JP2009079889A - Fin material - Google Patents

Fin material Download PDF

Info

Publication number
JP2009079889A
JP2009079889A JP2008198958A JP2008198958A JP2009079889A JP 2009079889 A JP2009079889 A JP 2009079889A JP 2008198958 A JP2008198958 A JP 2008198958A JP 2008198958 A JP2008198958 A JP 2008198958A JP 2009079889 A JP2009079889 A JP 2009079889A
Authority
JP
Japan
Prior art keywords
group
fin material
hydrophilic
branched
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008198958A
Other languages
Japanese (ja)
Inventor
Yuichiro Murayama
裕一郎 村山
Yoshiaki Kondo
義顕 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008198958A priority Critical patent/JP2009079889A/en
Publication of JP2009079889A publication Critical patent/JP2009079889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fin material having a sufficient hydrophilic property and capable of maintaining its effect sufficiently long, particularly, an aluminum fin material for a heat exchanger. <P>SOLUTION: This fin material is provided by coating a base material surface with a hydrophilic composition. The fin material is characterized in that in a coating surface, the maximum height Rmax of a projection is set to 0.1 μm-2 μm, and a contact angle to water in any before and after being soaked in water of 30°C for 500 hours, is set to 15°C or below. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フィン材、とくに熱交換器用として有用なアルミニウム製フィン材に関する。   The present invention relates to a fin material, particularly an aluminum fin material useful as a heat exchanger.

エアコン等に用いられる熱交換器は、冷房時に発生する凝集水が水滴となりフィン間にとどまることで水のブリッジが発生し、冷房能力が低下する。またフィン間に埃などが付着することでも、同様に冷房能力が低下する。
これらの課題を解決するため、熱交換器のフィン材表面を親水性組成物で処理することが知られている。
In a heat exchanger used for an air conditioner or the like, the condensed water generated at the time of cooling becomes water droplets and stays between the fins, so that a bridge of water is generated and the cooling capacity is lowered. In addition, the adhering of dust or the like between the fins similarly reduces the cooling capacity.
In order to solve these problems, it is known to treat the fin material surface of the heat exchanger with a hydrophilic composition.

例えば特許文献1には、(A)水分散性シリカに加水分解性アルコキシシラン基を含有する重合性ビニルシランモノマーを反応させてなる重合性ビニル基含有水性シリカ分散体に、重合性不飽和モノマー類を反応させた有機−無機複合体反応物、(B)硬化剤、(C)水酸基含有ポリエステル樹脂、(D)ピリチオン系防菌・防カビ剤、(E)シリコーン系エマルション、及び(F)アミンを含有する親水化処理組成物を、表面に塗布してなるアルミニウム製熱交換器フィンが開示されている。
特許文献2には、金属表面の全部又は一部を親水性物質でコーティングした表面が微細な凹凸構造を有し、該凹凸構造の高さが300μm 以下であり、平面視で該凹凸構造1cm2 あたりの実表面積が2cm2 以上であり、かつ該凹凸構造表面に平滑な剛体をあてたときの接触面積が剛体表面1cm2 あたり0.3cm2 以下である表面処理金属を有する熱交換器用フィンが開示されている。
特許文献3には、アルカリケイ酸塩(A)と、カルボニル基を有する低分子有機化合物(B)と、アクリルアミド共重合体またはその塩(C)と、シランカップリング剤(S)とを主成分としてなる親水性皮膜をフィンの表面に設けたアルミニウム製熱交換器が開示されている。
特許文献4には、高分子系抗菌剤と微粒子を含有し、40℃の水に120時間浸漬した時の溶出量が0.2g/m2 以下であり、水の接触角が25゜以下である抗菌性組成物で、かつ40℃の水に120時間浸漬した後の水の接触角が25゜以下であることを特徴とする熱交換器用フィン積層用抗菌性組成物が開示されている。
しかしながら、これらのフィン材は、十分な親水性を有しておらず、効果も不十分であった。また親水性の持続性においても不十分な面もあった。
特開平7−268009号公報 特開平10−26491号公報 特開平6−93209号公報 特開2000−191419号公報
For example, Patent Document 1 discloses (A) a polymerizable vinyl group-containing aqueous silica dispersion obtained by reacting a water-dispersible silica with a polymerizable vinylsilane monomer containing a hydrolyzable alkoxysilane group, and polymerizable unsaturated monomers. Reaction product of organic-inorganic composite, (B) curing agent, (C) hydroxyl group-containing polyester resin, (D) pyrithione antibacterial and antifungal agent, (E) silicone emulsion, and (F) amine An aluminum heat exchanger fin formed by applying a hydrophilization treatment composition containing the composition to the surface is disclosed.
In Patent Document 2, the surface of all or part of the metal surface coated with a hydrophilic substance has a fine concavo-convex structure, the concavo-convex structure has a height of 300 μm or less, and the concavo-convex structure 1 cm 2 in plan view. A fin for a heat exchanger having a surface-treated metal having an actual surface area of 2 cm 2 or more and a contact area of 0.3 cm 2 or less per 1 cm 2 of the rigid body surface when a smooth rigid body is applied to the surface of the uneven structure. It is disclosed.
Patent Document 3 mainly includes an alkali silicate (A), a low molecular organic compound (B) having a carbonyl group, an acrylamide copolymer or a salt thereof (C), and a silane coupling agent (S). An aluminum heat exchanger in which a hydrophilic film as a component is provided on the surface of a fin is disclosed.
Patent Document 4 contains a polymeric antibacterial agent and fine particles, has an elution amount of 0.2 g / m 2 or less when immersed in water at 40 ° C. for 120 hours, and a water contact angle of 25 ° or less. There is disclosed an antibacterial composition for laminating fins for heat exchangers, which is a certain antibacterial composition and has a contact angle of water of 25 ° or less after being immersed in water at 40 ° C. for 120 hours.
However, these fin materials do not have sufficient hydrophilicity and have insufficient effects. In addition, there was also an insufficient aspect in hydrophilic sustainability.
JP 7-268209 A JP 10-26491 A JP-A-6-93209 JP 2000-191419 A

本発明は、上記のような従来の課題を解決し、十分な親水性を有し、その効果も十分長く持続可能なフィン材、とくに熱交換器用アルミニウム製フィン材を提供することを目的とする。   An object of the present invention is to solve the conventional problems as described above, and to provide a fin material that has sufficient hydrophilicity and has a sufficiently long effect, and in particular, an aluminum fin material for a heat exchanger. .

上記課題は下記手段によって解決された。
1. 基材上に親水性組成物をコーティングしたフィン材であり、該コーティング表面は、突起の最大高さRmaxが0.1μm〜2μmであり、30℃の水に500時間浸漬させる前および浸漬させた後のいずれも水に対する接触角が15°以下であることを特徴とするフィン材。
2. 前記親水性組成物が、固形分として親水性ポリマーを50質量%以上含むことを特徴とする上記1に記載のフィン材。
3. 前記基材がアルミニウム製であることを特徴とする上記1または2に記載のフィン材。
4. 前記親水性ポリマーが、少なくとも、下記一般式(IV−a)で表される構造及び一般式(IV−b)で表される構造のうち少なくとも1種を有することを特徴とする上記1〜3のいずれかに記載のフィン材。
The above problems have been solved by the following means.
1. A fin material in which a hydrophilic composition is coated on a substrate, and the coating surface has a maximum height Rmax of a protrusion of 0.1 μm to 2 μm, and was immersed before and after being immersed in water at 30 ° C. for 500 hours. A fin material having a contact angle with water of 15 ° or less in any of the latter.
2. 2. The fin material according to 1 above, wherein the hydrophilic composition contains 50% by mass or more of a hydrophilic polymer as a solid content.
3. 3. The fin material as described in 1 or 2 above, wherein the substrate is made of aluminum.
4). The above-mentioned 1-3, wherein the hydrophilic polymer has at least one of a structure represented by the following general formula (IV-a) and a structure represented by the general formula (IV-b): The fin material according to any one of the above.

Figure 2009079889
Figure 2009079889

一般式(IV−a)および(IV−b)中、R〜Rはそれぞれ独立に水素原子又は炭素数8以下の炭化水素基を表す。Lは単結合又は多価の有機連結基を表す。Lは単結合、−CONH−、−NHCONH−、−OCONH−、−SONH−、および−SO−からなる群より選択される構造を1つ以上有する多価の有機連結基を表す。mは1〜3の整数を表す。x、yは組成比を表し、0<x<100、0<y<100である。Xは−OH、−OR、−COR、−CO、−CON(R)(R)、−N(R)(R)、−NHCOR、−NHCO、−OCON(R)(R)、−NHCON(R)(R)、−SO、−OSO、−SO、−NHSO、−SON(R)(R)、−N(R)(R)(R)、−N(R)(R)(Rc)(R)、−PO(R)(R)、−OPO(R)(R)、または−PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子または直鎖、分岐または環状のアルキル基を表し、Rは、直鎖、分岐または環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子または直鎖、分岐または環状のアルキル基、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、直鎖、分岐または環状のアルキル基、ハロゲン原子、無機アニオン、または有機アニオンを表す。)
5. 前記親水性組成物が、Si、Ti、Zr、Alから選択されるいずれかの元素を含むアルコキシド化合物を含有することを特徴とする上記1〜4のいずれかに記載のフィン材。
6. 上記1〜5のいずれかに記載のフィン材からなることを特徴とする熱交換器用フィン材。
In general formulas (IV-a) and (IV-b), R 1 to R 8 each independently represents a hydrogen atom or a hydrocarbon group having 8 or less carbon atoms. L 1 represents a single bond or a polyvalent organic linking group. L 2 represents a polyvalent organic linking group having one or more structures selected from the group consisting of a single bond, —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —. . m represents an integer of 1 to 3. x and y represent composition ratios, and 0 <x <100 and 0 <y <100. X represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e) ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group, R d represents a linear, branched or cyclic alkyl group, R e and R f independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium, and R g represents a linear, branched or cyclic alkyl group, a halogen atom, An inorganic anion or an organic anion is represented. )
5). 5. The fin material as described in any one of 1 to 4 above, wherein the hydrophilic composition contains an alkoxide compound containing any element selected from Si, Ti, Zr, and Al.
6). It consists of the fin material in any one of said 1-5, The fin material for heat exchangers characterized by the above-mentioned.

本発明のフィン材は、30℃の水に500時間浸漬させる前および浸漬させた後のいずれであっても水の接触角が15°以下であり、従来にない高い親水性を有する。このため、フィン材をエアコンの熱交換器として用いた場合、冷房時の水のブリッジを形成することがないほか、埃などがフィンに付着しても凝集水によりフィン表面を洗い流すことでクリーニングする効果もある。また長期間、水に浸漬させた後でも水の接触角が15°以下であり、高い親水性を長期間維持することができ、耐久性にも優れる。
さらに本発明のコーティング表面の突起の最大高さRmaxは、0.1μm〜2μmであり、十分な親水性と熱交換効率を維持することが可能である。
The fin material of the present invention has a water contact angle of 15 ° or less before and after being immersed in water at 30 ° C. for 500 hours, and has a high hydrophilicity that has not been conventionally obtained. For this reason, when the fin material is used as a heat exchanger for an air conditioner, it does not form a bridge of water during cooling, and even if dust adheres to the fin, it is cleaned by washing the fin surface with condensed water. There is also an effect. Moreover, even after being immersed in water for a long period of time, the contact angle of water is 15 ° or less, high hydrophilicity can be maintained for a long period of time, and durability is excellent.
Furthermore, the maximum height Rmax of the protrusion on the coating surface of the present invention is 0.1 μm to 2 μm, and it is possible to maintain sufficient hydrophilicity and heat exchange efficiency.

以下に、本発明について詳細に説明する。
本発明のフィン材は、基材上に、親水性組成物をコーティングしてなり、好ましくは前記親水性組成物は、固形分として親水性ポリマーを50質量%以上、好ましくは70〜95質量%含むものである。
好ましくは、親水性組成物は、親水性ポリマー鎖を有し、且つ、Si、Ti、Zr、Alから選択される元素のアルコキシド(金属アルコキシドともいう)を加水分解、重縮合して形成された架橋構造を有するコーティング(親水性被膜、親水性層または親水層ともいう)を形成させるものであるが、このような架橋構造を有する親水性層は、後に詳述する金属アルコキシド化合物と、親水性グラフト鎖を形成しうる親水性の官能基を有する化合物と、適切な触媒とを用いて、適宜、形成することができる。金属アルコキシドのなかでも、反応性、入手の容易性からSiのアルコキシドが好ましく、具体的には、シランカップリング剤に用いる化合物を好適に使用することができる。
The present invention is described in detail below.
The fin material of the present invention is obtained by coating a hydrophilic composition on a substrate. Preferably, the hydrophilic composition contains 50% by mass or more, preferably 70 to 95% by mass of a hydrophilic polymer as a solid content. Is included.
Preferably, the hydrophilic composition has a hydrophilic polymer chain and is formed by hydrolysis and polycondensation of an alkoxide (also referred to as a metal alkoxide) of an element selected from Si, Ti, Zr, and Al. A coating having a crosslinked structure (also referred to as a hydrophilic film, a hydrophilic layer, or a hydrophilic layer) is formed. The hydrophilic layer having such a crosslinked structure includes a metal alkoxide compound described in detail later and a hydrophilic property. It can be suitably formed using a compound having a hydrophilic functional group capable of forming a graft chain and an appropriate catalyst. Among metal alkoxides, Si alkoxides are preferable from the viewpoint of reactivity and availability, and specifically, compounds used for silane coupling agents can be suitably used.

前記したような金属アルコキシドの加水分解、縮重合により形成された架橋構造を、本発明では以下、適宜、ゾルゲル架橋構造と称する。以下に、この好ましい態様である親水性層を形成するための親水性塗布液組成物に含まれる各成分について説明する。   In the present invention, the above-described crosslinked structure formed by hydrolysis and polycondensation of the metal alkoxide is hereinafter appropriately referred to as a sol-gel crosslinked structure. Below, each component contained in the hydrophilic coating liquid composition for forming the hydrophilic layer which is this preferable aspect is demonstrated.

〔親水性ポリマー〕
本発明に使用される好ましい親水性ポリマーは、親水性基を有し、且つSi、Ti、Zr、Alから選択される金属アルコキシド化合物と、触媒の作用等により結合を生じる基を有するポリマーである。親水性基としては、好ましくはカルボキシ基、カルボキシ基のアルカリ金属塩、スルホン酸基、スルホン酸基のアルカリ金属塩、ヒドロキシ基、アミド基、カルバモイル基、スルホンアミド基、スルファモイル基等の官能基が挙げられる。これらの基は、ポリマー中のどの位置に存在しても良い。ポリマー主鎖より直接、または連結基を介し結合しているか、ポリマー側鎖やグラフト側鎖中に結合しており、複数個が存在するポリマー構造が好ましい。金属アルコキシド化合物と、触媒の作用により結合を生じる基としては、カルボキシル基、カルボキシ基のアルカリ金属塩、無水カルボン酸基、アミノ基、ヒドロキシ基、エポキシ基、メチロール基、メルカプト基、イソシアナート基、ブロックイソシアナート基、アルコキシシリル基、アルコキシチタネート基、アルコキシアルミネート基、アルコキシジルコネート基、エチレン性不飽和基、エステル基、テトラゾール基などの反応性基が挙げられる。また親水性基、および金属アルコキシド化合物と触媒の作用等により結合を生じる基を有するポリマー構造としては、エチレン性不飽和基(例えばアクリレート基、メタクリレート基、イタコン酸基、クロトン酸基、桂皮酸基、スチレン基、ビニル基、アリル基、ビニルエーテル基、ビニルエステル基など)がビニル重合したポリマー、ポリエステル、ポリアミド、ポリアミック酸などのような縮重合したポリマー、ポリウレタンなどのような付加重合したポリマーの他、セルロース、アミロース、キトサンなどの天然物環状ポリマー構造を好ましく挙げることができる。好ましくは一般式(IV−a)で表される構造及び一般式(IV−b)で表される構造のうち少なくとも1種を有するポリマー(以下、特定親水性ポリマーという)が挙げられる。
[Hydrophilic polymer]
A preferred hydrophilic polymer used in the present invention is a polymer having a hydrophilic group and a group that forms a bond with a metal alkoxide compound selected from Si, Ti, Zr, and Al by the action of a catalyst or the like. . The hydrophilic group is preferably a carboxy group, an alkali metal salt of a carboxy group, a sulfonic acid group, an alkali metal salt of a sulfonic acid group, a hydroxyl group, an amide group, a carbamoyl group, a sulfonamide group, a sulfamoyl group or the like. Can be mentioned. These groups may be present at any position in the polymer. A polymer structure in which a plurality of polymers are bonded directly from a polymer main chain or via a linking group, or bonded to a polymer side chain or a graft side chain, is preferred. Examples of the group that forms a bond with the metal alkoxide compound by the action of a catalyst include a carboxyl group, an alkali metal salt of a carboxy group, a carboxylic anhydride group, an amino group, a hydroxy group, an epoxy group, a methylol group, a mercapto group, an isocyanate group, Examples thereof include reactive groups such as a block isocyanate group, an alkoxysilyl group, an alkoxytitanate group, an alkoxyaluminate group, an alkoxyzirconate group, an ethylenically unsaturated group, an ester group, and a tetrazole group. The polymer structure having a hydrophilic group and a group that forms a bond with a metal alkoxide compound by the action of a catalyst or the like includes an ethylenically unsaturated group (for example, an acrylate group, a methacrylate group, an itaconic acid group, a crotonic acid group, a cinnamic acid group). Styrene group, vinyl group, allyl group, vinyl ether group, vinyl ester group, etc.), polymer obtained by vinyl polymerization, polycondensation polymer such as polyester, polyamide, polyamic acid, etc., addition polymer such as polyurethane, etc. Preferred examples include natural cyclic polymer structures such as cellulose, amylose and chitosan. A polymer having at least one of the structure represented by the general formula (IV-a) and the structure represented by the general formula (IV-b) (hereinafter referred to as a specific hydrophilic polymer) is preferable.

Figure 2009079889
Figure 2009079889

一般式(IV−a)および(IV−b)中、R〜Rはそれぞれ独立に水素原子又は炭素数8以下の炭化水素基を表す。Lは単結合又は多価の有機連結基を表す。Lは単結合、−CONH−、−NHCONH−、−OCONH−、−SONH−、および−SO−からなる群より選択される構造を1つ以上有する多価の有機連結基を表す。mは1〜3の整数を表す。xおよびyは組成比を表し、0<x<100、0<y<100である。Xは−OH、−OR、−COR、−CO、−CON(R)(R)、−N(R)(R)、−NHCOR、−NHCO、−OCON(R)(R)、−NHCON(R)(R)、−SO、−OSO、−SO、−NHSO、−SON(R)(R)、−N(R)(R)(R)、−N(R)(R)(Rc)(R)、−PO(R)(R)、−OPO(R)(R)、または−PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子または直鎖(好ましくは炭素数1〜8)、分岐または環状のアルキル基を表し、Rは、直鎖(好ましくは炭素数1〜8)、分岐または環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子または直鎖(好ましくは炭素数1〜8)、分岐または環状のアルキル基、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、直鎖(好ましくは炭素数1〜8)、分岐または環状のアルキル基、ハロゲン原子、無機アニオン、または有機アニオンを表す。) In general formulas (IV-a) and (IV-b), R 1 to R 8 each independently represents a hydrogen atom or a hydrocarbon group having 8 or less carbon atoms. L 1 represents a single bond or a polyvalent organic linking group. L 2 represents a polyvalent organic linking group having one or more structures selected from the group consisting of a single bond, —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —. . m represents an integer of 1 to 3. x and y represent composition ratios, and 0 <x <100 and 0 <y <100. X represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e) ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a straight chain (preferably having 1 to 8 carbon atoms), a branched or cyclic alkyl group, and R d is a straight chain (preferably carbon 1 to 8) represents a branched or cyclic alkyl group, and R e and R f each independently represent a hydrogen atom or a straight chain (preferably having 1 to 8 carbon atoms), a branched or cyclic alkyl group, an alkali metal, An alkaline earth metal or onium is represented, and R g represents a linear (preferably having 1 to 8 carbon atoms), branched or cyclic alkyl group, a halogen atom, an inorganic anion, or an organic anion. )

〜Rが炭化水素基を表す場合の炭化水素基としては、炭素数8以下の炭化水素基が好ましく、アルキル基、アリール基などが挙げられ、炭素数1〜8の直鎖、分岐または環状のアルキル基が好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、1−メチルブチル基、イソヘキシル基、2−エチルヘキシル基、2−メチルヘキシル基、シクロペンチル基等が挙げられる。
〜Rは、効果および入手容易性の観点から、好ましくは水素原子、メチル基またはエチル基である。
In the case where R 1 to R 8 represent a hydrocarbon group, the hydrocarbon group is preferably a hydrocarbon group having 8 or less carbon atoms, and examples thereof include an alkyl group and an aryl group. Or a cyclic alkyl group is preferable. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
R 1 to R 8 are preferably a hydrogen atom, a methyl group, or an ethyl group from the viewpoints of effects and availability.

これらの炭化水素基は更に置換基を有していてもよい。アルキル基が置換基を有するとき、置換アルキル基は置換基とアルキレン基との結合により構成され、ここで、置換基としては、水素を除く一価の非金属原子団が用いられる。好ましい例としては、ハロゲン原子(−F、−Br、−Cl、−I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N−アルキルアミノ基、N,N−ジアリールアミノ基、N−アルキル−N−アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、Ν−アルキルカルバモイルオキシ基、N−アリールカルバモイルオキシ基、N,N−ジアルキルカルバモイルオキシ基、N,N−ジアリールカルバモイルオキシ基、N−アルキル−N−リールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N−アルキルアシルアミノ基、N−アリールアシルアミノ基、ウレイド基、N’−アルキルウレイド基、N’,N’−ジアルキルウレイド基、N’−アリールウレイド基、N’,N’−ジアリールウレイド基、N’−アルキル−N’−アリールウレイド基、N−アルキルウレイド基、N−アリールウレイド基、N’−アルキル−N−アルキルウレイド基、N’−アルキル−N−アリールウレイド基、N’,N’−ジアルキル−N−アルキルウレイト基、N’,N’−ジアルキル−N−アリールウレイド基、N’−アリール−Ν−アルキルウレイド基、N’−アリール−N−アリールウレイド基、N’,N’−ジアリール−N−アルキルウレイド基、N’,N’−ジアリール−N−アリールウレイド基、N’−アルキル−N’−アリール−N−アルキルウレイド基、N’−アルキル−N’−アリール−N−アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N−アルキル−N−アルコキシカルボニルアミノ基、N−アルキル−N−アリーロキシカルボニルアミノ基、N−アリール−N−アルコキシカルボニルアミノ基、N−アリール−N−アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、   These hydrocarbon groups may further have a substituent. When the alkyl group has a substituent, the substituted alkyl group is composed of a bond between the substituent and the alkylene group, and a monovalent nonmetallic atomic group excluding hydrogen is used as the substituent. Preferred examples include halogen atoms (-F, -Br, -Cl, -I), hydroxyl groups, alkoxy groups, aryloxy groups, mercapto groups, alkylthio groups, arylthio groups, alkyldithio groups, aryldithio groups, amino groups, N-alkylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, ア ル キ ル -alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkyl Carbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-reelcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acylthio group, acylamino group, N-alkylacylamino group, N-aryl Acylamino group, ureido group, N ′ Alkylureido group, N ′, N′-dialkylureido group, N′-arylureido group, N ′, N′-diarylureido group, N′-alkyl-N′-arylureido group, N-alkylureido group, N -Arylureido group, N'-alkyl-N-alkylureido group, N'-alkyl-N-arylureido group, N ', N'-dialkyl-N-alkylureate group, N', N'-dialkyl- N-arylureido group, N′-aryl-Ν-alkylureido group, N′-aryl-N-arylureido group, N ′, N′-diaryl-N-alkylureido group, N ′, N′-diaryl- N-arylureido group, N′-alkyl-N′-aryl-N-alkylureido group, N′-alkyl-N′-aryl-N-arylureido group Alkoxycarbonylamino group, aryloxycarbonylamino group, N-alkyl-N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl-N -Aryloxycarbonylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group,

アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N,N−ジアリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(−SOH)およびその共役塩基基(以下、スルホナト基と称す)、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N−アルキルスルフィナモイル基、N,N−ジアルキルスルフィナモイル基、N−アリールスルフィナモイル基、N,N−ジアリールスルフィナモイル基、N−アルキル−N−アリールスルフィナモイル基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N,N−ジアリールスルファモイル基、N−アルキル−N−アリールスルファモイル基ホスフォノ基(−PO)およびその共役塩基基(以下、ホスフォナト基と称す)、ジアルキルホスフォノ基(−PO(alkyl))、ジアリールホスフォノ基(−PO(aryl))、アルキルアリールホスフォノ基(−PO3(alkyl)(aryl))、モノアルキルホスフォノ基(−POH(alkyl))およびその共役塩基基(以後、アルキルホスフォナト基と称す)、モノアリールホスフォノ基(−POH(aryl))およびその共役塩基基(以後、アリールホスフォナト基と称す)、ホスフォノオキシ基(−OPO)およびその共役塩基基(以後、ホスフォナトオキシ基と称す)、ジアルキルホスフォノオキシ基(−OPO(alkyl))、ジアリールホスフォノオキシ基(−OPO(aryl))、アルキルアリールホスフォノオキシ基(−OPO(alkyl)(aryl))、モノアルキルホスフォノオキシ基(−OPOH(alkyl))およびその共役塩基基(以後、アルキルホスフォナトオキシ基と称す)、モノアリールホスフォノオキシ基(−OPOH(aryl))およびその共役塩基基(以後、アリールフォスホナトオキシ基と称す)、モルホルノ基、シアノ基、ニトロ基、アリール基、アルケニル基、アルキニル基が挙げられる。 Aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N, N-diarylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, alkylsulfinyl group, Arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, sulfo group (—SO 3 H) and its conjugate base group (hereinafter referred to as sulfonate group), alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkyls Rufinamoyl group, N, N-dialkylsulfinamoyl group, N-arylsulfinamoyl group, N, N-diarylsulfinamoyl group, N-alkyl-N-arylsulfinamoyl group, sulfamoyl group, N-alkylsulfur group Sulfamoyl group, N, N- dialkylsulfamoyl group, N- aryl sulfamoyl group, N, N- diaryl sulfamoyl group, N- alkyl -N- arylsulfamoyl group phosphono group (-PO 3 H 2 ) And conjugated base groups thereof (hereinafter referred to as phosphonate groups), dialkyl phosphono groups (—PO 3 (alkyl) 2 ), diaryl phosphono groups (—PO 3 (aryl) 2 ), alkylaryl phosphono groups (— PO3 (alkyl) (aryl)), a monoalkyl phosphono group (—PO 3 H (alkyl)) and a conjugate base group thereof (hereinafter referred to as an alkyl phosphonate group), a monoaryl phosphono group (—PO 3 H ( aryl)) and its conjugated base group (hereinafter referred to as aryl phosphonophenyl group), phosphonooxy group (-OPO H 2) and its conjugated base group (hereinafter referred to as phosphonophenyl group), dialkyl phosphonooxy group (-OPO 3 (alkyl) 2), diaryl phosphonooxy group (-OPO 3 (aryl) 2), alkyl An arylphosphonooxy group (—OPO (alkyl) (aryl)), a monoalkylphosphonooxy group (—OPO 3 H (alkyl)) and its conjugate base group (hereinafter referred to as an alkylphosphonatooxy group), monoaryl Examples include a phosphonooxy group (—OPO 3 H (aryl)) and its conjugate base group (hereinafter referred to as arylphosphonatooxy group), a morpholino group, a cyano group, a nitro group, an aryl group, an alkenyl group, and an alkynyl group. .

これらの置換基における、アルキル基の具体例としては、R〜Rにおいて挙げたアルキル基が同様に挙げられ、アリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N−フェニルカルバモイルフェニル基、フェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスフォノフェニル基、ホスフォナトフェニル基等を挙げることができる。また、アルケニル基の例としては、ビニル基、1−プロペニル基、1−ブテニル基、シンナミル基、2−クロロ−1−エテニル基等が挙げられ、アルキニル基の例としては、エチニル基、1−プロピニル基、1−ブチニル基、トリメチルシリルエチニル基等が挙げられる。アシル基(G1CO−)におけるG1としては、水素、ならびに上記のアルキル基、アリール基を挙げることができる。 Specific examples of the alkyl group in these substituents are the same as those of R 1 to R 8 , and specific examples of the aryl group include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, Xylyl, mesityl, cumenyl, chlorophenyl, bromophenyl, chloromethylphenyl, hydroxyphenyl, methoxyphenyl, ethoxyphenyl, phenoxyphenyl, acetoxyphenyl, benzoyloxyphenyl, methylthiophenyl , Phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamo Butylphenyl group include a phenyl group, cyanophenyl group, sulfophenyl group, sulfonatophenyl group, phosphonophenyl phenyl group, a phosphonophenyl phenyl group. Examples of the alkenyl group include vinyl group, 1-propenyl group, 1-butenyl group, cinnamyl group, 2-chloro-1-ethenyl group and the like. Examples of alkynyl group include ethynyl group, 1- A propynyl group, a 1-butynyl group, a trimethylsilylethynyl group, etc. are mentioned. Examples of G 1 in the acyl group (G 1 CO—) include hydrogen and the above alkyl groups and aryl groups.

これら置換基のうち、より好ましいものとしてはハロゲン原子(−F、−Br、−Cl、−I)、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、N−アルキルアミノ基、N,N−ジアルキルアミノ基、アシルオキシ基、N−アルキルカルバモイルオキシ基、N−アリールカバモイルオキシ基、アシルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、スルホ基、スルホナト基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N−アルキル−N−アリールスルファモイル基、ホスフォノ基、ホスフォナト基、ジアルキルホスフォノ基、ジアリールホスフォノ基、モノアルキルホスフォノ基、アルキルホスフォナト基、モノアリールホスフォノ基、アリールホスフォナト基、ホスフォノオキシ基、ホスフォナトオキシ基、アリール基、アルケニル基が挙げられる。   Among these substituents, more preferred are halogen atoms (—F, —Br, —Cl, —I), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N-alkylamino groups, N, N-dialkyls. Amino group, acyloxy group, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group Group, N-arylsulfamoy Group, N-alkyl-N-arylsulfamoyl group, phosphono group, phosphonate group, dialkyl phosphono group, diaryl phosphono group, monoalkyl phosphono group, alkyl phosphonate group, monoaryl phosphono group, aryl phosphonate group Group, phosphonooxy group, phosphonatooxy group, aryl group, and alkenyl group.

一方、置換アルキル基におけるアルキレン基としては、好ましくは、炭素数1から20までのアルキル基上の水素原子のいずれか1つを除し、2価の有機残基としたものを挙げることができ、好ましくは炭素原子数1から12までの直鎖状、炭素原子数3から12までの分岐状ならびに炭素原子数5から10までの環状のアルキレン基を挙げることができる。該置換基とアルキレン基を組み合わせる事により得られる置換アルキル基の、好ましい具体例としては、クロロメチル基、ブロモメチル基、2−クロロエチル基、トリフルオロメチル基、メトキシメチル基、メトキシエトキシエチル基、アリルオキシメチル基、フェノキシメチル基、メチルチオメチル基、トリルチオメチル基、エチルアミノエチル基、ジエチルアミノプロピル基、モルホリノプロピル基、アセチルオキシメチル基、ベンゾイルオキシメチル基、N−シクロヘキシルカルバモイルオキシエチル基、N−フェニルカルバモイルオキシエチル基、アセチルアミノエチル基、N−メチルベンゾイルアミノプロピル基、2−オキシエチル基、2−オキシプロピル基、カルボキシプロピル基、メトキシカルボニルエチル基、アリルオキシカルボニルブチル基、   On the other hand, the alkylene group in the substituted alkyl group is preferably a divalent organic residue obtained by removing any one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms. Preferred examples include linear alkylene groups having 1 to 12 carbon atoms, branched alkylene groups having 3 to 12 carbon atoms, and cyclic alkylene groups having 5 to 10 carbon atoms. Preferable specific examples of the substituted alkyl group obtained by combining the substituent and the alkylene group include chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, methoxyethoxyethyl group, allyl group. Oxymethyl group, phenoxymethyl group, methylthiomethyl group, tolylthiomethyl group, ethylaminoethyl group, diethylaminopropyl group, morpholinopropyl group, acetyloxymethyl group, benzoyloxymethyl group, N-cyclohexylcarbamoyloxyethyl group, N- Phenylcarbamoyloxyethyl group, acetylaminoethyl group, N-methylbenzoylaminopropyl group, 2-oxyethyl group, 2-oxypropyl group, carboxypropyl group, methoxycarbonylethyl group, allyloxy Rubonirubuchiru group,

クロロフェノキシカルボニルメチル基、カルバモイルメチル基、N−メチルカルバモイルエチル基、N,N−ジプロピルカルバモイルメチル基、N−(メトキシフェニル)カルバモイルエチル基、N−メチル−N−(スルホフェニル)カルアバモイルメチル基、スルホブチル基、スルホナトブチル基、スルファモイルブチル基、N−エチルスルファモイルメチル基、N,N−ジプロピルスルファモイルプロピル基、N−トリルスルファモイルプロピル基、N−メチル−N−(ホスフォノフェニル)スルファモイルオクチル基、ホスフォノブチル基、ホスフォナトヘキシル基、ジエチルホスフォノブチル基、ジフェニルホスフォノプロピル基、メチルホスフォノブチル基、メチルホスフォナトブチル基、トリルホスフォノへキシル基、トリルホスフォナトヘキシル基、ホスフォノオキシプロピル基、ホフォナトオキシブチル基、ベンジル基、フェネチル基、α−メチルベンジル基、1−メチル−1−フェニルエチル基、p−メチルベンジル基、シンナミル基、アリル基、1−プロペニルメチル基、2−ブテニル基、2−メチルアリル基、2−メチルプロペニルメチル基、2−プロピニル基、2−ブチニル基、3−ブチニル基等を挙げることができる。   Chlorophenoxycarbonylmethyl group, carbamoylmethyl group, N-methylcarbamoylethyl group, N, N-dipropylcarbamoylmethyl group, N- (methoxyphenyl) carbamoylethyl group, N-methyl-N- (sulfophenyl) carbamoyl Methyl group, sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N-dipropylsulfamoylpropyl group, N-tolylsulfamoylpropyl group, N-methyl-N- (Phosphonophenyl) sulfamoyloctyl group, phosphonobutyl group, phosphonatohexyl group, diethylphosphonobutyl group, diphenylphosphonopropyl group, methylphosphonobutyl group, methylphosphonatobutyl group, tolylphosphonohexyl group, Torilho Phonatohexyl group, phosphonooxypropyl group, phosphonatoxybutyl group, benzyl group, phenethyl group, α-methylbenzyl group, 1-methyl-1-phenylethyl group, p-methylbenzyl group, cinnamyl group, allyl group 1-propenylmethyl group, 2-butenyl group, 2-methylallyl group, 2-methylpropenylmethyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group and the like.

は単結合又は多価の有機連結基を表す。ここで単結合とはポリマーの主鎖とXが連結鎖なしに直接結合していることを表す。さらに、有機連結基とは非金属原子からなる連結基を示し、具体的には、0個から200個までの炭素原子、0個から150個までの窒素原子、0個から200個までの酸素原子、0個から400個までの水素原子、および0個から100個までの硫黄原子から成り立つものである。より具体的な連結基としては下記の構造単位またはこれらが組合わされて構成されるものを挙げることができる。 L 1 represents a single bond or a polyvalent organic linking group. Here, the single bond means that the polymer main chain and X are directly bonded without a linking chain. Further, the organic linking group refers to a linking group composed of non-metallic atoms, specifically, 0 to 200 carbon atoms, 0 to 150 nitrogen atoms, 0 to 200 oxygen atoms. It consists of atoms, 0 to 400 hydrogen atoms, and 0 to 100 sulfur atoms. More specific examples of the linking group include the following structural units or those formed by combining them.

Figure 2009079889
Figure 2009079889

中でも親水性の高い−CONH−、−NHCONH−、−OCONH−が好ましい。   Of these, —CONH—, —NHCONH—, and —OCONH—, which are highly hydrophilic, are preferable.

また、Lはポリマー又はオリゴマーから形成されていてもよく、具体的には不飽和二重結合系モノマーからなるポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、ポリビニル、ポリスチレンなどを含むことが好ましく、その他の好ましい例として、ポリ(オキシアルキレン)、ポリウレタン、ポリウレア、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリアミノ酸、ポリシロキサン等が挙げられ、好ましくは、ポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、ポリビニル、ポリスチレンが挙げられ、より好ましくは、ポリアクリレート、ポリメタクリレートである。
これらポリマー及びオリゴマーに用いられる構造単位は1種類でもよく、2種類以上であってもよい。また、Lがポリマーまたはオリゴマーの場合は構成する元素数に制限は特になく、分子量は1,000〜1,000,000が好ましく、1,000〜500,000がさらに好ましく、1,000〜200,000が最も好ましい。
L 1 may be formed from a polymer or an oligomer, and specifically, preferably includes polyacrylate, polymethacrylate, polyacrylonitrile, polyvinyl, polystyrene, and the like made of an unsaturated double bond monomer. Preferred examples include poly (oxyalkylene), polyurethane, polyurea, polyester, polyamide, polyimide, polycarbonate, polyamino acid, polysiloxane, and the like, and preferably polyacrylate, polymethacrylate, polyacrylonitrile, polyvinyl, and polystyrene. More preferred are polyacrylates and polymethacrylates.
The structural unit used for these polymers and oligomers may be one type or two or more types. In addition, when L 1 is a polymer or oligomer, the number of constituent elements is not particularly limited, and the molecular weight is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000, and 1,000 to 200,000 is most preferred.

は単結合又は−CONH−、−NHCONH−、−OCONH−、−SONH−、−SO−からなる群より選択される構造を1つ以上有する多価の有機連結基を表す。ここで、単結合とはポリマー主鎖とSi原子が連結基なしに直接結合していることを表す。また、L中に、前記構造は2つ以上存在してもよく、その場合には、互いに同じものでも、異なるものであってもよい。前記構造を1つ以上含むのであれば、他の構造はLで挙げられたものと同様の構造を有することができる。 L 2 represents a single bond or a polyvalent organic linking group having one or more structures selected from the group consisting of —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —. Here, the single bond represents that the polymer main chain and the Si atom are directly bonded without a linking group. In L 2 , two or more of the structures may be present, and in that case, they may be the same as or different from each other. If one or more of the above structures are included, the other structures can have the same structure as that described for L 1 .

また、Xは親水基であって、−OH、−OR、−COR、−CO、−CON(R)(R)、−N(R)(R)、−NHCOR、−NHCO、−OCON(R)(R)、−NHCON(R)(R)、−SO、−OSO、−SO、−NHSO、−SON(R)(R)、−N(R)(R)(R)、−N(R)(R)(Rc)(R)、−PO(R)(R)、−OPO(R)(R)、または−PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子または炭素数1〜8の直鎖、分岐または環状のアルキル基を表し、Rは、炭素数1〜8の直鎖、分岐または環状のアルキル基を表し、R、Rは、それぞれ独立に水素原子または炭素数1〜8の直鎖、分岐または環状のアルキル基、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、炭素数1〜8の直鎖、分岐または環状のアルキル基、ハロゲン原子、無機アニオン、または有機アニオンを表す。また、−CON(R)(R)、−OCON(R)(R)、−NHCON(R)(R)、−SON(R)(R)−PO(R)(R)、−OPO(R)(R)、−PO(R)(R)、−N(R)(R)(R)又は−N(R)(R)(R)(R)についてR〜Rがお互い結合して環を形成していてもよく、また、形成された環は酸素原子、硫黄原子、窒素原子などのヘテロ原子を含むヘテロ環であってもよい。R〜Rはさらに置換基を有していてもよく、ここで導入可能な置換基としては、前記R〜Rがアルキル基の場合に導入可能な置換基として挙げたものを同様に挙げることができる。 X is a hydrophilic group, and is —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), — NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , — NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ) ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, R d is a linear chain having 1 to 8 carbon atoms, Represents a branched or cyclic alkyl group, and R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, an alkali metal, an alkaline earth metal, or onium. , R g represents a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, a halogen atom, an inorganic anion, or an organic anion. Further, -CON (R a) (R b), - OCON (R a) (R b), - NHCON (R a) (R b), - SO 2 N (R a) (R b) -PO 3 (R e ) (R f ), -OPO 3 (R e ) (R f ), -PO 2 (R d ) (R e ), -N (R a ) (R b ) (R c ) or -N (R a ) (R b ) (R c ) (R g ) R a to R g may be bonded to each other to form a ring, and the formed ring is an oxygen atom, sulfur atom, nitrogen It may be a heterocycle containing a heteroatom such as an atom. R a to R g may further have a substituent, and the substituent that can be introduced here is the same as the substituent that can be introduced when R 1 to R 8 are alkyl groups. Can be listed.

、R又はRとしては具体的には水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、1−メチルブチル基、イソヘキシル基、2−エチルヘキシル基、2−メチルヘキシル基、シクロペンチル基等が好適に挙げられる。
としては具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、1−メチルブチル基、イソヘキシル基、2−エチルヘキシル基、2−メチルヘキシル基、シクロペンチル基等が好適に挙げられる。
、Rとしては具体的には、R〜Rで挙げられるアルキル基の他に、水素原子;リチウム、ナトリウム、カリウム等のアルカリ金属;カルシウム、バリウム等のアルカリ土類金属、または、アンモニウム、ヨードニウム、スルホニウムなどのオニウムが挙げられる。
としては具体的には、R〜Rで挙げられるアルキル基の他に、水素原子;フッ素原子、塩素原子、臭素原子等のハロゲン原子;硝酸アニオン、硫酸アニオン、テトラフルオロホウ酸アニオン、ヘキサフルオロリン酸アニオン等の無機アニオン、メタンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、p−トルエンスルホン酸アニオン等の有機アニオンが挙げられる。
また、このようなXとしては具体的には、−CO Na、−CONH、−SO Na、−SONH、−PO等が好ましい。
Specific examples of R a , R b or R c include a hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, and s-butyl. Preferred examples include a group, t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
Specific examples of R d include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, s-butyl, t-butyl, and isopentyl. Preferred examples include a group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
R e, specifically as R f, in addition to the alkyl groups mentioned R a to R d, a hydrogen atom; lithium, sodium, alkali metals such as potassium, calcium, alkaline earth such as barium metal, or, , Ammonium, iodonium, sulfonium and the like.
Specific examples of R g include a hydrogen atom; a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom; a nitrate anion, a sulfate anion, or a tetrafluoroborate anion, in addition to the alkyl group represented by R a to R d Inorganic anions such as hexafluorophosphate anion, and organic anions such as methanesulfonate anion, trifluoromethanesulfonate anion, nonafluorobutanesulfonate anion, and p-toluenesulfonate anion.
Further, as specifically such X, -CO 2 - Na +, -CONH 2, -SO 3 - Na +, -SO 2 NH 2, -PO 3 H 2 and the like are preferable.

x及びyは特定親水性ポリマーにおける、一般式(IV−a)で表される構造単位と一般式(IV−b)で表される構造単位の共重合比を表す。x及びyは、0<x<100、0<y<100である。x:yは、99:1〜10:90の範囲であることが好ましく、99:1〜50:50の範囲であることがさらに好ましい。
なお、ここで、ポリマー鎖を構成する構造単位である一般式(IV−a)及び一般式(IV−b)は、それぞれすべて同じものであっても、異なる複数の構造単位を含むものであってもよく、その場合、一般式(IV−a)に相当する構造単位と一般式(IV−b)に相当する構造単位の共重合比が上記範囲であることが好ましい。
x and y represent the copolymerization ratio of the structural unit represented by the general formula (IV-a) and the structural unit represented by the general formula (IV-b) in the specific hydrophilic polymer. x and y are 0 <x <100 and 0 <y <100. x: y is preferably in the range of 99: 1 to 10:90, more preferably in the range of 99: 1 to 50:50.
Here, the general formula (IV-a) and the general formula (IV-b), which are structural units constituting the polymer chain, each include the same plural structural units even if they are all the same. In this case, the copolymerization ratio of the structural unit corresponding to the general formula (IV-a) and the structural unit corresponding to the general formula (IV-b) is preferably in the above range.

特定親水性ポリマーの質量平均分子量としては、1,000〜1,000,000が好ましく、1,000〜500,000がさらに好ましく、1,000〜200,000が最も好ましい。   The mass average molecular weight of the specific hydrophilic polymer is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000, and most preferably 1,000 to 200,000.

以下に、親水性ポリマーの具体例を示すが、本発明はこれらに限定されるものではない。M.W.は質量平均分子量を表す。なお、以下に示す具体例のポリマーは、記載される各構造単位が記載のモル比で含まれるランダム共重合体であることを意味する。   Specific examples of the hydrophilic polymer are shown below, but the present invention is not limited thereto. M.M. W. Represents a mass average molecular weight. In addition, the polymer of the specific example shown below means that it is a random copolymer in which each structural unit described is contained by the described molar ratio.

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

より好ましくは下記親水性ポリマーである。   More preferred are the following hydrophilic polymers.

Figure 2009079889
Figure 2009079889

本発明の特定親水性ポリマーを合成する前記各化合物は、市販されており、また容易に合成することもできる。
特定親水性ポリマーを合成するためのラジカル重合法としては、従来公知の方法の何れをも使用することができる。具体的には、一般的なラジカル重合法は、例えば、新高分子実験学3、高分子の合成と反応1(高分子学会編、共立出版)、新実験化学講座19、高分子化学(I)(日本化学会編、丸善)、物質工学講座、高分子合成化学(東京電気大学出版局) 等に記載されており、これらを適用することができる。
Each of the compounds for synthesizing the specific hydrophilic polymer of the present invention is commercially available or can be easily synthesized.
Any of the conventionally known methods can be used as the radical polymerization method for synthesizing the specific hydrophilic polymer. Specifically, general radical polymerization methods include, for example, New Polymer Experimental Science 3, Polymer Synthesis and Reaction 1 (Edited by the Society of Polymer Science, Kyoritsu Shuppan), New Experimental Chemistry Course 19, Polymer Chemistry (I) (Edited by Chemical Society of Japan, Maruzen), Materials Engineering Course, Synthetic Polymer Chemistry (Tokyo Denki University Press), etc., and these can be applied.

また、上記特定親水性ポリマーは、後述するような他のモノマーとの共重合体であってもよい。用いられる他のモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、ビニルエステル類、スチレン類、アクリル酸、メタクリル酸、アクリロニトリル、無水マレイン酸、マレイン酸イミド等の公知のモノマーも挙げられる。このようなモノマー類を共重合させることで、製膜性、膜強度、親水性、疎水性、溶解性、反応性、安定性等の諸物性を改善することができる。   The specific hydrophilic polymer may be a copolymer with another monomer as described later. Examples of other monomers used include acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, styrenes, acrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, maleic imide, etc. These known monomers are also included. By copolymerizing such monomers, various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.

アクリル酸エステル類の具体例としては、メチルアクリレート、エチルアクリレート、(n−またはi−)プロピルアクリレート、(n−、i−、sec−またはt−)ブチルアクリレート、アミルアクリレート、2−エチルヘキシルアクリレート、ドデシルアクリレート、クロロエチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシペンチルアクリレート、シクロヘキシルアクリレート、アリルアクリレート、トリメチロールプロパンモノアクリレート、ペンタエリスリトールモノアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、クロロベンジルアクリレート、ヒドロキシベンジルアクリレート、ヒドロキシフェネチルアクリレート、ジヒドロキシフェネチルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、フェニルアクリレート、ヒドロキシフェニルアクリレート、クロロフェニルアクリレート、スルファモイルフェニルアクリレート、2−(ヒドロキシフェニルカルボニルオキシ)エチルアクリレート等が挙げられる。   Specific examples of acrylic esters include methyl acrylate, ethyl acrylate, (n- or i-) propyl acrylate, (n-, i-, sec- or t-) butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, Dodecyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypentyl acrylate, cyclohexyl acrylate, allyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, benzyl acrylate, methoxybenzyl acrylate, chloro Benzyl acrylate, hydroxybenzyl acrylate, hydroxyphenethyl acrylate, dihydroxyphene Chill acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, hydroxyphenyl acrylate, chlorophenyl acrylate, sulfamoylphenyl acrylate, 2- (hydroxyphenyl carbonyloxy) ethyl acrylate.

メタクリル酸エステル類の具体例としては、メチルメタクリレート、エチルメタクリレート、(n−またはi−)プロピルメタクリレート、(n−、i−、sec−またはt−)ブチルメタクリレート、アミルメタクリレート、2−エチルヘキシルメタクリレート、ドデシルメタクリレート、クロロエチルメタクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシペンチルメタクリレート、シクロヘキシルメタクリレート、アリルメタクリレート、トリメチロールプロパンモノメタクリレート、ペンタエリスリトールモノメタクリレート、ベンジルメタクリレート、メトキシベンジルメタクリレート、クロロベンジルメタクリレート、ヒドロキシベンジルメタクリレート、ヒドロキシフェネチルメタクリレート、ジヒドロキシフェネチルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、フェニルメタクリレート、ヒドロキシフェニルメタクリレート、クロロフェニルメタクリレート、スルファモイルフェニルメタクリレート、2−(ヒドロキシフェニルカルボニルオキシ)エチルメタクリレート等が挙げられる。   Specific examples of methacrylic acid esters include methyl methacrylate, ethyl methacrylate, (n- or i-) propyl methacrylate, (n-, i-, sec- or t-) butyl methacrylate, amyl methacrylate, 2-ethylhexyl methacrylate, Dodecyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxypentyl methacrylate, cyclohexyl methacrylate, allyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate, benzyl methacrylate, methoxybenzyl methacrylate, chloro Benzyl methacrylate, hydroxybenzyl methacrylate, hydroxy E phenethyl methacrylate, dihydroxyphenethyl methacrylate, furfuryl methacrylate, tetrahydrofurfuryl methacrylate, phenyl methacrylate, hydroxyphenyl methacrylate, chlorophenyl methacrylate, sulfamoylphenyl methacrylate, 2- (hydroxyphenyl carbonyloxy) ethyl methacrylate.

アクリルアミド類の具体例としては、アクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N−プロピルアクリルアミド、N−ブチルアクリルアミド、N−ベンジルアクリルアミド、N−ヒドロキシエチルアクリルアミド、N−フェニルアクリルアミド、N−トリルアクリルアミド、N−(ヒドロキシフェニル)アクリルアミド、N−(スルファモイルフェニル)アクリルアミド、N−(フェニルスルホニル)アクリルアミド、N−(トリルスルホニル)アクリルアミド、N,N−ジメチルアクリルアミド、N−メチル−N−フェニルアクリルアミド、N−ヒドロキシエチル−N−メチルアクリルアミド等が挙げられる。   Specific examples of acrylamides include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-butylacrylamide, N-benzylacrylamide, N-hydroxyethylacrylamide, N-phenylacrylamide, and N-tolylacrylamide. N- (hydroxyphenyl) acrylamide, N- (sulfamoylphenyl) acrylamide, N- (phenylsulfonyl) acrylamide, N- (tolylsulfonyl) acrylamide, N, N-dimethylacrylamide, N-methyl-N-phenylacrylamide , N-hydroxyethyl-N-methylacrylamide and the like.

メタクリルアミド類の具体例としては、メタクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド、N−プロピルメタクリルアミド、N−ブチルメタクリルアミド、N−ベンジルメタクリルアミド、N−ヒドロキシエチルメタクリルアミド、N−フェニルメタクリルアミド、N−トリルメタクリルアミド、N−(ヒドロキシフェニル)メタクリルアミド、N−(スルファモイルフェニル)メタクリルアミド、N−(フェニルスルホニル)メタクリルアミド、N−(トリルスルホニル)メタクリルアミド、N,N−ジメチルメタクリルアミド、N−メチル−N−フェニルメタクリルアミド、N−ヒドロキシエチル−N−メチルメタクリルアミド等が挙げられる。   Specific examples of methacrylamides include methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-propylmethacrylamide, N-butylmethacrylamide, N-benzylmethacrylamide, N-hydroxyethylmethacrylamide, N -Phenylmethacrylamide, N-tolylmethacrylamide, N- (hydroxyphenyl) methacrylamide, N- (sulfamoylphenyl) methacrylamide, N- (phenylsulfonyl) methacrylamide, N- (tolylsulfonyl) methacrylamide, N , N-dimethylmethacrylamide, N-methyl-N-phenylmethacrylamide, N-hydroxyethyl-N-methylmethacrylamide and the like.

ビニルエステル類の具体例としては、ビニルアセテート、ビニルブチレート、ビニルベンゾエート等が挙げられる。
スチレン類の具体例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、プロピルスチレン、シクロヘキシルスチレン、クロロメチルスチレン、トリフルオロメチルスチレン、エトキシメチルスチレン、アセトキシメチルスチレン、メトキシスチレン、ジメトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ヨードスチレン、フルオロスチレン、カルボキシスチレン等が挙げられる。
Specific examples of vinyl esters include vinyl acetate, vinyl butyrate, vinyl benzoate and the like.
Specific examples of styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, propyl styrene, cyclohexyl styrene, chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, methoxy styrene, dimethoxy styrene. Chlorostyrene, dichlorostyrene, bromostyrene, iodostyrene, fluorostyrene, carboxystyrene and the like.

共重合体の合成に使用されるこれらの他のモノマーの割合は、諸物性の改良に十分な量である必要があるが、親水性膜としての機能が十分であり、特定親水性ポリマーを添加する利点を十分得るために、割合は大きすぎないほうが好ましい。従って、特定親水性ポリマー中の他のモノマーの好ましい総割合は80質量%以下であることが好ましく、さらに好ましくは50質量%以下である。   The proportion of these other monomers used in the synthesis of the copolymer must be sufficient to improve various physical properties, but the function as a hydrophilic film is sufficient, and a specific hydrophilic polymer is added. In order to obtain a sufficient advantage, it is preferable that the ratio is not too large. Accordingly, the preferred total proportion of other monomers in the specific hydrophilic polymer is preferably 80% by mass or less, and more preferably 50% by mass or less.

本発明に係る特定親水性ポリマーは、本発明の親水性組成物の固形分(不揮発性成分)に対して、硬化性と親水性の観点から、好ましくは50質量%以上の範囲で含有される。ここで、不揮発成分とは、揮発する溶媒を除いた成分をいう。   The specific hydrophilic polymer according to the present invention is preferably contained in the range of 50% by mass or more from the viewpoint of curability and hydrophilicity with respect to the solid content (nonvolatile component) of the hydrophilic composition of the present invention. . Here, the non-volatile component refers to a component excluding a volatile solvent.

本発明に係る特定親水性ポリマーは高い親水性を有するので、コーティング表面のRmaxを特定の値に制御することが可能となる。このような親水性ポリマーでなければ、超親水性を望む場合にはRmaxを本発明の特定の値に制御することは困難であると考えられる。   Since the specific hydrophilic polymer according to the present invention has high hydrophilicity, the Rmax of the coating surface can be controlled to a specific value. Without such a hydrophilic polymer, it is considered difficult to control Rmax to a specific value of the present invention when super hydrophilicity is desired.

〔Si、Ti、Zr、Alから選択される金属アルコキシド化合物〕
本発明で用いられる金属アルコキシド化合物は、その構造中に加水分解して重縮合可能な官能基を有し、架橋剤としての機能を果たす加水分解重合性化合物であり、金属アルコキシド同士が重縮合することにより架橋構造を有する強固な架橋皮膜を形成し、さらに、前記親水性ポリマーとも化学結合する。金属アルコキシドは一般式(I-1)および一般式(I-2)で表すことができ、式中、R8は水素原子、アルキル基又はアリール基を表し、R9はアルキル基又はアリール基を表し、ZはSi、Ti又はZrを表し、mは0〜2の整数を表す。R8及びR9がアルキル基を表す場合の炭素数は好ましくは1から4である。アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基などが挙げられる。なお、この化合物は低分子化合物であり、分子量2000以下であることが好ましい。
[Metal alkoxide compound selected from Si, Ti, Zr, and Al]
The metal alkoxide compound used in the present invention is a hydrolyzable polymerizable compound having a functional group capable of being hydrolyzed and polycondensed in its structure and serving as a crosslinking agent, and metal alkoxides are polycondensed with each other. As a result, a strong cross-linked film having a cross-linked structure is formed, and the hydrophilic polymer is also chemically bonded. The metal alkoxide can be represented by general formula (I-1) and general formula (I-2), in which R 8 represents a hydrogen atom, an alkyl group or an aryl group, and R 9 represents an alkyl group or an aryl group. Z represents Si, Ti or Zr, and m represents an integer of 0-2. The number of carbon atoms when R 8 and R 9 represent an alkyl group is preferably 1 to 4. The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group. This compound is a low molecular compound and preferably has a molecular weight of 2000 or less.

(R8m−Z−(OR94-m (I-1)
Al−(OR93 (I-2)
(R 8) m -Z- (OR 9) 4-m (I-1)
Al- (OR 9 ) 3 (I-2)

以下に、一般式(I-1)および一般式(I-2)で表される加水分解性化合物の具体例を挙げるが、本発明はこれに限定されるものではない。ZがSiの場合、即ち、加水分解性化合物中にケイ素を含むものとしては、例えば、トリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、γ−クロロプリピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、等を挙げることができる。これらのうち特に好ましいものとしては、トリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、等を挙げることができる。   Specific examples of the hydrolyzable compounds represented by general formula (I-1) and general formula (I-2) are shown below, but the present invention is not limited thereto. When Z is Si, that is, the hydrolyzable compound containing silicon includes, for example, trimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, γ- Examples include chloropropyl triethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and the like. Among these, particularly preferred are trimethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane and the like.

ZがTiである場合、即ち、チタンを含むものとしては、例えば、トリメトキシチタネート、テトラメトキシチタネート、トリエトキシチタネート、テトラエトキシチタネート、テトラプロポキシタネート、クロロトリメトキシチタネート、クロロトリエトキシチタネート、エチルトリメトキシチタネート、メチルトリエトキシチタネート、エチルトリエトキシチタネート、ジエチルジエトキシチタネート、フェニルトリメトキシチタネート、フェニルトリエトキシチタネート等を挙げることができる。
ZがZrである場合、即ち、ジルコニウムを含むものとしては、例えば、前記チタンを含むものとして例示した化合物に対応するジルコネートを挙げることができる。
また、中心金属がAlである場合、即ち、加水分解性化合物中にアルミニウムを含むものとしては、例えば、トリメトキシアルミネート、トリエトキシアルミネート、トリプロポキシアルミネート、トリイソプロポキシアルミネート等を挙げることができる。
Si、Ti、Zr、Alから選択される金属アルコキシド化合物の含有量は、親水性組成物の全体の固形分に対して、0.1質量%〜20質量%が好ましい。更に好ましくは1〜10質量%である。
When Z is Ti, i.e., including titanium, for example, trimethoxy titanate, tetramethoxy titanate, triethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, chlorotrimethoxy titanate, chlorotriethoxy titanate, ethyl Examples include trimethoxy titanate, methyl triethoxy titanate, ethyl triethoxy titanate, diethyl diethoxy titanate, phenyl trimethoxy titanate, and phenyl triethoxy titanate.
When Z is Zr, that is, the one containing zirconium can include, for example, zirconates corresponding to the compounds exemplified as those containing titanium.
Further, when the central metal is Al, that is, examples of those containing aluminum in the hydrolyzable compound include trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, triisopropoxy aluminate, and the like. be able to.
The content of the metal alkoxide compound selected from Si, Ti, Zr, and Al is preferably 0.1% by mass to 20% by mass with respect to the total solid content of the hydrophilic composition. More preferably, it is 1-10 mass%.

〔触媒〕
本発明の親水性層の形成において使用できる金属錯体触媒は、Si、Ti、Zr、Alから選択される金属アルコキシド化合物の加水分解、重縮合を促進し、親水性ポリマーとの結合を生起することができる。特に好ましい金属錯体触媒としては、周期律表の2A,3B,4A及び5A族から選ばれる金属元素とβ−ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、エノール性活性水素化合物の中から選ばれるオキソ又はヒドロキシ酸素含有化合物から構成される金属錯体である。
構成金属元素の中では、Mg,Ca,Sr,Baなどの2A族元素、Al,Gaなどの3B族元素,Ti,Zrなどの4A族元素及び,Nb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiから得られる錯体が優れており、好ましい。
〔catalyst〕
The metal complex catalyst that can be used in the formation of the hydrophilic layer of the present invention promotes hydrolysis and polycondensation of a metal alkoxide compound selected from Si, Ti, Zr, and Al, and causes a bond with a hydrophilic polymer. Can do. Particularly preferred metal complex catalysts include metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and β-diketones, ketoesters, hydroxycarboxylic acids or esters thereof, amino alcohols, and enolic active hydrogen compounds. It is a metal complex composed of a selected oxo or hydroxy oxygen-containing compound.
Among the constituent metal elements, 2A group elements such as Mg, Ca, Sr and Ba, 3B group elements such as Al and Ga, 4A group elements such as Ti and Zr, and 5A group elements such as Nb and Ta are preferable. Each forms a complex with an excellent catalytic effect. Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.

上記金属錯体の配位子を構成するオキソ又はヒドロキシ酸素含有化合物は、本発明においては、アセチルアセトン(2,4−ペンタンジオン)、2,4−ヘプタンジオンなどのβジケトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチルなどのケトエステル類、乳酸、乳酸メチル、サリチル酸、サリチル酸エチル、サリチル酸フェニル、リンゴ酸,酒石酸、酒石酸メチルなどのヒドロキシカルボン酸及びそのエステル、4−ヒドロキシ−4−メチル−2−ペンタノン、4−ヒドロキシ−2−ペンタノン、4−ヒドロキシ−4−メチル−2−ヘプタノン、4−ヒドロキシ−2−ヘプタノンなどのケトアルコール類、モノエタノールアミン、N,N−ジメチルエタノールアミン、N−メチル−モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、メチロールメラミン、メチロール尿素、メチロールアクリルアミド、マロン酸ジエチルエステルなどのエノール性活性化合物、アセチルアセトン(2,4−ペンタンジオン)のメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物が挙げられる。   In the present invention, the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a β-diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetic acid Ketoesters such as ethyl and butyl acetoacetate, lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid, methyl tartrate and other hydroxycarboxylic acids and esters thereof, 4-hydroxy-4-methyl-2-pentanone , 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-heptanone, ketoalcohols such as 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl- Monoethanolamine, diethanolamine , Amino alcohols such as triethanolamine, methylol melamine, methylol urea, methylol acrylamide, and enol active compounds such as malonic acid diethyl ester, methyl group, methylene group or carbonyl carbon of acetylacetone (2,4-pentanedione) And compounds having a group.

好ましい配位子はアセチルアセトンまたはアセチルアセトン誘導体であり、アセチルアセトン誘導体は、本発明においては、アセチルアセトンのメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物を指す。アセチルアセトンのメチル基に置換する置換基としては、いずれも炭素数が1〜3の直鎖又は分岐のアルキル基、アシル基、ヒドロキシアルキル基、カルボキシアルキル基、アルコキシ基、アルコキシアルキル基であり、アセチルアセトンのメチレン基に置換する置換基としてはカルボキシル基、いずれも炭素数が1〜3の直鎖又は分岐のカルボキシアルキル基及びヒドロキシアルキル基であり、アセチルアセトンのカルボニル炭素に置換する置換基としては炭素数が1〜3のアルキル基であってこの場合はカルボニル酸素には水素原子が付加して水酸基となる。   A preferred ligand is acetylacetone or an acetylacetone derivative. In the present invention, the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone. As the substituents substituted on the methyl group of acetylacetone, all are linear or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone As a substituent for the methylene group, a carboxyl group, each of which is a linear or branched carboxyalkyl group and a hydroxyalkyl group having 1 to 3 carbon atoms, and a substituent for the carbonyl carbon of acetylacetone is a carbon number. Is an alkyl group of 1 to 3, and in this case, a hydrogen atom is added to the carbonyl oxygen to form a hydroxyl group.

好ましいアセチルアセトン誘導体の具体例としては、エチルカルボニルアセトン、n−プロピルカルボニルアセトン、i−プロピルカルボニルアセトン、ジアセチルアセトン、1―アセチル−1−プロピオニル−アセチルアセトン、ヒドロキシエチルカルボニルアセトン、ヒドロキシプロピルカルボニルアセトン、アセト酢酸、アセトプロピオン酸、ジアセト酢酸、3,3−ジアセトプロピオン酸、4,4−ジアセト酪酸、カルボキシエチルカルボニルアセトン、カルボキシプロピルカルボニルアセトン、ジアセトンアルコールが挙げられる。中でも、アセチルアセトン及びジアセチルアセトンがとくに好ましい。上記のアセチルアセトン誘導体と上記金属元素の錯体は、金属元素1個当たりにアセチルアセトン誘導体が1〜4分子配位する単核錯体であり、金属元素の配位可能の手がアセチルアセトン誘導体の配位可能結合手の数の総和よりも多い場合には、水分子、ハロゲンイオン、ニトロ基、アンモニオ基など通常の錯体に汎用される配位子が配位してもよい。   Specific examples of preferred acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetic acid. , Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol. Of these, acetylacetone and diacetylacetone are particularly preferred. The complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which one to four molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is a coordinateable bond of the acetylacetone derivative When the number of hands is larger than the total number of hands, ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.

好ましい金属錯体の例としては、トリス(アセチルアセトナト)アルミニウム錯塩、ジ(アセチルアセトナト)アルミニウム・アコ錯塩、モノ(アセチルアセトナト)アルミニウム・クロロ錯塩、ジ(ジアセチルアセトナト)アルミニウム錯塩、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、環状アルミニウムオキサイドイソプロピレート、トリス(アセチルアセトナト)バリウム錯塩、ジ(アセチルアセトナト)チタニウム錯塩、トリス(アセチルアセトナト)チタニウム錯塩、ジ−i−プロポキシ・ビス(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)、ジルコニウムトリス(安息香酸)錯塩、等が挙げられる。これらは水系塗布液での安定性及び、加熱乾燥時のゾルゲル反応でのゲル化促進効果に優れているが、中でも、特にエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、ジ(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)が好ましい。   Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc. are mentioned. These are excellent in stability in aqueous coating solutions and in gelation promotion effect in sol-gel reaction during heat drying, and among them, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.

上記した金属錯体の対塩の記載を本明細書においては省略しているが、対塩の種類は、錯体化合物としての電荷の中性を保つ水溶性塩である限り任意であり、例えば硝酸塩、ハロゲン酸塩、硫酸塩、燐酸塩などの化学量論的中性が確保される塩の形が用いられる。金属錯体のシリカゾルゲル反応での挙動については、J.Sol−Gel.Sci.and Tec.16.209(1999)に詳細な記載がある。反応メカニズムとしては以下のスキームを推定している。すなわち、塗布液中では、金属錯体は、配位構造を取って安定であり、塗布後の加熱乾燥過程に始まる脱水縮合反応では、酸触媒に似た機構で架橋を促進させるものと考えられる。いずれにしても、この金属錯体を用いたことにより塗布液経時安定性及び皮膜面質の改善と、高親水性、高耐久性の、いずれも満足させるに至った。   Although the description of the counter salt of the metal complex described above is omitted in this specification, the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used. For the behavior of the metal complex in the silica sol-gel reaction, see J.A. Sol-Gel. Sci. and Tec. There is a detailed description in 16.209 (1999). The following scheme is estimated as the reaction mechanism. That is, in the coating solution, the metal complex has a coordinated structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst. In any case, the use of this metal complex has led to the improvement of coating solution aging stability and film surface quality, as well as high hydrophilicity and high durability.

また、上記の金属錯体触媒の他に、Si、Ti、Zr、Alから選択される金属アルコキシド化合物の加水分解、重縮合を促進し、親水性ポリマーとの結合を生起することができるものを併用してもよい。このような触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、蟻酸や酢酸などのカルボン酸、そのRCOOHで表される構造式のRを他元素または置換基によって置換した置換カルボン酸、ベンゼンスルホン酸などのスルホン酸などの酸性を示す化合物、あるいは、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどのアミン類などの塩基性化合物が挙げられる。
上記の金属錯体触媒は、市販品として容易に入手でき、また公知の合成方法、例えば各金属塩化物とアルコールとの反応によっても得られる。
触媒の含有量は、親水性組成物の全体の固形分に対して、0.1質量%〜20質量%が好ましい。更に好ましくは1〜10質量%である。
In addition to the above-mentioned metal complex catalyst, a catalyst that promotes hydrolysis and polycondensation of a metal alkoxide compound selected from Si, Ti, Zr, and Al and can cause a bond with a hydrophilic polymer is used in combination. May be. Examples of such a catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acids such as formic acid and acetic acid, and the structural formula represented by RCOOH. Compounds having an acidity such as substituted carboxylic acids in which R is substituted with other elements or substituents, sulfonic acids such as benzenesulfonic acid, etc., or basic compounds such as ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline Is mentioned.
The above metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
The content of the catalyst is preferably 0.1% by mass to 20% by mass with respect to the total solid content of the hydrophilic composition. More preferably, it is 1-10 mass%.

〔抗菌剤〕
本発明のフィン材に抗菌性、防カビ性、防藻性を付与するために、親水性塗布液組成物に抗菌剤を含有させることができる。親水性層の形成において、親水性、水溶性抗菌剤を含有させることが好ましい。親水性、水溶性抗菌剤を含有させることにより、表面親水性を損なうことなく抗菌性、防カビ性、防藻性に優れたフィン材が得られる。
抗菌剤としては、フィン材の親水性を低下させない化合物を添加することが好ましく、そのような抗菌剤としては、無機系抗菌剤または、水溶性の有機系抗菌剤が挙げられる。抗菌剤としては、黄色ブドウ球菌や大腸菌に代表される細菌類や、かび,酵母などの真菌類など、身の回りに存在する菌類に対して殺菌効果を発揮するものが用いられる。
[Antimicrobial agent]
In order to impart antibacterial, antifungal and antialgal properties to the fin material of the present invention, an antibacterial agent can be contained in the hydrophilic coating solution composition. In the formation of the hydrophilic layer, it is preferable to contain a hydrophilic and water-soluble antibacterial agent. By containing a hydrophilic and water-soluble antibacterial agent, a fin material excellent in antibacterial, antifungal and antialgal properties can be obtained without impairing surface hydrophilicity.
As the antibacterial agent, it is preferable to add a compound that does not reduce the hydrophilicity of the fin material, and examples of such an antibacterial agent include inorganic antibacterial agents and water-soluble organic antibacterial agents. As the antibacterial agent, those exhibiting a bactericidal effect against fungi existing around us, such as bacteria represented by Staphylococcus aureus and Escherichia coli, and fungi such as fungi and yeast are used.

有機系の抗菌剤としては、フェノールエーテル誘導体,イミダゾール誘導体,スルホン誘導体,N・ハロアルキルチオ化合物,アニリド誘導体,ピロール誘導体,第4アンモニウム塩、ピリジン系、トリアジン系、ベンゾイソチアゾリン系、イソチアゾリン系などが挙げられる。
例えば1,2−ベンズイソチアゾリン−3−オン、N−フルオルジクロロメチルチオ−フタルイミド、2,3,5,6−テトラクロロイソフタロニトリル、N−トリクロロメチルチオ−4−シクロヘキセン−1,2−ジカルボキシイミド、8−キノリン酸銅、ビス(トリブチル錫)オキシド、2−(4−チアゾリル)ベンズイミダゾール〈以後、TBZと表示〉、2−ベンズイミダゾールカルバミン酸メチル〈以後、BCMと表示〉、10,10'−オキシビスフェノキシアルシン〈以後、OBPAと表示〉、2,3,5,6−テトラクロロ−4−(メチルスルフォン)ピリジン、ビス(2−ピリジルチオ−1−オキシド)亜鉛〈以後、ZPTと表示〉、N,N−ジメチル−N'−(フルオロジクロロメチルチオ)−N’−フェニルスルファミド〈ジクロルフルアニド〉、ポリ−(ヘキサメチレンビグアニド)ハイドロクロライド、ジチオ−2−2'−ビス(ベンズメチルアミド)、2−メチル−4,5−トリメチレン−4−イソチアゾリン−3−オン、2−ブロモ−2−ニトロ−1,3−プロパンジオール、ヘキサヒドロ−1,3−トリス−(2−ヒドロキシエチル)−S−トリアジン、p−クロロ−m−キシレノール、1,2−ベンズイソチアゾリン−3−オン等が挙げられるが、これらに制限されるものではない。
これら有機系の抗菌剤は、親水性、耐水性、昇華性、安全性等を考慮し、適宜選択して使用することができる。有機系抗菌剤中では、親水性、抗菌効果、コストの点から2−ブロモ−2−ニトロ−1,3−プロパンジオール、TBZ、BCM、OBPA、ZPTが好ましい。
Examples of organic antibacterial agents include phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, quaternary ammonium salts, pyridines, triazines, benzoisothiazolines, and isothiazolines. It is done.
For example, 1,2-benzisothiazolin-3-one, N-fluorodichloromethylthio-phthalimide, 2,3,5,6-tetrachloroisophthalonitrile, N-trichloromethylthio-4-cyclohexene-1,2-dicarboxyl Imido, copper 8-quinolinate, bis (tributyltin) oxide, 2- (4-thiazolyl) benzimidazole (hereinafter referred to as TBZ), methyl 2-benzimidazole carbamate (hereinafter referred to as BCM), 10,10 '-Oxybisphenoxyarsine (hereinafter referred to as OBPA) 2,3,5,6-tetrachloro-4- (methylsulfone) pyridine, bis (2-pyridylthio-1-oxide) zinc (hereinafter referred to as ZPT) >, N, N-dimethyl-N ′-(fluorodichloromethylthio) -N′-phenylsulfamide <dichloro Luanide>, poly- (hexamethylene biguanide) hydrochloride, dithio-2-2′-bis (benzmethylamide), 2-methyl-4,5-trimethylene-4-isothiazolin-3-one, 2-bromo-2 -Nitro-1,3-propanediol, hexahydro-1,3-tris- (2-hydroxyethyl) -S-triazine, p-chloro-m-xylenol, 1,2-benzisothiazolin-3-one, etc. However, it is not limited to these.
These organic antibacterial agents can be appropriately selected and used in consideration of hydrophilicity, water resistance, sublimation property, safety and the like. Among organic antibacterial agents, 2-bromo-2-nitro-1,3-propanediol, TBZ, BCM, OBPA, and ZPT are preferable from the viewpoint of hydrophilicity, antibacterial effect, and cost.

無機系の抗菌剤としては、殺菌作用の高い順に、水銀,銀,銅,亜鉛,鉄,鉛,ビスマスなどが挙げられる。例えば、銀、銅、亜鉛、ニッケル等の金属や金属イオンをケイ酸塩系担体、リン酸塩系担体、酸化物、ガラスやチタン酸カリウム、アミノ酸等に担持させたものが挙げられる。たとえばゼオライト系抗菌剤、ケイ酸カルシウム系抗菌剤、リン酸ジルコニウム系抗菌剤、リン酸カルシウム抗菌剤、酸化亜鉛系抗菌剤、溶解性ガラス系抗菌剤、シリカゲル系抗菌剤、活性炭系抗菌剤、酸化チタン系抗菌剤、チタニア系抗菌剤、有機金属系抗菌剤、イオン交換体セラミックス系抗菌剤、層状リン酸塩−四級アンモニウム塩系抗菌剤、抗菌ステンレス等が挙げられるが、これらに制限されるものではない。   Examples of inorganic antibacterial agents include mercury, silver, copper, zinc, iron, lead, bismuth and the like in descending order of bactericidal action. For example, the thing which carry | supported metals and metal ions, such as silver, copper, zinc, nickel, on the silicate type | system | group support | carrier, phosphate type | system | group support, an oxide, glass, potassium titanate, an amino acid, etc. is mentioned. For example, zeolite antibacterial, calcium silicate antibacterial, zirconium phosphate antibacterial, calcium phosphate antibacterial, zinc oxide antibacterial, soluble glass antibacterial, silica gel antibacterial, activated carbon antibacterial, titanium oxide Antibacterial agent, titania antibacterial agent, organometallic antibacterial agent, ion exchanger ceramic antibacterial agent, layered phosphate-quaternary ammonium salt antibacterial agent, antibacterial stainless steel, etc. Absent.

天然系抗菌剤としては、カニやエビの甲殻等に含まれるキチンを加水分解して得られる塩基性多糖類のキトサンがある。
本発明には、アミノ酸の両側に金属を複合させたアミノメタルから成る日鉱の「商品名ホロンキラービースセラ」が好ましい。
これらは蒸散性ではなく、また、親水層のポリマーや架橋剤成分と相互作用しやすく、安定に分子分散あるいは固体分散可能であり、親水層表面に抗菌剤が効果的に露出しやすく、かつ、水がかかっても溶出することなく、効果を長期間持続させることができ、人体に影響を及ぼすこともない。また、親水層や塗布液に対して安定に分散することができ、親水層や塗布液の劣化もおこらない。
上記抗菌剤の中では、抗菌効果が大きいことから、銀系無機抗菌剤と水溶性有機抗菌剤が最も好ましい。特にケイ酸塩系担体であるゼオライトに銀を担持させた銀ゼオライトやシリカゲルに銀を担持させた抗菌剤や2−ブロモ−2−ニトロ−1,3−プロパンジオール、TPN、TBZ、BCM、OBPA、ZPTが好ましい。特に好ましい市販の銀ゼオライト系抗菌剤としては、品川燃料の「ゼオミック」や富士シリシア化学の「シルウェル」や日本電子材料の「バクテノン」等がある。その他、銀を無機イオン交換体セラミックスに担持させた東亜合成の「ノバロン」や触媒化成工業の「アトミーボール」やトリアジン系抗菌剤の「サンアイバックP」(三愛石油)も好ましい。
Natural antibacterial agents include chitosan, a basic polysaccharide obtained by hydrolyzing chitin contained in crabs and shrimp shells.
In the present invention, Nikko's “trade name Holon Killer Bees Sera” made of aminometal in which a metal is compounded on both sides of an amino acid is preferable.
These are not transpirationable, easily interact with the polymer and crosslinker component of the hydrophilic layer, can be stably molecularly dispersed or solid dispersed, the antibacterial agent is easily exposed effectively on the hydrophilic layer surface, and Even if it is splashed with water, it does not elute, can maintain its effect for a long time, and does not affect the human body. Moreover, it can disperse | distribute stably with respect to a hydrophilic layer or a coating liquid, and deterioration of a hydrophilic layer or a coating liquid does not occur.
Among the antibacterial agents, silver-based inorganic antibacterial agents and water-soluble organic antibacterial agents are most preferable because of their great antibacterial effects. In particular, silver zeolite in which silver is supported on zeolite, which is a silicate carrier, antibacterial agent in which silver is supported on silica gel, 2-bromo-2-nitro-1,3-propanediol, TPN, TBZ, BCM, OBPA ZPT is preferred. Particularly preferred commercially available silver zeolite antibacterial agents include “Zeomic” by Shinagawa Fuel, “Sylwell” by Fuji Silysia Chemical, and “Bactenone” by JEOL. In addition, “NOVALON” manufactured by Toa Gosei, in which silver is supported on an inorganic ion exchanger ceramic, “ATOMY BALL” manufactured by Catalytic Chemical Industry, and “Suneyeback P” (San-ai Oil), a triazine antibacterial agent, are also preferable.

抗菌剤の含有量は、一般的には親水性組成物の全体の固形分に対して0.001〜10質量%であるが、0.005〜5質量%が好ましく、0.01〜3質量%がより好ましく、0.02〜1.5質量%が特に好ましく、0.05〜1質量%が最も好ましい。含有量が0.001質量%以上であれば効果的な抗菌効果を得ることができる。また、含有量が10質量%以下であれば親水性も低下せず、かつ経時性も悪化せず、防汚性、防曇性に悪影響を及ぼさない。   The content of the antibacterial agent is generally 0.001 to 10% by mass with respect to the total solid content of the hydrophilic composition, preferably 0.005 to 5% by mass, and 0.01 to 3% by mass. % Is more preferable, 0.02 to 1.5% by mass is particularly preferable, and 0.05 to 1% by mass is most preferable. If the content is 0.001% by mass or more, an effective antibacterial effect can be obtained. Further, if the content is 10% by mass or less, the hydrophilicity is not lowered, the aging is not deteriorated, and the antifouling property and the antifogging property are not adversely affected.

〔無機微粒子〕
本発明の親水性層は、親水性の向上や、皮膜のひび割れ防止、膜強度向上のために、無機微粒子を含有してもよい。無機微粒子としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化チタン、炭酸マグネシウム、アルギン酸カルシウムまたはこれらの混合物が好適に挙げられる。
無機微粒子は、平均粒径が5nm〜10μmであるのが好ましく、0.5〜3μmであるのがより好ましい。上記範囲内であると、親水層中に安定に分散して、親水層の膜強度を十分に保持し、耐久性の高い親水性に優れるフィン材を形成することができる。
上述したような無機微粒子の中で、特にコロイダルシリカ分散物が好ましく、市販品として容易に入手することができる。
無機微粒子の含有量は、親水層の全固形分に対して、80質量%以下であるのが好ましく、50質量%以下であるのがより好ましい。
[Inorganic fine particles]
The hydrophilic layer of the present invention may contain inorganic fine particles in order to improve hydrophilicity, prevent cracking of the film, and improve film strength. As the inorganic fine particles, for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate or a mixture thereof can be preferably mentioned.
The inorganic fine particles preferably have an average particle size of 5 nm to 10 μm, and more preferably 0.5 to 3 μm. Within the above range, it is possible to form a fin material that is stably dispersed in the hydrophilic layer, sufficiently retains the film strength of the hydrophilic layer, and has high durability and excellent hydrophilicity.
Among the inorganic fine particles as described above, a colloidal silica dispersion is particularly preferable and can be easily obtained as a commercial product.
The content of the inorganic fine particles is preferably 80% by mass or less, and more preferably 50% by mass or less, based on the total solid content of the hydrophilic layer.

〔その他の成分〕
以下に、必要に応じて本発明のフィン材の親水性層形成用塗布液に用いることのできる種々の添加剤について述べる。
1)界面活性剤
本発明のフィン材の親水性層形成用塗布液には、界面活性剤を添加してもよい。
界面活性剤としては、特開昭62−173463号、同62−183457号の各公報に記載されたものが挙げられる。例えば、ジアルキルスルホコハク酸塩類、アルキルナフタレンスルホン酸塩類、脂肪酸塩類等のアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、アセチレングリコール類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類等のノニオン性界面活性剤、アルキルアミン塩類、第4級アンモニウム塩類等のカチオン性界面活性剤が挙げられる。なお、前記界面活性剤の代わりに有機フルオロ化合物を用いてもよい。前記有機フルオロ化合物は、疎水性であることが好ましい。前記有機フルオロ化合物としては、例えば、フッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)及び固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれ、特公昭57−9053号(第8〜17欄)、特開昭62−135826号の各公報に記載されたものが挙げられる。
[Other ingredients]
Hereinafter, various additives that can be used in the coating liquid for forming the hydrophilic layer of the fin material of the present invention as necessary are described.
1) Surfactant You may add surfactant to the coating liquid for hydrophilic layer formation of the fin material of this invention.
Examples of the surfactant include those described in JP-A Nos. 62-173463 and 62-183457. For example, anionic surfactants such as dialkylsulfosuccinates, alkylnaphthalenesulfonates, fatty acid salts, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycols, polyoxyethylene / polyoxypropylene blocks Nonionic surfactants such as copolymers, and cationic surfactants such as alkylamine salts and quaternary ammonium salts. An organic fluoro compound may be used in place of the surfactant. The organic fluoro compound is preferably hydrophobic. Examples of the organic fluoro compounds include fluorine surfactants, oily fluorine compounds (eg, fluorine oil) and solid fluorine compound resins (eg, tetrafluoroethylene resin). No. (columns 8 to 17) and those described in JP-A Nos. 62-135826.

界面活性剤と本発明の親水性ポリマーを併用することでより高い親水性表面を形成することができる。十分にメカニズムは解明されていないが、これは塗膜が乾燥する過程で低分子量化合物である界面活性剤が塗膜表層にマイグレートする作用に伴いポリマーセイグメント中の親水性セグメントが界面活性剤の親水性部位に引き寄せられることで高い親水性が得られたと推測する。
また一般的に比較的低分子量化合物である抗菌剤を併用することで上記界面活性剤とともにマイグレートすることで親水性を大幅に低下させることなく表面に有効的に抗菌作用を付与する作用もあると考えられる。
By using the surfactant and the hydrophilic polymer of the present invention in combination, a higher hydrophilic surface can be formed. Although the mechanism has not been fully elucidated, this is because the hydrophilic segment in the polymer segment is a surfactant due to the action of the surfactant, which is a low molecular weight compound, migrating to the surface of the coating as the coating dries. It is presumed that high hydrophilicity was obtained by being attracted to the hydrophilic part.
In addition, when combined with an antibacterial agent, which is generally a relatively low molecular weight compound, it migrates together with the above-mentioned surfactant, so that it has an effect of effectively imparting an antibacterial effect to the surface without significantly reducing hydrophilicity. it is conceivable that.

2)紫外線吸収剤
本発明においては、フィン材の耐候性向上、耐久性向上の観点から、紫外線吸収剤を用いることができる。
紫外線吸収剤としては、例えば、特開昭58−185677号公報、同61−190537号公報、特開平2−782号公報、同5−197075号公報、同9−34057号公報等に記載されたベゾトリアゾール系化合物、特開昭46−2784号公報、特開平5−194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48−30492号公報、同56−21141号公報、特開平10−88106号公報等に記載された桂皮酸系化合物、特開平4−298503号公報、同8−53427号公報、同8−239368号公報、同10−182621号公報、特表平8−501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤、などが挙げられる。
添加量は目的に応じて適宜選択されるが、一般的には、固形分換算で0.5〜15質量%であることが好ましい。
2) Ultraviolet Absorber In the present invention, an ultraviolet absorber can be used from the viewpoint of improving the weather resistance and durability of the fin material.
Examples of the ultraviolet absorber are described in JP-A-58-185679, JP-A-61-190537, JP-A-2-782, JP-A-5-97075, JP-A-9-34057, and the like. Bezotriazole compounds, benzophenone compounds described in JP-A-46-2784, JP-A-5-194443, US Pat. No. 3,214,463, etc., JP-B-48-30492, JP-A-56-21141 Cinnamic acid compounds described in JP-A-10-88106, JP-A-4-298503, JP-A-8-53427, JP-A-8-239368, JP-A-10-182621, Special Tables The triazine compounds described in JP-A-8-501291, Research Disclosure No. Examples thereof include compounds described in No. 24239, compounds that emit ultraviolet light by absorbing ultraviolet rays typified by stilbene and benzoxazole compounds, so-called fluorescent brighteners, and the like.
The addition amount is appropriately selected according to the purpose, but generally it is preferably 0.5 to 15% by mass in terms of solid content.

3)酸化防止剤
本発明のフィン材の安定性向上のため、親水性層形成用塗布液に酸化防止剤を添加することができる。酸化防止剤としては、ヨーロッパ公開特許、同第223739号公報、同309401号公報、同第309402号公報、同第310551号公報、同第310552号公報、同第459416号公報、ドイツ公開特許第3435443号公報、特開昭54−262047号公報、同63−113536号公報、同63−163351号公報、特開平2−262654号公報、特開平2−71262号公報、特開平3−121449号公報、特開平5−61166号公報、特開平5−119449号公報、米国特許第4814262号明細書、米国特許第4980275号明細書等に記載のものを挙げることができる。
添加量は目的に応じて適宜選択されるが、固形分換算で0.1〜8質量%であることが好ましい。
3) Antioxidant In order to improve the stability of the fin material of the present invention, an antioxidant can be added to the coating solution for forming the hydrophilic layer. Examples of the antioxidant include European published patents, 223739, 309401, 309402, 310551, 310552, 359416, and 3435443. No. 5, JP-A-54-262447, JP-A-63-113536, JP-A-63-163351, JP-A-2-262654, JP-A-2-71262, JP-A-3-121449, Examples thereof include those described in JP-A-5-61166, JP-A-5-119449, US Pat. No. 4,814,262, US Pat. No. 4,980,275, and the like.
Although the addition amount is appropriately selected according to the purpose, it is preferably 0.1 to 8% by mass in terms of solid content.

4)溶剤
本発明のフィン材の親水性層形成時に、基板に対する均一な塗膜の形成性を確保するために、親水性層形成用塗布液に適度に有機溶剤を添加することも有効である。
溶剤としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶剤、メタノール、エタノール、2−プロパノール、1−プロパノール、1−ブタノール、tert−ブタノール等のアルコール系溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶剤、などが挙げられる。
この場合、OC(揮発性有機溶剤)の関連から問題が起こらない範囲での添加が有効であり、その量はフィン材形成時の塗布液全体に対し0〜50質量%が好ましく、より好ましくは0〜30質量%の範囲である。
4) Solvent When forming the hydrophilic layer of the fin material of the present invention, it is also effective to add an appropriate organic solvent to the hydrophilic layer forming coating solution in order to ensure the formation of a uniform coating film on the substrate. .
Examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, and chlorine such as chloroform and methylene chloride. Solvents, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, glycols such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether And ether solvents.
In this case, it is effective to add in a range that does not cause a problem due to the relationship of OC (volatile organic solvent), and the amount is preferably 0 to 50% by mass, more preferably based on the entire coating liquid at the time of fin material formation. It is the range of 0-30 mass%.

5)高分子化合物
本発明のフィン材の親水性層形成用塗布液には、親水性層の膜物性を調整するため、親水性を阻害しない範囲で各種高分子化合物を添加することができる。高分子化合物としては、アクリル系重合体、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。これらのうち、アクリル系のモノマーの共重合によって得られるビニル系共重合が好ましい。更に、高分子結合材の共重合組成として、「カルボキシル基含有モノマー」、「メタクリル酸アルキルエステル」、又は「アクリル酸アルキルエステル」を構造単位として含む共重合体も好ましく用いられる。
5) Polymer compound Various polymer compounds can be added to the coating liquid for forming a hydrophilic layer of the fin material of the present invention in order to adjust the film physical properties of the hydrophilic layer as long as the hydrophilicity is not inhibited. High molecular compounds include acrylic polymer, polyvinyl alcohol resin, polyvinyl butyral resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin. Rubber resins, waxes and other natural resins can be used. Two or more of these may be used in combination. Of these, vinyl copolymer obtained by copolymerization of acrylic monomers is preferred. Furthermore, a copolymer containing “carboxyl group-containing monomer”, “methacrylic acid alkyl ester”, or “acrylic acid alkyl ester” as a structural unit is also preferably used as the copolymer composition of the polymer binder.

この他にも、必要に応じて、例えば、レベリング添加剤、マット剤、膜物性を調整するためのワックス類、基板への密着性を改善するために、親水性を阻害しない範囲でタッキファイヤーなどを含有させることができる。
タッキファイヤーとしては、具体的には、特開2001−49200号公報の5〜6pに記載されている高分子量の粘着性ポリマー(例えば、(メタ)アクリル酸と炭素数1〜20のアルキル基を有するアルコールとのエステル、(メタ)アクリル酸と炭素数3〜14の脂環族アルコールとのエステル、(メタ)アクリル酸と炭素数6〜14の芳香族アルコールとのエステルからなる共重合物)や、重合性不飽和結合を有する低分子量粘着付与性樹脂などである。
In addition to this, if necessary, for example, leveling additives, matting agents, waxes for adjusting film physical properties, tackifiers, etc. within a range that does not impair hydrophilicity in order to improve adhesion to the substrate, etc. Can be contained.
As the tackifier, specifically, a high molecular weight adhesive polymer described in JP-A-2001-49200, 5-6p (for example, (meth) acrylic acid and an alkyl group having 1 to 20 carbon atoms). An ester with an alcohol having, an ester of (meth) acrylic acid with an alicyclic alcohol having 3 to 14 carbon atoms, a copolymer comprising an ester of (meth) acrylic acid with an aromatic alcohol having 6 to 14 carbon atoms) And a low molecular weight tackifying resin having a polymerizable unsaturated bond.

本発明のフィン材において、コーティング(親水性被膜)の厚さは、0.1μm〜10μmが好ましく、0.5μm〜2.0μmがさらに好ましい。膜厚が0.1μm以上であることにより、十分な親水性の効果を得ることができる。また、10μm以下であることにより、乾燥ムラ等の欠陥が生じることがない。   In the fin material of the present invention, the thickness of the coating (hydrophilic film) is preferably 0.1 μm to 10 μm, and more preferably 0.5 μm to 2.0 μm. When the film thickness is 0.1 μm or more, a sufficient hydrophilic effect can be obtained. Further, when the thickness is 10 μm or less, defects such as drying unevenness do not occur.

[基材]
本発明のフィン材は、親水性層形成用塗布液を、適切な基材上に塗布し、加熱、乾燥して表面親水性層を形成することで得ることができる。基材には金属基板やプラスチック基板が好ましい。好適な金属基板としては、例えば、アルミニウム、亜鉛、銅、ニッケル、ステンレス鋼板(SUS)などを挙げることができる。これらの中でアルミニウム基板が特に好ましい。本発明に用いられるプラスチック基板は、特に制限はないが、ポリエステル、ポリエチレン、ポリプロピレン、セロファン、トリアセチルセルロース、ジアセチルセルロース、アセチルセルロースブチレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、ポリスチレン、ポリカーボネート(PC)、ポリメチルペンテン、ポリスルフォン、ポリエーテルケトン、アクリル、ナイロン、フッ素樹脂、ポリイミド、ポリエーテルイミド、ポリエーテルスルフォン、ポリメチルメタクリレート(PMMA)等を挙げることができる。その中でも特にポリエチレンテレフタレート(PET),ポリエチレンナフタレート等のポリエステル、ポリカーボネート、トリアセチルセルロース、ジアセチルセルロース等のセルロース樹脂等のプラスチック基板が好ましい。親水性層形成のための加熱温度と加熱時間は、ゾル液中の溶媒が除去され、強固な皮膜が形成できる温度と時間であれば特に制限はないが、製造適性などの点から加熱温度は150℃以下であることが好ましく、加熱時間は1時間以内が好ましい。
本発明のフィン材は、公知の塗布方法で作成することが可能であり、特に限定がなく、例えばスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法、フィルムアプリケーター法、スクリーン印刷法、バーコーター法、刷毛塗り、スポンジ塗り等の方法が適用できる。
[Base material]
The fin material of the present invention can be obtained by applying a coating solution for forming a hydrophilic layer on a suitable substrate, heating and drying to form a surface hydrophilic layer. The substrate is preferably a metal substrate or a plastic substrate. Examples of suitable metal substrates include aluminum, zinc, copper, nickel, stainless steel plate (SUS), and the like. Among these, an aluminum substrate is particularly preferable. The plastic substrate used in the present invention is not particularly limited, but polyester, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl cellulose, acetyl cellulose butyrate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, Examples thereof include polystyrene, polycarbonate (PC), polymethylpentene, polysulfone, polyether ketone, acrylic, nylon, fluororesin, polyimide, polyetherimide, polyether sulfone, and polymethyl methacrylate (PMMA). Among these, plastic substrates such as polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, cellulose resins such as polycarbonate, triacetyl cellulose, and diacetyl cellulose are particularly preferable. The heating temperature and heating time for forming the hydrophilic layer are not particularly limited as long as the solvent and the time in which the solvent in the sol solution can be removed and a strong film can be formed. It is preferably 150 ° C. or lower, and the heating time is preferably within 1 hour.
The fin material of the present invention can be prepared by a known coating method, and is not particularly limited. For example, a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a film applicator method, Methods such as screen printing, bar coater, brush coating, and sponge coating can be applied.

塗布液の乾燥温度は10℃〜150℃が好ましく、25℃〜100℃がさらに好ましい。乾燥温度が低いと十分な架橋反応が進まず塗膜強度が低い。温度が高いと塗膜のひび割れを生じやすく部分的に防曇性が不十分になる。乾燥時間は5分〜1時間が好ましい。更に好ましくは10分〜30分間である。乾燥時間が短いと乾燥不十分により塗膜強度が低下することがある。必要以上に乾燥時間を長くしすぎると基材が劣化したりする。   The drying temperature of the coating solution is preferably 10 ° C to 150 ° C, more preferably 25 ° C to 100 ° C. When the drying temperature is low, sufficient crosslinking reaction does not proceed and the coating strength is low. If the temperature is high, the coating film tends to crack, and the antifogging property is partially insufficient. The drying time is preferably 5 minutes to 1 hour. More preferably, it is 10 minutes to 30 minutes. If the drying time is short, the coating strength may decrease due to insufficient drying. If the drying time is excessively longer than necessary, the substrate may deteriorate.

本発明において、親水性層の表面の突起の最大高さRmaxは、0.1μm〜2μmである。好ましくは0.5μm〜1.5μmである。この範囲であることにより、十分な親水性と熱交換効率を維持するという効果を奏する。基材に部分的にでも大きな突起が存在するとその部分だけ十分に親水性層を形成できずに基材の突起が露出しやすく親水性を発揮できないことがある。また親水性層を形成できてもアルミフィン材の場合、フィン間で部分的にフィンが接触し十分な熱交換率が得られないことがある。一方、Rmaxが低すぎると平滑すぎるために塗布工程においてハンドリングしにくくなるために親水性層を塗布できないことがある。
また、中心平均粗さRaは、10nm〜100nmが好ましい。
また、親水性被膜のTgは、熱交換機内の発熱による耐熱性を持たせるという理由から、40℃〜150℃が好ましい。また、親水性被膜の弾性率は1GPa〜7GPaが好ましい。
なお、上記の親水性層の表面性状の制御方法は、使用する無機微粒子の粒子サイズ、含有量を制御する;基材自体の表面粗さを調整する;親水性層形成用塗布液組成物の粘度、親水性被膜の加熱温度、速度などを制御する、等が挙げられるが、本発明はこれに限定されるものではない。
In the present invention, the maximum height Rmax of the protrusions on the surface of the hydrophilic layer is 0.1 μm to 2 μm. Preferably they are 0.5 micrometer-1.5 micrometers. By being in this range, there is an effect of maintaining sufficient hydrophilicity and heat exchange efficiency. If a large protrusion is present even partially on the substrate, the hydrophilic layer may not be sufficiently formed only on that portion, and the protrusion on the substrate is likely to be exposed and the hydrophilicity may not be exhibited. Even if a hydrophilic layer can be formed, in the case of an aluminum fin material, the fins may partially contact each other between the fins, and a sufficient heat exchange rate may not be obtained. On the other hand, if Rmax is too low, the hydrophilic layer may not be applied because it is too smooth and difficult to handle in the coating process.
Further, the center average roughness Ra is preferably 10 nm to 100 nm.
Further, the Tg of the hydrophilic coating is preferably 40 ° C. to 150 ° C. for the purpose of providing heat resistance due to heat generation in the heat exchanger. The elastic modulus of the hydrophilic coating is preferably 1 GPa to 7 GPa.
The method for controlling the surface property of the hydrophilic layer described above controls the particle size and content of the inorganic fine particles used; adjusts the surface roughness of the substrate itself; The viscosity, the heating temperature of the hydrophilic coating, the speed, etc. are controlled, but the present invention is not limited to this.

また、本発明では、防食性、基材との密着性を向上させるなどを目的とし、必要に応じて基材と親水性層との間に中間層を設けてもよい。中間層は特に限定されない。組成の異なる親水性層を設けても良いし、クロメート系に代表される公知の耐食防止層を付与してもよい。   Moreover, in this invention, you may provide an intermediate | middle layer between a base material and a hydrophilic layer for the purpose of improving corrosion resistance, adhesiveness with a base material, etc. as needed. The intermediate layer is not particularly limited. Hydrophilic layers having different compositions may be provided, or a known anticorrosion layer represented by a chromate system may be provided.

本発明において、親水性層は、30℃の水に500時間浸漬させる前および浸漬させた後のいずれも水に対する接触角が15°以下、好ましくは10°以下である。したがって、本発明のフィン材は、十分な親水性を有し、その効果も十分長く持続可能であるといえる。   In the present invention, the hydrophilic layer has a water contact angle of 15 ° or less, preferably 10 ° or less, both before and after being immersed in water at 30 ° C. for 500 hours. Therefore, it can be said that the fin material of the present invention has sufficient hydrophilicity and the effect can be maintained for a sufficiently long time.

親水性層表面の親水性度は、表面自由エネルギーの測定においても評価できる。本発明では、Zismanプロット法を用いて表面自由エネルギーを測定した。具体的には、塩化マグネシウムなどの無機電解質の水溶液が濃度とともに表面張力が大きくなる性質を利用し、その水溶液を用いて空中、室温条件で接触角を測定した後、横軸にその水溶液の表面張力、縦軸に接触角をcosθに換算した値をとり、種々の濃度の水溶液の点をプロットして直線関係を得、cosθ=1すなわち、接触角=0°になるときの表面張力を、固体の表面自由エネルギーと定義する測定方法である。水の表面張力は72mN/mであり、表面自由エネルギーの値が大きいほど親水性が高いといえる。
このような方法で測定した表面自由エネルギーが、70mN/m〜95mN/m、好ましくは72mN/m〜93mN/m、さらに好ましくは75mN/m〜90mN/mの範囲にある親水性層が、親水性に優れ、良好な性能を示す。
The degree of hydrophilicity of the hydrophilic layer surface can also be evaluated in the measurement of surface free energy. In the present invention, the surface free energy was measured using the Zisman plot method. Specifically, using the property that an aqueous solution of an inorganic electrolyte such as magnesium chloride increases in surface tension with the concentration, after measuring the contact angle in the air at room temperature using the aqueous solution, the horizontal axis indicates the surface of the aqueous solution. Take the value obtained by converting the contact angle into cos θ on the vertical axis and plot the points of aqueous solutions of various concentrations to obtain a linear relationship, and the surface tension when cos θ = 1, that is, the contact angle = 0 °, It is a measurement method defined as the surface free energy of a solid. The surface tension of water is 72 mN / m, and the higher the surface free energy value, the higher the hydrophilicity.
A hydrophilic layer whose surface free energy measured by such a method is in the range of 70 mN / m to 95 mN / m, preferably 72 mN / m to 93 mN / m, more preferably 75 mN / m to 90 mN / m is hydrophilic. Excellent performance and good performance.

以下本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。なお、部とあるのは質量部を意味する。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. In addition, with a part means a mass part.

[実施例1]
下記表1記載の親水性ポリマー、金属アルコキシド化合物に蒸留水400部、エタノール70部を加え25℃で30分間攪拌し親水性組成物を得た。
次いでアルミニウム板(A1050 板厚み0.1mm、最大突起高さ0.9μm)をアルカリ性洗浄液(横浜油脂製セミクリーンA−1を3%水溶液に希釈したもの)に5分間浸漬させたのち水洗し、脱脂処理をおこなった。
脱脂したアルミニウム板表面に乾燥後の厚さが1μmになるように上記親水性組成物を塗布し、100℃10分間加熱乾燥を行った。
得られた本発明のフィン材を下記方法で評価した。
[Example 1]
400 parts of distilled water and 70 parts of ethanol were added to the hydrophilic polymer and metal alkoxide compound described in Table 1 below, and the mixture was stirred at 25 ° C. for 30 minutes to obtain a hydrophilic composition.
Next, the aluminum plate (A1050 plate thickness 0.1 mm, maximum protrusion height 0.9 μm) was immersed in an alkaline cleaning solution (Yokomi Yushi Semi Clean A-1 diluted in 3% aqueous solution) for 5 minutes, and then washed with water. Degreasing treatment was performed.
The above hydrophilic composition was applied to the degreased aluminum plate surface so that the thickness after drying was 1 μm, and dried by heating at 100 ° C. for 10 minutes.
The obtained fin material of the present invention was evaluated by the following method.

評価法
・表面Rmax
デジタルオプティカルプロフィメーター(WYKO製)を用いて100μm四方の面積を光干渉法によりカットオッフ0.25mmの条件で測定した範囲の最大突起高さをRmaxとした。
・水浸漬
30℃に温調した水道水中に500時間浸漬させたのち90℃5分間乾燥させた。
・水滴接触角
協和界面科学(株)製 接触角計DropMaster500を用いて超純水を用いて親水性層表面の接触角を求めた。接触角は上記の水浸漬前後で評価した。
・耐クラック性
得られたフィン材に対し、事務機器用パンチを用いて穴を開け、穴のエッジ部分を走査型電子顕微鏡を用いて2000倍にて観察し下記のランクで評価した。
優秀:クラックの発生なし。
良好:クラックは発生するがクラックの長さが最も長いものでも20μm未満。
不良:クラックが発生し、20μm以上のクラックがある。
結果を表1に示す。
Evaluation method / surface Rmax
The maximum protrusion height in a range in which an area of 100 μm square was measured by a light interference method using a digital optical profilometer (manufactured by WYKO) under the condition of a cut-off of 0.25 mm was defined as Rmax.
-Water immersion After immersing in tap water temperature-controlled at 30 degreeC for 500 hours, it was dried at 90 degreeC for 5 minutes.
-Water drop contact angle The contact angle of the hydrophilic layer surface was calculated | required using ultra pure water using Kyowa Interface Science Co., Ltd. contact angle meter DropMaster500. The contact angle was evaluated before and after the water immersion.
-Crack resistance With respect to the obtained fin material, a hole was made using a punch for office equipment, and an edge portion of the hole was observed at 2000 times using a scanning electron microscope and evaluated according to the following rank.
Excellent: No cracking.
Good: Cracks are generated, but the crack is the longest but less than 20 μm.
Defect: A crack occurs and there is a crack of 20 μm or more.
The results are shown in Table 1.

[実施例2〜18および比較例1〜12]
粗さの異なる基材、親水性ポリマー、金属アルコキシド、その他の成分を下記表1に記載のものにした以外は実施例1と同様に行った。
[Examples 2 to 18 and Comparative Examples 1 to 12]
The same procedure as in Example 1 was conducted except that the substrates having different roughness, hydrophilic polymer, metal alkoxide, and other components were changed to those shown in Table 1 below.

親水性ポリマーである化合物Aと化合物Bの合成方法を示す。その他の親水性ポリマーも同様に合成できる。
化合物A
三口フラスコにアクリルアミド100部、3−メルカプトプロピルトリメトキシシラン10部、ジメチルアセトアミド200部を加え、窒素気流下にて80℃で加熱混合した。ついで2,2’アゾビス(2,4ジメチルバレロニトリル)0.1部を加えて5hr反応を行った。得られた反応液をメタノール3000L中に滴下し、固形物を析出させた。
ろ過にて固形物を取り出したあと60℃で12hr乾燥を行い化合物Aを得た。
得られた化合物Aの分子量はGPCにて測定し標準ポリスチレン換算値より求めた。
A method for synthesizing Compound A and Compound B, which are hydrophilic polymers, will be described. Other hydrophilic polymers can be synthesized similarly.
Compound A
To a three-necked flask, 100 parts of acrylamide, 10 parts of 3-mercaptopropyltrimethoxysilane, and 200 parts of dimethylacetamide were added and heated and mixed at 80 ° C. under a nitrogen stream. Subsequently, 0.1 part of 2,2′azobis (2,4dimethylvaleronitrile) was added and the reaction was carried out for 5 hours. The obtained reaction liquid was dripped in 3000 L of methanol, and the solid substance was deposited.
The solid matter was taken out by filtration and then dried at 60 ° C. for 12 hours to obtain Compound A.
The molecular weight of the obtained compound A was measured by GPC and determined from the standard polystyrene equivalent value.

化合物B
三口フラスコにアクリルアミド100部、アクリルアミド−プロピルトリエトキシシラン20部、ジメチルホルムアミド500部を加え窒素気流下にて80℃で混合した。
ついで2,2’アゾビス(2,4ジメチルバレロニトリル)0.1部を加えて5hr反応を行った。得られた反応液をn−ヘキサン3000L中に滴下し、固形物を析出させた。
ろ過にて固形物を取り出したあと60℃で12hr乾燥を行い化合物Bを得た。
得られた化合物Bの分子量はGPCにて測定し標準ポリスチレン換算値より求めた。
Compound B
100 parts of acrylamide, 20 parts of acrylamide-propyltriethoxysilane, and 500 parts of dimethylformamide were added to a three-necked flask and mixed at 80 ° C. under a nitrogen stream.
Subsequently, 0.1 part of 2,2′azobis (2,4dimethylvaleronitrile) was added and the reaction was carried out for 5 hours. The obtained reaction solution was dropped into 3000 L of n-hexane to precipitate a solid.
The solid matter was taken out by filtration and then dried at 60 ° C. for 12 hours to obtain Compound B.
The molecular weight of the obtained compound B was measured by GPC and obtained from the standard polystyrene equivalent value.

Figure 2009079889
Figure 2009079889

なお表1の親水性ポリマーと金属アルコキシドの含有量は親水性組成物の全固形分に対する値である。以下に実施例、比較例で用いた各成分、基材について示す。   In addition, content of the hydrophilic polymer of Table 1, and a metal alkoxide is a value with respect to the total solid of a hydrophilic composition. Each component and base material used in Examples and Comparative Examples are shown below.

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

Figure 2009079889
Figure 2009079889

コロイダルシリカは日産化学製スノ−テックスを用いた。
金属アルコキシドは市販の試薬を用いた。
基材は、以下のものを使用した。
アルミ: JIS A1050アルミ合金板材 厚み150μm
PC: 住友ベークライト製 ポリカエース 6mm厚
PMMA: 三菱レイヨン製 アクリライト 6mm厚
PET: 東洋紡績製 コスモシャオンA4300 100μm厚
SUS: SUS430 5mm厚
The colloidal silica used was SNO-TEX made by Nissan Chemical.
A commercially available reagent was used as the metal alkoxide.
The following materials were used.
Aluminum: JIS A1050 aluminum alloy plate thickness 150μm
PC: Sumitomo Bakelite Polycaace 6mm thickness PMMA: Mitsubishi Rayon Acrylite 6mm thickness PET: Toyobo Cosmo Shaon A4300 100μm thickness SUS: SUS430 5mm thickness

Claims (6)

基材上に親水性組成物をコーティングしたフィン材であり、該コーティング表面は、突起の最大高さRmaxが0.1μm〜2μmであり、30℃の水に500時間浸漬させる前および浸漬させた後のいずれも水に対する接触角が15°以下であることを特徴とするフィン材。   A fin material in which a hydrophilic composition is coated on a substrate, and the coating surface has a maximum height Rmax of a protrusion of 0.1 μm to 2 μm, and was immersed before and after being immersed in water at 30 ° C. for 500 hours. A fin material having a contact angle with water of 15 ° or less in any of the latter. 前記親水性組成物が、固形分として親水性ポリマーを50質量%以上含むことを特徴とする請求項1に記載のフィン材。   The fin material according to claim 1, wherein the hydrophilic composition contains 50% by mass or more of a hydrophilic polymer as a solid content. 前記基材がアルミニウム製であることを特徴とする請求項1または2に記載のフィン材。   The fin material according to claim 1, wherein the base material is made of aluminum. 前記親水性ポリマーが、少なくとも、下記一般式(IV−a)で表される構造及び一般式(IV−b)で表される構造のうち少なくとも1種を有することを特徴とする請求項1〜3のいずれかに記載のフィン材。
Figure 2009079889
一般式(IV−a)および(IV−b)中、R〜Rはそれぞれ独立に水素原子又は炭素数8以下の炭化水素基を表す。Lは単結合又は多価の有機連結基を表す。Lは単結合、−CONH−、−NHCONH−、−OCONH−、−SONH−、および−SO−からなる群より選択される構造を1つ以上有する多価の有機連結基を表す。mは1〜3の整数を表す。x、yは組成比を表し、0<x<100、0<y<100である。Xは−OH、−OR、−COR、−CO、−CON(R)(R)、−N(R)(R)、−NHCOR、−NHCO、−OCON(R)(R)、−NHCON(R)(R)、−SO、−OSO、−SO、−NHSO、−SON(R)(R)、−N(R)(R)(R)、−N(R)(R)(Rc)(R)、−PO(R)(R)、−OPO(R)(R)、または−PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子または直鎖、分岐または環状のアルキル基を表し、Rは、直鎖、分岐または環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子または直鎖、分岐または環状のアルキル基、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、直鎖、分岐または環状のアルキル基、ハロゲン原子、無機アニオン、または有機アニオンを表す。)
The hydrophilic polymer has at least one of a structure represented by the following general formula (IV-a) and a structure represented by the general formula (IV-b). 4. The fin material according to any one of 3.
Figure 2009079889
In general formulas (IV-a) and (IV-b), R 1 to R 8 each independently represents a hydrogen atom or a hydrocarbon group having 8 or less carbon atoms. L 1 represents a single bond or a polyvalent organic linking group. L 2 represents a polyvalent organic linking group having one or more structures selected from the group consisting of a single bond, —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —. . m represents an integer of 1 to 3. x and y represent composition ratios, and 0 <x <100 and 0 <y <100. X represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e) ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group, R d represents a linear, branched or cyclic alkyl group, R e and R f independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium, and R g represents a linear, branched or cyclic alkyl group, a halogen atom, An inorganic anion or an organic anion is represented. )
前記親水性組成物が、Si、Ti、Zr、Alから選択されるいずれかの元素を含むアルコキシド化合物を含有することを特徴とする請求項1〜4のいずれかに記載のフィン材。   The fin material according to claim 1, wherein the hydrophilic composition contains an alkoxide compound including any element selected from Si, Ti, Zr, and Al. 請求項1〜5のいずれかに記載のフィン材からなることを特徴とする熱交換器用フィン材。   It consists of the fin material in any one of Claims 1-5, The fin material for heat exchangers characterized by the above-mentioned.
JP2008198958A 2007-09-05 2008-07-31 Fin material Pending JP2009079889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008198958A JP2009079889A (en) 2007-09-05 2008-07-31 Fin material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007230742 2007-09-05
JP2008198958A JP2009079889A (en) 2007-09-05 2008-07-31 Fin material

Publications (1)

Publication Number Publication Date
JP2009079889A true JP2009079889A (en) 2009-04-16

Family

ID=40654765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198958A Pending JP2009079889A (en) 2007-09-05 2008-07-31 Fin material

Country Status (1)

Country Link
JP (1) JP2009079889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059960A (en) * 2011-09-14 2013-04-04 Nippon Steel & Sumikin Coated Sheet Corp Coated metal plate
WO2014046210A1 (en) * 2012-09-24 2014-03-27 旭硝子株式会社 Partial hydrolysis-condensation product and ink repellent agent using same
JP5497971B1 (en) * 2013-03-21 2014-05-21 日本パーカライジング株式会社 Hydrophilic surface treatment agent for aluminum-containing metal heat exchanger with excellent drainage
WO2018225275A1 (en) * 2017-06-06 2018-12-13 パナソニックIpマネジメント株式会社 Heat exchanger on which anti-fouling film coating is formed
JP2023104252A (en) * 2022-01-17 2023-07-28 株式会社油研 Aqueous metal processing liquid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059960A (en) * 2011-09-14 2013-04-04 Nippon Steel & Sumikin Coated Sheet Corp Coated metal plate
WO2014046210A1 (en) * 2012-09-24 2014-03-27 旭硝子株式会社 Partial hydrolysis-condensation product and ink repellent agent using same
JP5497971B1 (en) * 2013-03-21 2014-05-21 日本パーカライジング株式会社 Hydrophilic surface treatment agent for aluminum-containing metal heat exchanger with excellent drainage
WO2014147782A1 (en) * 2013-03-21 2014-09-25 日本パーカライジング株式会社 Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage
CN104411788A (en) * 2013-03-21 2015-03-11 日本帕卡濑精株式会社 Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage
KR101555162B1 (en) 2013-03-21 2015-09-22 니혼 파커라이징 가부시키가이샤 Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage
CN104411788B (en) * 2013-03-21 2016-07-06 日本帕卡濑精株式会社 The hydrophilic surface inorganic agent of the metal heat exchanger containing aluminum that drainage is excellent
US9534132B2 (en) * 2013-03-21 2017-01-03 Nihon Parkerizing Co., Ltd. Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage
WO2018225275A1 (en) * 2017-06-06 2018-12-13 パナソニックIpマネジメント株式会社 Heat exchanger on which anti-fouling film coating is formed
JP2018204880A (en) * 2017-06-06 2018-12-27 パナソニックIpマネジメント株式会社 Heat exchanger formed with anti-staining coating film
JP2023104252A (en) * 2022-01-17 2023-07-28 株式会社油研 Aqueous metal processing liquid

Similar Documents

Publication Publication Date Title
JP5124496B2 (en) Hydrophilic member
JP5427382B2 (en) Hydrophilic member, fin material, aluminum fin material, heat exchanger and air conditioner
EP2194104A1 (en) Composition for formation of hydrophilic film, and hydrophilic member
WO2010044443A1 (en) Hydrophilic composition and hydrophilic member having antifungal activity
JP2009256571A (en) Hydrophilic composition having fungicidal effect, and hydrophilic member
JP2009090641A (en) Anticlouding cover and cover for meter using it
JP2009256568A (en) Hydrophilic film-forming composition, spray composition, and hydrophilic member using the same
JP5271576B2 (en) Hydrophilic composition
JP2009079889A (en) Fin material
JP5604126B2 (en) Hydrophilic film
JP2010070735A (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
JP2008195856A (en) Hydrophilic member and method for producing the same
JP2008088260A (en) Hydrophilic film-forming composition and hydrophilic member
JP2010083141A (en) Method for producing hydrophilic member, and hydrophilic member
JP2010047739A (en) Hydrophilic composition, and hydrophilic member using the same, heat exchanger, air conditioner
JP2009235128A (en) Composition for forming hydrophilic film, and hydrophilic member
WO2009119605A1 (en) Hydrophilic member
JP2011051266A (en) Hydrophilic member
JP2008225466A (en) Anti-fogging and anti-reflection optical product
WO2010087417A1 (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
JP2011073359A (en) Hydrophilic member
JP2010036368A (en) Hydrophilic polyester film
JP2008088258A (en) Hydrophilic film-forming composition and hydrophilic member
JP2009243873A (en) Fin material, fin material for heat exchanger, and air conditioner
JP2008214507A (en) Composition for forming hydrophilic membrane and hydrophilic member