JP2009078939A - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
JP2009078939A
JP2009078939A JP2007248695A JP2007248695A JP2009078939A JP 2009078939 A JP2009078939 A JP 2009078939A JP 2007248695 A JP2007248695 A JP 2007248695A JP 2007248695 A JP2007248695 A JP 2007248695A JP 2009078939 A JP2009078939 A JP 2009078939A
Authority
JP
Japan
Prior art keywords
cement
lithium
cement admixture
admixture
abw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007248695A
Other languages
Japanese (ja)
Other versions
JP4878014B2 (en
Inventor
Takanori Yamagishi
隆典 山岸
Akitoshi Araki
昭俊 荒木
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007248695A priority Critical patent/JP4878014B2/en
Publication of JP2009078939A publication Critical patent/JP2009078939A/en
Application granted granted Critical
Publication of JP4878014B2 publication Critical patent/JP4878014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/603Agents for controlling alkali-aggregate reactions

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement admixture which can effectively suppress the alkali-silica reaction at a low addition rate and is thereby highly economical and which is also effective to suppress the salt damage. <P>SOLUTION: The cement admixture contains a substance obtained by heat-treating a lithium-containing ABW type zeolite at 300-650°C, wherein the content of lithium is ≥5% expressed in terms of Li<SB>2</SB>O and the total content of Na<SB>2</SB>O and K<SB>2</SB>O is ≤0.5%. The cement composition contains cement and the cement admixture. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主に、土木・建築業界で使用されるセメント混和材及びセメント組成物に関する。   The present invention mainly relates to a cement admixture and a cement composition used in the civil engineering and construction industries.

モルタルやコンクリートの耐久性について、この分野の技術者のみならず、一般の人々からも大きな関心が寄せられるようになっている。モルタルやコンクリートの劣化要因は多様である。中でも、骨材の品質に由来する「アルカリシリカ反応」、いわゆる「アルカリ骨材反応」はコンクリートの癌とも呼ばれ、有効な抑制方法が見いだされていないのが現状である。   With regard to the durability of mortar and concrete, not only engineers in this field but also the general public has come to receive great attention. There are various causes of deterioration of mortar and concrete. Among them, the “alkali silica reaction” derived from the quality of the aggregate, the so-called “alkali aggregate reaction” is also called cancer of concrete, and no effective suppression method has been found at present.

「アルカリシリカ反応」を抑制する方法としては、アルカリ骨材反応抑制剤を添加する方法やコンクリートに含浸させたり、塗布する方法が提案されている(特許文献1〜特許文献5)。   As a method of suppressing the “alkali silica reaction”, a method of adding an alkali aggregate reaction inhibitor or a method of impregnating or applying concrete is proposed (Patent Documents 1 to 5).

しかしながら、従来のアルカリ骨材反応抑制剤は効果が十分でない上に、コンクリートに混和するため、使用量が多く、経済性の観点から実用的ではなかった。   However, conventional alkali-aggregate reaction inhibitors are not practical and are not practical from the viewpoint of economy because they are mixed with concrete and used in large amounts.

一方、ゼオライトはアルミノシリケート系の結晶性化合物であり、多種多様である。ゼオライトの工業的な利用方法も多岐に亘り、触媒、調湿材、分子ふるい、吸着材、イオン交換体などの利用方法が挙げられる。ゼオライトの組成や結晶構造が異なれば、用途も異なってくる。   On the other hand, zeolite is an aluminosilicate-based crystalline compound and is a wide variety. There are various industrial utilization methods of zeolite, and utilization methods such as a catalyst, a humidity control material, a molecular sieve, an adsorbent, and an ion exchanger can be mentioned. Applications differ if the composition and crystal structure of the zeolite are different.

モルタルやコンクリートに機能性を付与するセメント混和材への要求は高まってきており、より少ない添加量で優れた効果を発揮するセメント混和材の開発が望まれている。本発明者らは、リチウム含有ABW型ゼオライトをある特定の温度で加熱処理することで得られる物質が、セメント混和材として極めて有益であることを知見した。このような、リチウム含有ABW型ゼオライトを加熱処理して得られる物質をセメント混和材とすることについては全く知られていない。   There is an increasing demand for cement admixtures that impart functionality to mortar and concrete, and there is a demand for the development of cement admixtures that exhibit superior effects with smaller addition amounts. The present inventors have found that a substance obtained by heat-treating a lithium-containing ABW zeolite at a specific temperature is extremely useful as a cement admixture. It is not known at all that a material obtained by heat-treating such lithium-containing ABW-type zeolite is used as a cement admixture.

特開昭62−278151号公報JP-A-62-278151 特開平10−167781号公報Japanese Patent Laid-Open No. 10-167781 特開昭63−274644号公報JP-A-63-274644 特開2006−62892号公報JP 2006-62892 A 特開2006−89334号公報JP 2006-89334 A

本発明は、少ない添加率で効果的にアルカリシリカ反応を抑制できるため経済性に富み、また、塩害の抑制にも効果的であるセメント混和材を提供する。   The present invention provides a cement admixture that is highly economical because the alkali-silica reaction can be effectively suppressed with a small addition rate, and is also effective in suppressing salt damage.

すなわち、本発明は、(1)リチウム含有ABW型ゼオライトを300〜650℃で加熱処理して得られる物質を含有してなるセメント混和材、(2)リチウムの含有量が、LiO換算で5%以上である(1)のセメント混和材、(3)NaOとKOの含有量の合計が0.5%以下である(1)または(2)のセメント混和材、(4)セメントと、(1)〜(3)のいずれかのセメント混和材とを含有するセメント組成物、である。 That is, the present invention includes (1) a cement admixture containing a substance obtained by heat-treating a lithium-containing ABW-type zeolite at 300 to 650 ° C., and (2) a lithium content in terms of Li 2 O. (1) the cement admixture of 5% or more, (3) the cement admixture of (1) or (2), wherein the total content of Na 2 O and K 2 O is 0.5% or less, (4 ) A cement composition containing cement and the cement admixture of any one of (1) to (3).

本発明は、少ない添加率で効果的にアルカリシリカ反応を抑制できるため経済性に富み、また、塩害の抑制にも効果的であるセメント混和材を提供する。   The present invention provides a cement admixture that is highly economical because the alkali-silica reaction can be effectively suppressed with a small addition rate, and is also effective in suppressing salt damage.

なお、本発明における部や%は特に規定しない限り質量基準で示す。   In the present invention, “parts” and “%” are based on mass unless otherwise specified.

本発明のリチウム含有ABW型ゼオライトについて説明する。
リチウム含有ABW型ゼオライトは、BarrerとWhiteによってはじめて報告されたことにちなんで名付けられた(Barrer R.M. and White E.A.D., J. Chem. Soc., 1951, 1267)。つまり、BarrerとWhiteによって見いだされたゼオライトのAという意味で、A(BW)と記されることも、しばしばある。ここで、Aの意味について補足する。Aはアルファベットの最初の文字であり、“一番最初”に見いだされたという意味である(辰巳敬:ゼオライトの命名法と構造、触媒、Vol.40、No.3、pp.185−190、1998)。リチウム含有ABW型ゼオライトは結晶水を15〜25%程度持つ。SiO含有量とAl含有量はそれぞれ30±5%程度である。
The lithium-containing ABW zeolite of the present invention will be described.
Lithium-containing ABW-type zeolite was named after first reported by Barrer and White (Barrer RM and White ED, J. Chem. Soc., 1951, 1267). That is, it is often written as A (BW) in the meaning of A of zeolite found by Barrer and White. Here, the meaning of A will be supplemented. A is the first letter of the alphabet, meaning “found first” (respect: nomenclature and structure of zeolite, catalyst, Vol. 40, No. 3, pp. 185-190, 1998). Lithium-containing ABW-type zeolite has about 15 to 25% of crystal water. The SiO 2 content and the Al 2 O 3 content are about 30 ± 5%, respectively.

リチウム含有ABW型ゼオライトの合成方法としては、これまでに、アロフェンを原料として、水酸化リチウムと反応させる方法が知られている(興野雄亮ほか、無機マテリアル学会第112回学術講演会講演要旨集、pp.8−9、2006)。   As a method for synthesizing a lithium-containing ABW-type zeolite, a method in which allophane is used as a raw material and reacting with lithium hydroxide has been known so far (Yusuke Okono et al. pp. 8-9, 2006).

本発明では、いかなる方法で合成されたリチウム含有ABW型ゼオライトも使用可能である。本発明のセメント混和材は、リチウム含有ABW型ゼオライトを加熱処理することによって得られる。
加熱処理条件は、300℃〜650℃である必要がある。加熱処理条件がこの温度範囲にないと、十分なアルカリシリカ反応による膨張抑制効果が得られない場合や、塩害抑制効果が得られない場合がある。
In the present invention, lithium-containing ABW-type zeolite synthesized by any method can be used. The cement admixture of the present invention can be obtained by heat-treating lithium-containing ABW zeolite.
The heat treatment condition needs to be 300 ° C to 650 ° C. If the heat treatment conditions are not within this temperature range, there may be a case where a sufficient expansion suppressing effect due to alkali silica reaction cannot be obtained or a salt damage suppressing effect cannot be obtained.

本発明で言う加熱処理とは、特に限定されるものではないが、通常、乾燥や焼成などの処理を行うことを意味する。その具体的方法としては、例えば、アロフェンを水酸化リチウム水溶液中で反応させてリチウム含有ABW型リチウムゼオライトを生成した後、乾燥操作の段階で、300〜650℃の加熱処理を行っても良いし、一度、300℃未満の条件で乾燥した後に、再度、300〜650℃の条件で熱処理を行っても良い。加熱処理の時間は、特に限定されるものではないが、5分から24時間程度が好ましく、10分から12時間がより好ましい。5分未満ではABW型ゼオライトが非晶質物質に変化する反応が十分に進行しない場合があり、24時間を超えて熱処理してもエネルギーコストの無駄になる場合がある。
乾燥装置としては、特に限定されるものではなく、ドラムドライヤー、棚段乾燥機、筒型乾燥機、ロータリーキルン、電気炉などを使用することができる。
The heat treatment referred to in the present invention is not particularly limited, but usually means a treatment such as drying or baking. As a specific method, for example, after allophane is reacted in an aqueous lithium hydroxide solution to produce a lithium-containing ABW type lithium zeolite, a heat treatment at 300 to 650 ° C. may be performed at the stage of the drying operation. After drying once under a condition of less than 300 ° C., heat treatment may be performed again under a condition of 300 to 650 ° C. The time for the heat treatment is not particularly limited, but is preferably about 5 minutes to 24 hours, and more preferably 10 minutes to 12 hours. If the reaction time is less than 5 minutes, the reaction in which the ABW-type zeolite changes to an amorphous substance may not proceed sufficiently, and even if heat treatment is performed for more than 24 hours, energy costs may be wasted.
The drying device is not particularly limited, and a drum dryer, a shelf dryer, a cylindrical dryer, a rotary kiln, an electric furnace, or the like can be used.

リチウム含有ABW型ゼオライトを300〜650℃で加熱処理すると、無水のABW型ゼオライトに変化する。すなわち、300℃まではABW型ゼオライトの結晶構造を保ち、300℃以上になると、全く異なる結晶構造に変化して無水のABW型ゼオライトになる。そして、650℃までは無水のABW型ゼオライトの状態にあるが、650℃を超えるとγ−ユークリプタイトへと変化する。そして、さらに加熱すると、900〜1000℃でβ−ユークリプタイトへと変化する。
本発明のセメント混和材としては、リチウム含有ABW型ゼオライトを300〜650℃で加熱処理して得られる無水のABW型ゼオライトである。
When the lithium-containing ABW-type zeolite is heat-treated at 300 to 650 ° C., it changes to anhydrous ABW-type zeolite. That is, the crystal structure of the ABW type zeolite is maintained up to 300 ° C., and when the temperature exceeds 300 ° C., the crystal structure changes to a completely different crystal structure to become anhydrous ABW type zeolite. And it is in the state of anhydrous ABW type zeolite up to 650 ° C., but when it exceeds 650 ° C., it changes to γ-eucryptite. And when it heats further, it changes to (beta) -eucryptite at 900-1000 degreeC.
The cement admixture of the present invention is an anhydrous ABW zeolite obtained by heat-treating a lithium-containing ABW zeolite at 300 to 650 ° C.

本発明のセメント混和材のリチウム含有量は、特に限定されるものではないが、通常、LiO換算で5%以上が好ましく、7%以上がより好ましい。リチウム含有量は、ゼオライトの理論上のSi/Alモル比(=1)から、このチャージバランスに見合う量が担持できる最大量(13.5%)となる。リチウム含有量が5%未満では、十分なアルカリシリカ反応による膨張の抑制効果が得られない場合がある。 The lithium content of the cement admixture of the present invention is not particularly limited, but is usually preferably 5% or more and more preferably 7% or more in terms of Li 2 O. From the theoretical Si / Al molar ratio (= 1) of the zeolite, the lithium content is the maximum amount (13.5%) that can be supported in an amount corresponding to this charge balance. If the lithium content is less than 5%, there may be a case where a sufficient effect of suppressing expansion due to alkali silica reaction cannot be obtained.

本発明のセメント混和材のナトリウムやカリウムの含有量は特に限定されるものではないが、通常、NaOとKOの合計量が0.5%以下であることが好ましく、0.3%以下がより好ましい。NaOとKOの合計量が0.5%を超えると、十分なアルカリシリカ反応による膨張の抑制効果が得られない場合がある。 The content of sodium or potassium in the cement admixture of the present invention is not particularly limited, but usually, the total amount of Na 2 O and K 2 O is preferably 0.5% or less, 0.3 % Or less is more preferable. When the total amount of Na 2 O and K 2 O exceeds 0.5%, there may be a case where a sufficient effect of suppressing expansion due to the alkali silica reaction cannot be obtained.

本発明のセメント混和材の比表面積は、加熱処理前のリチウム含有ABW型ゼオライトの比表面積に依存するため、一義的に決定されるものではなく、特に限定されるものではないが、通常、BET比表面積で1〜50m/gの範囲にある。 Since the specific surface area of the cement admixture of the present invention depends on the specific surface area of the lithium-containing ABW zeolite before heat treatment, it is not uniquely determined and is not particularly limited. The specific surface area is in the range of 1 to 50 m 2 / g.

本発明のセメント混和材の使用量は、特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、3〜20部が好ましく、5〜15部がより好ましい。3部未満では、本発明の効果、すなわち、アルカリシリカ反応による膨張の抑制効果や塩害の抑制効果が十分に得られない場合があり、20部を超えてもさらなる効果の増進が期待できない。また、強度発現性が低下する場合がある。   Although the usage-amount of the cement admixture of this invention is not specifically limited, Usually, 3-20 parts are preferable in a cement composition which consists of cement and a cement admixture, and 5-15 parts are more preferable. . If the amount is less than 3 parts, the effects of the present invention, that is, the effect of suppressing expansion due to the alkali silica reaction and the effect of suppressing salt damage may not be sufficiently obtained. In addition, strength development may be reduced.

セメントは、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、またはシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、ならびに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの1種又は2種以上が使用可能である。   Cement includes various Portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these Portland cements, limestone powder and blast furnace slow cooling. Portland cement such as filler cement mixed with slag fine powder, etc., and environmentally friendly cement (eco-cement) manufactured using municipal waste incineration ash and sewage sludge incineration ash as raw materials. Two or more types can be used.

本発明のセメント混和材やセメント組成物はそれぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。   The cement admixture and cement composition of the present invention may be mixed at the time of construction, or may be partially or wholly mixed in advance.

本発明では、砂などの細骨材、砂利などの粗骨材、膨張材や急硬材、減水剤やAE減水剤や高性能減水剤や高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、ベントナイトなどの粘土鉱物やハイドロタルサイトなどのアニオン交換体などの各種添加剤、高炉水砕スラグ微粉末や高炉徐冷スラグ微粉末や石灰石微粉末やフライアッシュやシリカフュームなどの混和材料などからなる群のうちの1種又は2種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。   In the present invention, fine aggregates such as sand, coarse aggregates such as gravel, expanded materials and quick hard materials, water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, antifoaming agents, thickening agents , Antirust agent, antifreeze agent, shrinkage reducing agent, polymer emulsion, setting agent, various additives such as clay minerals such as bentonite and anion exchanger such as hydrotalcite, granulated blast furnace slag fine powder and blast furnace slow cooling It is possible to use one or more of the group consisting of slag fine powder, limestone fine powder, admixture materials such as fly ash and silica fume, etc. in a range that does not substantially impair the object of the present invention. .

「実施例1」
リチウム含有ABW型ゼオライトを表1に示す温度で3時間加熱処理してセメント混和材とした。セメントとセメント混和材の合計100部中、セメント混和材を7部配合しセメント組成物を調製し、さらに、砂を225部、水を50部配合してモルタルを作製した。このモルタルを用いて、アルカリシリカ反応性試験を実施した。
また、比較例として市販のアルカリシリカ反応抑制剤を同量使用した場合についても試験を行った。
その結果を表1に示す。
"Example 1"
The lithium-containing ABW-type zeolite was heat-treated at the temperature shown in Table 1 for 3 hours to obtain a cement admixture. A cement composition was prepared by blending 7 parts of cement admixture in a total of 100 parts of cement and cement admixture. Further, 225 parts of sand and 50 parts of water were blended to prepare a mortar. Using this mortar, an alkali silica reactivity test was carried out.
Further, as a comparative example, a test was also conducted when the same amount of a commercially available alkali silica reaction inhibitor was used.
The results are shown in Table 1.

<使用材料>
セメント:市販普通ポルトランドセメント
砂:サヌカイト質輝石安山岩、JIS A 1145(化学法)に準じて測定。溶解シリカ量が750mmol/l、アルカリ濃度減少量が200mmol/lで、無害でないものと判定する。
市販のアルカリシリカ反応抑制剤(1):Ca型ゼオライト
市販のアルカリシリカ反応抑制剤(2):亜硝酸リチウム水溶液(濃度30%)
水:水道水
<Materials used>
Cement: Commercially available ordinary Portland cement sand: Measured according to sanucite pyroxene andesite, JIS A 1145 (chemical method). It is determined that the amount of dissolved silica is 750 mmol / l and the decrease in alkali concentration is 200 mmol / l, which is not harmless.
Commercially available alkaline silica reaction inhibitor (1): Ca-type zeolite Commercially available alkaline silica reaction inhibitor (2): Lithium nitrite aqueous solution (concentration 30%)
Water: tap water

<測定方法>
アルカリシリカ反応性試験(モルタルバー法):JIS A 1146に準じて測定。0.100%以上の膨張を示したものは、無害でないと判定する。
化学組成:JIS R 5201に準じて測定。
耐海水性:圧縮強度測定用のモルタル供試体を材齢28日まで20℃の水中養生を行い、その後、疑似海水に4週間供試体を浸漬した。塩化物イオンの浸透深さを計測することによって耐海水性を評価した。塩化物イオンの浸透深さはフルオロセイン−硝酸銀法により確認した。
<Measurement method>
Alkali-silica reactivity test (mortar bar method): Measured according to JIS A 1146. Those showing an expansion of 0.100% or more are determined not to be harmless.
Chemical composition: Measured according to JIS R 5201.
Seawater resistance: A mortar specimen for measuring compressive strength was subjected to water curing at 20 ° C. until the age of 28 days, and then the specimen was immersed in simulated seawater for 4 weeks. Seawater resistance was evaluated by measuring the penetration depth of chloride ions. The penetration depth of chloride ions was confirmed by the fluorescein-silver nitrate method.

<リチウム含有ABW型ゼオライトの合成>
アロフェンと水酸化リチウムを原料として水中で反応させてリチウムを含有するEDI型ゼオライトを合成した。この際、LiO/Alモル比を2.0とし、SiO/Alモル比は1.73とし、反応温度を90℃とし、反応時間を48時間とし、攪拌を行いながら反応させた。得られた合成物を固液分離後、60℃の温水で洗浄し、70℃で乾燥した。アロフェンは10kgを使用し、水酸化リチウムは水に溶解させて使用した。水酸化リチウムの溶液は100kgとした。合成物を粉末X線回折法(XRD)にて同定した結果、ABW型ゼオライトであった。また、リチウム含有量はLiO換算で9%であった。
<Synthesis of lithium-containing ABW-type zeolite>
EDI type zeolite containing lithium was synthesized by reacting allophane and lithium hydroxide as raw materials in water. At this time, the Li 2 O / Al 2 O 3 molar ratio was 2.0, the SiO 2 / Al 2 O 3 molar ratio was 1.73, the reaction temperature was 90 ° C., the reaction time was 48 hours, and stirring was performed. The reaction was carried out. The obtained composite was separated into solid and liquid, washed with warm water at 60 ° C., and dried at 70 ° C. Allophane was used in an amount of 10 kg, and lithium hydroxide was dissolved in water. The lithium hydroxide solution was 100 kg. As a result of identifying the synthesized product by powder X-ray diffraction (XRD), it was an ABW type zeolite. Further, the lithium content was 9% Li 2 O conversion.

<使用材料>
アロフェン:栃木県産のものを水ひ精製したもの、市販品、SiO含有量33.6%、Al含有量33.1%、Fe含有量2.3%、CaO含有量0.4%、MgO含有量0.1%、NaO含有量0.03%、KO含有量0.02%、強熱減量30.1%
水酸化リチウム:市販品、試薬1級
水:水道水
<Materials used>
Allophane: those purified elutriation those Tochigi Prefecture, commercially available, SiO 2 content of 33.6%, Al 2 O 3 content of 33.1%, Fe 2 O 3 content of 2.3%, CaO content Amount 0.4%, MgO content 0.1%, Na 2 O content 0.03%, K 2 O content 0.02%, ignition loss 30.1%
Lithium hydroxide: commercial product, reagent grade 1 water: tap water

Figure 2009078939
Figure 2009078939

表1から、本発明のセメント混和材を配合したモルタルの膨張率は、何れも0.100%以下を示し無害と判定され、本発明のセメント混和材を配合していない比較例のモルタルの膨張率は、0.100%を超え無害でないと判定される。また、塩化物イオンの浸透も効果的に抑制されていることがわかる。   From Table 1, the expansion rate of the mortar blended with the cement admixture of the present invention is 0.100% or less, all determined to be harmless, and the expansion of the mortar of the comparative example not blended with the cement admixture of the present invention. The rate exceeds 0.100% and is determined not to be harmless. It can also be seen that the penetration of chloride ions is effectively suppressed.

「実施例2」
セメント混和材として、リチウム含有ABW型ゼオライトを400℃で加熱処理した物質を使用し、セメント組成物100部中のセメント混和材の使用量を表2に示すように変化したこと以外は実施例1と同様に行った。結果を表2に併記する。
"Example 2"
Example 1 except that a material obtained by heat-treating lithium-containing ABW zeolite at 400 ° C. was used as the cement admixture, and the amount of the cement admixture used in 100 parts of the cement composition was changed as shown in Table 2. As well as. The results are also shown in Table 2.

Figure 2009078939
Figure 2009078939

表2より、本発明のセメント混和材を使用した場合には、アルカリシリカ反応による膨張が効果的に抑制されている。また、塩化物イオンの浸透も効果的に抑制されていることがわかる。そして、その効果は、セメント混和材の使用量が多いとより顕著となる。   From Table 2, when the cement admixture of this invention is used, the expansion | swelling by alkali silica reaction is suppressed effectively. It can also be seen that the penetration of chloride ions is effectively suppressed. And the effect becomes more remarkable when there is much usage-amount of a cement admixture.

本発明のセメント混和材は、少ない添加率で効果的にアルカリシリカ反応を抑制できるため、経済性に富んでいる。さらに、塩害の抑制にも効果的である。したがって、土木、建築分野で広範に使用することができる。   Since the cement admixture of the present invention can effectively suppress the alkali-silica reaction with a small addition rate, it is rich in economic efficiency. Furthermore, it is also effective in suppressing salt damage. Therefore, it can be widely used in the civil engineering and construction fields.

Claims (4)

リチウム含有ABW型ゼオライトを300〜650℃で加熱処理して得られる物質を含有してなるセメント混和材。 A cement admixture containing a substance obtained by heat-treating lithium-containing ABW-type zeolite at 300 to 650 ° C. リチウムの含有量が、LiO換算で5%以上である請求項1に記載のセメント混和材。 The content of lithium, cement admixture according to claim 1 is 5% or more by Li 2 O conversion. NaOとKOの含有量の合計が0.5%以下である請求項1または2に記載のセメント混和材。 The cement admixture according to claim 1 or 2, wherein the total content of Na 2 O and K 2 O is 0.5% or less. セメントと、請求項1〜3のいずれか1項に記載のセメント混和材とを含有するセメント組成物。 The cement composition containing a cement and the cement admixture of any one of Claims 1-3.
JP2007248695A 2007-09-26 2007-09-26 Cement admixture and cement composition Active JP4878014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248695A JP4878014B2 (en) 2007-09-26 2007-09-26 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248695A JP4878014B2 (en) 2007-09-26 2007-09-26 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2009078939A true JP2009078939A (en) 2009-04-16
JP4878014B2 JP4878014B2 (en) 2012-02-15

Family

ID=40653991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248695A Active JP4878014B2 (en) 2007-09-26 2007-09-26 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP4878014B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269977A (en) * 2009-05-22 2010-12-02 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2011127158A (en) * 2009-12-16 2011-06-30 Denki Kagaku Kogyo Kk Inhibition method for combined deterioration in reinforced concrete
JP2012087000A (en) * 2010-10-18 2012-05-10 Denki Kagaku Kogyo Kk Cement admixture and cement composition
WO2013054568A1 (en) * 2011-10-13 2013-04-18 電気化学工業株式会社 Cement admixture and method for producing same
JP2014214056A (en) * 2013-04-25 2014-11-17 電気化学工業株式会社 Concrete composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306372A (en) * 2002-04-10 2003-10-28 Kamada Kogyo:Kk High quality concrete
JP2008297137A (en) * 2007-05-30 2008-12-11 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306372A (en) * 2002-04-10 2003-10-28 Kamada Kogyo:Kk High quality concrete
JP2008297137A (en) * 2007-05-30 2008-12-11 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269977A (en) * 2009-05-22 2010-12-02 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2011127158A (en) * 2009-12-16 2011-06-30 Denki Kagaku Kogyo Kk Inhibition method for combined deterioration in reinforced concrete
JP2012087000A (en) * 2010-10-18 2012-05-10 Denki Kagaku Kogyo Kk Cement admixture and cement composition
WO2013054568A1 (en) * 2011-10-13 2013-04-18 電気化学工業株式会社 Cement admixture and method for producing same
JPWO2013054568A1 (en) * 2011-10-13 2015-03-30 電気化学工業株式会社 Cement admixture and method for producing the same
JP2014214056A (en) * 2013-04-25 2014-11-17 電気化学工業株式会社 Concrete composition

Also Published As

Publication number Publication date
JP4878014B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JPWO2011108159A1 (en) Calcium ferroaluminate compound, cement admixture and method for producing the same, cement composition
JP2004051426A (en) Cement admixture, cement composition and mortar or concrete prepared using this
JP4607149B2 (en) Cement admixture and cement composition
JP4878014B2 (en) Cement admixture and cement composition
JP5132508B2 (en) Cement admixture and cement composition
JP5414253B2 (en) Cement admixture and cement composition
JP4762953B2 (en) Low heat generation type high strength concrete and hardened concrete using the same
JP2007153714A (en) Cement admixture and cement composition
JP6972213B2 (en) Cement admixture and hydraulic composition
JP4855350B2 (en) Cement admixture and cement composition
JP4878015B2 (en) Calcium aluminate hydraulic material additive and cement composition
JP4837622B2 (en) Cement admixture and cement composition
JP4878016B2 (en) Calcium aluminate hydraulic material additive and cement composition
JP4878017B2 (en) Calcium aluminate hydraulic material additive and cement composition
JP4878018B2 (en) Calcium aluminate hydraulic material additive and cement composition
JP6387002B2 (en) Cement rapid hardwood manufacturing method
JP5189917B2 (en) Cement admixture and cement composition
JP6675033B1 (en) Cement admixture and hydraulic composition
JP5189918B2 (en) Cement admixture and cement composition
JP5388527B2 (en) Cement admixture and cement composition
KR20230002413A (en) Cement admixtures and cement compositions
JP5615661B2 (en) Cement admixture and cement composition
JP4509015B2 (en) Cement admixture and cement composition
JP5284870B2 (en) Cement admixture and cement composition
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

R151 Written notification of patent or utility model registration

Ref document number: 4878014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250