-22 2005-09-29 Kyocera Chemical Corp Color filter, liquid crystal display apparatus, positive photosensitive resin composition and method for manufacturing spacer
JP2005352004A (en) * 2004-06-09 2005-12-22 Toray Ind Inc Positive photosensitive resin precursor composition
JP2007156243A (en) * 2005-12-07 2007-06-21 Nissan Chem Ind Ltd Positive photosensitive resin composition and its cured film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120344A (en) * 2011-12-08 2013-06-17 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition manufacturing method, patterned cured film manufacturing method and electronic component

Also Published As

Publication number Publication date
JP4946757B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP6724363B2 (en) Resin and photosensitive resin composition
TWI448512B (en) Polyimide and photoresist resin composition comprising thereof
JP4001569B2 (en) Soluble polyimide for photosensitive polyimide precursor and photosensitive polyimide precursor composition containing the same
JP2010209334A (en) Polyimide polymer, its copolymer, and positive photosensitive resin composition containing the same
WO2001040873A1 (en) Positive type photosensitive polyimide resin composition
JP5241280B2 (en) Positive photosensitive resin composition
JP4957467B2 (en) Diamine compound, heat resistant resin precursor and positive photosensitive resin composition using the same
JP2009258634A (en) Positive photosensitive resin composition
JP2011202059A (en) Resin and positive photosensitive resin composition
KR20200121253A (en) Positive photosensitive resin composition, patterning process, method of forming cured film, interlayer insulation film, surface protective film, and electronic component
JP5176600B2 (en) Positive photosensitive resin composition
JP4450136B2 (en) Positive photosensitive polyimide resin composition
JP2013205553A (en) Positive photosensitive resin composition
JP2016161894A (en) Photosensitive resin composition
JP5381491B2 (en) Resin and positive photosensitive resin composition
JP4942552B2 (en) Polyamide and positive photosensitive resin composition
JP2014178400A (en) Positive photosensitive resin composition
JP4931634B2 (en) Positive photosensitive resin composition
JP5129598B2 (en) Polycondensation compound and positive photosensitive resin composition
JP2007212602A (en) Positive photosensitive resin precursor composition
JP5088169B2 (en) Positive photosensitive resin composition
JP4186250B2 (en) Photosensitive heat resistant resin precursor composition
JP4946757B2 (en) Method for producing positive photosensitive resin composition
JP2014157297A (en) Positive photosensitive resin composition
JP2008058756A (en) Positive photosensitive resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4946757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3