JP2009079837A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2009079837A
JP2009079837A JP2007249636A JP2007249636A JP2009079837A JP 2009079837 A JP2009079837 A JP 2009079837A JP 2007249636 A JP2007249636 A JP 2007249636A JP 2007249636 A JP2007249636 A JP 2007249636A JP 2009079837 A JP2009079837 A JP 2009079837A
Authority
JP
Japan
Prior art keywords
refrigerant
heat insulating
refrigerator
compressor
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007249636A
Other languages
Japanese (ja)
Other versions
JP2009079837A5 (en
JP5198022B2 (en
Inventor
Masahiro Nishiyama
正洋 西山
Keiichi Fukuda
圭一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007249636A priority Critical patent/JP5198022B2/en
Publication of JP2009079837A publication Critical patent/JP2009079837A/en
Publication of JP2009079837A5 publication Critical patent/JP2009079837A5/ja
Application granted granted Critical
Publication of JP5198022B2 publication Critical patent/JP5198022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of stably operating a refrigerating cycle, by minimizing heat leakage into a storage while preventing condensation. <P>SOLUTION: This refrigerator 1 has a thermal insulation box body 101 having an opening part, a thermal insulation partition part 110 for partitioning the inside of the thermal insulation box body 101 into a plurality of storage chambers, a thermal insulation door 120, a refrigerant pipe, a compressor 141, a condenser 144, and a first flow passage for making a refrigerant flow up to the condenser 144 from the compressor 141. The thermal insulation partition part 110 has a thermal insulation partition part front face 110a opposed to the thermal insulation door 120 when the thermal insulation door 120 blocks up the opening part, and also has a partition part condensation preventive pipe 143 for making the refrigerant flow to the periphery of the thermal insulation partition part front face 110a, and has a solenoid four-way valve 151 for switching whether or not the refrigerant is made to flow to the first flow passage or whether or not the refrigerant is made to flow up to the condenser 144 via the partition part condensation preventive pipe 143 from the compressor 141. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は冷蔵庫に関する。   The present invention relates to a refrigerator.

一般に、冷蔵庫は、開口部を有する断熱箱体と、断熱箱体の開口部を開閉するための断熱扉とからなる冷蔵庫本体と、圧縮機、凝縮器、減圧器、蒸発器等を配管した冷凍サイクルから構成される。断熱箱体は、外箱と内箱の隙間と、内箱を複数の貯蔵室に仕切る仕切内部とに発泡ポリウレタン等の断熱材が充填されている。   Generally, a refrigerator is a refrigerator that includes a heat insulating box having an opening, a heat insulating door for opening and closing the opening of the heat insulating box, a refrigerator, a refrigerator, a condenser, a decompressor, an evaporator, etc. Composed of cycles. The heat insulating box body is filled with a heat insulating material such as polyurethane foam in the gap between the outer box and the inner box and the inside of the partition that partitions the inner box into a plurality of storage chambers.

冷凍サイクルを構成する装置のうち、凝縮器の一部は断熱箱体の開口部の前面周辺および仕切の前面に結露防止配管として配置される。このようにして、結露防止配管において冷媒を凝縮すると同時に、断熱箱体と断熱扉との接触部分を高温の冷媒により加温し、庫内外の温度差により断熱箱体と断熱扉との接触部分に結露が生じることを防止している。   Among the devices constituting the refrigeration cycle, a part of the condenser is arranged as dew condensation preventing piping around the front surface of the opening of the heat insulating box and the front surface of the partition. In this way, the refrigerant is condensed in the dew condensation prevention pipe, and at the same time, the contact portion between the heat insulation box and the heat insulation door is heated by the high-temperature refrigerant, and the contact portion between the heat insulation box and the heat insulation door due to the temperature difference between inside and outside the chamber. To prevent condensation.

しかし、このように構成された冷蔵庫では、例えば、冷蔵庫の設置される環境が低湿度の雰囲気である場合など、庫内外の温度差で結露しない場合にも冷凍サイクル駆動時に常に断熱箱体と断熱扉の接触部分を加温することになる。断熱箱体と断熱扉の接触部分は、特に熱漏洩量の多い部分であり、冷媒の熱が冷蔵庫内へ侵入しやすく、決して効率のよい構成であるとはいえなかった。   However, in a refrigerator configured in this way, for example, when the environment where the refrigerator is installed is a low-humidity atmosphere, even when there is no condensation due to a temperature difference between the inside and the outside of the refrigerator, the heat insulation box and the heat insulation box are always insulated during the refrigeration cycle operation. The contact part of the door will be heated. The contact portion between the heat insulation box and the heat insulation door is a portion having a particularly large amount of heat leakage, and the heat of the refrigerant easily enters the refrigerator, so it cannot be said that the structure is efficient.

このような問題を解決するため、例えば、特開2000−65461号公報(特許文献1)には、断熱箱体と断熱扉の接触部に結露が発生する状況を検出し、結露が発生する状況では結露防止配管に凝縮器からの高温冷媒を導くように制御し、結露が発生しない状況では結露防止配管の少なくとも一部を迂回する迂回経路に凝縮器からの高温冷媒を導くように制御する冷蔵庫が開示されている。   In order to solve such a problem, for example, Japanese Patent Laid-Open No. 2000-65461 (Patent Document 1) detects a situation in which condensation occurs at a contact portion between a heat insulation box and a heat insulation door, and a situation in which condensation occurs. In the refrigerator, control is performed so that the high-temperature refrigerant from the condenser is guided to the dew condensation prevention pipe, and control is performed so that the high temperature refrigerant from the condenser is guided to a detour path that bypasses at least a part of the dew condensation prevention pipe in a situation where condensation does not occur. Is disclosed.

特開2000−65461号公報(特許文献1)に記載されている冷蔵庫は、凝縮器と減圧器の間の配管の一部により、断熱箱体の断熱扉との接触部付近に設けられた結露防止配管を形成し、結露防止配管内に凝縮器からの高温冷媒を導くように構成すると同時に、結露防止配管の一部に、結露防止配管の少なくとも一部を迂回させて凝縮器からの高温冷媒を導くための迂回経路を設ける構成とし、結露状況に応じて冷媒の流れる経路を切り替える手段を備えたものである。
特開2000−65461号公報
The refrigerator described in Japanese Patent Application Laid-Open No. 2000-65461 (Patent Document 1) has condensation provided in the vicinity of a contact portion with a heat insulating door of a heat insulating box by a part of piping between a condenser and a decompressor. A high-temperature refrigerant from the condenser is formed by forming a prevention pipe and guiding the high-temperature refrigerant from the condenser into the condensation prevention pipe and at the same time bypassing at least a part of the condensation prevention pipe to a part of the condensation prevention pipe. In this configuration, a detour path for guiding the refrigerant is provided, and means for switching the path through which the refrigerant flows according to the dew condensation state is provided.
JP 2000-65461 A

しかしながら、上記のように、結露防止配管を主冷凍サイクルから分岐し、冷媒が結露防止配管を流れる流路と結露防止配管を迂回して流れる流路を状況に応じて切替可能とした冷蔵庫において、冷媒流路を結露防止配管から迂回経路に切替えると、結露防止配管の中の冷媒が閉じ込められてしまう。   However, as described above, in the refrigerator in which the dew condensation prevention pipe is branched from the main refrigeration cycle, and the flow path through which the refrigerant flows through the dew condensation prevention pipe and the flow path through the dew condensation prevention pipe can be switched according to the situation, When the refrigerant flow path is switched from the dew condensation prevention pipe to the bypass path, the refrigerant in the dew condensation prevention pipe is confined.

ここで、例えば、凝縮部出口の温度が40℃(周囲温度が30℃程度のときに相当する)とすると、冷媒としてイソブタン冷媒を用いる場合には、凝縮部内部の圧力は0.531MPaに相当する。0.531MPaの飽和液の密度は531.2kg/m、であり、飽和蒸気の密度は13.7kg/mとなる。 Here, for example, when the temperature at the outlet of the condensing unit is 40 ° C. (corresponding to an ambient temperature of about 30 ° C.), when isobutane refrigerant is used as the refrigerant, the pressure inside the condensing unit corresponds to 0.531 MPa. To do. The density of the saturated liquid at 0.531 MPa is 531.2 kg / m 3 , and the density of the saturated vapor is 13.7 kg / m 3 .

結露防止配管の内径をφ3.1mm、長さを3mとした場合、結露防止配管の内容積は、π×(0.0031m/2)×3m=2.3×10−5となる。結露防止配管内部が100%気体の場合、内部に含まれる冷媒は最大で、13.7kg/m×2.3×10−5=0.0003kg=0.3gとなる。 When the inner diameter of the anti-condensation pipe is 3.1 mm and the length is 3 m, the internal volume of the anti-condensation pipe is π × (0.0031 m / 2) 2 × 3 m = 2.3 × 10 −5 m 3. . When the inside of the dew condensation prevention pipe is 100% gas, the maximum amount of refrigerant contained in the inside is 13.7 kg / m 3 × 2.3 × 10 −5 m 3 = 0.0003 kg = 0.3 g.

一方、冷媒が全て液体の場合には、結露防止配管の内部に滞留する冷媒の量は、最大で、531.2kg/m×2.3×10−5=0.012kg=12gとなる。 On the other hand, when the refrigerant is all liquid, the maximum amount of refrigerant staying in the dew condensation prevention pipe is 531.2 kg / m 3 × 2.3 × 10 −5 m 3 = 0.012 kg = 12 g. Become.

したがって、凝縮部の下流側に結露防止配管を配置した場合、冷媒を結露防止配管に流通させるように冷媒流路を切り替えると、例えば、冷媒の乾き度が50%のときは、結露防止配管の内部には約6gの冷媒が滞留すると考えられる。   Therefore, when the condensation prevention pipe is arranged on the downstream side of the condensing unit, when the refrigerant flow path is switched so that the refrigerant flows through the condensation prevention pipe, for example, when the dryness of the refrigerant is 50%, the condensation prevention pipe It is considered that approximately 6 g of refrigerant stays inside.

家庭用冷蔵庫において冷凍サイクル内に封入される冷媒量は40g〜60g程度である。上記の場合、冷媒流路の切替によって、冷凍サイクル内の冷媒の量が10%以上変動することとなり、不足冷媒現象に陥る可能性が十分に考えられる。   The amount of refrigerant sealed in the refrigeration cycle in the home refrigerator is about 40 to 60 g. In the above case, the amount of the refrigerant in the refrigeration cycle fluctuates by 10% or more due to the switching of the refrigerant flow path, and the possibility of falling into the insufficient refrigerant phenomenon is sufficiently considered.

すなわち、従来の冷蔵庫においては、結露防止配管は凝縮器と減圧器の間に配置されているため、結露防止配管を流れる冷媒は、凝縮器で凝縮されて、湿り蒸気または飽和液の状態、すなわち液冷媒を少なからず含むと考えられる。そして、結露状況に応じて結露防止配管から迂回経路に冷媒流路を切り替えると、結露防止配管内に液冷媒が滞留して冷凍サイクルが冷媒不足になり、鈍冷状態になる可能性がある。   That is, in the conventional refrigerator, since the dew condensation prevention pipe is arranged between the condenser and the decompressor, the refrigerant flowing through the dew condensation prevention pipe is condensed by the condenser and is in the state of wet steam or saturated liquid, that is, It is thought that it contains a little liquid refrigerant. If the refrigerant flow path is switched from the dew condensation prevention pipe to the detour path according to the dew condensation state, the liquid refrigerant may stay in the dew condensation prevention pipe and the refrigeration cycle may run out of refrigerant, resulting in a slow cooling state.

そこで、この発明の目的は、結露を防止しながら庫内への熱侵入を最低限に抑え、かつ、冷凍サイクルを安定して運転することが可能な冷蔵庫を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigerator capable of operating a refrigeration cycle stably while minimizing heat intrusion into the warehouse while preventing condensation.

この発明に従った冷蔵庫は、開口部を有する断熱箱体と、断熱箱体の内部を複数の貯蔵室に区切るための断熱仕切部と、断熱箱体の開口部を開閉するための断熱扉と、冷媒を流通させる冷媒配管と、冷媒配管内を流通する冷媒を圧縮するための圧縮機と、圧縮機で圧縮された冷媒を凝縮するための凝縮部と、圧縮機で圧縮された冷媒を圧縮機から凝縮部まで流通させるための第一の流路とを備え、断熱仕切部は、断熱扉が開口部を閉塞している場合に断熱扉に対向する断熱仕切部前面を有し、さらに、断熱仕切部前面の周辺に冷媒を流通させるための第二の流路を備え、第一の流路に冷媒を流通させるか、または、圧縮機から第二の流路を経て凝縮部まで冷媒を流通させるかを切替えるための冷媒流路切替部を備える。   A refrigerator according to the present invention includes a heat insulating box having an opening, a heat insulating partition for dividing the inside of the heat insulating box into a plurality of storage rooms, and a heat insulating door for opening and closing the opening of the heat insulating box. , A refrigerant pipe for circulating the refrigerant, a compressor for compressing the refrigerant flowing through the refrigerant pipe, a condensing part for condensing the refrigerant compressed by the compressor, and compressing the refrigerant compressed by the compressor A first flow path for circulating from the machine to the condensing unit, and the heat insulating partition has a front surface of the heat insulating partition facing the heat insulating door when the heat insulating door closes the opening, and A second flow path for circulating the refrigerant around the front surface of the heat insulating partition is provided, and the refrigerant is circulated through the first flow path, or the refrigerant is passed from the compressor to the condenser through the second flow path. A refrigerant flow path switching unit for switching whether to circulate is provided.

本発明の冷蔵庫においては、凝縮部の下流側ではなく、圧縮機と凝縮部の間に第二の流路が備えられていることにより、第二の流路には、ほぼ蒸気状態の高温冷媒を、断熱箱体と断熱扉との接触部周辺の結露状況に応じて必要最小限の時間だけ流すことができるので、結露を防止しながら、貯蔵室内への熱侵入を最低限に抑えることができる。   In the refrigerator according to the present invention, the second flow path is provided between the compressor and the condensing unit, not on the downstream side of the condensing unit. Can be allowed to flow for a minimum amount of time according to the dew condensation around the contact area between the heat insulation box and the heat insulation door, so that heat intrusion into the storage room can be minimized while preventing dew condensation. it can.

凝縮部の下流側ではなく、圧縮機と凝縮部の間に、断熱仕切部前面の周辺に冷媒を導く第二の流路を配置することによって、冷媒は気液相になる前に、すなわち、過熱蒸気、あるいは乾き飽和蒸気、あるいは乾き飽和蒸気に極めて近い湿り蒸気の状態で第二の流路内を流れる。そのため、冷媒流路を、冷媒が第二の流路を流通する経路から、第二の流路を迂回する経路に切り替えた場合でも、第二の流路内に滞留する冷媒量を最小限にとどめることができるので、冷凍サイクルの冷媒不足を防止することができる。   By disposing a second flow path that guides the refrigerant around the front surface of the heat insulating partition between the compressor and the condenser, not downstream of the condenser, before the refrigerant becomes a gas-liquid phase, that is, It flows in the second flow path in the state of superheated steam, dry saturated steam, or wet steam very close to dry saturated steam. Therefore, even when the refrigerant flow path is switched from a path through which the refrigerant flows through the second flow path to a path that bypasses the second flow path, the amount of refrigerant remaining in the second flow path is minimized. Since it can be stopped, a shortage of refrigerant in the refrigeration cycle can be prevented.

なお、第二の流路内は、圧縮機から吐出された直後の圧縮された冷媒が流れるため高温となるが、適宜冷媒流路を第一の流路に切り替えることによって、断熱仕切部前面の周辺を加熱しすぎたり、冷蔵庫内への熱侵入が従来より増加したりすることもない。   In the second flow path, the compressed refrigerant immediately after being discharged from the compressor flows, resulting in a high temperature. However, by appropriately switching the refrigerant flow path to the first flow path, The surroundings are not heated too much, and the heat intrusion into the refrigerator does not increase as compared with the prior art.

このようにすることにより、結露を防止しながら庫内への熱侵入を最低限に抑え、かつ、冷凍サイクルを安定して運転することが可能な冷蔵庫を提供することができる。   By doing in this way, the refrigerator which can suppress the heat | fever penetration | invasion in a store | warehouse | chamber while preventing condensation and can operate a refrigeration cycle stably can be provided.

この発明に従った冷蔵庫においては、冷媒流路切替部は、前記第一の流路に冷媒を流通させるか、または、前記第一の流路に冷媒を流通させかつ前記圧縮機から前記第二の流路を経て前記凝縮部まで冷媒を流通させるかを切替えるための冷媒流路切替部であることが好ましい。   In the refrigerator according to the present invention, the refrigerant flow switching unit causes the refrigerant to flow through the first flow path, or causes the refrigerant to flow through the first flow path and from the compressor to the second flow path. It is preferable that it is a refrigerant flow path switching part for switching whether a refrigerant | coolant is distribute | circulated to the said condensation part through this flow path.

このようにすることにより、冷媒流路切替部に不具合が生じ、第二の流路に冷媒が流れないような状況になっても、第一の流路は常に開放されているため、冷凍サイクル内の冷媒循環は維持され、冷蔵庫の冷却性能そのものに影響しない。さらに、例えば、冷媒流路切替部として開口度の低い弁を用いる場合でも、冷媒流路切替部を第二の流路に配置することができるので、第一の流路のみに冷媒が流れる際には冷媒が冷媒流路切替部を通過しないので圧力損失がなく、冷却効率の低下を抑制することができる。   In this way, the first flow path is always open even when a problem occurs in the refrigerant flow path switching unit and the refrigerant does not flow through the second flow path. The refrigerant circulation inside is maintained and does not affect the cooling performance of the refrigerator itself. Further, for example, even when a valve having a low opening degree is used as the refrigerant flow path switching unit, the refrigerant flow path switching unit can be arranged in the second flow path, so that the refrigerant flows only in the first flow path. Since the refrigerant does not pass through the refrigerant flow path switching unit, there is no pressure loss, and a decrease in cooling efficiency can be suppressed.

この発明に従った冷蔵庫は、圧縮機と凝縮部との間に配置されて冷媒を放熱させるための補助放熱部を備え、補助放熱部は、圧縮機と冷媒流路切替部との間に配置されていることが好ましい。   The refrigerator according to the present invention includes an auxiliary heat radiating unit that is disposed between the compressor and the condensing unit to dissipate the refrigerant, and the auxiliary heat radiating unit is disposed between the compressor and the refrigerant flow switching unit. It is preferable that

このようにすることにより、圧縮機の運転、停止等により生じる振動が冷媒流路切替部に直接伝わることなく補助放熱部にて吸収されるため、冷蔵庫運転時の騒音を低減することができる。   By doing in this way, since the vibration which arises by the driving | operation of a compressor, a stop, etc. is absorbed in an auxiliary | assistant heat radiation part, without transmitting directly to a refrigerant | coolant flow path switching part, the noise at the time of a refrigerator driving | operation can be reduced.

また、補助放熱部では冷媒はほとんど凝縮することがないので、第二の流路内を流れる冷媒は過熱蒸気、あるいは乾き飽和蒸気、あるいは乾き飽和蒸気に極めて近い湿り蒸気の状態であり、冷媒流路を第一の流路に切り替えた場合でも、第二の流路内に滞留する冷媒量は最小限にとどめることができ、冷凍サイクルの冷媒不足を防止できる。   In addition, since the refrigerant hardly condenses in the auxiliary heat radiating section, the refrigerant flowing in the second flow path is in the state of superheated steam, dry saturated steam, or wet steam very close to dry saturated steam. Even when the path is switched to the first flow path, the amount of refrigerant staying in the second flow path can be kept to a minimum, and refrigerant shortage in the refrigeration cycle can be prevented.

なお、冷媒流路は、適宜第二の流路もしくは第一の流路に切り替えられることによって、断熱仕切部前面の周辺を加熱しすぎたり、冷蔵庫内への熱侵入が従来より増加したりすることはない。   In addition, the refrigerant flow path is appropriately switched to the second flow path or the first flow path, so that the periphery of the front surface of the heat insulating partition is heated too much, or heat intrusion into the refrigerator is increased compared to the conventional case. There is nothing.

この発明に従った冷蔵庫においては、断熱箱体は、断熱扉が開口部を閉塞する場合に断熱扉に対向する開口部前面を有し、凝縮部は、開口部前面の周辺に配置されている断熱箱体の壁面に冷媒を流通させるための第三の流路を含むことが好ましい。   In the refrigerator according to the present invention, the heat insulating box has an opening front surface facing the heat insulating door when the heat insulating door closes the opening, and the condensing portion is arranged around the front of the opening. It is preferable to include a third flow path for circulating the refrigerant on the wall surface of the heat insulation box.

断熱箱体と断熱扉との接触部である箱体開口部前面および断熱仕切部前面のうち、特に冷蔵庫の内外に温度差が生じて結露しやすい断熱仕切部前面には第二の流路を備え、断熱仕切部前面ほど庫内外に温度差が生じず結露しにくい箱体開口部前面には第三の流路を配置せず、箱体開口部前面の周辺の箱体壁面に凝縮部の一部として第三の流路を備えることによって、断熱箱体開口部前面を過度に加温することがなくなり、冷蔵庫内への熱侵入を低減することができる。   Of the front surface of the box opening and the front surface of the heat insulating partition, which are the contact portions between the heat insulating box and the heat insulating door, the second channel is provided on the front surface of the heat insulating partition which is susceptible to condensation due to a temperature difference between the inside and outside of the refrigerator. There is no temperature difference between the inside and outside of the chamber and the condensation opening is less likely to condense on the front of the heat insulation partition. By providing the third flow path as a part, the front surface of the heat insulating box opening is not excessively heated, and heat intrusion into the refrigerator can be reduced.

この発明に従った冷蔵庫においては、第一の流路と第二の流路の少なくともいずれか一方が、冷媒の逆流を防ぐための冷媒逆流防止弁を有することが好ましい。   In the refrigerator according to the present invention, it is preferable that at least one of the first channel and the second channel has a refrigerant backflow prevention valve for preventing the backflow of the refrigerant.

このようにすることにより、第二の流路と第一の流路のうち、冷媒を流す必要がない方の流路内に冷媒が逆流したり滞留したりして冷媒不足になることがなく、安定した冷凍サイクルの運転を行うことができる。   By doing so, the refrigerant does not run back and stay in the flow path of the second flow path and the first flow path that does not require the flow of the refrigerant, and the refrigerant does not become insufficient. A stable refrigeration cycle can be operated.

この発明に従った冷蔵庫は、当該冷蔵庫の運転状況、断熱箱体の内部の温度、開口部前面の周辺の温度、断熱仕切部前面の周辺の温度、当該冷蔵庫の周囲の温度、および、当該冷蔵庫の周囲の湿度のうち少なくとも一つを検知するための検知部と、検知部の検知結果に基づいて、断熱箱体と断熱扉との接触部分の周辺の結露の状態に基づいて、冷媒流路切替部を制御するように構成されている制御部とを備えることが好ましい。   The refrigerator according to the present invention includes the operating state of the refrigerator, the temperature inside the heat insulating box, the temperature around the front of the opening, the temperature around the front of the heat insulating partition, the temperature around the refrigerator, and the refrigerator Based on the detection state for detecting at least one of the ambient humidity and the detection result of the detection unit, based on the state of condensation around the contact portion between the heat insulation box and the heat insulation door, the refrigerant flow path It is preferable to include a control unit configured to control the switching unit.

このようにすることにより、断熱箱体と断熱扉の接触部分周辺が結露する状況においてのみ断熱仕切部前面に冷媒を流すことができるため、必要以上に断熱箱体と断熱扉の接触部周辺を加温することがなく、庫内への熱侵入を最低限に抑えることができる。   By doing in this way, since the refrigerant can flow to the front surface of the heat insulation partition only in the situation where the periphery of the contact portion between the heat insulation box and the heat insulation door is condensed, the area around the contact portion between the heat insulation box and the heat insulation door is more than necessary. Without heating, the heat intrusion into the chamber can be minimized.

以上のように、この発明によれば、結露を防止しながら庫内への熱侵入を最低限に抑え、かつ、冷凍サイクルを安定して運転することが可能な冷蔵庫を提供することができる。   As described above, according to the present invention, it is possible to provide a refrigerator capable of minimizing heat intrusion into the cabinet while preventing condensation and stably operating the refrigeration cycle.

以下、この発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、この発明の第1実施形態として、冷蔵庫の概略的な構成を示す側断面図である。図1においては、図の左側が冷蔵庫の正面、図の右側が冷蔵庫の背面である。
(First embodiment)
FIG. 1 is a side sectional view showing a schematic configuration of a refrigerator as a first embodiment of the present invention. In FIG. 1, the left side of the figure is the front of the refrigerator, and the right side of the figure is the back of the refrigerator.

図1に示すように、冷蔵庫1は、開口部を有する断熱箱体101と、断熱箱体101の内部を複数の貯蔵室として冷蔵室102、第1冷凍室103、第2冷凍室104、野菜室105に区切るための断熱仕切部110と、断熱箱体101の開口部を開閉するための断熱扉120と、断熱箱体101の内部において冷蔵庫1の背面下部に形成されている機械室106と、冷凍サイクルを備える。機械室106の内部には、圧縮機141、制御部として制御装置130、冷媒流路切替部として電磁四方弁151等が配置されている。断熱箱体101の内部において冷蔵庫1の背面上部には、冷蔵庫1の周囲の温度と湿度を検知するための検知部として外気温・湿度センサ161が配置されている。断熱箱体101の内部には、他に、冷蔵庫1の運転状況として圧縮機141の始動状態を検知するための検知部としての圧縮機動作状態検知部と、冷気の通路の開閉を行うためのダンパ装置(図示せず)の動作状態を検知するための検知部としてのダンパ装置動作状態検知部等が配置されている。   As shown in FIG. 1, the refrigerator 1 includes a heat insulating box 101 having an opening, a refrigerator compartment 102, a first freezer compartment 103, a second freezer compartment 104, vegetables, with the inside of the heat insulating box 101 serving as a plurality of storage rooms. A heat insulating partition 110 for partitioning into the chamber 105, a heat insulating door 120 for opening and closing the opening of the heat insulating box 101, and a machine room 106 formed in the lower back of the refrigerator 1 inside the heat insulating box 101, , Equipped with a refrigeration cycle. Inside the machine room 106, a compressor 141, a control device 130 as a control unit, an electromagnetic four-way valve 151 as a refrigerant flow path switching unit, and the like are arranged. Inside the heat insulating box 101, an outside air temperature / humidity sensor 161 is disposed as a detection unit for detecting the temperature and humidity around the refrigerator 1 at the upper back of the refrigerator 1. In addition to the inside of the heat insulation box 101, a compressor operation state detection unit as a detection unit for detecting the starting state of the compressor 141 as the operation state of the refrigerator 1 and a cold air passage for opening and closing A damper device operation state detection unit or the like as a detection unit for detecting an operation state of a damper device (not shown) is disposed.

断熱扉120の周辺部にはドアパッキン125が配置されている。断熱扉120によって断熱箱体101の開口部を閉塞すると、断熱扉120がドアパッキン125を介して開口部前面101aと断熱仕切部前面110aに接触する。断熱仕切部前面110aの周辺には、仕切部結露防止配管143によって冷媒が流通させられる。開口部前面101aの周辺には、開口部結露防止配管145によって冷媒が流通させられる。   A door packing 125 is disposed around the heat insulating door 120. When the opening of the heat insulating box 101 is closed by the heat insulating door 120, the heat insulating door 120 comes into contact with the opening front surface 101a and the heat insulating partition front surface 110a via the door packing 125. The refrigerant is circulated around the heat insulating partitioning part front surface 110a by the partitioning part dew condensation prevention piping 143. The refrigerant is circulated around the opening front surface 101a by the opening dew condensation prevention pipe 145.

図2は、冷蔵庫の配管の構成を示す透視図である。図2においては、説明のため、一部の配管・装置は冷蔵庫本体から突出させて表示している。図3は、冷蔵庫の冷凍サイクルの構成を示す構成図である。図中の一点鎖線の矢印は、冷媒の流れる方向を示す。   FIG. 2 is a perspective view showing the configuration of the piping of the refrigerator. In FIG. 2, for the sake of explanation, some piping / devices are projected from the refrigerator main body. FIG. 3 is a configuration diagram showing the configuration of the refrigeration cycle of the refrigerator. The one-dot chain line arrow in the figure indicates the direction in which the refrigerant flows.

図2に示すように、冷蔵庫1は、断熱箱体101の内部に冷凍サイクル140と電磁四方弁151を備える。   As shown in FIG. 2, the refrigerator 1 includes a refrigeration cycle 140 and an electromagnetic four-way valve 151 inside a heat insulating box 101.

図2と図3に示すように、冷蔵庫1の冷凍サイクル140は、圧縮機141と、補助放熱部として補助放熱器142と、第二の流路として仕切部結露防止配管143と、凝縮部として凝縮器144と、減圧器146と、蒸発器147とが環状に接続されて構成されている。凝縮器144の一部は、第三の流路として開口部結露防止配管145を形成している。開口部結露防止配管145は、開口部前面101aから一定の距離を離して配置されている。凝縮器144と減圧器146との間には、ドライヤ148が配置されている。   As shown in FIG. 2 and FIG. 3, the refrigeration cycle 140 of the refrigerator 1 includes a compressor 141, an auxiliary radiator 142 as an auxiliary radiator, a partition dew condensation prevention pipe 143 as a second channel, and a condenser A condenser 144, a decompressor 146, and an evaporator 147 are connected in a ring shape. A part of the condenser 144 forms an opening dew condensation prevention pipe 145 as a third flow path. The opening dew condensation prevention pipe 145 is arranged at a certain distance from the opening front surface 101a. A dryer 148 is disposed between the condenser 144 and the decompressor 146.

補助放熱器142と凝縮器144との間には、電磁四方弁151が設けられている。電磁四方弁151は、第一の流路として圧縮機141から仕切部結露防止配管143を通さずに凝縮器144に冷媒を流通させるか、または、圧縮機141から仕切部結露防止配管143を経て凝縮部まで冷媒を流通させるかを切替える。圧縮機141で圧縮され、補助放熱器142を通過した冷媒は、電磁四方弁151によって、仕切部結露防止配管143に流入するか、仕切部結露防止配管143に流入せずに、補助放熱器142から凝縮器144に流入するかを切り替えられる。   An electromagnetic four-way valve 151 is provided between the auxiliary radiator 142 and the condenser 144. The electromagnetic four-way valve 151 causes the refrigerant to flow from the compressor 141 to the condenser 144 without passing through the partitioning portion condensation prevention piping 143 as a first flow path, or from the compressor 141 via the partitioning portion condensation prevention piping 143. Switch whether the refrigerant flows to the condensing part. The refrigerant compressed by the compressor 141 and having passed through the auxiliary radiator 142 flows into the partition dew condensation prevention pipe 143 by the electromagnetic four-way valve 151 or does not flow into the partition dew condensation prevention pipe 143, but the auxiliary radiator 142. To flow into the condenser 144.

図3の(A)に示すように、冷媒が圧縮機141から仕切部結露防止配管143を経ずに凝縮器144まで流通させられるように電磁四方弁151が切り替えられている場合には、冷媒は、圧縮機141、補助放熱器142、凝縮器144、減圧器146、蒸発器147の順に流れる。この場合には、冷媒は、仕切部結露防止配管143を流れない。   As shown in FIG. 3A, when the electromagnetic four-way valve 151 is switched so that the refrigerant flows from the compressor 141 to the condenser 144 without passing through the partition dew condensation prevention pipe 143, the refrigerant Flows in the order of the compressor 141, the auxiliary radiator 142, the condenser 144, the decompressor 146, and the evaporator 147. In this case, the refrigerant does not flow through the partition dew condensation prevention pipe 143.

図3の(B)に示すように、圧縮機141から仕切部結露防止配管143を経て凝縮器144まで冷媒を流通させるように電磁四方弁151が切り替えられている場合には、冷媒は、圧縮機141、補助放熱器142、仕切部結露防止配管143、凝縮器144、減圧器146、蒸発器147の順に流れる。仕切部結露防止配管143は、断熱仕切部前面110a(図1)の周辺に配置されているので、仕切部結露防止配管143に高温の冷媒が流れることによって、仕切部結露防止配管143の温度が上昇し、断熱仕切部前面110a(図1)に接しているドアパッキン125(図1)の温度が上昇し、断熱仕切部前面110aの温度が上昇して結露の発生を防止することができる。   As shown in FIG. 3B, when the electromagnetic four-way valve 151 is switched so that the refrigerant flows from the compressor 141 to the condenser 144 through the partitioning portion dew condensation prevention pipe 143, the refrigerant is compressed. Machine 141, auxiliary radiator 142, partition dew condensation prevention pipe 143, condenser 144, decompressor 146, and evaporator 147. Since the partition dew condensation prevention pipe 143 is disposed around the heat insulating partition front surface 110a (FIG. 1), when the high-temperature refrigerant flows through the partition dew condensation prevention pipe 143, the temperature of the partition dew condensation prevention pipe 143 is increased. The temperature of the door packing 125 (FIG. 1) in contact with the heat insulating partition front surface 110a (FIG. 1) rises, and the temperature of the heat insulating partition front surface 110a increases to prevent dew condensation.

図4は、この発明の第1実施形態に係る制御関連の構成を示すブロック図である。   FIG. 4 is a block diagram showing a control-related configuration according to the first embodiment of the present invention.

図4に示すように、外気温・湿度センサ161と、圧縮機動作状態検知部162と、ダンパ装置動作状態検知部163とは、制御装置130に制御信号を送信する。制御装置130は、外気温・湿度センサ161と、圧縮機動作状態検知部162と、ダンパ装置動作状態検知部163とから受信した制御信号に基づいて、開口部前面101aと断熱仕切部前面110aの結露の状態を判断し、電磁四方弁151に制御信号を送信する。このようにして、電磁四方弁151は、開口部前面101aと断熱仕切部前面110aの結露の状況に基づいて、制御装置130によって制御される。   As shown in FIG. 4, the outside air temperature / humidity sensor 161, the compressor operation state detection unit 162, and the damper device operation state detection unit 163 transmit a control signal to the control device 130. Based on the control signals received from the outside air temperature / humidity sensor 161, the compressor operation state detection unit 162, and the damper device operation state detection unit 163, the control device 130 controls the opening front surface 101a and the heat insulating partition unit front surface 110a. The state of condensation is judged and a control signal is transmitted to the electromagnetic four-way valve 151. Thus, the electromagnetic four-way valve 151 is controlled by the control device 130 based on the dew condensation state between the opening front surface 101a and the heat insulating partition front surface 110a.

制御装置130が開口部前面101aと断熱仕切部前面110aの結露の状況を判断し、仕切部結露防止配管143に冷媒を流すように電磁四方弁151を制御することによって、仕切部結露防止配管143内には、補助放熱器142から、室温よりも温度の高い冷媒が流れ込み、開口部前面101aと、断熱仕切部前面110aの結露を防止することができる。   The controller 130 determines the state of dew condensation between the opening front surface 101a and the heat insulating partition front surface 110a, and controls the electromagnetic four-way valve 151 so that the refrigerant flows through the partition dew condensation prevention pipe 143. A refrigerant having a temperature higher than room temperature flows from the auxiliary radiator 142 into the interior, and condensation on the opening front surface 101a and the heat insulating partition front surface 110a can be prevented.

一方、仕切部結露防止配管143に冷媒を流さないように電磁四方弁151を制御することによって、冷媒は、仕切部結露防止配管143を迂回して、補助放熱器142から凝縮器144へと流れ込む。このようにすることにより、仕切部結露防止配管143内には室温よりも高温の冷媒が流れなくなるので、結露の防止が不要な場合には断熱仕切部前面110aから冷蔵庫1内への熱の進入を低減させることができる。   On the other hand, by controlling the electromagnetic four-way valve 151 so that the refrigerant does not flow into the partition dew condensation prevention pipe 143, the refrigerant bypasses the partition dew condensation prevention pipe 143 and flows into the condenser 144 from the auxiliary radiator 142. . By doing in this way, since a refrigerant having a temperature higher than room temperature does not flow in the partition dew condensation prevention pipe 143, heat entry from the heat insulating partition front surface 110 a into the refrigerator 1 when the prevention of dew condensation is unnecessary. Can be reduced.

なお、電磁四方弁151などの弁を圧縮機141の直後に配置すると、圧縮機141の振動を直接、弁が受けてしまう。そこで、冷蔵庫1の断熱箱体101の背面に設けた補助放熱器142の下流側で冷媒配管を仕切部結露防止配管143に分岐させ、分岐点に電磁四方弁151を配置することで、圧縮機141の振動を弁に直接伝わらせず、品位の高い冷蔵庫1とすることができる。   If a valve such as the electromagnetic four-way valve 151 is disposed immediately after the compressor 141, the valve directly receives the vibration of the compressor 141. Accordingly, the refrigerant pipe is branched into the partition dew condensation prevention pipe 143 on the downstream side of the auxiliary radiator 142 provided on the back surface of the heat insulating box body 101 of the refrigerator 1, and the electromagnetic four-way valve 151 is disposed at the branch point. The vibration of 141 is not directly transmitted to the valve, and a high-quality refrigerator 1 can be obtained.

ただし、仕切部結露防止配管143が圧縮機141の直後ではなく、補助放熱器142の下流側に配置されることによって、補助放熱器142において放熱した冷媒が仕切部結露防止配管143内に流入する。また、断熱箱体101の開口部前面101a及び断熱仕切部前面110aは、冷蔵庫1内の冷気によって冷却されており、開口部前面101a及び断熱仕切部前面110aの内部に位置する仕切部結露防止配管143では、冷媒は熱を奪われる。そのため、補助放熱器142の下流側に仕切部結露防止配管143を配置する場合には、補助放熱器142を備えず、圧縮機141の直後に電磁四方弁151を配置して仕切部結露防止配管143に冷媒を導く場合よりも、仕切部結露防止配管143を流れる冷媒の温度が低下する。そこで、この第1実施形態においては、電磁四方弁151が仕切部結露防止配管143に冷媒を導入するように制御されるとき(オン時)でも仕切部結露防止配管143の冷媒が気液2相域ではなく気相となるように、補助放熱器142と仕切部結露防止配管143と凝縮器144の放熱量を設定している。電磁四方弁151が切り替えられて、仕切部結露防止配管143に冷媒が導入されなくなる場合(オフ時)には、仕切部結露防止配管143の内部に冷媒が閉じ込められるが、気相となるようにしているので閉じ込められた冷媒の質量は少なく、冷凍サイクル140が不足冷媒となる恐れがない。   However, the partition dew condensation prevention pipe 143 is arranged not immediately after the compressor 141 but on the downstream side of the auxiliary radiator 142, so that the refrigerant that has radiated heat in the auxiliary radiator 142 flows into the partition dew condensation prevention pipe 143. . Moreover, the opening part front surface 101a and the heat insulation partition part front surface 110a of the heat insulation box 101 are cooled by the cool air in the refrigerator 1, and the partition part dew condensation prevention piping located inside the opening part front surface 101a and the heat insulation partition part front surface 110a. At 143, the refrigerant is deprived of heat. Therefore, when the partitioning part dew condensation prevention pipe 143 is arranged on the downstream side of the auxiliary radiator 142, the auxiliary radiator 142 is not provided, and the electromagnetic four-way valve 151 is arranged immediately after the compressor 141 to provide the partitioning part condensation prevention pipe. The temperature of the refrigerant flowing through the partition dew condensation prevention pipe 143 is lower than when the refrigerant is guided to 143. Therefore, in the first embodiment, even when the electromagnetic four-way valve 151 is controlled to introduce the refrigerant into the partition dew condensation prevention pipe 143 (when turned on), the refrigerant in the partition dew condensation prevention pipe 143 is in the gas-liquid two-phase. The heat radiation amount of the auxiliary radiator 142, the partition dew condensation prevention piping 143, and the condenser 144 is set so as to be a gas phase rather than a region. When the electromagnetic four-way valve 151 is switched so that the refrigerant is not introduced into the partition dew condensation prevention pipe 143 (when off), the refrigerant is confined inside the partition dew condensation prevention pipe 143, but the gas phase is made to be a gas phase. Therefore, the mass of the trapped refrigerant is small, and there is no possibility that the refrigeration cycle 140 becomes an insufficient refrigerant.

このように、冷蔵庫1は、開口部を有する断熱箱体101と、断熱箱体101の内部を冷蔵室102、第1冷凍室103、第2冷凍室104、野菜室105に区切るための断熱仕切部110と、断熱箱体101の開口部を開閉するための断熱扉120と、冷媒を流通させる冷媒配管と、冷媒配管内を流通する冷媒を圧縮するための圧縮機141と、圧縮機141で圧縮された冷媒を凝縮するための凝縮器144と、圧縮機141で圧縮された冷媒を圧縮機141から凝縮器144まで流通させるための第一の流路とを備え、断熱仕切部110は、断熱扉120が開口部を閉塞している場合に断熱扉120に対向する断熱仕切部前面110aを有し、さらに、断熱仕切部前面110aの周辺に冷媒を流通させるための仕切部結露防止配管143を備え、第一の流路に冷媒を流通させるか、または、圧縮機141から仕切部結露防止配管143を経て凝縮器144まで冷媒を流通させるかを切替えるための電磁四方弁151を備える。   As described above, the refrigerator 1 includes a heat insulating box 101 having an opening, and a heat insulating partition for dividing the inside of the heat insulating box 101 into a refrigerator compartment 102, a first freezer compartment 103, a second freezer compartment 104, and a vegetable compartment 105. Part 110, heat insulating door 120 for opening and closing the opening of heat insulating box 101, refrigerant piping for circulating the refrigerant, compressor 141 for compressing the refrigerant flowing through the refrigerant piping, and compressor 141 The heat insulating partition 110 includes a condenser 144 for condensing the compressed refrigerant and a first flow path for circulating the refrigerant compressed by the compressor 141 from the compressor 141 to the condenser 144. When the heat insulating door 120 closes the opening, the heat insulating partition front surface 110a facing the heat insulating door 120 is provided, and the partition portion dew condensation prevention piping 143 for circulating the refrigerant around the heat insulating partition front surface 110a is provided. Provided, comprising or circulating the refrigerant in the first flow channel, or, the solenoid four-way valve 151 for switching whether to distribute refrigerant from the compressor 141 to the condenser 144 via a partition portion condensation prevention pipe 143.

本発明の冷蔵庫1においては、凝縮器144の下流側ではなく、圧縮機141と凝縮器144の間に仕切部結露防止配管143が備えられていることにより、仕切部結露防止配管143には、ほぼ蒸気状態の高温冷媒を、断熱箱体101と断熱扉120との接触部周辺の結露状況に応じて必要最小限の時間だけ流すことができるので、結露を防止しながら、貯蔵室内への熱侵入を最低限に抑えることができる。   In the refrigerator 1 of the present invention, the partition portion dew condensation prevention piping 143 is provided between the compressor 141 and the condenser 144, not on the downstream side of the condenser 144. Since the high-temperature refrigerant in a substantially vapor state can be allowed to flow for a necessary minimum time according to the dew condensation state around the contact portion between the heat insulation box 101 and the heat insulation door 120, heat to the storage chamber can be prevented while preventing dew condensation. Intrusion can be minimized.

凝縮器144の下流側ではなく、圧縮機141と凝縮器144の間に、断熱仕切部前面110aの周辺に冷媒を導く仕切部結露防止配管143を配置することによって、冷媒は気液相になる前に、すなわち、過熱蒸気、あるいは乾き飽和蒸気、あるいは乾き飽和蒸気に極めて近い湿り蒸気の状態で仕切部結露防止配管143内を流れる。そのため、冷媒流路を、冷媒が仕切部結露防止配管143を流通する経路から、仕切部結露防止配管143を迂回する経路に切り替えた場合でも、仕切部結露防止配管143内に滞留する冷媒量を最小限にとどめることができるので、冷凍サイクル140の冷媒不足を防止することができる。   By arranging the partition dew condensation prevention pipe 143 that guides the refrigerant around the heat insulating partition front surface 110a, not between the compressor 141 and the condenser 144, but on the downstream side of the condenser 144, the refrigerant becomes a gas-liquid phase. Before, that is, in the state of superheated steam, dry saturated steam, or wet steam very close to dry saturated steam, it flows in the partition dew condensation prevention pipe 143. Therefore, even when the refrigerant flow path is switched from a path through which the refrigerant flows through the partitioning section dew condensation prevention pipe 143 to a path that bypasses the partitioning section dew condensation prevention pipe 143, the amount of the refrigerant staying in the partitioning section dew condensation prevention pipe 143 is reduced. Since it can be kept to a minimum, a shortage of refrigerant in the refrigeration cycle 140 can be prevented.

なお、仕切部結露防止配管143内は、圧縮機141から吐出された直後の圧縮された冷媒が流れるため高温となるが、適宜冷媒流路を第一の流路に切り替えることによって、断熱仕切部110の前面周辺を加熱しすぎたり、冷蔵庫1内への熱侵入が従来より増加したりすることもない。   The partition dew condensation prevention pipe 143 has a high temperature because the compressed refrigerant immediately after being discharged from the compressor 141 flows, but by appropriately switching the refrigerant channel to the first channel, the heat insulating partition unit The area around the front surface of 110 is not heated too much, and the heat intrusion into the refrigerator 1 does not increase as compared with the prior art.

このようにすることにより、結露を防止しながら庫内への熱侵入を最低限に抑え、かつ、冷凍サイクル140を安定して運転することが可能な冷蔵庫1を提供することができる。   By doing in this way, the refrigerator 1 which can suppress the heat | fever penetration | invasion to the inside of a store | warehouse | chamber while preventing condensation and can operate the refrigerating cycle 140 stably can be provided.

またこのように、第1実施形態の冷蔵庫1は、圧縮機141と凝縮器144との間に配置されて冷媒を放熱させるための補助放熱器142を備え、補助放熱器142は、圧縮機141と電磁四方弁151との間に配置されている。   In addition, as described above, the refrigerator 1 according to the first embodiment includes the auxiliary radiator 142 that is disposed between the compressor 141 and the condenser 144 to dissipate the refrigerant, and the auxiliary radiator 142 includes the compressor 141. And the electromagnetic four-way valve 151.

このようにすることにより、圧縮機141の運転、停止等により生じる振動が電磁四方弁151に直接伝わることなく補助放熱器142にて吸収されるため、冷蔵庫1運転時の騒音を低減することができる。   By doing in this way, since the vibration generated by the operation, stop, etc. of the compressor 141 is absorbed by the auxiliary radiator 142 without being directly transmitted to the electromagnetic four-way valve 151, noise during operation of the refrigerator 1 can be reduced. it can.

また、補助放熱器142では冷媒はほとんど凝縮することがないので、仕切部結露防止配管143内を流れる冷媒は過熱蒸気、あるいは乾き飽和蒸気、あるいは乾き飽和蒸気に極めて近い湿り蒸気の状態であり、冷媒流路を第一の流路に切り替えた場合でも、仕切部結露防止配管143内に滞留する冷媒量は最小限にとどめることができ、冷凍サイクル140の冷媒不足を防止できる。   In addition, since the refrigerant hardly condenses in the auxiliary radiator 142, the refrigerant flowing in the partition dew condensation prevention pipe 143 is in the state of superheated steam, dry saturated steam, or wet steam very close to dry saturated steam, Even when the refrigerant flow path is switched to the first flow path, the amount of refrigerant staying in the partition dew condensation prevention pipe 143 can be kept to a minimum, and the refrigerant shortage in the refrigeration cycle 140 can be prevented.

なお、冷媒流路は、適宜、仕切部結露防止配管143もしくは第一の流路に切り替えられることによって、断熱仕切部前面110a周辺を加熱しすぎたり、冷蔵庫1内への熱侵入が従来より増加したりすることはない。   In addition, the refrigerant flow path is appropriately switched to the partition dew condensation prevention pipe 143 or the first flow path, so that the heat insulating partition front surface 110a periphery is heated too much, or the heat intrusion into the refrigerator 1 is increased compared to the prior art. There is nothing to do.

またこのように、第1実施形態の冷蔵庫1においては、断熱箱体101は、断熱扉120が開口部を閉塞する場合に断熱扉120に対向する開口部前面101aを有し、凝縮部は、開口部前面101aの周辺に配置されている断熱箱体101の壁面に冷媒を流通させるための開口部結露防止配管145を含む。   In this way, in the refrigerator 1 of the first embodiment, the heat insulating box 101 has the opening front surface 101a that faces the heat insulating door 120 when the heat insulating door 120 closes the opening, and the condensing part is It includes an opening dew condensation prevention pipe 145 for circulating the refrigerant on the wall surface of the heat insulating box 101 disposed around the opening front surface 101a.

断熱箱体101と断熱扉120との接触部である箱体開口部前面101aおよび断熱仕切部前面110aのうち、特に冷蔵庫1の内外に温度差が生じて結露しやすい断熱仕切部前面110aには仕切部結露防止配管143を備え、断熱仕切部前面110aほど庫内外に温度差が生じず結露しにくい箱体開口部前面101aには開口部結露防止配管145を配置せず、箱体開口部前面101aの周辺の箱体壁面に凝縮器144の一部として開口部結露防止配管145を備えることによって、断熱箱体101開口部前面101aを過度に加温することがなくなり、冷蔵庫1内への熱侵入を低減することができる。   Among the box opening front surface 101a and the heat insulating partition front surface 110a, which are the contact portions between the heat insulating box 101 and the heat insulating door 120, the heat insulating partition front surface 110a that is particularly susceptible to condensation due to a temperature difference inside and outside the refrigerator 1 There is a partition dew condensation prevention piping 143, and the heat insulation partition front surface 110a does not cause a temperature difference between the inside and outside of the box, and the box opening front surface 101a is not easily dewed. By providing the opening dew condensation prevention pipe 145 as a part of the condenser 144 on the wall surface of the box around the 101a, the heat insulation box 101 opening front surface 101a is not excessively heated, and the heat into the refrigerator 1 is prevented. Intrusion can be reduced.

またこのように、第1実施形態の冷蔵庫1は、当該冷蔵庫1の運転状況、断熱箱体101の内部の温度、開口部前面101aの周辺の温度、断熱仕切部前面110aの周辺の温度、当該冷蔵庫1の周囲の温度、および、当該冷蔵庫1の周囲の湿度のうち、当該冷蔵庫1の周囲の温度、および、当該冷蔵庫1の周囲の湿度を検知するための外気温・湿度センサ161と、当該冷蔵庫1の運転状況として圧縮機の動作状態を検知するための圧縮機動作状態検知部162と、当該冷蔵庫1の運転状況としてダンパ装置の状態を検知するためのダンパ装置動作状態検知部163と、外気温・湿度センサ161と圧縮機動作状態検知部162とダンパ装置動作状態検知部163の検知結果に基づいて、断熱箱体101と断熱扉120との接触部分の周辺の結露の状態に基づいて、電磁四方弁151を制御するように構成されている制御装置130とを備える。   Also, as described above, the refrigerator 1 of the first embodiment includes the operating state of the refrigerator 1, the temperature inside the heat insulating box 101, the temperature around the opening front surface 101a, the temperature around the heat insulating partition front surface 110a, Of the ambient temperature of the refrigerator 1 and the ambient humidity of the refrigerator 1, the ambient temperature and humidity sensor 161 for detecting the ambient temperature of the refrigerator 1 and the ambient humidity of the refrigerator 1, A compressor operation state detection unit 162 for detecting the operation state of the compressor as the operation state of the refrigerator 1, a damper device operation state detection unit 163 for detecting the state of the damper device as the operation state of the refrigerator 1, Based on the detection results of the outside air temperature / humidity sensor 161, the compressor operation state detection unit 162, and the damper device operation state detection unit 163, the periphery of the contact portion between the heat insulation box 101 and the heat insulation door 120 Based on the state of condensation, and a control unit 130 that is configured to control the electromagnetic four-way valve 151.

このようにすることにより、断熱箱体101と断熱扉120の接触部分周辺が結露する状況においてのみ断熱仕切部前面110aに冷媒を流すことができるため、必要以上に断熱箱体101と断熱扉120の接触部周辺を加温することがなく、庫内への熱侵入を最低限に抑えることができる。   By doing in this way, since a refrigerant can be flowed to the heat insulation partitioning part front surface 110a only in the situation where the periphery of the contact portion between the heat insulation box 101 and the heat insulation door 120 is condensed, the heat insulation box 101 and the heat insulation door 120 are more than necessary. No heat intrusion into the cabinet can be suppressed to a minimum without heating the periphery of the contact portion.

(第2実施形態)
図5は、この発明の第2実施形態として、冷蔵庫の配管の構成を示す透視図である。図5においては、説明のため、一部の配管・装置は冷蔵庫本体から突出させて表示している。図6は、冷蔵庫の冷凍サイクルの構成を示す構成図である。図中の一点鎖線の矢印は、冷媒の流れる方向を示す。
(Second Embodiment)
FIG. 5 is a perspective view showing the structure of the piping of the refrigerator as the second embodiment of the present invention. In FIG. 5, for the sake of explanation, some piping / devices are projected from the refrigerator main body. FIG. 6 is a configuration diagram showing the configuration of the refrigeration cycle of the refrigerator. The one-dot chain line arrow in the figure indicates the direction in which the refrigerant flows.

図5に示すように、第2実施形態の冷蔵庫2は、断熱箱体101の内部に冷凍サイクル240と電磁弁251と冷媒逆流防止弁252を備える。第2実施形態の冷蔵庫2は、図1に示す第1実施形態の冷蔵庫1と同様に、断熱扉、ドアパッキン、機械室等を備える。   As shown in FIG. 5, the refrigerator 2 of the second embodiment includes a refrigeration cycle 240, an electromagnetic valve 251, and a refrigerant backflow prevention valve 252 inside the heat insulating box body 101. The refrigerator 2 of 2nd Embodiment is provided with a heat insulation door, door packing, a machine room, etc. similarly to the refrigerator 1 of 1st Embodiment shown in FIG.

図5と図6に示すように、冷蔵庫2の冷凍サイクル240は、圧縮機241と、補助放熱部として補助放熱器242と、第二の流路として仕切部結露防止配管243を含む仕切部結露防止経路240bと、仕切部結露防止配管243を含まない迂回経路240aと、凝縮部として凝縮器244と、減圧器246と、蒸発器247とが環状に接続されて構成されている。凝縮器244の一部は、第三の流路として開口部結露防止配管245を形成している。開口部結露防止配管245は、開口部前面101aから一定の距離を離して配置されている。凝縮器244と減圧器246との間には、ドライヤ248が配置されている。仕切部結露防止経路240bにおいて仕切部結露防止配管243の下流側には、冷媒逆流防止弁252が配置されている。冷媒逆流防止弁252は、仕切部結露防止経路240bを流れる冷媒が逆流することを防ぐ。   As shown in FIG. 5 and FIG. 6, the refrigeration cycle 240 of the refrigerator 2 includes a compressor 241, a partition unit condensation including an auxiliary radiator 242 as an auxiliary heat dissipation unit, and a partition unit condensation prevention pipe 243 as a second channel. The prevention path 240b, the bypass path 240a that does not include the partition dew condensation prevention pipe 243, the condenser 244, the decompressor 246, and the evaporator 247 as a condensing part are connected in a ring shape. A part of the condenser 244 forms an opening dew condensation prevention pipe 245 as a third flow path. The opening dew condensation prevention pipe 245 is arranged at a certain distance from the opening front surface 101a. A dryer 248 is disposed between the condenser 244 and the decompressor 246. A refrigerant backflow prevention valve 252 is disposed on the downstream side of the partition dew condensation prevention pipe 243 in the partition dew condensation prevention path 240b. The refrigerant backflow prevention valve 252 prevents the refrigerant flowing through the partition dew condensation prevention path 240b from flowing back.

仕切部結露防止経路240bには、電磁弁251が設けられている。電磁弁251は、圧縮機241から仕切部結露防止配管243を経て凝縮器244まで冷媒を流通させる仕切部結露防止配管243に冷媒を流通させるかどうかを切替える。圧縮機241で圧縮され、補助放熱器242を通過した冷媒は、電磁弁251によって、補助放熱器242から仕切部結露防止経路240bに流入するか、仕切部結露防止経路240bに流入せずに、補助放熱器242から迂回経路240aを通って凝縮器244に流入する第一の流路を流通するかを切り替えられる。   An electromagnetic valve 251 is provided in the partition dew condensation prevention path 240b. The electromagnetic valve 251 switches whether the refrigerant is circulated through the partitioning part dew condensation preventing pipe 243 that circulates the refrigerant from the compressor 241 through the partitioning part dew condensation preventing pipe 243 to the condenser 244. The refrigerant compressed by the compressor 241 and passed through the auxiliary radiator 242 flows from the auxiliary radiator 242 into the partition dew condensation prevention path 240b or does not flow into the partition dew condensation prevention path 240b by the electromagnetic valve 251, It is possible to switch whether to flow through the first flow path that flows from the auxiliary radiator 242 to the condenser 244 through the detour path 240a.

冷媒が圧縮機241から仕切部結露防止経路240bを経ずに凝縮器244まで流通させられるように電磁弁251が切り替えられている場合には、冷媒は、圧縮機241、補助放熱器242、迂回経路240a、凝縮器244、減圧器246、蒸発器247の順に流れる。この場合には、冷媒は、仕切部結露防止配管243を流れない。   When the solenoid valve 251 is switched so that the refrigerant flows from the compressor 241 to the condenser 244 without passing through the partitioning dew condensation prevention path 240b, the refrigerant is the compressor 241, the auxiliary radiator 242, and the bypass. It flows through the path 240a, the condenser 244, the decompressor 246, and the evaporator 247 in this order. In this case, the refrigerant does not flow through the partition dew condensation prevention pipe 243.

一方、圧縮機241から仕切部結露防止経路240bを経て凝縮器244まで冷媒を流通させるように電磁弁251が開かれている場合には、冷媒の一部は、迂回経路240aを通って、仕切部結露防止配管243を通らずに補助放熱器242から凝縮器244まで流れる。残りの冷媒は、圧縮機241、補助放熱器242、仕切部結露防止経路240bの仕切部結露防止配管243、凝縮器244、減圧器246、蒸発器247の順に流れる。仕切部結露防止配管243は、断熱仕切部前面の周辺に配置されているので、仕切部結露防止配管243に冷媒が流れることによって、仕切部結露防止配管243の温度が上昇し、断熱仕切部前面110aに接しているドアパッキンの温度が上昇し、断熱仕切部前面110aの温度が上昇して結露の発生を防止することができる。   On the other hand, when the electromagnetic valve 251 is opened so that the refrigerant flows from the compressor 241 to the condenser 244 through the partitioning part dew condensation prevention path 240b, a part of the refrigerant passes through the bypass path 240a and is partitioned. It flows from the auxiliary radiator 242 to the condenser 244 without passing through the partial condensation prevention pipe 243. The remaining refrigerant flows in the order of the compressor 241, the auxiliary radiator 242, the partition dew condensation prevention pipe 243 of the partition dew condensation prevention path 240b, the condenser 244, the decompressor 246, and the evaporator 247. Since the partition dew condensation prevention pipe 243 is arranged around the front surface of the heat insulation partition, the refrigerant flows into the partition dew condensation prevention pipe 243, whereby the temperature of the partition dew condensation prevention pipe 243 rises and the front of the heat insulation partition part. The temperature of the door packing in contact with 110a rises, and the temperature of the heat insulating partition front surface 110a rises, thereby preventing the occurrence of condensation.

図7は、この発明の第2実施形態に係る制御関連の構成を示すブロック図である。   FIG. 7 is a block diagram showing a control-related configuration according to the second embodiment of the present invention.

図7に示すように、外気温・湿度センサ261と、圧縮機動作状態検知部262と、ダンパ装置動作状態検知部263とは、制御装置230に制御信号を送信する。制御装置230は、外気温・湿度センサ261と、圧縮機動作状態検知部262と、ダンパ装置動作状態検知部263とから受信した制御信号に基づいて、開口部前面101a(図5)と断熱仕切部前面110a(図5)の結露の状態を判断し、電磁弁251に制御信号を送信する。このように、電磁弁251は、開口部前面101aと断熱仕切部前面110aの結露の状況に基づいて、制御装置230によって制御される。   As shown in FIG. 7, the outside air temperature / humidity sensor 261, the compressor operation state detection unit 262, and the damper device operation state detection unit 263 transmit a control signal to the control device 230. Based on the control signals received from the outside air temperature / humidity sensor 261, the compressor operation state detection unit 262, and the damper device operation state detection unit 263, the control device 230 and the opening front surface 101 a (FIG. 5) The state of condensation on the front surface 110a (FIG. 5) is determined, and a control signal is transmitted to the electromagnetic valve 251. Thus, the solenoid valve 251 is controlled by the control device 230 based on the dew condensation state between the opening front surface 101a and the heat insulating partition front surface 110a.

制御装置230が開口部前面101aと断熱仕切部前面110aの結露の状況を判断し、仕切部結露防止配管243に冷媒を流すように、電磁弁251を開くように制御することによって、仕切部結露防止配管243内には、補助放熱器242から、室温よりも温度の高い冷媒が流れ込み、開口部前面101aと、断熱仕切部前面110aの結露を防止することができる。   The controller 230 determines the state of dew condensation between the opening front surface 101a and the heat insulating partition front surface 110a, and controls the solenoid valve 251 to open so that the refrigerant flows through the partition dew condensation prevention pipe 243. A refrigerant having a temperature higher than room temperature flows from the auxiliary radiator 242 into the prevention pipe 243, and condensation on the front surface 101a of the opening and the front surface 110a of the heat insulating partition can be prevented.

一方、仕切部結露防止経路240bに冷媒を流さないように、電磁弁251を閉じるように制御することによって、冷媒は、仕切部結露防止配管243を迂回して、補助放熱器242から迂回経路240aを通って凝縮器244へと流れ込む。このようにすることにより、仕切部結露防止配管243内には室温よりも高温の冷媒が流れなくなるので、結露の防止が不要な場合には断熱仕切部前面110aから冷蔵庫2内への熱の進入を低減させることができる。   On the other hand, by controlling the solenoid valve 251 to be closed so that the refrigerant does not flow through the partition dew condensation prevention path 240b, the refrigerant bypasses the partition dew condensation prevention pipe 243 and is bypassed from the auxiliary radiator 242. Through the condenser 244. By doing in this way, a refrigerant having a temperature higher than room temperature does not flow in the partition dew condensation prevention pipe 243. Therefore, when it is not necessary to prevent condensation, heat enters the refrigerator 2 from the heat insulating partition front surface 110a. Can be reduced.

なお、電磁弁251などの弁を圧縮機241の直後に配置すると、圧縮機241の振動を直接、弁が受けてしまう。そこで、冷蔵庫2の断熱箱体101の背面に設けた補助放熱器242の下流側で冷媒配管を分岐させることで、圧縮機241の振動を弁に直接伝わらせず、品位の高い冷蔵庫2とすることができる。   If a valve such as the electromagnetic valve 251 is disposed immediately after the compressor 241, the valve directly receives the vibration of the compressor 241. Therefore, the refrigerant pipe is branched on the downstream side of the auxiliary radiator 242 provided on the back surface of the heat insulating box 101 of the refrigerator 2, so that the vibration of the compressor 241 is not directly transmitted to the valve, and the high-quality refrigerator 2 is obtained. be able to.

ただし、仕切部結露防止経路240bが圧縮機241の直後ではなく、補助放熱器242の下流側に配置されることによって、補助放熱器242において放熱した冷媒が仕切部結露防止経路240b内に流入する。また、断熱箱体101の開口部前面101a及び断熱仕切部前面110aは、冷蔵庫2内の冷気によって冷却されており、開口部前面101a及び断熱仕切部前面110aの内部に位置する仕切部結露防止経路240bでは、冷媒は熱を奪われる。そのため、補助放熱器242の下流側に仕切部結露防止経路240bを配置する場合には、補助放熱器242を備えず、圧縮機241の直後に電磁弁251を配置して仕切部結露防止経路240bに冷媒を導く場合よりも、仕切部結露防止経路240bを流れる冷媒の温度が低下する。そこで、この第2実施形態においては、電磁弁251が仕切部結露防止経路240bに冷媒を導入するように制御されるとき(オン時)でも仕切部結露防止経路240bの冷媒が気液2相域ではなく気相となるように、補助放熱器242と仕切部結露防止経路240bと凝縮器244の放熱量を設定している。電磁弁251が切り替えられて、仕切部結露防止経路240bに冷媒が導入されなくなる場合(オフ時)には、仕切部結露防止経路240bの内部に冷媒が閉じ込められるが、気相となるようにしているので閉じ込められた冷媒の質量は少なく、冷凍サイクル240が不足冷媒となる恐れがない。   However, the partition dew condensation prevention path 240b is arranged not immediately after the compressor 241 but on the downstream side of the auxiliary radiator 242 so that the refrigerant radiated heat in the auxiliary radiator 242 flows into the partition dew condensation prevention path 240b. . Moreover, the opening part front surface 101a and the heat insulation partition part front surface 110a of the heat insulation box 101 are cooled by the cold in the refrigerator 2, and the partition part dew condensation prevention path located inside the opening part front surface 101a and the heat insulation partition part front surface 110a At 240b, the refrigerant is deprived of heat. Therefore, when the partitioning part dew condensation prevention path 240b is arranged on the downstream side of the auxiliary radiator 242, the auxiliary heatsink 242 is not provided and the electromagnetic valve 251 is arranged immediately after the compressor 241 and the partitioning part condensation prevention path 240b is provided. The temperature of the refrigerant flowing through the partition dew condensation prevention path 240b is lower than when the refrigerant is guided to the bottom. Therefore, in the second embodiment, even when the solenoid valve 251 is controlled to introduce the refrigerant into the partition dew condensation prevention path 240b (when on), the refrigerant in the partition dew condensation prevention path 240b is in the gas-liquid two-phase region. Instead, the heat radiation amounts of the auxiliary radiator 242, the partition dew condensation prevention path 240b, and the condenser 244 are set so as to be in the gas phase. When the solenoid valve 251 is switched so that the refrigerant is not introduced into the partition dew condensation prevention path 240b (when off), the refrigerant is confined inside the partition dew condensation prevention path 240b. Therefore, the mass of the trapped refrigerant is small and the refrigeration cycle 240 does not become a shortage refrigerant.

このように、第2実施形態の冷蔵庫2によれば、冷凍サイクル240を構成する配管は、迂回経路240aのみに冷媒を流す流路と、仕切部結露防止経路240bと迂回経路240aの両方に冷媒を流す流路を切り換えることができる。   Thus, according to the refrigerator 2 of 2nd Embodiment, piping which comprises the refrigerating cycle 240 is a refrigerant | coolant to both the flow path which flows a refrigerant | coolant only to the detour path 240a, and the partition part dew condensation prevention path 240b and the detour path 240a. Can be switched.

このように、第2実施形態の冷蔵庫2においては、電磁弁251は、迂回経路240aに冷媒を流通させるか、または、迂回経路240aに冷媒を流通させかつ圧縮機241から仕切部結露防止経路240bを経て凝縮器244まで冷媒を流通させるかを切替えるための電磁弁251である。   As described above, in the refrigerator 2 of the second embodiment, the solenoid valve 251 causes the refrigerant to flow through the bypass path 240a, or allows the refrigerant to flow through the bypass path 240a and from the compressor 241 to the partition portion dew condensation prevention path 240b. It is the solenoid valve 251 for switching whether a refrigerant | coolant is distribute | circulated to the condenser 244 through this.

このようにすることにより、電磁弁251に不具合が生じ、仕切部結露防止経路240bに冷媒が流れないような状況になっても、迂回経路240aは常に開放されているため、冷凍サイクル240内の冷媒循環は維持され、冷蔵庫2の冷却性能そのものに影響しない。さらに、電磁弁251を仕切部結露防止経路240bに配置することができるので、電磁弁251として開口度の低い弁を用いる場合でも、迂回経路240aのみに冷媒が流れる際には冷媒が電磁弁251を通過しないので圧力損失がなく、冷却効率の低下を抑制することができる。   By doing so, a malfunction occurs in the electromagnetic valve 251, and the bypass path 240 a is always open even in a situation where the refrigerant does not flow into the partition dew condensation prevention path 240 b. Refrigerant circulation is maintained and does not affect the cooling performance of the refrigerator 2 itself. Furthermore, since the electromagnetic valve 251 can be disposed in the partitioning portion dew condensation prevention path 240b, even when a valve having a low opening degree is used as the electromagnetic valve 251, when the refrigerant flows only in the detour path 240a, the refrigerant flows into the electromagnetic valve 251. Since there is no pressure loss, it is possible to suppress a decrease in cooling efficiency.

また、このように、第2実施形態の冷蔵庫2においては、仕切部結露防止経路240bが、冷媒の逆流を防ぐための冷媒逆流防止弁252を有する。   As described above, in the refrigerator 2 of the second embodiment, the partition dew condensation prevention path 240b includes the refrigerant backflow prevention valve 252 for preventing the refrigerant backflow.

このようにすることにより、仕切部結露防止経路240bと迂回経路240aのうち、冷媒を流す必要がない方の流路内に冷媒が逆流したり滞留したりして冷媒不足になることがなく、安定した冷凍サイクル240の運転を行うことができる。   By doing so, the refrigerant does not run back or stay in the flow path of the partitioning part dew condensation prevention path 240b and the bypass path 240a that does not need to flow the refrigerant, and there is no shortage of refrigerant. A stable refrigeration cycle 240 can be operated.

以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものである。   The embodiment disclosed above should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiment but by the scope of claims, and includes all modifications and variations within the meaning and scope equivalent to the scope of claims.

この発明の第1実施形態として、冷蔵庫の概略的な構成を示す側断面図である。1 is a side cross-sectional view showing a schematic configuration of a refrigerator as a first embodiment of the present invention. 冷蔵庫の配管の構成を示す透視図である。It is a perspective view which shows the structure of piping of a refrigerator. 冷蔵庫の冷凍サイクルの構成を示す構成図である。It is a block diagram which shows the structure of the refrigerating cycle of a refrigerator. この発明の第1実施形態に係る制御関連の構成を示すブロック図である。It is a block diagram which shows the structure relevant to the control which concerns on 1st Embodiment of this invention. この発明の第2実施形態として、冷蔵庫の配管の構成を示す透視図である。It is a perspective view which shows the structure of the piping of a refrigerator as 2nd Embodiment of this invention. 冷蔵庫の冷凍サイクルの構成を示す構成図である。It is a block diagram which shows the structure of the refrigerating cycle of a refrigerator. この発明の第2実施形態に係る制御関連の構成を示すブロック図である。It is a block diagram which shows the control relevant structure which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,2:冷蔵庫、101:断熱箱体、101a:開口部前面、102:冷蔵室、103:第1冷凍室、104:第2冷凍室、105:野菜室、110:断熱仕切部、110a:断熱仕切部前面、120:断熱扉、130,230:制御装置、240a:迂回経路、240b:仕切部結露防止経路、141,241:圧縮機、142,242:補助放熱器、143,243:仕切部結露防止配管、144,244:凝縮器、145,245:開口部結露防止配管、146,246:減圧器、147,247:蒸発器、151:電磁四方弁、251:電磁弁、252:冷媒逆流防止弁、161,261:外気温・湿度センサ、162,262:圧縮機動作状態検知部、163,253:ダンパ装置動作状態検知部。   DESCRIPTION OF SYMBOLS 1, 2: Refrigerator, 101: Heat insulation box, 101a: Front part of opening, 102: Refrigeration room, 103: 1st freezer room, 104: 2nd freezer room, 105: Vegetable room, 110: Heat insulation partition part, 110a: Front surface of heat insulating partition, 120: heat insulating door, 130, 230: control device, 240a: detour route, 240b: partition dew condensation prevention route, 141, 241: compressor, 142, 242: auxiliary radiator, 143, 243: partition Condensation prevention piping, 144, 244: Condenser, 145, 245: Opening condensation prevention piping, 146, 246: Pressure reducer, 147, 247: Evaporator, 151: Electromagnetic four-way valve, 251: Electromagnetic valve, 252: Refrigerant Backflow prevention valve, 161, 261: outside air temperature / humidity sensor, 162, 262: compressor operation state detection unit, 163, 253: damper device operation state detection unit.

Claims (6)

開口部を有する断熱箱体と、
前記断熱箱体の内部を複数の貯蔵室に区切るための断熱仕切部と、
前記断熱箱体の前記開口部を開閉するための断熱扉と、
冷媒を流通させる冷媒配管と、
前記冷媒配管内を流通する冷媒を圧縮するための圧縮機と、
前記圧縮機で圧縮された冷媒を凝縮するための凝縮部と、
前記圧縮機で圧縮された冷媒を前記圧縮機から前記凝縮部まで流通させるための第一の流路とを備え、
前記断熱仕切部は、前記断熱扉が前記開口部を閉塞している場合に前記断熱扉に対向する断熱仕切部前面を有し、
さらに、前記断熱仕切部前面の周辺に冷媒を流通させるための第二の流路を備え、
前記第一の流路に冷媒を流通させるか、または、前記圧縮機から前記第二の流路を経て前記凝縮部まで冷媒を流通させるかを切替えるための冷媒流路切替部を備える、冷蔵庫。
A heat insulating box having an opening;
A heat insulating partition for dividing the inside of the heat insulating box into a plurality of storage rooms;
A heat insulating door for opening and closing the opening of the heat insulating box;
Refrigerant piping for circulating refrigerant;
A compressor for compressing the refrigerant flowing through the refrigerant pipe;
A condensing unit for condensing the refrigerant compressed by the compressor;
A first flow path for circulating the refrigerant compressed by the compressor from the compressor to the condensing unit,
The heat insulating partition has a front surface of the heat insulating partition facing the heat insulating door when the heat insulating door closes the opening.
Furthermore, a second flow path for circulating a refrigerant around the front surface of the heat insulating partition is provided,
A refrigerator comprising a refrigerant channel switching unit for switching whether to circulate a refrigerant through the first channel or to circulate the refrigerant from the compressor through the second channel to the condensing unit.
前記冷媒流路切替部は、前記第一の流路に冷媒を流通させるか、または、前記第一の流路に冷媒を流通させかつ前記圧縮機から前記第二の流路を経て前記凝縮部まで冷媒を流通させるかを切替えるための冷媒流路切替部である、請求項1に記載の冷蔵庫。   The refrigerant flow switching unit causes the refrigerant to flow through the first flow channel, or causes the refrigerant to flow through the first flow channel and passes from the compressor through the second flow channel to the condensing unit. The refrigerator according to claim 1, wherein the refrigerator is a refrigerant flow path switching unit for switching whether the refrigerant is circulated. 前記圧縮機と前記凝縮部との間に配置されて冷媒を放熱させるための補助放熱部を備え、前記補助放熱部は、前記圧縮機と前記冷媒流路切替部との間に配置されている、請求項1または請求項2に記載の冷蔵庫。   An auxiliary heat dissipating unit is disposed between the compressor and the condensing unit to dissipate the refrigerant, and the auxiliary heat dissipating unit is disposed between the compressor and the refrigerant flow switching unit. The refrigerator according to claim 1 or claim 2. 前記断熱箱体は、前記断熱扉が前記開口部を閉塞する場合に前記断熱扉に対向する開口部前面を有し、
前記凝縮部は、前記開口部前面の周辺に配置されている前記断熱箱体の壁面に冷媒を流通させるための第三の流路を含む、請求項1から請求項3までのいずれか1項に記載の冷蔵庫。
The heat insulating box has an opening front surface facing the heat insulating door when the heat insulating door closes the opening,
The said condensation part contains the 3rd flow path for distribute | circulating a refrigerant | coolant to the wall surface of the said heat insulation box arrange | positioned in the periphery of the said opening front part, The any one of Claim 1 to 3 Refrigerator.
前記第一の流路と前記第二の流路の少なくともいずれか一方が、冷媒の逆流を防ぐための冷媒逆流防止弁を有する、請求項1から請求項4までのいずれか1項に記載の冷蔵庫。   5. The refrigerant backflow prevention valve according to claim 1, wherein at least one of the first flow path and the second flow path has a refrigerant backflow prevention valve for preventing a backflow of the refrigerant. refrigerator. 当該冷蔵庫の運転状況、前記断熱箱体の内部の温度、前記開口部前面の周辺の温度、前記断熱仕切部前面の周辺の温度、当該冷蔵庫の周囲の温度、および、当該冷蔵庫の周囲の湿度のうち少なくとも一つを検知するための検知部と、
前記検知部の検知結果に基づいて、前記断熱箱体と前記断熱扉との接触部分の周辺の結露の状態に基づいて、前記冷媒流路切替部を制御するように構成されている制御部とを備える、請求項1から請求項5までのいずれか1項に記載の冷蔵庫。
The operating status of the refrigerator, the temperature inside the heat insulation box, the temperature around the front of the opening, the temperature around the front of the heat insulating partition, the temperature around the refrigerator, and the humidity around the refrigerator A detection unit for detecting at least one of them,
A control unit configured to control the refrigerant flow switching unit based on a dew condensation state around a contact portion between the heat insulation box and the heat insulation door based on a detection result of the detection unit; The refrigerator according to any one of claims 1 to 5, further comprising:
JP2007249636A 2007-09-26 2007-09-26 refrigerator Active JP5198022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249636A JP5198022B2 (en) 2007-09-26 2007-09-26 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249636A JP5198022B2 (en) 2007-09-26 2007-09-26 refrigerator

Publications (3)

Publication Number Publication Date
JP2009079837A true JP2009079837A (en) 2009-04-16
JP2009079837A5 JP2009079837A5 (en) 2009-12-03
JP5198022B2 JP5198022B2 (en) 2013-05-15

Family

ID=40654718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249636A Active JP5198022B2 (en) 2007-09-26 2007-09-26 refrigerator

Country Status (1)

Country Link
JP (1) JP5198022B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050237A (en) * 2011-08-30 2013-03-14 Hitachi Appliances Inc Refrigerator and freezer
CN102997548A (en) * 2011-09-12 2013-03-27 日立空调·家用电器株式会社 Refrigerator
JP2014048032A (en) * 2012-09-04 2014-03-17 Sharp Corp Refrigerator
CN103672027A (en) * 2012-08-31 2014-03-26 日立空调·家用电器株式会社 Refrigerant conversion valve and equipment having same
CN103743139A (en) * 2013-12-30 2014-04-23 合肥晶弘电器有限公司 Refrigerator refrigeration system and refrigerator with same
JP2014134379A (en) * 2014-04-25 2014-07-24 Hitachi Appliances Inc Refrigerator
CN104235420A (en) * 2013-06-11 2014-12-24 日立空调·家用电器株式会社 Refrigerant switching valve and equipment with the same
WO2015018683A1 (en) * 2013-08-06 2015-02-12 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration appliance comprising lateral wall condensers
CN104565440A (en) * 2013-10-10 2015-04-29 日立空调·家用电器株式会社 Refrigerant switching valve and equipment comprising same
JP2017058075A (en) * 2015-09-16 2017-03-23 東芝ライフスタイル株式会社 refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211325A (en) * 1998-01-20 1999-08-06 Sanyo Electric Co Ltd Refrigerator
JP2000065461A (en) * 1998-08-20 2000-03-03 Hitachi Ltd Refrigerator and method for controlling dew condensation preventing operation in the refrigerator
JP2004092939A (en) * 2002-08-29 2004-03-25 Sanyo Electric Co Ltd Refrigerator-freezer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211325A (en) * 1998-01-20 1999-08-06 Sanyo Electric Co Ltd Refrigerator
JP2000065461A (en) * 1998-08-20 2000-03-03 Hitachi Ltd Refrigerator and method for controlling dew condensation preventing operation in the refrigerator
JP2004092939A (en) * 2002-08-29 2004-03-25 Sanyo Electric Co Ltd Refrigerator-freezer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050237A (en) * 2011-08-30 2013-03-14 Hitachi Appliances Inc Refrigerator and freezer
CN102997548A (en) * 2011-09-12 2013-03-27 日立空调·家用电器株式会社 Refrigerator
KR20150084732A (en) 2012-08-31 2015-07-22 히타치 어플라이언스 가부시키가이샤 Refrigerant switching valve and apparatus including the same
CN103672027A (en) * 2012-08-31 2014-03-26 日立空调·家用电器株式会社 Refrigerant conversion valve and equipment having same
CN105546906A (en) * 2012-08-31 2016-05-04 日立空调·家用电器株式会社 Refrigerator
CN105546906B (en) * 2012-08-31 2017-11-28 日立空调·家用电器株式会社 Refrigerator
JP2014048032A (en) * 2012-09-04 2014-03-17 Sharp Corp Refrigerator
CN104235420A (en) * 2013-06-11 2014-12-24 日立空调·家用电器株式会社 Refrigerant switching valve and equipment with the same
WO2015018683A1 (en) * 2013-08-06 2015-02-12 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration appliance comprising lateral wall condensers
CN104565440A (en) * 2013-10-10 2015-04-29 日立空调·家用电器株式会社 Refrigerant switching valve and equipment comprising same
CN104565440B (en) * 2013-10-10 2017-04-12 日立空调·家用电器株式会社 Refrigerant switching valve and equipment comprising same
CN103743139A (en) * 2013-12-30 2014-04-23 合肥晶弘电器有限公司 Refrigerator refrigeration system and refrigerator with same
CN103743139B (en) * 2013-12-30 2016-08-31 合肥晶弘电器有限公司 A kind of refrigerator refrigeration system and there is the refrigerator of this refrigeration system
JP2014134379A (en) * 2014-04-25 2014-07-24 Hitachi Appliances Inc Refrigerator
JP2017058075A (en) * 2015-09-16 2017-03-23 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP5198022B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5198022B2 (en) refrigerator
JP5507511B2 (en) refrigerator
JP6687384B2 (en) refrigerator
KR101284056B1 (en) Refrigerator
JP6177605B2 (en) refrigerator
JP2007263389A (en) Refrigerator and cooling device
JP5492845B2 (en) refrigerator
JP2008116126A (en) Refrigerator
JP2018096662A (en) Refrigerator
JP2021139591A (en) refrigerator
JP2012042143A (en) Refrigerator
JP2013155910A (en) Refrigerator
JP2013044438A (en) Refrigerator
JP6539093B2 (en) refrigerator
JP2006017338A (en) Refrigerator
JP7388987B2 (en) refrigerator
JP2003194446A (en) Refrigerator
JP2017040398A (en) refrigerator
JP5985942B2 (en) Refrigerator
JP2017026210A (en) refrigerator
JP6762149B2 (en) refrigerator
JP2005337677A (en) Refrigerator
JP2019132506A (en) refrigerator
JP6543811B2 (en) refrigerator
JP2007078282A (en) Refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120525

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150