JP2009077591A - Drive controller of xy positioning arrangement - Google Patents

Drive controller of xy positioning arrangement Download PDF

Info

Publication number
JP2009077591A
JP2009077591A JP2007246048A JP2007246048A JP2009077591A JP 2009077591 A JP2009077591 A JP 2009077591A JP 2007246048 A JP2007246048 A JP 2007246048A JP 2007246048 A JP2007246048 A JP 2007246048A JP 2009077591 A JP2009077591 A JP 2009077591A
Authority
JP
Japan
Prior art keywords
output
observer
disturbance
motor
disturbance observer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007246048A
Other languages
Japanese (ja)
Inventor
Akihiko Nakamura
明彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2007246048A priority Critical patent/JP2009077591A/en
Publication of JP2009077591A publication Critical patent/JP2009077591A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide optimum positioning control while suppressing interference between motor shafts when driving a single load using a plurality of motor shafts. <P>SOLUTION: The XY positioning arrangement drives a single load L using a plurality of motor shafts. It comprises disturbance observers 68L and 68R provided in the control system of each motor shaft, and observer output adjusting parts 70L, 70R, and 70 which are provided at the output part of each disturbance observer, to monitor a positional deviation for controlling the output of the disturbance observer according to the amount of positional deviation. When the amount of positional deviation is large, the output of disturbance observer is returned much for positive compensation, and when the amount of positional deviation is small, the output of disturbance observer is limited. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、XY位置決め装置の駆動制御装置に係り、特に、電子部品搭載装置(マウンタと称する)や接着剤塗布装置(ディスペンサと称する)等に用いるのに好適な、複数のモータ軸を用いて1つの負荷を駆動するXY位置決め装置の駆動制御装置の改良に関する。   The present invention relates to a drive control device for an XY positioning device, and in particular, using a plurality of motor shafts suitable for use in an electronic component mounting device (referred to as a mounter), an adhesive application device (referred to as a dispenser), or the like. The present invention relates to an improvement in a drive control device of an XY positioning device that drives one load.

電子部品を部品供給装置から吸着して基板に搭載するためのマウンタや、部品仮止め用の接着剤を基板上に塗布するためのディスペンサにおいては、搭載ヘッドや塗布ヘッド(以下、単にヘッドと称する)を位置決めするためのガントリ型XY位置決め装置が用いられている。   In a mounter for adsorbing electronic components from a component supply device and mounting them on a substrate, or a dispenser for applying adhesive for temporarily fixing components onto a substrate, a mounting head or application head (hereinafter simply referred to as a head). A gantry type XY positioning device is used for positioning.

このガントリ型XY位置決め装置は、図1に例示する如く、ヘッド10のXY方向への位置決めを行なうのに、Y方向への移動に左右一対のY軸駆動部20、30を持ち、その上に掛け渡されたX軸駆動部40でX方向への移動を行なう構成を採るのが一般的である。図において、50は基板搬送部である。   As shown in FIG. 1, this gantry type XY positioning device has a pair of left and right Y-axis drive units 20 and 30 for movement in the Y direction to position the head 10 in the XY direction, and on that, In general, a configuration is adopted in which the X-axis drive unit 40 is moved in the X direction. In the figure, reference numeral 50 denotes a substrate transfer unit.

位置決め駆動を行なうモータは、軸の一方のみに設けられる片持ちの場合もあるが、より高速の位置決めを行なう際には、図2に詳細に示すように、軸の両側にそれぞれ1つずつのモータ22、32、42、44を設けて、それぞれ2つずつのモータ(22、32)、(42、44)を用いて1つの負荷(Y軸、X軸)を駆動する場合がある。Y軸、X軸の駆動には、図に例示したような回転型モータ22、32、42、44とタイミングベルト24、34、46又はボールねじの組合せや、リニアモータ等が使用される。図において、26、36は軸受部である。   The motor for positioning driving may be cantilever provided only on one side of the shaft. However, when positioning at a higher speed, one motor is provided on each side of the shaft as shown in detail in FIG. In some cases, the motors 22, 32, 42, 44 are provided, and one load (Y axis, X axis) is driven using two motors (22, 32), (42, 44), respectively. For driving the Y-axis and the X-axis, a combination of the rotary motors 22, 32, 42, 44 and the timing belts 24, 34, 46 or the ball screw as illustrated in the figure, a linear motor, or the like is used. In the figure, reference numerals 26 and 36 denote bearing portions.

このようなガントリ型XY位置決め装置には、位置決めの際に、外部から力や振動等を受けると、位置決めの精度や整定時間が悪化するという問題点を有していた。このような外乱の問題点を除去するために、出願人は特許文献1で、外乱オブザーバの使用を提案している。   Such a gantry-type XY positioning device has a problem that positioning accuracy and settling time are deteriorated when receiving external force or vibration during positioning. In order to eliminate the problem of such disturbance, the applicant proposes the use of a disturbance observer in Patent Document 1.

即ち、図3に示す外乱オブザーバを、図4のようにモータ制御系内に設けることにより、図5に示すような加速度制御系を構成することが可能となり、外乱による影響を除去することができる。   That is, by providing the disturbance observer shown in FIG. 3 in the motor control system as shown in FIG. 4, an acceleration control system as shown in FIG. 5 can be configured, and the influence of the disturbance can be removed. .

図3において、Iarefは電流参照値、Icmpは、外乱トルクを補償しロバスト性を確保するための補償電流、Fmはパラメータ変動によりモータに印加される外乱トルク、Dmは粘性摩擦トルク、Treacは軸ねじれ反力、θmはモータ位置、Tdismは推定外乱トルク、Jmはモータ慣性、Jmnは、そのノミナル値、Gdisは外乱オブザーバのゲイン、Ktはトルク定数である。 In FIG. 3, Ia ref is a current reference value, Icmp is a compensation current for compensating for disturbance torque and ensuring robustness, Fm is disturbance torque applied to the motor due to parameter variation, Dm is viscous friction torque, Treac is Shaft reaction force, θm is the motor position, Tdism * is the estimated disturbance torque, Jm is the motor inertia, Jmn is the nominal value, Gdis is the disturbance observer gain, and Kt is the torque constant.

図4において、位置指令部(図示省略)から出力された位置指令信号に従って、モータ軸の位置決め制御が行なわれる。具体的には、モータ端に取り付けたエンコーダEから出力される位置フィードバック値と位置指令値を比較して、位置偏差を演算する。そして、この位置偏差を基に、位置偏差制御演算部60で速度指令値を演算する。更に、この速度指令値と、エンコーダEの出力値から速度演算部66で演算した速度フィードバック値との偏差を基に、速度偏差制御演算部62で電流(トルク)指令値を演算する。演算した電流指令値はサーボ用の電流アンプ64に出力され、モータMにモータ電流を与えて、軸を駆動する。   In FIG. 4, motor shaft positioning control is performed in accordance with a position command signal output from a position command section (not shown). Specifically, the position deviation is calculated by comparing the position feedback value output from the encoder E attached to the motor end with the position command value. Based on this position deviation, the position deviation control calculation unit 60 calculates a speed command value. Further, a current (torque) command value is calculated by the speed deviation control calculation unit 62 based on a deviation between the speed command value and the speed feedback value calculated by the speed calculation unit 66 from the output value of the encoder E. The calculated current command value is output to the servo current amplifier 64, and a motor current is given to the motor M to drive the shaft.

上記制御を行なう際に、モータ軸が受ける外乱トルクの推定値を外乱オブザーバ68で演算し、その値をフィードバックして、外乱の影響を抑えるための補償を行なう。   When performing the above control, an estimated value of disturbance torque received by the motor shaft is calculated by the disturbance observer 68, and the value is fed back to compensate for suppressing the influence of the disturbance.

図4において、Lは負荷、Bはタイミングベルト、Aは軸受部である。   In FIG. 4, L is a load, B is a timing belt, and A is a bearing portion.

図4は片側モータの制御系の例であるが、図6に、左右のモータML、MRに制御系を設けた例を示す。左側用の制御系は・・・L、右側用の制御系は・・・Rで示す。   FIG. 4 shows an example of a control system for a one-side motor. FIG. 6 shows an example in which control systems are provided for the left and right motors ML and MR. The control system for the left side is indicated by L, and the control system for the right side is indicated by R.

特開2007−43884号公報JP 2007-43884 A

しかしながら、外乱オブザーバ68は、モータM自身が外部から受ける力は全て外乱として除去しようと働く。そのため、図2に示したように、それぞれ2つのモータを用いて1つの負荷を駆動する場合には、他方のモータから受ける力をオブザーバでは外乱として判断して除去しようとすることにより、両方のモータが引張り合いを起こして、互いの制御に干渉を生じる恐れがあった。   However, the disturbance observer 68 works to remove all the forces that the motor M itself receives from the outside as disturbances. Therefore, as shown in FIG. 2, when driving one load using two motors, the observer receives the force received from the other motor as a disturbance and removes both. There is a possibility that the motors are pulled and interfere with each other's control.

制御の干渉は、位置決めの精度や速度に悪影響を及ぼし、更には発生したトルクが大きい場合には、軸部の破損も発生する場合があった。   Control interference adversely affects positioning accuracy and speed. Further, when the generated torque is large, the shaft portion may be damaged.

本発明は、前記従来の問題点を解消するべくなされたもので、モータ軸同士の干渉を抑えて、最適な位置決め制御を可能とすることを課題とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to enable optimum positioning control while suppressing interference between motor shafts.

本発明は、複数のモータ軸を用いて1つの負荷を駆動するXY位置決め装置において、各モータ軸の制御系内に設けられた外乱オブザーバと、該外乱オブザーバの出力部分に設けられた、位置偏差を監視し、位置偏差の量に応じて外乱オブザーバの出力を制限するオブザーバ出力調整部と、を備えることにより、前記課題を解決したものである。   The present invention provides an XY positioning apparatus that drives a single load using a plurality of motor shafts, a disturbance observer provided in a control system of each motor shaft, and a position deviation provided in an output portion of the disturbance observer. And the observer output adjusting unit that limits the output of the disturbance observer according to the amount of the position deviation, thereby solving the above-mentioned problem.

ここで、前記オブザーバ出力調整部を、複数のモータ軸で共通とし、位置偏差の量が少ない方の外乱オブザーバの出力を強く制限することができる。   Here, the observer output adjustment unit is shared by a plurality of motor shafts, and the output of the disturbance observer with the smaller amount of positional deviation can be strongly limited.

本発明によれば、オブザーバ出力調整部の働きにより、位置偏差の量が多い場合には、外乱オブザーバの出力を多く戻して積極的に補償を行ない、位置偏差の量が少なく補償が不要な場合には、外乱オブザーバの出力を制限することにより、モータ軸同士の干渉を抑えることができ、最適な位置決め制御が可能となる。   According to the present invention, when the amount of position deviation is large due to the function of the observer output adjustment unit, the output of the disturbance observer is returned to a large amount and compensation is performed actively, and the amount of position deviation is small and no compensation is required. By limiting the output of the disturbance observer, interference between the motor shafts can be suppressed, and optimal positioning control can be performed.

又、外乱オブザーバを備えたモータ制御装置であるため、外力や振動、摩擦等の外乱の影響を補償したロバスト制御が可能である。   In addition, since the motor control device includes a disturbance observer, robust control that compensates for the influence of disturbances such as external force, vibration, and friction is possible.

更に、外乱オブザーバやオブザーバ出力調整部は、演算用のソフト処理にて実現可能なため、ハードウェアの追加等が不要であり、コストアップしない。又、外乱オブザーバやオブザーバ出力調整部は、状態フィードバック制御やH∞制御に比べて制御系が簡単で、演算量も少ないため、高価なCPU等を使用する必要が無く、設計や調整も容易である。   Furthermore, since the disturbance observer and the observer output adjustment unit can be realized by software processing for calculation, it is not necessary to add hardware and the cost is not increased. In addition, the disturbance observer and observer output adjuster have a simpler control system and a smaller amount of computation than state feedback control and H∞ control, so there is no need to use an expensive CPU, etc., and design and adjustment are easy. is there.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図6と同様の構成において、図7に示す如く、モータ軸同士の干渉を抑えるために、左右の制御系の外乱オブザーバ68L、68Rの出力側に、それぞれオブザーバ出力調整部70L、70Rを設けたものである。   In the first embodiment of the present invention, as shown in FIG. 7, in the same configuration as FIG. 6, in order to suppress the interference between the motor shafts, the observers are respectively provided on the output side of the disturbance observers 68L and 68R of the left and right control systems. Output adjustment units 70L and 70R are provided.

前記オブザーバ出力調整部70L、70Rでは、図8に示す如く、位置偏差の量を監視し、位置偏差の量が設定値(例えば数パルス)よりも大きい場合には、外乱オブザーバの出力をそのまま素通しする。一方、位置偏差の量が設定値よりも小さい場合には、外乱オブザーバの出力を停止(0倍)して、フィードバック量を制限する。   As shown in FIG. 8, the observer output adjusting units 70L and 70R monitor the amount of position deviation. If the amount of position deviation is larger than a set value (for example, several pulses), the output of the disturbance observer is passed through as it is. To do. On the other hand, when the amount of position deviation is smaller than the set value, the output of the disturbance observer is stopped (0 times) to limit the feedback amount.

このようにして、位置偏差の量に応じて、外乱オブザーバ68L、68Rの出力を調整することにより、モータML、MRが高速移動中の位置偏差量が大きな時には積極的に補償を行なって位置偏差の収束を促す一方、モータML、MRが位置決め整定を行なっている際の位置偏差量が小さな時には補償を制限することで、モータ軸同士の干渉を抑えることができ、最適な位置決め制御を行なうことが可能となる。   In this way, by adjusting the outputs of the disturbance observers 68L and 68R according to the amount of position deviation, when the amount of position deviation during high-speed movement of the motors ML and MR is large, compensation is performed positively. While the motor ML, MR is performing positioning settling, the compensation between the motor shafts can be suppressed by limiting the compensation when the position deviation amount is small, and the optimum positioning control can be performed. Is possible.

なお、第1実施形態では、偏差の量が設定値よりも小さな場合には外乱オブザーバの出力を停止(0倍)してフィードバック量を制限したが、図9に示す第2実施形態のように、外乱オブザーバの出力を係数α倍(α=0〜1)して、フィードバック量を制限することも可能である。   In the first embodiment, when the deviation amount is smaller than the set value, the output of the disturbance observer is stopped (0 times) and the feedback amount is limited. However, as in the second embodiment shown in FIG. It is also possible to limit the feedback amount by multiplying the output of the disturbance observer by a factor α (α = 0 to 1).

この第2実施形態によれば、係数αを調整することにより、第1実施形態より、きめ細かな制御を行なうことができる。   According to the second embodiment, finer control than in the first embodiment can be performed by adjusting the coefficient α.

更に、オブザーバ出力調整部の設定値と係数αを1つの設定だけではなく、テーブルで持たせることにより、更に細かく数段階に切替えて、位置決め精度や負荷の状態に応じた各場合において、最適なフィードバック量の制限を行なうことも可能である。   Furthermore, the setting value of the observer output adjustment unit and the coefficient α are not only set to one setting, but are given in a table, so that it can be switched to several stages more finely, and in each case according to positioning accuracy and load conditions, it is optimal. It is also possible to limit the amount of feedback.

なお、前記第1及び第2実施形態においては、左モータMLと右モータMRの外乱オブザーバの制限が独立とされていたが、図10に示す第3実施形態のように、左モータMLと右モータMRの両方の偏差XL、XRに応じて、それぞれの外乱オブザーバ68L、68Rの出力を制限する共通のオブザーバ出力調整部70を設けて、位置偏差の量が少ない方を強く制限するようにすることも可能である。   In the first and second embodiments, the disturbance observers for the left motor ML and the right motor MR are limited independently. However, as in the third embodiment shown in FIG. A common observer output adjustment unit 70 that restricts the outputs of the respective disturbance observers 68L and 68R according to both deviations XL and XR of the motor MR is provided so as to strongly restrict the one with a smaller amount of positional deviation. It is also possible.

前記オブザーバ出力調整部70は、例えば図11に示す如く構成され、位置偏差が大きい方の外乱オブザーバはそのまま(1倍)とし、位置偏差が小さい方の外乱オブザーバを停止(0倍)するようにされている。なお、オブザーバ出力調整部70内に、第2実施形態と同様のゲイン可変アンプやテーブルを設けることも可能である。   The observer output adjustment unit 70 is configured as shown in FIG. 11, for example, so that the disturbance observer with the larger position deviation is left as it is (1 time), and the disturbance observer with the smaller position deviation is stopped (0 times). Has been. Note that a variable gain amplifier and a table similar to those in the second embodiment may be provided in the observer output adjustment unit 70.

この第3実施形態によれば、左右の軸のバランスに応じた出力制限を行なうことができる。   According to the third embodiment, the output can be limited according to the balance between the left and right axes.

なお、前記実施形態においては、いずれも、回転型のモータが使用されていたが、モータの種類はこれに限定されず、リニアモータであってもよい。又、モータ数も2に限定されない。   In each of the above embodiments, a rotary motor is used. However, the type of motor is not limited to this, and a linear motor may be used. Also, the number of motors is not limited to two.

ガントリ型XY位置決め装置の一例の全体構成を示す斜視図The perspective view which shows the whole structure of an example of a gantry type XY positioning device. 同じくX軸駆動部とY軸駆動部の詳細を示す平面図The top view which shows the detail of an X-axis drive part and a Y-axis drive part similarly 特許文献1で提案した外乱オブザーバの構成例を示すブロック図The block diagram which shows the structural example of the disturbance observer proposed by patent document 1 同じく外乱オブザーバを用いた制御系の構成例を示すブロック図A block diagram showing an example of the configuration of a control system using a disturbance observer 同じく加速度制御系の構成を示すブロック図Block diagram showing the configuration of the acceleration control system 同じくモータ数が2個の場合の制御系の構成例を示すブロック図Similarly, a block diagram showing a configuration example of a control system when the number of motors is two 本発明の第1実施形態の制御系を示すブロック図The block diagram which shows the control system of 1st Embodiment of this invention. 同じくオブザーバ出力調整部の構成を示すブロック図Similarly, a block diagram showing the configuration of the observer output adjustment unit 本発明の第2実施形態におけるオブザーバ出力調整部の構成を示すブロック図The block diagram which shows the structure of the observer output adjustment part in 2nd Embodiment of this invention. 同じく第3実施形態の制御系を示すブロック図Similarly, a block diagram showing a control system of the third embodiment 同じくオブザーバ出力調整部の構成を示すブロック図Similarly, a block diagram showing the configuration of the observer output adjustment unit

符号の説明Explanation of symbols

10…ヘッド
20、30…Y軸駆動部
40…X軸駆動部
M、ML、MR…モータ
L…負荷
E、EL、ER…エンコーダ
60L、60R…位置偏差制御演算部
62L、62R…速度偏差制御演算部
64L、64R…電流アンプ
66L、66R…速度演算部
68L、68R…外乱オブザーバ
70L、70R、70…オブザーバ出力調整部
DESCRIPTION OF SYMBOLS 10 ... Head 20, 30 ... Y-axis drive part 40 ... X-axis drive part M, ML, MR ... Motor L ... Load E, EL, ER ... Encoder 60L, 60R ... Position deviation control calculating part 62L, 62R ... Speed deviation control Calculation unit 64L, 64R ... Current amplifier 66L, 66R ... Speed calculation unit 68L, 68R ... Disturbance observer 70L, 70R, 70 ... Observer output adjustment unit

Claims (2)

複数のモータ軸を用いて1つの負荷を駆動するXY位置決め装置において、
各モータ軸の制御系内に設けられた外乱オブザーバと、
該外乱オブザーバの出力部分に設けられた、位置偏差を監視し、位置偏差の量に応じて外乱オブザーバの出力を制限するオブザーバ出力調整部と、
を備えたことを特徴とするXY位置決め装置の駆動制御装置。
In an XY positioning device that drives one load using a plurality of motor shafts,
Disturbance observer provided in the control system of each motor shaft,
An observer output adjustment unit provided in an output portion of the disturbance observer, which monitors a position deviation and limits the output of the disturbance observer according to the amount of the position deviation;
A drive control device for an XY positioning device, comprising:
前記オブザーバ出力調整部が、複数のモータ軸で共通とされ、位置偏差の量が少ない方の外乱オブザーバの出力を強く制限するようにされていることを特徴とする請求項1に記載のXY位置決め装置の駆動制御装置。   2. The XY positioning according to claim 1, wherein the observer output adjusting unit is shared by a plurality of motor shafts, and is configured to strongly limit the output of a disturbance observer having a smaller amount of positional deviation. Device drive control device.
JP2007246048A 2007-09-21 2007-09-21 Drive controller of xy positioning arrangement Pending JP2009077591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246048A JP2009077591A (en) 2007-09-21 2007-09-21 Drive controller of xy positioning arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246048A JP2009077591A (en) 2007-09-21 2007-09-21 Drive controller of xy positioning arrangement

Publications (1)

Publication Number Publication Date
JP2009077591A true JP2009077591A (en) 2009-04-09

Family

ID=40612024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246048A Pending JP2009077591A (en) 2007-09-21 2007-09-21 Drive controller of xy positioning arrangement

Country Status (1)

Country Link
JP (1) JP2009077591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204703A (en) * 2014-04-15 2015-11-16 キヤノン株式会社 Driving device, lithographic apparatus, and manufacturing method of article
WO2020225978A1 (en) * 2019-05-09 2020-11-12 パナソニックIpマネジメント株式会社 Motor control system, motor control method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317703A (en) * 1989-06-15 1991-01-25 Fanuc Ltd Zeroing method using speed-dependent disturbance estimating observer
JPH10277771A (en) * 1997-04-04 1998-10-20 Sumitomo Heavy Ind Ltd X-y stage controller
JPH1155979A (en) * 1997-07-31 1999-02-26 Toyo Electric Mfg Co Ltd Method for controlling speed of fiber line
JP2007018439A (en) * 2005-07-11 2007-01-25 Juki Corp Gantry xy positioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317703A (en) * 1989-06-15 1991-01-25 Fanuc Ltd Zeroing method using speed-dependent disturbance estimating observer
JPH10277771A (en) * 1997-04-04 1998-10-20 Sumitomo Heavy Ind Ltd X-y stage controller
JPH1155979A (en) * 1997-07-31 1999-02-26 Toyo Electric Mfg Co Ltd Method for controlling speed of fiber line
JP2007018439A (en) * 2005-07-11 2007-01-25 Juki Corp Gantry xy positioning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204703A (en) * 2014-04-15 2015-11-16 キヤノン株式会社 Driving device, lithographic apparatus, and manufacturing method of article
WO2020225978A1 (en) * 2019-05-09 2020-11-12 パナソニックIpマネジメント株式会社 Motor control system, motor control method, and program
CN113767565A (en) * 2019-05-09 2021-12-07 松下知识产权经营株式会社 Motor control system, motor control method, and program
CN113767565B (en) * 2019-05-09 2023-09-29 松下知识产权经营株式会社 Motor control system, motor control method, and program
JP7454767B2 (en) 2019-05-09 2024-03-25 パナソニックIpマネジメント株式会社 Motor control system, motor control method, and program

Similar Documents

Publication Publication Date Title
US8838275B2 (en) Robot and robot control method
JP2006001688A (en) Drive control device, controlling method, and image forming device
JPH08245117A (en) Method and device for damping vibration of elevator cab
US10247301B2 (en) Servo control system with position compensation function for driven member
US9933616B2 (en) Mirror angular-positioning apparatus and processing apparatus
JP6653542B2 (en) Motor control device
KR101799544B1 (en) Motor Control Device
JP5084232B2 (en) Synchronous anti-vibration control device for positioning device
JP2008091856A (en) Electronic component mounting apparatus
JP2006190074A (en) Synchronization control apparatus
JP4860277B2 (en) Vibration suppression control method and apparatus for multi-inertia resonance system
JP2009077591A (en) Drive controller of xy positioning arrangement
JP2000330642A (en) Position controller for stage and speed controller
US9041336B2 (en) Robot having repeatable disturbance compensation algorithm
JP5241413B2 (en) Synchronous anti-vibration control device for gantry type XY positioning device
US11586231B2 (en) Reaction compensation device and fast steering mirror system
JP2000069782A (en) Linear-direction drive
CN110431495B (en) Disturbance non-interference compensation system for positioning control device and component mounting machine
JP5929171B2 (en) Linear motion robot
JPH10277771A (en) X-y stage controller
JP4137321B2 (en) Mobile device
JP5203010B2 (en) Component gripping apparatus and method
JP2013132697A (en) Linear motion robot
CN111566379B (en) Active vibration isolation device
JP2010045912A (en) Motor control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120