JP2009077566A - Variable composite current transformer and protective relay device - Google Patents

Variable composite current transformer and protective relay device Download PDF

Info

Publication number
JP2009077566A
JP2009077566A JP2007244866A JP2007244866A JP2009077566A JP 2009077566 A JP2009077566 A JP 2009077566A JP 2007244866 A JP2007244866 A JP 2007244866A JP 2007244866 A JP2007244866 A JP 2007244866A JP 2009077566 A JP2009077566 A JP 2009077566A
Authority
JP
Japan
Prior art keywords
phase
circuit
current
short
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007244866A
Other languages
Japanese (ja)
Inventor
Yoshiaki Date
義明 伊達
Masami Takenaka
正実 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007244866A priority Critical patent/JP2009077566A/en
Publication of JP2009077566A publication Critical patent/JP2009077566A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable composite current transformer enabling further reduction of the installation number of current transformers and short circuit protective relays which are used to protect a three-phase AC circuit from a short circuit failure, and to provide a protective relay device. <P>SOLUTION: The variable composite current transformer 10 composites currents to be inputted from first-third current transformers 3<SB>1</SB>-3<SB>3</SB>respectively provided on R-phase, S-phase and T-phase of a power transmission line at a composite current ratio (-0.5:0.5):-1.5. Upon detecting a short circuit failure on the basis of a short circuit current I<SB>Ry</SB>inputted from the variable composite current transformer 10, an overcurrent relay 4 collectively interrupts first-third breakers 2<SB>1</SB>-2<SB>3</SB>installed in the R-phase, S-phase and T-phase of the power transmission line. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、可変合成変流器および保護継電装置に関し、特に、短絡事故から三相交流回路を保護するための変流器および短絡保護継電器の設置台数を削減するのに好適な可変合成変流器および保護継電装置に関する。   The present invention relates to a variable composite current transformer and a protective relay device, and more particularly to a variable composite current transformer suitable for reducing the number of installed current transformers and short circuit protection relays for protecting a three-phase AC circuit from a short circuit accident. The present invention relates to a current drain and a protective relay device.

従来、三相交流回路では、短絡事故から三相交流回路を保護するために、過電流継電器(OC)を相ごとに設置している(たとえば下記の特許文献1参照)。   Conventionally, in a three-phase AC circuit, an overcurrent relay (OC) is installed for each phase in order to protect the three-phase AC circuit from a short circuit accident (see, for example, Patent Document 1 below).

また、末端回路の送配電線などでは、短絡電流が2相に流れることを利用し、過電流継電器を2相にだけ設置して、設備コストの抑制を図っている。たとえば、図23に示すように、送配電線のR相、S相およびT相のうちR相およびT相にそれぞれ設置された第1および第2の変流器(CT)31,32に第1および第2の過電流継電器(OC)41,42をそれぞれ接続して、送配電線において短絡事故が発生したときには、以下に示すように、その事故様相に応じて送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を第1および第2の過電流継電器41,42で一括遮断している。
(1)R相−S相間の短絡事故の場合
送配電線のR相およびS相に短絡電流が流れるので、R相に設置された第1の変流器31から入力される短絡電流に基づいて第1の過電流継電器41が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相およびT相に短絡電流が流れるので、T相に設置された第2の変流器32から入力される短絡電流に基づいて第2の過電流継電器42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のR相およびT相に短絡電流が流れるので、R相およびT相にそれぞれ設置された第1および第2の変流器31,32からそれぞれ入力される短絡電流に基づいて第1および第2の過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相、S相およびT相に短絡電流が流れるので、R相およびT相にそれぞれ設置された第1および第2の変流器31,32からそれぞれ入力される短絡電流に基づいて第1および第2の過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
特開平8−005659号公報
Moreover, in the power transmission / distribution line of the terminal circuit, etc., the short circuit current flows in two phases, and an overcurrent relay is installed only in the two phases to reduce the equipment cost. For example, as shown in FIG. 23, first and second current transformers (CT) 3 1 , 3 2 respectively installed in the R phase and the T phase among the R phase, S phase, and T phase of the transmission and distribution line. When the first and second overcurrent relays (OC) 4 1 , 4 2 are connected to each other and a short-circuit accident occurs in the transmission / distribution line, the transmission / distribution line depends on the aspect of the accident as shown below. The first to third circuit breakers 2 1 to 2 3 installed in the R phase, the S phase, and the T phase, respectively, are collectively disconnected by the first and second overcurrent relays 4 1 and 4 2 .
(1) In the case of a short-circuit accident between the R phase and the S phase Since a short circuit current flows in the R phase and S phase of the transmission and distribution line, the short circuit current input from the first current transformer 31 installed in the R phase Based on this, the first overcurrent relay 4 1 operates to collectively shut off the first to third circuit breakers 2 1 to 2 3 .
(2) In the case of a short-circuit accident between S-phase and T-phase Since a short-circuit current flows in the S-phase and T-phase of the transmission and distribution line, the short-circuit current input from the second current transformer 3 2 installed in the T-phase Based on this, the second overcurrent relay 4 2 operates to cut off the first to third circuit breakers 2 1 to 2 3 at once .
(3) In the case of a short circuit accident between the T phase and the R phase Since a short circuit current flows in the R phase and the T phase of the transmission and distribution line, the first and second current transformers 3 1 installed in the R phase and the T phase, respectively. , 3 2 , the first and second overcurrent relays 4 1 , 4 2 operate based on the short-circuit currents respectively input from the first to third circuit breakers 2 1 to 2 3 .
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase Since a short circuit current flows in the R phase, the S phase, and the T phase, the first and second current transformers installed in the R phase and the T phase, respectively. The first and second overcurrent relays 4 1 and 4 2 operate on the basis of the short-circuit currents input from 3 1 and 3 2 , respectively, and collectively cut off the first to third circuit breakers 2 1 to 2 3. .
JP-A-8-005659

しかしながら、送配電線につき変流器および過電流継電器を3台または2台ずつ設置しているため、変流器および過電流継電器の設置台数を更に少なくして設備コストの削減を図りたいという要請がある。   However, since three or two current transformers and overcurrent relays are installed for each transmission / distribution line, a request to further reduce the installation cost by reducing the number of current transformers and overcurrent relays installed. There is.

このような要請は、変圧器内部の短絡事故から三相交流回路を保護するための電流差動継電器、構内における短絡事故から三相交流回路を保護するための受電保護継電器として使用されている過電流継電器、送配電線の電源端母線側および受電端母線側にそれぞれ設置されて使用されるパルス符号変調電流差動継電器(PCM電流差動継電器)や、電圧値に応じて電流検出感度を補正する機能を具備した電圧抑制付過電流継電器などについても存在する。   Such a request is a current differential relay for protecting a three-phase AC circuit from a short-circuit accident inside the transformer, and an overcurrent protection relay used for protecting the three-phase AC circuit from a short-circuit accident in the premises. Current detection, pulse code modulation current differential relay (PCM current differential relay) used on the power supply bus side and power receiving end bus side of the transmission / distribution line, and the current detection sensitivity is corrected according to the voltage value There is also an overcurrent relay with voltage suppression and the like having a function to perform.

本発明の目的は、短絡事故から三相交流回路を保護するための変流器および短絡保護継電器の設置台数を更に削減することができる可変合成変流器および保護継電装置を提供することにある。   An object of the present invention is to provide a variable composite current transformer and a protective relay device that can further reduce the number of installed current transformers and short circuit protection relays for protecting a three-phase AC circuit from a short circuit accident. is there.

本発明の可変合成変流器は、三相交流回路の第1乃至第3の相に流れる短絡電流を検出するための可変合成変流器であって、前記第1乃至第3の相に流れる短絡電流を合成電流比±x1:±x2:±x3(x1,x2,x3>0)で合成することを特徴とする。
また、本発明の可変合成変流器は、三相交流回路の第1乃至第3の相に流れる短絡電流を検出するための可変合成変流器(10,101,102)であって、前記第1乃至第3の相に流れる短絡電流を合成電流比x1:x2:x3、合成電流比x1:−x2:x3または合成電流比−x1:x2:−x3(x1,x2,x3>0)で合成することを特徴とする。
ここで、前記三相交流回路の短絡事故の事故様相を判定して、前記可変合成変流器によって検出された短絡電流に前記事故様相の判定結果に応じた所定の倍数を掛ける演算処理手段を備えてもよい。
本発明の保護継電装置は、短絡事故から三相交流回路を保護するための保護継電装置であって、本発明の可変合成変流器と、該可変合成変流器から入力される短絡電流に基づいて短絡事故を検出すると、前記三相交流回路の第1乃至第3の相に設置された遮断器を一括遮断する短絡保護継電器とを具備することを特徴とする。
ここで、前記保護継電装置が、前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段と、前記可変合成変流器によって検出された短絡電流に該事故様相判定手段における事故様相の判定結果に応じた所定の倍数を掛ける演算処理手段とをさらに具備してもよい。
前記事故様相判定手段が、前記三相交流回路の3つの線間電圧(VRS,VST,VTR)、3つの相電圧(VR,VS,VT)または相・線間電圧に基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)および1つの相電圧(VR,VS,VT)の電圧値および位相に基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を反極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S-2T)を得るための事故様相判定用変圧器(110)をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相電圧の合成電圧(VR-S+2T)を得るための事故様相判定用変圧器(120)をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向または反極性方向でa倍して、該三相交流回路の第2の相電圧(VS)を極性方向または反極性方向でb倍して、該三相交流回路の第3の相電圧(VT)を極性方向または反極性方向でc倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相電圧の合成電圧(VaR+bS+cT)を得るための事故様相判定用変圧器をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記可変合成変流器が、送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する可変合成変流器(10)であり、前記短絡保護継電器が、前記可変合成変流器から入力される短絡電流(IRy)に基づいて短絡事故を検出すると、前記送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する過電流継電器(4)であってもよい。
前記可変合成変流器が、変圧器(5)の1次側の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する第1の可変合成変流器(101)と、前記変圧器の2次側の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の変流器(34〜36)から入力される電流を合成する第2の可変合成変流器(102)とであり、前記短絡保護継電器が、前記第1の可変合成変流器から入力される短絡電流と前記第2の可変合成変流器から入力される短絡電流との差電流に基づいて短絡事故を検出すると、前記変圧器の1次側の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)と該変圧器の2次側の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)とを一括遮断する電流差動継電器(20)であってもよい。
前記可変合成変流器が、第1の送配電線(1L)の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する第1の可変合成変流器(101)と、第2の送配電線(2L)の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の変流器(34〜36)から入力される電流を合成する第2の可変合成変流器(102)とであり、前記短絡保護継電器が、前記第1の可変合成変流器から入力される短絡電流と第2の可変合成変流器から入力される短絡電流との和電流に基づいて短絡事故を検出すると、前記第1の送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)と前記第2の送配電線の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)とを一括遮断する過電流継電器(30)であってもよい。
前記可変合成変流器が、電源端母線側の送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する第1の可変合成変流器(101)と、受電端母線側の前記送配電線の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の変流器(34〜36)から入力される電流を合成する第2の可変合成変流器(102)とであり、前記短絡保護継電器が、前記第1の可変合成変流器から入力される短絡電流と前記第2の可変合成変流器から入力される短絡電流との差電流に基づいて短絡事故を検出すると、前記電源端母線側の前記送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)と前記受電端母線側の前記送配電線の第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)とをそれぞれ一括遮断する第1および第2のパルス符号変調電流差動継電器(601,602)であってもよい。
前記可変合成変流器が、送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する可変合成変流器(10)であり、前記短絡保護継電器が、前記可変合成変流器から入力される短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)を用いて算出した抑制電圧(VRy)とに基づいて短絡事故を検出すると、前記送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する電圧抑制付過電流継電器(50)であってもよい。
The variable composite current transformer of the present invention is a variable composite current transformer for detecting a short-circuit current flowing in the first to third phases of the three-phase AC circuit, and flows in the first to third phases. The short-circuit current is synthesized at a synthetic current ratio ± x 1 : ± x 2 : ± x 3 (x 1 , x 2 , x 3 > 0).
The variable composite current transformer of the present invention is a variable composite current transformer (10, 10 1 , 10 2 ) for detecting a short-circuit current flowing in the first to third phases of the three-phase AC circuit. The short-circuit current flowing in the first to third phases is the combined current ratio x 1 : x 2 : x 3 , the combined current ratio x 1 : −x 2 : x 3 or the combined current ratio −x 1 : x 2 : − It is characterized by being synthesized by x 3 (x 1 , x 2 , x 3 > 0).
Here, arithmetic processing means for determining the accident aspect of the short-circuit accident of the three-phase AC circuit and multiplying the short-circuit current detected by the variable composite current transformer by a predetermined multiple according to the determination result of the accident aspect. You may prepare.
The protective relay device of the present invention is a protective relay device for protecting a three-phase AC circuit from a short circuit accident, and includes the variable composite current transformer of the present invention and a short circuit input from the variable composite current transformer. When a short-circuit accident is detected based on the current, a short-circuit protective relay is provided that collectively shuts off the circuit breakers installed in the first to third phases of the three-phase AC circuit.
Here, the protective relay device includes an accident mode determination unit that determines an accident mode of a short circuit accident of the three-phase AC circuit, and an accident in the accident mode determination unit that detects a short circuit current detected by the variable composite current transformer. You may further comprise the arithmetic processing means which multiplies the predetermined multiple according to the determination result of an aspect.
The accident mode determination means determines whether the three-phase AC circuit has three line voltages (V RS , V ST , V TR ), three phase voltages (V R , V S , V T ) or a phase / line voltage. Based on this, the accident aspect of the short circuit accident of the three-phase AC circuit may be determined.
The accident mode determination means is based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) and one phase voltage (V R , V S , V T ) of the three-phase AC circuit. Thus, the accident aspect of the short circuit accident of the three-phase AC circuit may be determined.
The accident mode judging means is configured to detect a voltage value and a phase of one line voltage (V RS , V ST , V TR ) of the three-phase AC circuit and a short circuit current (I Ry ) input from the variable composite current transformer. The accident aspect of the short circuit accident of the three-phase AC circuit may be determined based on the phase of the three-phase AC circuit.
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to second phases are used for determining the accident aspect of the short-circuit fault of the three-phase AC circuit, where the secondary side is connected so as to synthesize the phase voltage (V T ) by doubling in the opposite polarity direction. An accident mode judging transformer (110) for obtaining a composite voltage (V RS-2T ) of the phase voltages of the three phases, wherein the accident mode judging means is inputted from the accident mode judging transformer. The accident aspect of the short circuit accident of the three-phase AC circuit may be determined based on the voltage value and phase of the combined voltage and the phase of the short circuit current (I Ry ) input from the variable combined current transformer.
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to third are used to determine the accident aspect of the short-circuit accident of the three-phase AC circuit in which the secondary side is connected so that the phase voltage (V T ) is doubled and synthesized in the polarity direction. And an accident mode judging transformer (120) for obtaining a composite voltage (V R-S + 2T ) of the above -mentioned phase voltage, and the accident mode judging means is inputted from the accident mode judging transformer The accident aspect of the short circuit accident of the three-phase AC circuit may be determined based on the voltage value and phase of the combined voltage and the phase of the short circuit current (I Ry ) input from the variable combined current transformer.
The first phase voltage (V R ) of the three-phase AC circuit is multiplied by a in the polarity direction or the antipolar direction, and the second phase voltage (V S ) of the three-phase AC circuit is changed in the polarity direction or antipolar direction. And the secondary side is connected so that the third phase voltage (V T ) of the three-phase AC circuit is multiplied by c in the polarity direction or the opposite polarity direction to be combined, and the three-phase AC A fault condition determining transformer for obtaining a composite voltage (V aR + bS + cT ) of the first to third phase voltages used for determining an accident aspect of a circuit short-circuit accident; The aspect determination means is configured to select the three-phase based on the voltage value and phase of the combined voltage input from the accident aspect determination transformer and the phase of the short circuit current (I Ry ) input from the variable combined current transformer. You may determine the accident aspect of the short circuit accident of an AC circuit.
The variable synthesis current transformer synthesizes the currents input from the first to third current transformers (31 to 3 3 ) installed in the first to third phases of the transmission and distribution lines, respectively. When the short circuit protection relay detects a short circuit fault based on the short circuit current (I Ry ) input from the variable composite current transformer, the first through first of the transmission and distribution lines The overcurrent relay (4) which interrupts | blocks the 1st thru | or 3rd circuit breakers (2 1 to 2 3 ) respectively installed in the three phases at once may be used.
The variable composite current transformer is input from first to third current transformers (3 1 to 3 3 ) installed in the first to third phases on the primary side of the transformer (5), respectively. A first variable current transformer (10 1 ) for combining currents, and fourth to sixth current transformers (3) installed in the first to third phases on the secondary side of the transformer, respectively. 4 to 3 6 ) and a second variable composite current transformer (10 2 ) for synthesizing the current input from the first variable composite current transformer. And a short-circuit fault is detected based on the difference between the short-circuit current input from the second variable composite current transformer and the first to third phases on the primary side of the transformer are respectively installed. shielding of the first to fourth to sixth placed respectively in the third circuit breaker (2 1 to 2 3) and the first to third secondary side of the transformer phase Vessels may be (2 4-2 6) and the current differential relay for collectively blocking (20).
The variable composite current transformer is input from first to third current transformers (3 1 to 3 3 ) installed in the first to third phases of the first transmission and distribution line (1L), respectively. The first variable current transformer (10 1 ) for synthesizing currents and the fourth to sixth current transformers installed in the first to third phases of the second transmission / distribution line (2L), respectively. (3 4 to 3 6 ) and a second variable composite current transformer (10 2 ) for synthesizing the current input from the first variable composite current transformer. When a short-circuit fault is detected based on the sum current of the short-circuit current and the short-circuit current input from the second variable composite current transformer, it is installed in each of the first to third phases of the first transmission and distribution line. the first to fourth to sixth disposed respectively in the third circuit breaker (2 1 to 2 3) and said first to third second transmission and distribution lines of the phases were Breaker (2 4-2 6) and a may be a overcurrent relay for collectively blocking (30).
Current input from the first to third current transformers (3 1 to 3 3 ) installed in the first to third phases of the transmission / distribution line on the power supply end bus side of the variable composite current transformer A first variable current transformer (10 1 ) for synthesizing the power supply, and fourth to sixth current transformers (10 1 ) installed in the first to third phases of the transmission and distribution lines on the power receiving end bus side ( 3 4 to 3 6 ) and a second variable composite current transformer (10 2 ) for synthesizing the current input from the first variable composite current transformer. When a short-circuit fault is detected based on the difference between the current and the short-circuit current input from the second variable composite current transformer, the first to third phases of the transmission and distribution lines on the power supply end bus side are respectively detected. it the first to third circuit breaker (2 1 to 2 3) and the first to third electric transmission of the receiving end bus side of the phase installed The installed fourth to sixth breaker (2 4-2 6) and the or a first and second pulse code modulated current differential relay for collectively blocking respectively (60 1, 60 2).
The variable synthesis current transformer synthesizes the currents input from the first to third current transformers (31 to 3 3 ) installed in the first to third phases of the transmission and distribution lines, respectively. A current transformer (10), in which the short-circuit protective relay is configured such that a short-circuit current (I Ry ) input from the variable composite current transformer and a line voltage (V RS , V ST , V TR ) When a short circuit accident is detected based on the suppression voltage (V Ry ) calculated using the first to third circuit breakers (2 1 ) installed in the first to third phases of the transmission and distribution line, respectively. The overcurrent relay (50) with a voltage suppression which cuts off -2 3 ) collectively may be sufficient.

本発明の可変合成変流器および保護継電装置は、以下に示す効果を奏する。
(1)三相交流回路の第1乃至第3の相からそれぞれ入力される電流を合成電流比±x1:±x2:±x3(たとえば、合成電流比−x1:x2:−x3または合成電流比x1:x2:x3)で合成する可変合成変流器を使用することにより、短絡事故から三相交流回路を保護するための変流器および短絡保護継電器の設置台数を更に削減して、設備コストの削減を図ることができる。
(2)可変合成変流器から出力される短絡電流の振幅は短絡事故の事故様相によって異なるが、事故様相に応じて短絡電流の振幅を調整または補正することにより短絡保護継電器の検出感度および動作時間を同じにすることができる。
(3)合成電流比を変えることにより、リレー判定に必要な任意の大きさおよび位相の短絡電流を合成することができる。
The variable composite current transformer and the protective relay device of the present invention have the following effects.
(1) The currents respectively input from the first to third phases of the three-phase AC circuit are combined current ratios ± x 1 : ± x 2 : ± x 3 (for example, combined current ratio −x 1 : x 2 : − Installation of current transformers and short-circuit protection relays to protect three-phase AC circuits from short-circuit accidents by using variable composite current transformers that are synthesized with x 3 or composite current ratio x 1 : x 2 : x 3 ) The number of units can be further reduced to reduce the equipment cost.
(2) Although the amplitude of the short-circuit current output from the variable composite current transformer varies depending on the accident aspect of the short-circuit accident, the detection sensitivity and operation of the short-circuit protective relay can be adjusted by adjusting or correcting the amplitude of the short-circuit current according to the accident aspect. The time can be the same.
(3) By changing the composite current ratio, it is possible to synthesize a short-circuit current having an arbitrary magnitude and phase necessary for relay determination.

上記の目的を、三相交流回路の第1乃至第3の相に流れる短絡電流を合成電流比−x1:x2:−x3または合成電流比x1:x2:x3で合成する可変合成変流器を用いて、短絡保護継電器が、可変合成変流器から入力される短絡電流に基づいて短絡事故を検出すると、三相交流回路の第1乃至第3の相に設置された遮断器を一括遮断することにより実現した。 For the above purpose, the short-circuit current flowing in the first to third phases of the three-phase AC circuit is synthesized with the synthesized current ratio -x 1 : x 2 : -x 3 or the synthesized current ratio x 1 : x 2 : x 3 . When the short circuit protection relay detects a short circuit accident based on the short circuit current input from the variable composite current transformer, the variable composite current transformer is installed in the first to third phases of the three-phase AC circuit. This was realized by shutting off the circuit breakers at once.

以下、本発明の可変合成変流器および保護継電装置の実施例について図面を参照して説明する。
本発明の第1の実施例による保護継電装置は、図1に示すように、可変合成変流器10と、可変合成変流器10から入力される短絡電流IRyに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する過電流継電器4とを具備する。
Hereinafter, embodiments of the variable composite current transformer and the protective relay device of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the protective relay device according to the first embodiment of the present invention includes a variable composite current transformer 10 and a transmission / distribution line based on a short circuit current I Ry input from the variable composite current transformer 10. When the short circuit accident is detected, the overcurrent relay 4 is provided that collectively shuts off the first to third circuit breakers 2 1 to 2 3 installed in the R phase, S phase, and T phase of the transmission and distribution lines.

ここで、可変合成変流器10は、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の変流器31〜33から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、可変合成変流器10からは、送配電線のR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。 Here, the variable composite current transformer 10 combines the currents input from the first to third current transformers 3 1 to 3 3 installed in the R-phase, S-phase, and T-phase of the transmission and distribution lines, respectively. For synthesis at a ratio of -0.5: 0.5: -1.5. As a result, the variable composite current transformer 10 reverses the polarity of the current flowing through the R phase of the power transmission and distribution line by 0.5 times, and the current flowing through the S phase by 0.5 times and the T phase. The sum of the current and the current multiplied by 1.5 is output by inverting the polarity of the flowing current.

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、可変合成変流器10から過電流継電器4に入力される負荷電流Iは、図2(a)に示すように、極性が負のR相の負荷電流IRを0.5倍した電流(=−0.5IR)とS相の負荷電流ISを0.5倍した電流(=0.5IS)と極性が負のT相の負荷電流ITを1.5倍した電流(=−1.5IT)とのベクトル和となるが、R相の負荷電流IRとS相の負荷電流ISとT相の負荷電流ITとは位相が120°間隔でずれているため、負荷電流Iの振幅はR相の負荷電流IR(S相およびT相の負荷電流IS,IT)の振幅の31/2倍となる。
I=−0.5IR+0.5IS−1.5IT
|I|=|−0.5IR+0.5IS−1.5IT
={(31/2/2)2+1.521/2×|IR
=31/2×|IR|(=31/2×|IS|=31/2×|IT|)
Therefore, when the load currents flowing in the R-phase, S-phase, and T-phase of the transmission and distribution line when no short-circuit accident has occurred are represented by I R , I S , and I T , the variable current transformer 10 can be used as an overcurrent relay. As shown in FIG. 2 (a), the load current I input to 4 is a current obtained by multiplying the negative-phase R-phase load current I R by 0.5 (= −0.5I R ) and the S-phase load current I R. the vector sum of the current (= -1.5I T) polarity and the load current I S to 0.5 times the current (= 0.5I S) was 1.5 times the load current I T of the negative T-phase However, since the R-phase load current I R , the S-phase load current I S and the T-phase load current I T are out of phase by 120 °, the amplitude of the load current I is R-phase load current. It becomes 3 1/2 times the amplitude of I R (S-phase and T-phase load currents I S , I T ).
I = −0.5I R + 0.5I S −1.5I T
| I | = | −0.5I R + 0.5I S −1.5I T |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I R |
= 3 1/2 × | I R | (= 3 1/2 × | I S | = 3 1/2 × | I T |)

また、送配電線に短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、可変合成変流器10から過電流継電器4に入力される短絡電流IRyは、短絡電流IFR,IFS,IFTのインピーダンス角をθとすると、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図5に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、可変合成変流器10から過電流継電器4に出力される短絡電流IRyは極性が負のR相の短絡電流IFRを0.5倍した電流(=−0.5IFR)とS相の短絡電流IFSを0.5倍した電流(=0.5IFS)とのベクトル和となるが、R相の短絡電流IFRとS相の短絡電流IFSとの位相差が180°であるため、短絡電流IRyの振幅は図3(a)に示すようにS相の短絡電流IFS(R相の短絡電流IFR)の振幅となる。
Ry=−0.5IFR+0.5IFS=0.5(IFS−IFR
|IRy|=|0.5(IFS−IFR)|=|IFS|(=|IFR|)
なお、図3および図4においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、図6に破線の矢印で示すように送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、可変合成変流器10から過電流継電器4に出力される短絡電流IRyはS相の短絡電流IFSを0.5倍した電流(=0.5IFS)と極性が負のT相の短絡電流IFTを1.5倍した電流(=−1.5IFT)とのベクトル和となるが、S相の短絡電流IFSとT相の短絡電流IFTとの位相差が180°であるため、短絡電流IRyの振幅は図3(b)に示すようにS相の短絡電流IFS(T相の短絡電流IFT)の振幅の2倍となる。
Ry=0.5IFS−1.5IFT
|IRy|=|0.5IFS−1.5IFT|=2×|IFS|(=2×|IFT|)
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、図7に破線の矢印で示すように送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、可変合成変流器10から過電流継電器4に出力される短絡電流IRyは極性が負のR相の短絡電流IFRを0.5倍した電流(=−0.5IFR)と極性が負のT相の短絡電流IFTを1.5倍した電流(=−1.5IFT)とのベクトル和となるが、R相の短絡電流IFRとT相の短絡電流IFTとの位相差が180°であるため、短絡電流IRyの振幅は図4(a)に示すようにR相の短絡電流IFR(T相の短絡電流IFT)の振幅となる。
Ry=−0.5IFR−1.5IFT=−(0.5IFR+1.5IFT
|IRy|=|0.5IFR+1.5IFT|=|IFR|(=|IFT|)
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、図8に破線の矢印で示すように送配電線のR相、S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる。
したがって、可変合成変流器10から過電流継電器4に出力される短絡電流IRyは極性が負のR相の短絡電流IFRを0.5倍した電流(=−0.5IFR)とS相の短絡電流IFSを0.5倍した電流(=0.5IFS)と極性が負のT相の短絡電流IFTを1.5倍した電流(=−1.5IFT)とのベクトル和となるが、R相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTは位相が120°間隔でずれているため、短絡電流IF1の振幅は図4(a)に示すようにR相の短絡電流IFR(S相およびT相の短絡電流IFS,IFT)の振幅の31/2倍となる。
Ry=−0.5IFR+0.5IFS−1.5IFT
|IRy|=|−0.5IFR+0.5IFS−1.5IFT
={(31/2/2)2+1.521/2×|IFR
=31/2×|IFR|(=31/2×|IFS|=31/2×|IFT|)
Moreover, when the short circuit current flowing in the R phase, S phase, and T phase of the transmission / distribution line is represented by I FR , I FS , I FT when a short circuit accident occurs in the transmission / distribution line, the variable composite current transformer 10 causes excessive current. The short-circuit current I Ry input to the current relay 4 is expressed as follows according to the accident aspect, where θ is the impedance angle of the short-circuit currents I FR , I FS , and I FT .
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the short circuit current I FR of the R phase is generated in the R phase of the transmission and distribution line as shown by the broken arrow in FIG. flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Therefore, the short-circuit current I Ry output from the variable composite current transformer 10 to the overcurrent relay 4 is a current (= −0.5I FR ) obtained by multiplying the R-phase short-circuit current I FR having a negative polarity by 0.5. Although the vector sum of the phase of the short-circuit current I FS 0.5 times the current (= 0.5I FS), the phase difference between the short-circuit current I FS of the short circuit current I FR and S phases of the R phase is 180 ° Therefore, the amplitude of the short-circuit current I Ry is the amplitude of the S-phase short-circuit current I FS (R-phase short-circuit current I FR ) as shown in FIG.
I Ry = −0.5 I FR +0.5 I FS = 0.5 (I FS −I FR )
| I Ry | = | 0.5 (I FS −I FR ) | = | I FS | (= | I FR |)
In FIGS. 3 and 4, short-circuit currents I FR , I FS , I FT flowing in the inner direction of the transmission / distribution line are solid arrows, and short-circuit currents I FR , I FS , I FT is indicated by a dashed-dotted arrow.
(2) In the case of a short circuit accident between the S phase and the T phase When a short circuit accident occurs between the S phase and the T phase, the short circuit current I FS of the S phase is generated in the S phase of the power transmission and distribution line as shown by the broken arrow in FIG. flow inside direction, but the short-circuit current I FT T-phase to the T phase of the transmission and distribution lines to flow to the outside direction, the R-phase of the transmission and distribution lines does not flow a short-circuit current I FR of R-phase.
Therefore, the short-circuit current I Ry output from the variable composite current transformer 10 to the overcurrent relay 4 is a current obtained by multiplying the S-phase short-circuit current I FS by 0.5 (= 0.5 I FS ) and the T-phase having a negative polarity. Is a vector sum of a current obtained by multiplying the short-circuit current I FT by 1.5 (= −1.5 I FT ), but the phase difference between the S-phase short-circuit current I FS and the T-phase short-circuit current I FT is 180 °. Therefore, the amplitude of the short-circuit current I Ry is twice the amplitude of the S-phase short-circuit current I FS (T-phase short-circuit current I FT ) as shown in FIG.
I Ry = 0.5I FS -1.5I FT
| I Ry | = | 0.5 I FS −1.5 I FT | = 2 × | I FS | (= 2 × | I FT |)
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, the short circuit current I FT of the T phase is applied to the T phase of the transmission and distribution line as shown by the broken arrow in FIG. flow inside direction, but the short-circuit current I FR of R-phase to R-phase of transmission and distribution lines to flow to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Therefore, the short-circuit current I Ry output from the variable composite current transformer 10 to the overcurrent relay 4 has a current (= −0.5 I FR ) and a polarity that is 0.5 times the R-phase short-circuit current I FR having a negative polarity. Is the vector sum of the negative T-phase short-circuit current I FT multiplied by 1.5 (= −1.5 I FT ), but the R-phase short-circuit current I FR and the T-phase short-circuit current I FT Since the phase difference is 180 °, the amplitude of the short-circuit current I Ry is the amplitude of the R-phase short-circuit current I FR (T-phase short-circuit current I FT ) as shown in FIG.
I Ry = −0.5 I FR −1.5 I FT = − (0.5 I FR +1.5 I FT )
| I Ry | = | 0.5 I FR +1.5 I FT | = | I FR | (= | I FT |)
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, the R phase and S phase of the power transmission and distribution line as shown by the dashed arrows in FIG. In addition, an R-phase short-circuit current I FR , an S-phase short-circuit current I FS, and a T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 °, respectively.
Therefore, the short-circuit current I Ry output from the variable composite current transformer 10 to the overcurrent relay 4 is a current (= −0.5I FR ) obtained by multiplying the R-phase short-circuit current I FR having a negative polarity by 0.5. vector between the current (= 0.5I FS) and current polarities are 1.5 times the short-circuit current I FT negative T-phase (= -1.5I FT) that the short-circuit current I FS phases were 0.5 times Although the sum, since the short-circuit current I FR of R-phase, short-circuit current I FT circuit current I FS and T phases of the S phase is the phase with at 120 ° intervals, the amplitude of the short-circuit current I F1 is 4 ( As shown in a), the amplitude is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (S-phase and T-phase short-circuit currents I FS and I FT ).
I Ry = −0.5 I FR +0.5 I FS −1.5 I FT
| I Ry | = | −0.5 I FR +0.5 I FS −1.5 I FT |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I FR |
= 3 1/2 × | I FR | (= 3 1/2 × | I FS | = 3 1/2 × | I FT |)

過電流継電器4は、短絡電流IRyの振幅が電流整定値を超えた場合には、送配電線に短絡事故が発生したと判定して、第1乃至第3の遮断器21〜23を一括遮断する。 When the amplitude of the short circuit current I Ry exceeds the current set value, the overcurrent relay 4 determines that a short circuit accident has occurred in the transmission and distribution lines, and the first to third circuit breakers 2 1 to 2 3. Block all at once.

なお、可変合成変流器10では第1乃至第3の変流器31〜33から入力される電流の合成電流比を“−0.5:0.5:−1.5”としたが、“−0.5:−1.5:0.5”、“0.5:−0.5:−1.5”、“0.5:−1.5:−0.5”、“−1.5:0.5:−0.5”または“−1.5:−0.5:0.5”としてもよい。 In the variable composite current transformer 10, the composite current ratio of the currents input from the first to third current transformers 3 1 to 3 3 is “−0.5: 0.5: −1.5”. Are "-0.5: -1.5: 0.5", "0.5: -0.5: -1.5", "0.5: -1.5: -0.5", It may be “−1.5: 0.5: −0.5” or “−1.5: −0.5: 0.5”.

次に、本発明の第2の実施例による保護継電装置について図9を参照して説明する。
本実施例による保護継電装置は、図9に示すように、第1および第2の可変合成変流器101,102と、第1の可変合成変流器101から入力される短絡電流と第2の可変合成変流器102から入力される短絡電流との差電流(以下、「短絡電流IRy」と称する。)に基づいて変圧器5内部の短絡事故を検出すると、変圧器5の1次側のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23と変圧器5の2次側のR相、S相およびT相にそれぞれ設置された第4乃至第6の遮断器24〜26とを一括遮断する電流差動継電器20とを具備する。
Next, a protective relay device according to a second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 9, the protective relay device according to the present embodiment is short-circuited from the first and second variable composite current transformers 10 1 and 10 2 and the first variable composite current transformer 10 1. current and the difference current between the short-circuit current which is input from the second variable synthesizing current transformer 10 2 (hereinafter. referred to as "short-circuit current I Ry") when the transformer 5 for detecting the internal short-circuit fault on the basis of, transformer The first to third circuit breakers 2 1 to 2 3 installed in the R-phase, S-phase, and T-phase on the primary side of the transformer 5 and the R-phase, S-phase, and T-phase on the secondary side of the transformer 5 respectively. And a current differential relay 20 that collectively cuts off the fourth to sixth circuit breakers 2 4 to 2 6 respectively installed in the circuit board.

ここで、第1の可変合成変流器101は、変圧器5の1次側のR相、S相およびT相にそれぞれ設置された第1乃至第3の変流器31〜33から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、第1の可変合成変流器101からは、変圧器5の1次側のR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。
同様に、第2の可変合成変流器102は、変圧器5の2次側のR相、S相およびT相にそれぞれ設置された第4乃至第6の変流器34〜36から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、第2の可変合成変流器102からは、変圧器5の2次側のR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。
また、第2の可変合成変流器102は、第2の可変合成変流器102から電流差動継電器20に入力される短絡電流の極性が第1の可変合成変流器101から電流差動継電器20に入力される短絡電流の極性と逆となるように、電流差動継電器20に接続されている。
Here, the first variable composite current transformer 10 1 includes first to third current transformers 3 1 to 3 3 installed in the R-phase, S-phase, and T-phase on the primary side of the transformer 5, respectively. For synthesizing the current input from the current ratio of -0.5: 0.5: -1.5. Thus, the first from the variable synthetic current transformer 10 1, the current flowing inverted and 0.5 times the current and S phase of the polarity of the current flowing through the primary side of the R-phase transformer 5 0. A sum current of the current multiplied by 5 and the current multiplied by 1.5 by inverting the polarity of the current flowing through the T phase is output.
Similarly, the second variable composite current transformer 10 2 includes fourth to sixth current transformers 3 4 to 3 6 installed in the R-phase, S-phase, and T-phase on the secondary side of the transformer 5, respectively. For synthesizing the current input from the current ratio of -0.5: 0.5: -1.5. Thus, the second is a variable synthesizing current transformer 10 2, the current flowing through the current and the S-phase polarity and 0.5 times by inverting the current flowing through the secondary side of the R-phase transformer 5 0. A sum current of the current multiplied by 5 and the current multiplied by 1.5 by inverting the polarity of the current flowing through the T phase is output.
Further, the second variable composite current transformer 10 2 has a polarity of the short-circuit current input from the second variable composite current transformer 10 2 to the current differential relay 20 from the first variable composite current transformer 10 1. It is connected to the current differential relay 20 so that the polarity of the short circuit current input to the current differential relay 20 is reversed.

したがって、短絡事故が発生していないときに変圧器5の1次側(送電端)のR相、S相およびT相に流れる1次負荷電流をI1R,I1R,I1Tで表し、変圧器5の2次側(受電端)のR相、S相およびT相に流れる2次負荷電流をI2R,I2S,I2Tで表すと、第1の可変合成変流器101から電流差動継電器20に入力される1次負荷電流i1は、上述した第1の実施例による過電流継電器4における場合と同様にして、極性が負のR相の1次負荷電流I1Rを0.5倍した電流(=−0.5I1R)とS相の1次負荷電流I1Sを0.5倍した電流(=0.5I1S)と極性が負のT相の1次負荷電流I1Tを1.5倍した電流(=−1.5I1T)とのベクトル和となるが、R相の1次負荷電流I1RとS相の1次負荷電流I1SとT相の1次負荷電流I1Tとは位相が120°間隔でずれているため(図2(a)参照)、1次負荷電流i1の振幅はR相の1次負荷電流I1R(S相およびT相の1次負荷電流I1S,I1T)の振幅の31/2倍となる。
1=−0.5I1R+0.5I1S−1.5I1T
|i1|=|−0.5I1R+0.5I1S−1.5I1T
={(31/2/2)2+1.521/2×|I1R
=31/2×|I1R|(=31/2×|I1S|=31/2×|I1T|)
同様に、第2の可変合成変流器102から電流差動継電器20に入力される2次負荷電流i2は極性が負のR相の2次負荷電流I2Rを0.5倍した電流(=−0.5I2R)とS相の2次負荷電流I2Sを0.5倍した電流(=0.5I2S)と極性が負のT相の2次負荷電流I2Tを1.5倍した電流(=−1.5I2T)とのベクトル和(極性は負)となり、2次負荷電流i2の振幅はR相の2次負荷電流I2R(S相およびT相の2次負荷電流I2S,I2T)の振幅の31/2倍となる。
2=−(−0.5I2R+0.5I2S−1.5I2T
|i2|=|−0.5I2R+0.5I2S−1.5I2T
={(31/2/2)2+1.521/2×|I2R
=31/2×|I2R|(=31/2×|I2S|=31/2×|I2T|)
その結果、電流差動継電器20に入力される負荷電流Iは、1次負荷電流i1と2次負荷電流i2とのベクトル和で表され、負荷電流Iの振幅は“0”(|I|=|i1+i2|=0)となる。
Therefore, the primary load currents flowing in the R-phase, S-phase, and T-phase on the primary side (transmission end) of the transformer 5 when no short circuit accident has occurred are represented by I 1R , I 1R , I 1T , R-phase secondary side of the vessel 5 (receiving end), S phase and the secondary load current flowing to the T-phase I 2R, I 2S, expressed in I 2T, the first variable combining current from current transformer 10 1 primary load current i 1 which is input to the differential relay 20, as in the case of the overcurrent relay 4 according to the first embodiment described above, the polarity is the primary load current I 1R negative R phase 0 .5 times the current (= −0.5I 1R ), the S phase primary load current I 1S multiplied by 0.5 (= 0.5I 1S ), and the negative polarity T phase primary load current I The vector sum of the current obtained by multiplying 1T by 1.5 (= −1.5I 1T ), but the R-phase primary load current I 1R , the S-phase primary load current I 1S and the T-phase primary load Electric Since the phase and I 1T are displaced at 120 ° intervals (see FIG. 2 (a)), 1 of the primary load current amplitude i 1 is R phase of the primary load current I 1R (S-phase and T-phase primary 3 1/2 times the amplitude of the load currents I 1S and I 1T ).
i 1 = −0.5I 1R + 0.5I 1S −1.5I 1T
| I 1 | = | −0.5I 1R + 0.5I 1S −1.5I 1T |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I 1R |
= 3 1/2 × | I 1R | (= 3 1/2 × | I 1S | = 3 1/2 × | I 1T |)
Similarly, the secondary load current i 2 input from the second variable composite current transformer 10 2 to the current differential relay 20 is a current obtained by multiplying the R-phase secondary load current I 2R having a negative polarity by 0.5. (= −0.5I 2R ), the current obtained by multiplying the S-phase secondary load current I 2S by 0.5 (= 0.5I 2S ) and the negative polarity T-phase secondary load current I 2T of 1.5 It becomes a vector sum (polarity is negative) with the multiplied current (= −1.5I 2T ), and the amplitude of the secondary load current i 2 is the R-phase secondary load current I 2R (the S-phase and T-phase secondary loads). It becomes 3 1/2 times the amplitude of the currents I 2S and I 2T ).
i 2 = - (- 0.5I 2R + 0.5I 2S -1.5I 2T)
| I 2 | = | −0.5I 2R + 0.5I 2S −1.5I 2T |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I 2R |
= 3 1/2 × | I 2R | (= 3 1/2 × | I 2S | = 3 1/2 × | I 2T |)
As a result, the load current I input to the current differential relay 20 is represented by a vector sum of the primary load current i 1 and the secondary load current i 2, and the amplitude of the load current I is “0” (| I | = | I 1 + i 2 | = 0).

また、たとえば変圧器5内部の1次側において短絡事故が発生したときに変圧器5の1次側の送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、短絡電流IRy(第1の可変合成変流器101から入力される短絡電流と第2の可変合成変流器102から入力される短絡電流との差電流)は、上述した第1の実施例による過電流継電器4における場合と同様にして、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合(図3(a)参照)
Ry=0.5(IFS−IFR
|IRy|=|0.5(IFS−IFR)|=|IFS|(=|IFR|)
(2)S相−T相間の短絡事故の場合(図3(b)参照)
Ry=0.5IFS−1.5IFT
|IRy|=|0.5IFS−1.5IFT|=2×|IFS|(=2×|IFT|)
(3)T相−R相間の短絡事故の場合(図4(a)参照)
Ry=−(0.5IFR+1.5IFT
|IRy|=|0.5IFR+1.5IFT|=|IFR|(=|IFT|)
(4)R相−S相−T相間の短絡事故の場合(図4(b)参照)
Ry=−0.5IFR+IFS−1.5IFT
|IRy|=|−0.5IFR+0.5IFS−1.5IFT
={(31/2/2)2+1.521/2×|IFR
=31/2×|IFR|(=31/2×|IFS|=31/2×|IFT|)
Further, for example, when a short circuit accident occurs on the primary side inside the transformer 5, short circuit currents flowing in the R phase, S phase, and T phase of the primary transmission and distribution line of the transformer 5 are represented by I FR , I FS , In terms of I FT , the short-circuit current I Ry (the difference between the short-circuit current input from the first variable composite current transformer 10 1 and the short-circuit current input from the second variable composite current transformer 10 2 ) is In the same manner as in the case of the overcurrent relay 4 according to the first embodiment described above, it is expressed as follows according to the accident aspect.
(1) In case of short-circuit accident between R phase and S phase (see Fig. 3 (a))
I Ry = 0.5 (I FS -I FR )
| I Ry | = | 0.5 (I FS −I FR ) | = | I FS | (= | I FR |)
(2) In the case of a short circuit accident between the S phase and the T phase (see FIG. 3B)
I Ry = 0.5I FS -1.5I FT
| I Ry | = | 0.5 I FS −1.5 I FT | = 2 × | I FS | (= 2 × | I FT |)
(3) In the case of a short circuit accident between T phase and R phase (see Fig. 4 (a))
I Ry = − (0.5I FR + 1.5I FT )
| I Ry | = | 0.5 I FR +1.5 I FT | = | I FR | (= | I FT |)
(4) In the case of a short circuit accident between R phase, S phase, and T phase (see FIG. 4B)
I Ry = −0.5 I FR + I FS −1.5 I FT
| I Ry | = | −0.5 I FR +0.5 I FS −1.5 I FT |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I FR |
= 3 1/2 × | I FR | (= 3 1/2 × | I FS | = 3 1/2 × | I FT |)

電流差動継電器20は、短絡電流IRyの振幅が電流整定値を超えた場合には、変圧器5内部において短絡事故が発生したと判定して、第1乃至第6の遮断器21〜26を一括遮断する。 Current differential relay 20, when the amplitude of the short-circuit current I Ry exceeds the current setting value, it is determined that the short-circuit failure occurs inside the transformer 5, the circuit breaker 2 1 of the first to sixth Block 6 and 6 together.

なお、第1の可変合成変流器101では第1乃至第3の変流器31〜33から入力される電流の合成電流比を“−0.5:0.5:−1.5”としたが、“−0.5:−1.5:0.5”、“0.5:−0.5:−1.5”、“0.5:−1.5:−0.5”、“−1.5:0.5:−0.5”または“−1.5:−0.5:0.5”としてもよい。
第2の可変合成変流器102についても同様である。
In the first variable composite current transformer 10 1 , the composite current ratio of the currents input from the first to third current transformers 3 1 to 3 3 is set to “−0.5: 0.5: −1. 5 ”, but“ −0.5: −1.5: 0.5 ”,“ 0.5: −0.5: −1.5 ”,“ 0.5: −1.5: −0 ” .5 "," -1.5: 0.5: -0.5 "or" -1.5: -0.5: 0.5 ".
The same applies to the second variable composite current transformer 10 2 .

次に、本発明の第3の実施例による保護継電装置について図10を参照して説明する。
本実施例による保護継電装置は、構内における短絡事故から第1および第2の送配電線1L,2Lを保護するための受電保護継電装置であり、図10に示すように、第1および第2の可変合成変流器101,102と、第1の可変合成変流器101から入力される短絡電流と第2の可変合成変流器102から入力される短絡電流との和電流(以下、「短絡電流IRy」と称する。)に基づいて構内での短絡事故を検出すると、第1の送配電線1LのR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23と第2の送配電線2LのR相、S相およびT相にそれぞれ設置された第4乃至第6の遮断器24〜26とを一括遮断する過電流継電器30とを具備する。
Next, a protective relay device according to a third embodiment of the present invention will be described with reference to FIG.
The protection relay device according to the present embodiment is a power reception protection relay device for protecting the first and second transmission / distribution lines 1L and 2L from a short circuit accident in the premises. As shown in FIG. Second variable composite current transformer 10 1 , 10 2 , short-circuit current input from first variable composite current transformer 10 1, and short-circuit current input from second variable composite current transformer 10 2 When a short-circuit accident is detected on the premises based on the sum current (hereinafter referred to as “short-circuit current I Ry ”), the first installed in the R-phase, S-phase, and T-phase of the first transmission and distribution line 1L, respectively. Or the third to third circuit breakers 2 1 to 2 3 and the fourth to sixth circuit breakers 2 4 to 2 6 respectively installed in the R phase, S phase and T phase of the second transmission and distribution line 2L. And an overcurrent relay 30.

ここで、第1の可変合成変流器101は、第1の送配電線1LのR相、S相およびT相にそれぞれ設置された第1乃至第3の変流器31〜33から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、第1の可変合成変流器101からは、第1の送配電線1LのR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。
同様に、第2の可変合成変流器102は、第2の送配電線2LのR相、S相およびT相にそれぞれ設置された第4乃至第6の変流器34〜36から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、第2の可変合成変流器102からは、第2の送配電線2LのR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。
Here, the first variable composite current transformer 10 1 includes first to third current transformers 3 1 to 3 3 installed in the R phase, S phase, and T phase of the first power transmission and distribution line 1L, respectively. For synthesizing the currents input at a combined current ratio of −0.5: 0.5: −1.5. Thus, the first from the variable synthetic current transformer 10 1, the current flowing through the first transmission and distribution 0.5 times by reversing the polarity of the current through the R phase of the electric wire 1L the current and S phase 0. The sum of the current multiplied by 5 and the current multiplied by 1.5 by inverting the polarity of the current flowing through the T phase is output.
Similarly, the second variable composite current transformer 10 2 includes fourth to sixth current transformers 3 4 to 3 6 installed in the R phase, the S phase, and the T phase of the second transmission and distribution line 2L, respectively. For synthesizing the currents input at a combined current ratio of −0.5: 0.5: −1.5. Thus, from the second variable synthesizing current transformer 10 2, the current flowing through the second 0.5 times by inverting the polarity of the current flowing through the R-phase of the transmission and distribution lines 2L of the current and the S-phase zero. The sum of the current multiplied by 5 and the current multiplied by 1.5 by inverting the polarity of the current flowing through the T phase is output.

したがって、構内において短絡事故が発生していないときに第1および第2の可変合成変流器101,102から過電流継電器30に入力される負荷電流Iは、上述した第1の実施例による過電流継電器4における場合と同様にして、極性が負のR相の負荷電流IRを0.5倍した電流(=−0.5IR)とS相の負荷電流ISを0.5倍した電流(=0.5IS)と極性が負のT相の負荷電流ITを1.5倍した電流(=−1.5IT)とのベクトル和となり、負荷電流Iの振幅はR相の負荷電流IR(S相およびT相の負荷電流IS,IT)の振幅の31/2倍となる(図2(a)参照)。
I=−0.5IR+0.5IS−1.5IT
|I|=|−0.5IR+0.5IS−1.5IT
={(31/2/2)2+1.521/2×|IR
=31/2×|IR|(=31/2×|IS|=31/2×|IT|)
Therefore, the load current I input from the first and second variable composite current transformers 10 1 and 10 2 to the overcurrent relay 30 when no short circuit accident occurs on the premises is the same as that of the first embodiment described above. In the same manner as in the case of the overcurrent relay 4 by the above, the current (= −0.5I R ) obtained by multiplying the negative polarity R-phase load current I R by 0.5 and the S-phase load current I S by 0.5 The vector sum of the multiplied current (= 0.5 I S ) and the current (= −1.5 I T ) obtained by multiplying the negative polarity T-phase load current I T by 1.5, and the amplitude of the load current I is R It becomes 3 1/2 times the amplitude of the phase load current I R (S-phase and T-phase load currents I S , I T ) (see FIG. 2A).
I = −0.5I R + 0.5I S −1.5I T
| I | = | −0.5I R + 0.5I S −1.5I T |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I R |
= 3 1/2 × | I R | (= 3 1/2 × | I S | = 3 1/2 × | I T |)

また、構内において短絡事故が発生したときに第1および第2の送配電線1L,2LのR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、短絡電流IRy(第1の可変合成変流器101から入力される短絡電流と第2の可変合成変流器102から入力される短絡電流との和電流)は、上述した第1の実施例による過電流継電器4における場合と同様にして、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合(図3(a)参照)
Ry=0.5(IFS−IFR
|IRy|=|0.5(IFS−IFR)|=|IFS|(=|IFR|)
(2)S相−T相間の短絡事故の場合(図3(b)参照)
Ry=0.5IFS−1.5IFT
|IRy|=|0.5IFS−1.5IFT|=2×|IFS|(=2×|IFT|)
(3)T相−R相間の短絡事故の場合(図4(a)参照)
Ry=−(0.5IFR+1.5IFT
|IRy|=|0.5IFR+1.5IFT|=|IFR|(=|IFT|)
(4)R相−S相−T相間の短絡事故の場合(図4(b)参照)
Ry=−0.5IFR+IFS−1.5IFT
|IRy|=|−0.5IFR+0.5IFS−1.5IFT
={(31/2/2)2+1.521/2×|IFR
=31/2×|IFR|(=31/2×|IFS|=31/2×|IFT|)
In addition, when a short-circuit accident occurs on the premises, the short-circuit currents flowing in the R-phase, S-phase, and T-phase of the first and second power transmission lines 1L, 2L are expressed as I FR , I FS , I FT The current I Ry (the sum of the short-circuit current input from the first variable composite current transformer 10 1 and the short-circuit current input from the second variable composite current transformer 10 2 ) is the first implementation described above. Similar to the case of the overcurrent relay 4 according to the example, it is expressed as follows according to the accident aspect.
(1) In case of short-circuit accident between R phase and S phase (see Fig. 3 (a))
I Ry = 0.5 (I FS -I FR )
| I Ry | = | 0.5 (I FS −I FR ) | = | I FS | (= | I FR |)
(2) In the case of a short circuit accident between the S phase and the T phase (see FIG. 3B)
I Ry = 0.5I FS -1.5I FT
| I Ry | = | 0.5 I FS −1.5 I FT | = 2 × | I FS | (= 2 × | I FT |)
(3) In the case of a short circuit accident between T phase and R phase (see Fig. 4 (a))
I Ry = − (0.5I FR + 1.5I FT )
| I Ry | = | 0.5 I FR +1.5 I FT | = | I FR | (= | I FT |)
(4) In the case of a short circuit accident between R phase, S phase, and T phase (see FIG. 4B)
I Ry = −0.5 I FR + I FS −1.5 I FT
| I Ry | = | −0.5 I FR +0.5 I FS −1.5 I FT |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I FR |
= 3 1/2 × | I FR | (= 3 1/2 × | I FS | = 3 1/2 × | I FT |)

過電流継電器30は、短絡電流IRyの振幅が電流整定値を超えた場合には、構内において短絡事故が発生したと判定して、第1乃至第6の遮断器21〜26を一括遮断する。 When the amplitude of the short-circuit current IRy exceeds the current set value, the overcurrent relay 30 determines that a short-circuit accident has occurred in the premises and collects the first to sixth circuit breakers 2 1 to 2 6 at once. Cut off.

なお、第1の可変合成変流器101では第1乃至第3の変流器31〜33から入力される電流の合成電流比を“−0.5:0.5:−1.5”としたが、“−0.5:−1.5:0.5”、“0.5:−0.5:−1.5”、“0.5:−1.5:−0.5”、“−1.5:0.5:−0.5”または“−1.5:−0.5:0.5”としてもよい。
第2の可変合成変流器102についても同様である。
In the first variable composite current transformer 10 1 , the composite current ratio of the currents input from the first to third current transformers 3 1 to 3 3 is set to “−0.5: 0.5: −1. 5 ”, but“ −0.5: −1.5: 0.5 ”,“ 0.5: −0.5: −1.5 ”,“ 0.5: −1.5: −0 ” .5 "," -1.5: 0.5: -0.5 "or" -1.5: -0.5: 0.5 ".
The same applies to the second variable composite current transformer 10 2 .

次に、本発明の第4の実施例による保護継電装置について図11を参照して説明する。
本実施例による保護継電装置は、図11に示すように、第1および第2の可変合成変流器101,102と、第1の可変合成変流器101からの短絡電流と第2の可変合成変流器102からの短絡電流との差電流(以下、「短絡電流IRy」と称する。)に基づいて送配電線における短絡事故を検出すると、電源端母線側の送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23と受電端母線側の送配電線のR相、S相およびT相にそれぞれ設置された第4乃至第6の遮断器24〜26とをそれぞれ一括遮断する第1および第2のパルス符号変調電流差動継電器601,602(以下、「第1および第2のPCM電流差動継電器601,602」と称する。)とを具備する。
なお、第1および第2のPCM電流差動継電器601,602は、通信網を介して短絡電流を送受信する。
Next, a protective relay device according to a fourth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 11, the protective relay device according to the present embodiment includes the first and second variable composite current transformers 10 1 and 10 2 and the short-circuit current from the first variable composite current transformer 10 1. When a short-circuit fault in the transmission / distribution line is detected based on a difference current (hereinafter referred to as “short-circuit current I Ry ”) from the short-circuit current from the second variable composite current transformer 10 2, 1st to 3rd circuit breakers 2 1 to 2 3 installed in R phase, S phase and T phase of distribution line and R phase, S phase and T phase of power transmission and distribution line on receiving end bus side, respectively First and second pulse code modulation current differential relays 60 1 and 60 2 (hereinafter referred to as “first and second PCMs”) that collectively cut off the fourth to sixth circuit breakers 2 4 to 2 6 respectively. Current differential relays 60 1 , 60 2 ”).
Note that the first and second PCM current differential relays 60 1 and 60 2 transmit and receive a short-circuit current via a communication network.

ここで、第1の可変合成変流器101は、電源端母線側の送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の変流器31〜33から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、第1の可変合成変流器101からは、電源端母線側の送配電線のR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。
同様に、第2の可変合成変流器102は、受電端母線側の送配電線のR相、S相およびT相にそれぞれ設置された第4乃至第6の変流器34〜36から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、第2の可変合成変流器102からは、受電端母線側の送配電線のR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。
また、第2の可変合成変流器102は、第2の可変合成変流器102から第2のPCM電流差動継電器602に入力される短絡電流の極性が第1の可変合成変流器101から第1のPCM電流差動継電器601に入力される短絡電流の極性と逆となるように、第2のPCM電流差動継電器602に接続されている。
Here, the first variable combining current transformer 10 1, first to third current transformer 3 1 to 3 in which R-phase transmission and distribution lines of a power supply terminal bus side, the S-phase and T-phase are respectively installed This is for synthesizing the current input from 3 at a combined current ratio of −0.5: 0.5: −1.5. As a result, the first variable composite current transformer 10 1 reverses the polarity of the current flowing through the R phase of the power transmission / distribution line on the power supply end bus side and reverses the current multiplied by 0.5 and the current flowing through the S phase to 0. The sum of the current multiplied by 5 and the current multiplied by 1.5 by inverting the polarity of the current flowing through the T phase is output.
Similarly, the second variable composite current transformer 10 2 includes fourth to sixth current transformers 3 4 to 3 installed in the R-phase, S-phase, and T-phase of the power transmission and distribution line on the power receiving end bus side, respectively. 6 for synthesizing the current input from 6 at a combined current ratio of −0.5: 0.5: −1.5. As a result, the second variable composite current transformer 10 2 reduces the polarity of the current flowing through the R phase of the power transmission / distribution line on the power receiving end bus side by 0.5 and the current flowing through the S phase to 0. The sum of the current multiplied by 5 and the current multiplied by 1.5 by inverting the polarity of the current flowing through the T phase is output.
Further, the second variable composite current transformer 10 2 has the polarity of the short-circuit current input from the second variable composite current transformer 10 2 to the second PCM current differential relay 60 2 in the first variable composite current transformer. from Nagareki 10 1 so as to be opposite to the polarity of the first PCM current short-circuit current which is input to the differential relay 60 1 is connected to a second PCM current differential relay 60 2.

したがって、送配電線において短絡事故が発生していないときに送配電線の送電端のR相、S相およびT相に流れる送電端負荷電流をIaR,IaS,IaTで表し、送配電線の受電端のR相、S相およびT相に流れる受電端負荷電流をIbR,IbS,IbTで表すと、第1の可変合成変流器101から第1のPCM電流差動継電器601に入力される送電端負荷電流Iaは、上述した第1の実施例による過電流継電器4における場合と同様にして、極性が負のR相の送電端負荷電流IaRを0.5倍した電流(=−0.5IaR)とS相の送電端負荷電流IaSを0.5倍した電流(=0.5IaS)と極性が負のT相の送電端負荷電流IaTを1.5倍した電流(=−1.5IaT)とのベクトル和となるが、R相の送電端負荷電流IaRとS相の送電端負荷電流IaSとT相の送電端負荷電流IaTとは位相が120°間隔でずれているため(図2(a)参照)、送電端負荷電流Iaの振幅はR相の送電端負荷電流IaR(S相およびT相の送電端負荷電流IaS,IaT)の振幅の31/2倍となる。
a=−0.5IaR+0.5IaS−1.5IaT
|Ia|=|−0.5IaR+0.5IaS−1.5IaT
={(31/22/2+1.521/2×|IaR
=31/2×|IaR|(=31/2×|IaS|=31/2×|IaT|)
同様に、第2の可変合成変流器102から第2のPCM電流差動継電器602に入力される受電端負荷電流Ibは、極性が負のR相の受電端負荷電流IbRを0.5倍した電流(=−0.5IbR)とS相の受電端負荷電流IbSを0.5倍した電流(=0.5IbS)と極性が負のT相の受電端負荷電流IbTを1.5倍した電流(=−1.5IbT)とのベクトル和(極性は負)となり、受電端負荷電流Ibの振幅はR相の受電端負荷電流IbR(S相およびT相の受電端負荷電流IbS,IbT)の振幅の31/2倍となる。
b=−(−0.5IbR+0.5IbS−1.5IbT
|Ib|=|−0.5IbR+0.5IbS−1.5IbT
={(31/2/2)2+1.521/2×|IbR
=31/2×|IbR|(=31/2×|IbS|=31/2×|IbT|)
その結果、第1および第2のPCM電流差動継電器601,602に入力される負荷電流Iは、送電端負荷電流Iaと受電端負荷電流Ibとのベクトル和で表され、負荷電流Iの振幅は“0”(|I|=|Ia+Ib|=0)となる。
Therefore, the transmission end load current flowing in the R phase, S phase and T phase of the transmission end of the transmission / distribution line when no short circuit accident has occurred in the transmission / distribution line is expressed as I aR , I aS , I aT , R-phase receiving end of the electric wire, S-phase and the receiving end load current flowing to the T-phase I bR, I bS, expressed in I bT, first PCM current differential from the first variable combining current transformer 10 1 sending end load current I a that is input to the relay 60 1, in the same manner as in the first overcurrent relay 4 in accordance with embodiments of the above, the polarity is the sending end load current I aR negative R phase 0. Five times the current (= −0.5 I aR ), 0.5 times the S-phase transmission end load current I aS (= 0.5 I aS ) and the negative polarity T-phase transmission end load current I aT Is the vector sum of the current multiplied by 1.5 (= −1.5 I aT ), but the R-phase transmission end load current I aR and the S-phase transmission end load current Since the current I aS and the T-phase transmission end load current I aT are shifted in phase by 120 ° (see FIG. 2A), the amplitude of the transmission end load current I a is R-phase transmission end load current. It becomes 3 1/2 times the amplitude of I aR (S-phase and T-phase transmission end load currents I aS , I aT ).
I a = −0.5 I aR +0.5 I aS −1.5 I aT
| I a | = | −0.5 I aR +0.5 I aS −1.5 I aT |
= {(3 1/2 ) 2 /2+1.5 2 } 1/2 × | I aR |
= 3 1/2 × | I aR | (= 3 1/2 × | I aS | = 3 1/2 × | I aT |)
Similarly, the receiving end load current I b inputted from the second variable composite current transformer 10 2 to the second PCM current differential relay 60 2 is the R phase receiving end load current I bR having a negative polarity. 0.5 times the current (= -0.5 I bR ), 0.5 times the S-phase receiving end load current I bS (= 0.5 I bS ) and the negative polarity T-phase receiving end load current Vector sum (polarity is negative) with a current (= −1.5I bT ) obtained by multiplying I bT by 1.5, and the amplitude of the receiving end load current I b is the R receiving end load current I bR (S phase and It becomes 3 1/2 times the amplitude of the T-phase receiving end load currents I bS , I bT ).
I b = − (− 0.5 I bR +0.5 I bS −1.5 I bT )
| I b | = | −0.5 I bR +0.5 I bS −1.5 I bT |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I bR |
= 3 1/2 × | I bR | (= 3 1/2 × | I bS | = 3 1/2 × | I bT |)
As a result, the load current I input to the first and second PCM current differential relays 60 1 and 60 2 is expressed as a vector sum of the transmission end load current I a and the reception end load current I b, and the load The amplitude of the current I is “0” (| I | = | I a + I b | = 0).

また、送配電線において短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、短絡電流IRy(第1の可変合成変流器101からの短絡電流と第2の可変合成変流器102からの短絡電流との差電流)は、上述した第1の実施例による過電流継電器4における場合と同様にして、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合(図3(a)参照)
Ry=0.5(IFS−IFR
|IRy|=|0.5(IFS−IFR)|=|IFS|(=|IFR|)
(2)S相−T相間の短絡事故の場合(図3(b)参照)
Ry=0.5IFS−1.5IFT
|IRy|=|0.5IFS−1.5IFT|=2×|IFS|(=2×|IFT|)
(3)T相−R相間の短絡事故の場合(図4(a)参照)
Ry=−(0.5IFR+1.5IFT
|IRy|=|0.5IFR+1.5IFT|=|IFR|(=|IFT|)
(4)R相−S相−T相間の短絡事故の場合(図4(b)参照)
Ry=−0.5IFR+IFS−1.5IFT
|IRy|=|−0.5IFR+0.5IFS−1.5IFT
={(31/2/2)2+1.521/2×|IFR
=31/2×|IFR|(=31/2×|IFS|=31/2×|IFT|)
Moreover, when the short-circuit current that flows in the R-phase, S-phase, and T-phase of the transmission / distribution line is expressed by I FR , I FS , I FT when a short-circuit accident occurs in the transmission / distribution line, the short-circuit current I Ry (first variable synthesis short-circuit current from the current transformer 10 1 and a difference current between the second short-circuit current from the variable synthetic current transformer 10 2), in the same manner as in the first overcurrent relay 4 it is according to an embodiment of the above According to the accident aspect, it is expressed as follows.
(1) In case of short-circuit accident between R phase and S phase (see Fig. 3 (a))
I Ry = 0.5 (I FS -I FR )
| I Ry | = | 0.5 (I FS −I FR ) | = | I FS | (= | I FR |)
(2) In the case of a short circuit accident between the S phase and the T phase (see FIG. 3B)
I Ry = 0.5I FS -1.5I FT
| I Ry | = | 0.5 I FS −1.5 I FT | = 2 × | I FS | (= 2 × | I FT |)
(3) In the case of a short circuit accident between T phase and R phase (see Fig. 4 (a))
I Ry = − (0.5I FR + 1.5I FT )
| I Ry | = | 0.5 I FR +1.5 I FT | = | I FR | (= | I FT |)
(4) In the case of a short circuit accident between R phase, S phase, and T phase (see FIG. 4B)
I Ry = −0.5 I FR + I FS −1.5 I FT
| I Ry | = | −0.5 I FR +0.5 I FS −1.5 I FT |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I FR |
= 3 1/2 × | I FR | (= 3 1/2 × | I FS | = 3 1/2 × | I FT |)

第1および第2のPCM電流差動継電器601,602は、短絡電流IRyの振幅が電流整定値を超えた場合には、送配電線において短絡事故が発生したと判定して、第1乃至第6の遮断器21〜26を一括遮断する。 The first and second PCM current differential relays 60 1 and 60 2 determine that a short-circuit accident has occurred in the transmission and distribution line when the amplitude of the short-circuit current I Ry exceeds the current settling value. The 1st to 6th circuit breakers 2 1 to 2 6 are collectively cut off.

なお、第1の可変合成変流器101では第1乃至第3の変流器31〜33から入力される電流の合成電流比を“−0.5:0.5:−1.5”としたが、“−0.5:−1.5:0.5”、“0.5:−0.5:−1.5”、“0.5:−1.5:−0.5”、“−1.5:0.5:−0.5”または“−1.5:−0.5:0.5”としてもよい。
第2の可変合成変流器102についても同様である。
In the first variable composite current transformer 10 1 , the composite current ratio of the currents input from the first to third current transformers 3 1 to 3 3 is set to “−0.5: 0.5: −1. 5 ”, but“ −0.5: −1.5: 0.5 ”,“ 0.5: −0.5: −1.5 ”,“ 0.5: −1.5: −0 ” .5 "," -1.5: 0.5: -0.5 "or" -1.5: -0.5: 0.5 ".
The same applies to the second variable composite current transformer 10 2 .

以上説明したように、第1乃至第4の実施例では、可変合成変流器(図1に示した可変合成変流器10など)を用いることにより、変流器および短絡保護継電器(図1に示した過電流継電器4など)の設置台数を更に削減することができるが、上述したように負荷電流Iの振幅が31/2倍になるとともに、S相−T相間の短絡事故における短絡電流IRyの振幅がR相−S相間の短絡事故およびT相−R相間の短絡事故における短絡電流IRyの振幅の2倍になり、また、R相−S相−T相間の短絡事故における短絡電流IRyの振幅がR相−S相間の短絡事故およびT相−R相間の短絡事故における短絡電流IRyの振幅の31/2倍になる。そのため、短絡保護継電器の検出感度および動作時間をすべての事故様相に対して同じにすることができない。 As described above, in the first to fourth embodiments, by using a variable composite current transformer (such as the variable composite current transformer 10 shown in FIG. 1), a current transformer and a short circuit protection relay (FIG. 1) are used. The number of installed overcurrent relays 4) can be further reduced. However, as described above, the amplitude of the load current I is 31/2 times and a short circuit in a short circuit accident between the S phase and the T phase. the amplitude of current I Ry is twice the amplitude of the short-circuit current I Ry in short circuit of the short-circuit fault and T-phase -R phase of R-phase -S phase, also in the short circuit of the R-phase -S phase -T phase short circuit the amplitude of the current I Ry is 3 1/2 times the amplitude of the short-circuit current I Ry in short circuit of the short-circuit fault and T-phase -R phase of R-phase -S phase. Therefore, the detection sensitivity and operating time of the short circuit protection relay cannot be made the same for all accident aspects.

そこで、以下に示す第1乃至第5の事故様相判定方法のいずれかを用いて事故様相を判定し、可変合成変流器からの短絡電流を事故様相判定結果に応じて1倍、1/2倍または1/31/2倍とする演算処理部を、可変合成変流器と短絡保護継電器との間にまたは短絡保護継電器に設けてもよい。 Therefore, the accident aspect is determined by using any one of the following first to fifth accident aspect determination methods, and the short-circuit current from the variable composite current transformer is multiplied by 1 or 1/2 according to the accident aspect determination result. An arithmetic processing unit that doubles or 1/3 1/2 may be provided between the variable composite current transformer and the short circuit protection relay or in the short circuit protection relay.

(第1の事故様相判定方法)
3つの線間電圧、3つの相電圧または相・線間電圧(相電圧と線間電圧との組合せ)に基づいて事故様相を判定する。
(First accident mode judgment method)
The accident aspect is determined based on the three line voltages, the three phase voltages, or the phase / line voltage (combination of the phase voltage and the line voltage).

表1に、3つの線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 1 shows the accident condition determination conditions based on the three line voltages. In addition, ○ mark indicates the line voltage in which the voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the X mark is based on the voltage information from this undervoltage relay. The line voltage in which no voltage drop was detected is shown (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

表2に、3つの相電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 2 shows the accident condition determination conditions based on the three phase voltages. In addition, a circle indicates a phase voltage in which a voltage drop is detected based on voltage information from an undervoltage relay installed on the bus, and a cross indicates a voltage based on voltage information from the undervoltage relay. The phase voltage in which no decrease was detected is indicated (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

表3に、相・線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧および線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧および線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 3 shows the accident condition judgment conditions based on the phase / line voltage. The circles indicate the phase voltage and line voltage at which a voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the x indicates voltage information from the undervoltage relay. The phase voltage and the line voltage in which no voltage drop was detected based on the above are shown (voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

(第2の事故様相判定方法)
1つの線間電圧および1つの相電圧の電圧値および位相に基づいて事故様相を判定する。
(Second accident mode judgment method)
The accident aspect is determined based on the voltage value and phase of one line voltage and one phase voltage.

たとえば、T相−R相の線間電圧VTRの位相が210°でかつR相の相電圧VRの位相が0°であることを基準として(図2(b)参照)、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VT Rが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VT Rが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する(以下の(1−1)式および(1−2)式参照)。
TR≦[{(110/31/2)×1.5}2+(85/2)21/2
≦(95.262+42.521/2
≦104.3(V) ・・・(1−1)
α≧30°−tan-1(42.5/95.26)
≧5.95(°) ・・・(1−2)
For example, based on the fact that the phase of the line voltage V TR between the T phase and the R phase is 210 ° and the phase of the phase voltage V R of the R phase is 0 ° (see FIG. 2B), the transmission and distribution lines The R-phase-S phase line voltage V RS at the time of the short-circuit accident between the R-phase and S-phase and the S-phase-T-phase line voltage V ST at the time of the short-circuit accident between the S-phase and the T-phase 85V, it is determined that a short-circuit accident has occurred on the condition that the line voltage V TR between the T phase and the R phase is equal to or lower than a predetermined first voltage value k1 = 85 V, and the line between the T phase and the R phase The voltage V TR is equal to or lower than a predetermined second voltage value k2 = 104.3 V, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident is 210 ° as a reference. the T-phase -R phase of the phase of the line voltage V TR is advanced or delayed by a predetermined angular range α (5.95 ° ≦ α ≦ 30 ° or -30 ° α ≦ -5.95 °) determining a short-circuit failure condition has occurred (the following (1-1) and (1-2) refer to formula).
V TR ≦ [{(110/3 1/2 ) × 1.5} 2 + (85/2) 2 ] 1/2
≦ (95.26 2 +42.5 2 ) 1/2
≦ 104.3 (V) (1-1)
α ≧ 30 ° -tan −1 (42.5 / 95.26)
≧ 5.95 (°) (1-2)

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図12(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図12(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が所定の他の角度範囲β(6.76°≦β≦60°、(1−3)式参照)内だけ進んでいる(−β)場合に、T相−R相間の短絡事故と判定する(図12(c)参照)。
β≧60°−tan-1[42.5/{110/(2×31/2)}]
≧6.76(°) ・・・(1−3)
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が他の角度範囲β内だけ遅れていたり進んでいたりしていない(すなわち、−6.76°よりも大きくて6.76°よりも小さい)ことを条件に、R相−S相−T相間の短絡事故と判定する(図12(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by an angle range α (+ α) with respect to the phase = 210 ° as a reference, it is determined that the short-circuit accident occurs between the R phase and the S phase (FIG. 12 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with respect to the phase = 210 ° as a reference, it is determined that a short circuit accident between the S phase and the T phase occurs (FIG. (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the R-phase phase voltage V R before the short circuit accident is 0 ° as a reference, and the phase of the R-phase phase voltage V R has a predetermined other angle range β (6.76 ° ≦ β ≦ 60 °, see (Equation 1-3)) (−β), it is determined that there is a short circuit accident between the T phase and the R phase (see FIG. 12C).
β ≧ 60 ° -tan −1 [42.5 / {110 / (2 × 3 1/2 )}]
≧ 6.76 (°) (1-3)
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (that is, greater than −5.95 ° and 5 .. is smaller than .95 °), and the phase of the R phase voltage V R before the short-circuit accident is 0 ° or the phase of the R phase voltage V R is delayed or advanced by another angle range β. It is determined that a short-circuit accident between the R phase, the S phase, and the T phase is performed on the condition that the phase is not larger (that is, larger than −6.76 ° and smaller than 6.76 °) (FIG. 12D). reference).

なお、T相−R相の線間電圧VTRおよびR相の相電圧VRを用いたが、表4に丸印で示す電圧の組合せのいずれか1つを用いてもよい。ただし、上述した短絡事故発生判定条件および事故様相判定条件を電圧の組合せに応じて変更する必要がある。
Although the T-phase-R phase line voltage V TR and the R-phase phase voltage V R are used, any one of the voltage combinations indicated by circles in Table 4 may be used. However, it is necessary to change the short-circuit accident occurrence determination condition and the accident aspect determination condition described above according to the combination of voltages.

(第3の事故様相判定方法)
1つの線間電圧の電圧値および位相と短絡電流IRyの位相とに基づいて事故様相を判定する。
(Third accident mode determination method)
The accident aspect is determined based on the voltage value and phase of one line voltage and the phase of the short-circuit current IRy .

たとえば、T相−R相の線間電圧VTRの位相が210°であることを基準として、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VT Rが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VTRが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する((1−1)式および(1−2)式参照)。 For example, with reference to the phase of the T-phase to R-phase line voltage V TR being 210 °, the R-phase to S-phase line voltage V RS at the time of a short-circuit fault between the R-phase and S-phase of the transmission and distribution line and S phase -T When the line voltage V ST between phases S phase -T phase when a short circuit accident and 85V of short-circuit failure detection sensitivity, a first voltage line voltage V TR of the T-phase -R phase is given It is determined that a short-circuit accident has occurred on condition that the value k1 = 85 V or less, and the T-phase to R-phase line voltage V TR is a predetermined second voltage value k2 = 104.3 V or less, and The phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = 210 ° as a reference, the phase of the line voltage V TR between the T phase and the R phase at the time of the short circuit accident is delayed by a predetermined angle range α. A short-circuit accident occurs on the condition that it is moving or advanced (5.95 ° ≦ α ≦ 30 ° or −30 ° ≦ α ≦ −5.95 °) A constant ((1-1) see formula and (1-2) below).

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図13(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図13(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第1の角度範囲γ(−150°≦γ≦−90°、γはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、T相−R相間の短絡事故と判定する(図13(c)参照)。
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第2の角度範囲δ(−90°≦δ≦−30°、δはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、R相−S相−T相間の短絡事故と判定する(図13(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by an angle range α (+ α) with respect to the phase = 210 ° as a reference, it is determined that the short-circuit accident occurs between the R phase and the S phase (FIG. 13 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with respect to the phase = 210 ° as a reference, it is determined that a short circuit accident between the S phase and the T phase occurs (FIG. 13). (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the short-circuit current I Ry is determined in consideration of arc resistance and the like with a predetermined first angle range γ (−150 ° ≦ γ ≦ −90 °, γ is an impedance angle θ = 75 °) If it is within the range, it is determined that there is a short circuit accident between the T phase and the R phase (see FIG. 13C).
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (that is, greater than −5.95 ° and 5 Smaller than .95 °) and the phase of the short-circuit current I Ry is within a predetermined second angle range δ (−90 ° ≦ δ ≦ −30 °, where δ is an impedance angle θ = 75 ° and arc resistance is taken into consideration. If it is within the range, it is determined that there is a short-circuit accident between the R phase, the S phase, and the T phase (see FIG. 13D).

(第4の事故様相判定方法)
図14に示す事故様相判定用変圧器110(本発明の第1の実施例による事故様相判定用変圧器)を母線に設置し、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tの電圧値および位相と短絡電流IRyの位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器110の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを反極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tは次式で表される。
R-S-2T=VR−VS−2VT
また、インピーダンス角θは通常75°であるが、短絡電流IRyの位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fourth accident mode determination method)
Accident aspects determination transformer 110 shown in FIG. 14 (accident appearance determination transformer according to a first embodiment of the present invention) is placed to the bus, composite voltage output from the accident aspect determination transformer 110 V RS- Based on the voltage value and phase of 2T and the phase of the short-circuit current I Ry , the accident aspect is determined as follows.
Here, the secondary side of the accident phase determination transformer 110 sets the phase voltage V R of the R phase in the polarity direction, the phase voltage V S of the S phase in the opposite polarity direction, and the phase voltage V T of the T phase in the opposite direction. The wires are wired so as to be doubled in the polarity direction. As a result, the composite voltage V RS-2T output from the accident aspect determination transformer 110 is expressed by the following equation.
V RS-2T = V R -V S -2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current I Ry takes into consideration the arc resistance, from 30 ° (−45 °) to 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident. ).

(1)R相−S相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第1の合成電圧値K1=100.1V以下であり((2−1)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第1の合成電圧角度範囲ε1(7.10°(=X1)≦ε1≦40.9°(=X2)。(2−2)式および(2−3)式参照)内だけ遅れており(+ε1)、かつ、短絡電流IRyの位相が所定の第1の短絡電流角度範囲λ1(160.9°≦λ1≦220.9°)内だけ遅れている(+λ1)場合に、R相−S相間の短絡事故と判定する。
1=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(2−1)
1=cos-1(83.15/110.0)−cos-1(83.15/110.05)
=7.10(°) ・・・(2−2)
2=60−19.1
=40.9(°) ・・・(2−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第2の合成電圧値K2=107.6V以下であり((2−4)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第2の合成電圧角度範囲ε2(4.12°(=X3)≦ε2≦19.1°(=X4)。(2−5)式および(2−6)式参照)内だけ進んでおり(−ε2)、かつ、短絡電流IRyの位相が所定の第2の短絡電流角度範囲λ2(100.9°≦λ2≦160.9°)内だけ遅れている(+λ2)場合に、S相−T相間の短絡事故と判定する。
2=[(103.94)2+(36.01×85/110)21/2
=107.6(V) ・・・(2−4)
3=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(2−5)
4=19.1−0
=19.1(°) ・・・(2−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第3の合成電圧値K3=86.0V以下であり((2−7)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第3の合成電圧角度範囲ε3(3.09°(=X5)≦ε3≦79.1°(=X6)。(2−8)式および(2−9)式参照)内だけ進んでおり(−ε3)、かつ、短絡電流IRyの位相が所定の第3の短絡電流角度範囲λ3(40.9°≦λ3≦100.9°)内だけ遅れている(+λ3)場合に、T相−R相間の短絡事故と判定する。
3=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(2−7)
5=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(2−8)
6=60+19.1
=79.1(°) ・・・(2−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第4の合成電圧値K4=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第4の合成電圧角度範囲ε4(−3.09°(=−X5)≦ε4≦7.10°(=X1))内に入っており(すなわち、同位相であり)、かつ、短絡電流IRyの位相が所定の第4の短絡電流角度範囲λ4(100.9°≦λ4≦160.9°)内だけ遅れている(+λ4)場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V RS-2T is a predetermined first composite voltage value K 1 = 100.1 V or less (see equation (2-1)). In addition, the phase of the composite voltage V RS-2T at the time of the short-circuit accident is set to a predetermined first composite voltage angle range ε 1 (7 based on the fact that the phase of the composite voltage V RS-2T at the normal time is 19.1 °. .10 ° (= X 1 ) ≦ ε 1 ≦ 40.9 ° (= X 2 ) (Refer to equations (2-2) and (2-3)) (+ ε 1 ) and short circuit When the phase of the current I Ry is delayed (+ λ 1 ) by a predetermined first short-circuit current angle range λ 1 (160.9 ° ≦ λ 1 ≦ 220.9 °) (+ λ 1 ), a short circuit between the R phase and the S phase Judge as an accident.
K 1 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (2-1)
X 1 = cos −1 (83.15 / 110.0) −cos −1 (83.15 / 110.05)
= 7.10 (°) (2-2)
X 2 = 60-19.1
= 40.9 (°) (2-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V RS-2T is a predetermined second composite voltage value K 2 = 107.6 V or less (see the formula (2-4)), In addition, the phase of the composite voltage V RS-2T at the time of the short-circuit accident is determined to be a predetermined second composite voltage angle range ε 2 (4 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .12 ° (= X 3 ) ≦ ε 2 ≦ 19.1 ° (= X 4 ) (see formulas (2-5) and (2-6)) (−ε 2 ) When the phase of the short-circuit current I Ry is delayed (+ λ 2 ) by a predetermined second short-circuit current angle range λ 2 (100.9 ° ≦ λ 2 ≦ 160.9 °) (between S phase and T phase) Judged as a short circuit accident.
K 2 = [(103.94) 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (2-4)
X 3 = cos −1 (103.94 / 110) −cos −1 (103.94 / 107.60)
= 4.12 (°) (2-5)
X 4 = 19.1-0
= 19.1 (°) (2-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V RS-2T is equal to or less than a predetermined third composite voltage value K 3 = 86.0 V (see formula (2-7)) Further, the phase of the composite voltage V RS-2T at the time of a short-circuit accident is determined to be a predetermined third composite voltage angle range ε 3 (3 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .09 ° (= X 5 ) ≦ ε 3 ≦ 79.1 ° (= X 6 ) (see formulas (2-8) and (2-9)) (−ε 3 ) When the phase of the short-circuit current I Ry is delayed by (+ λ 3 ) within a predetermined third short-circuit current angle range λ 3 (40.9 ° ≦ λ 3 ≦ 100.9 °), the phase between the T phase and the R phase Judged as a short circuit accident.
K 3 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (2-7)
X 5 = cos -1 (20.79 / 110) -cos -1 (20.79 / 86.02)
= 3.09 (°) (2-8)
X 6 = 60 + 19.1
= 79.1 (°) (2-9)
(4) In the case of a short-circuit accident between the R phase, the S phase, and the T phase The voltage value of the composite voltage V RS-2T is equal to or less than a predetermined fourth composite voltage value K 4 = 85 V (75 to 80% of the rated voltage). The phase of the composite voltage V RS-2T at the time of the short-circuit accident is a predetermined fourth composite voltage angle range ε 4 (wherein the phase of the composite voltage V RS-2T at the normal time is 19.1 °. −3.09 ° (= −X 5 ) ≦ ε 4 ≦ 7.10 ° (= X 1 )) (that is, the same phase), and the phase of the short-circuit current I Ry is predetermined. If it is delayed (+ λ 4 ) within the fourth short-circuit current angle range λ 4 (100.9 ° ≦ λ 4 ≦ 160.9 °), it is determined as a short-circuit accident between the R phase, the S phase, and the T phase.

(第5の事故様相判定方法)
図15に示す事故様相判定用変圧器120(本発明の第2の実施例による事故様相判定用変圧器)を母線に設置し、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tの電圧値および位相と短絡電流IRyの位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器120の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tは次式で表される。
R-S+2T=VR−VS+2VT
また、インピーダンス角θは通常75°であるが、短絡電流IRyの位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fifth accident mode determination method)
The accident appearance judging transformer 120 (accident appearance judging transformer according to the second embodiment of the present invention) shown in FIG. 15 is installed on the bus, and the composite voltage V R− output from the accident appearance judging transformer 120 is provided. Based on the voltage value and phase of S + 2T and the phase of the short-circuit current I Ry , the accident aspect is determined as follows.
Here, the secondary side of the accident phase determination transformer 120 has the R-phase voltage V R in the polarity direction, the S-phase phase voltage V S in the opposite polarity direction, and the T-phase phase voltage V T in the polarity direction. They are wired so as to be doubled in the direction of synthesis. As a result, the composite voltage V R−S + 2T output from the accident aspect determination transformer 120 is expressed by the following equation.
V R−S + 2T = V R −V S + 2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current I Ry takes into consideration the arc resistance, from 30 ° (−45 °) to 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident. ).

(1)R相−S相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第5の合成電圧値K5=100.1V以下であり((3−1)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第5の合成電圧角度範囲ε5(7.10°(=X7)≦ε5≦40.9°(=X8)。(3−2)式および(3−3)式参照)内だけ進んでおり(−ε5)、かつ、短絡電流IRyの位相が所定の第5の短絡電流角度範囲λ5(40.9°≦λ5≦100.9°)内だけ進んでいる(−λ5)場合に、R相−S相間の短絡事故と判定する。
5=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(3−1)
7=cos-1(83.15/110.0)−cos-1(83.15/110.05)
=7.10(°) ・・・(3−2)
8=280.9−240
=40.9(°) ・・・(3−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第6の合成電圧値K6=86.0V以下であり((3−4)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第6の合成電圧角度範囲ε6(3.09°(=X9)≦ε6≦79.1°(=X10)。(3−5)式および(3−6)式参照)内だけ遅れており(+ε6)、かつ、短絡電流IRyの位相が所定の第6の短絡電流角度範囲λ6(100.9°≦λ6≦160.9°)内だけ進んでいる(−λ6)場合に、S相−T相間の短絡事故と判定する。
6=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(3−4)
9=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(3−5)
10=360−280.9
=79.1(°) ・・・(3−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第7の合成電圧値K7=107.6V以下であり((3−7)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第7の合成電圧角度範囲ε7(4.12°(=X11)≦ε7≦19.1°(=X12)。(3−8)式および(3−9)式参照)内だけ遅れており(+ε7)、かつ、短絡電流IRyの位相が所定の第7の短絡電流角度範囲λ7(160.9°≦λ7≦220.9°)内だけ進んでいる(−λ7)場合に、T相−R相間の短絡事故と判定する。
7=[103.942+(36.01×85/110)21/2
=107.6(V) ・・・(3−7)
11=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(3−8)
12=300−280.9
=19.1(°) ・・・(3−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第8の合成電圧値K8=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第8の合成電圧角度範囲ε8(−7.10°(=−X7)≦ε8≦3.09°(=X9))内に入っており(すなわち、同位相であり)、かつ、短絡電流IRyの位相が所定の第8の短絡電流角度範囲λ8(100.9°≦λ8≦160.9°)内だけ進んでいる(−λ8)場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined fifth composite voltage value K 5 = 100.1 V (see equation (3-1)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 °, and the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined fifth composite voltage The angle range ε 5 (7.10 ° (= X 7 ) ≦ ε 5 ≦ 40.9 ° (= X 8 ), see (3-2) and (3-3))) (− ε 5 ), and the phase of the short-circuit current I Ry is advanced only within a predetermined fifth short-circuit current angle range λ 5 (40.9 ° ≦ λ 5 ≦ 100.9 °) (−λ 5 ). It is determined that there is a short circuit accident between the R phase and the S phase.
K 5 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (3-1)
X 7 = cos -1 (83.15 / 110.0) -cos -1 (83.15 / 110.05)
= 7.10 (°) (3-2)
X 8 = 280.9-240
= 40.9 (°) (3-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined sixth composite voltage value K 6 = 86.0 V (see formula (3-4)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined sixth composite voltage Angular range ε 6 (3.09 ° (= X 9 ) ≦ ε 6 ≦ 79.1 ° (= X 10 ) (see equations (3-5) and (3-6))) (+ ε 6 ) and the phase of the short-circuit current I Ry is advanced only within a predetermined sixth short-circuit current angle range λ 6 (100.9 ° ≦ λ 6 ≦ 160.9 °) (−λ 6 ), It is determined that there is a short circuit accident between the S phase and the T phase.
K 6 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (3-4)
X 9 = cos −1 (20.79 / 110) −cos −1 (20.79 / 86.02)
= 3.09 (°) (3-5)
X 10 = 360-280.9
= 79.1 (°) (3-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V R-S + 2T is a predetermined seventh composite voltage value K 7 = 107.6 V or less (see equation (3-7)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined seventh composite voltage Angular range ε 7 (4.12 ° (= X 11 ) ≦ ε 7 ≦ 19.1 ° (= X 12 ) (see equations (3-8) and (3-9)) (+ ε 7 ) and the phase of the short-circuit current I Ry is advanced only within a predetermined seventh short-circuit current angle range λ 7 (160.9 ° ≦ λ 7 ≦ 220.9 °) (−λ 7 ), Judged as a short circuit accident between T phase and R phase.
K 7 = [103.94 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (3-7)
X 11 = cos -1 (103.94 / 110) -cos -1 (103.94 / 107.60)
= 4.12 (°) (3-8)
X 12 = 300-280.9
= 19.1 (°) (3-9)
(4) In the case of a short-circuit accident between the R phase, the S phase, and the T phase, the voltage value of the composite voltage V R-S + 2T is a predetermined eighth composite voltage value K 8 = 85 V (75 to 80% of the rated voltage) or less And the phase of the composite voltage V R-S + 2T at the time of a short-circuit accident is a predetermined eighth composite on the basis that the phase of the composite voltage V R-S + 2T at a normal time is 280.9 ° It is within the voltage angle range ε 8 (−7.10 ° (= −X 7 ) ≦ ε 8 ≦ 3.09 ° (= X 9 )) (that is, in phase), and the short circuit current I When the phase of Ry advances only within the predetermined eighth short-circuit current angle range λ 8 (100.9 ° ≦ λ 8 ≦ 160.9 °) (−λ 8 ), between R phase, S phase, and T phase Judged as a short circuit accident.

演算処理部は、事故様相判定結果がR相−S相間の短絡事故またはT相−R相間の短絡事故であることを示す場合には短絡電流を1倍とし、事故様相判定結果がS相−T相間の短絡事故であることを示す場合には短絡電流を1/2倍とし、事故様相判定結果がR相−S相−T相間の短絡事故であることを示す場合には短絡電流を1/31/2倍とする。また、演算処理部は、負荷電流Iを1/31/2倍とする。 The arithmetic processing unit multiplies the short-circuit current when the accident mode determination result indicates a short-circuit accident between the R phase and the S-phase or a short-circuit accident between the T phase and the R phase, and the accident mode determination result is the S phase- The short-circuit current is halved to indicate a short-circuit accident between the T phases, and the short-circuit current is set to 1 when the accident mode determination result indicates a short-circuit accident between the R phase, the S phase, and the T phase. / 3 1/2 times. Further, the arithmetic processing unit sets the load current I to 1/3 1/2 times.

演算処理部は、図16に示すように、上述した第1乃至第5の事故様相判定方法のいずれかを用いて事故様相を判定する事故様相判定回路71と、可変合成変流器からの短絡電流を1倍する第1の振幅調整回路721と、短絡電流を1/2倍する第2の振幅調整回路722と、負荷電流Iおよび短絡電流を1/31/2倍する第3の振幅調整回路723と、事故様相判定回路71から入力されるスイッチ制御信号SSWに応じて基づいて第1乃至第3の振幅調整回路721〜723の出力信号のうちのいずれか1つを選択する選択スイッチ73とで構成してもよい。 As shown in FIG. 16, the arithmetic processing unit includes an accident aspect determination circuit 71 that determines an accident aspect using any one of the first to fifth accident aspect determination methods described above, and a short circuit from the variable composite current transformer. 1 and the first amplitude adjustment circuit 72 1 for multiplying the current, half a second amplitude adjusting circuit 72 2 for multiplying a short-circuit current, the load current I and the short circuit current 1/3 1/2 multiplying third the amplitude adjustment circuit 72 3, either on the basis in accordance with a switch control signal S SW input from accidents aspect determination circuit 71 of the first to third amplitude adjusting circuit 72 1 to 72 3 of the output signal 1 You may comprise with the selection switch 73 which selects one.

選択スイッチ73は、通常は、第3の振幅調整回路723の出力信号を選択するようにされている。これにより、短絡事故が発生していないときには、可変合成変流器からの負荷電流Iは、第3の振幅調整回路723において1/31/2倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 The selection switch 73 normally selects the output signal of the third amplitude adjustment circuit 723. Thus, when the short circuit does not occur, the load current I from the variable synthetic current transformer, the after being 1/3 1/2 In the third amplitude adjusting circuit 72 3, via a selection switch 73 Input to the short-circuit protection relay.

事故様相判定回路71は、「S相−T相間の短絡事故である」と判定すると、第2の振幅調整回路722の出力信号を選択スイッチ73に選択させるスイッチ制御信号SSWを出力する。これにより、S相−T相間の短絡事故が発生したときには、可変合成変流器からの短絡電流は、第2の振幅調整回路722において1/2倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 If the accident aspect determination circuit 71 determines that “a short-circuit accident between the S phase and the T phase”, it outputs a switch control signal SSW that causes the selection switch 73 to select the output signal of the second amplitude adjustment circuit 722. Thus, when the short circuit of the S-phase -T phase occurs, the short-circuit current from the variable synthetic current transformer, the after being half in the second amplitude adjusting circuit 72 2, via selection switch 73 Input to the short-circuit protection relay.

また、事故様相判定回路71は、「R相−S相間の短絡事故である」または「T相−R相間の短絡事故である」と判定すると、第1の振幅調整回路721の出力信号を選択スイッチ73に選択させるスイッチ制御信号SSWを出力する。これにより、R相−S相間の短絡事故またはT相−R相間の短絡事故が発生したときには、可変合成変流器からの短絡電流は、第1の振幅調整回路721において1倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 In addition, when the accident aspect determination circuit 71 determines that “it is a short circuit accident between the R phase and the S phase” or “a short circuit accident between the T phase and the R phase”, the output signal of the first amplitude adjustment circuit 721 is output. A switch control signal SSW to be selected by the selection switch 73 is output. Thereby, when a short circuit accident between the R phase and the S phase or a short circuit accident between the T phase and the R phase occurs, the short circuit current from the variable composite current transformer is multiplied by 1 in the first amplitude adjustment circuit 72 1 . Then, it is input to the short circuit protection relay via the selection switch 73.

さらに、事故様相判定回路71は、「R相−S相−T相間の短絡事故である」と判定すると、第3の幅調整回路723の出力信号を選択スイッチ73に選択させるスイッチ制御信号SSWを出力する。これにより、R相−S相−T相間の短絡事故が発生した場合には、可変合成変流器からの短絡電流は、第3の振幅調整回路723において1/31/2倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 Further, when the accident aspect determination circuit 71 determines that “a short-circuit accident between the R phase, the S phase, and the T phase”, the switch control signal S that causes the selection switch 73 to select the output signal of the third width adjustment circuit 723. Outputs SW . Thus, when a short circuit accident R phase -S phase -T phase occurs, the short-circuit current from the variable synthetic current transformer was 1/3 1/2 In the third amplitude adjusting circuit 72 3 Later, the signal is input to the short-circuit protection relay via the selection switch 73.

その結果、短絡電流の振幅を事故様相によらず同じにすることができるので、短絡保護継電器の検出感度および動作時間を同じにすることができる。   As a result, the amplitude of the short-circuit current can be made the same regardless of the accident aspect, so that the detection sensitivity and the operation time of the short-circuit protection relay can be made the same.

次に、本発明の保護継電装置の第5の実施例について図17および図18を参照して説明する。
本実施例による保護継電装置は、図17に示すように、可変合成変流器10と、可変合成変流器10から入力される短絡電流IRyと母線に設置された計器用変圧器6から入力される電圧情報(相電圧VR,VS,VT)とに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する電圧抑制付過電流継電器50とを具備する。
Next, a fifth embodiment of the protective relay device of the present invention will be described with reference to FIG. 17 and FIG.
As shown in FIG. 17, the protective relay device according to the present embodiment includes a variable composite current transformer 10, a short-circuit current I Ry input from the variable composite current transformer 10, and an instrument transformer 6 installed on the bus. When a short circuit accident of the transmission / distribution line is detected based on the voltage information (phase voltages V R , V S , V T ) input from, the first installed in the R phase, S phase and T phase of the transmission / distribution line respectively. And an overcurrent relay with voltage suppression 50 that collectively cuts off the first to third circuit breakers 2 1 to 2 3 .

ここで、可変合成変流器10は、送配電線のR相、S相およびR相にそれぞれ設置された第1乃至第3の変流器31〜33から入力される電流を合成電流比−0.5:0.5:−1.5で合成するためのものである。これにより、可変合成変流器10からは、送配電線のR相を流れる電流の極性を反転して0.5倍した電流とS相を流れる電流を0.5倍した電流とT相を流れる電流の極性を反転して1.5倍した電流との和電流が出力される。 Here, the variable composite current transformer 10 combines the currents input from the first to third current transformers 3 1 to 3 3 installed in the R-phase, S-phase, and R-phase of the transmission and distribution lines, respectively. For synthesis at a ratio of -0.5: 0.5: -1.5. As a result, the variable composite current transformer 10 reverses the polarity of the current flowing through the R phase of the power transmission and distribution line by 0.5 times, and the current flowing through the S phase by 0.5 times and the T phase. The sum of the current and the current multiplied by 1.5 is output by inverting the polarity of the flowing current.

したがって、短絡事故が発生していないときに可変合成変流器10から電圧抑制付過電流継電器50に入力される負荷電流Iは、上述した第1の実施例による過電流継電器4における場合と同様にして、極性が負のR相の負荷電流IRを0.5倍した電流(=−0.5IR)とS相の負荷電流ISを0.5倍した電流(=0.5IS)と極性が負のT相の負荷電流ITを1.5倍した電流(=−1.5IT)とのベクトル和となり、負荷電流Iの振幅はR相の負荷電流IR(S相およびT相の負荷電流IS,IT)の振幅の31/2倍となる(図2(a)参照)。
I=−0.5IR+0.5IS−1.5IT
|I|=|−0.5IR+0.5IS−1.5IT
={(31/2/2)2+1.521/2×|IR
=31/2×|IR|(=31/2×|IS|=31/2×|IT|)
このように、負荷電流Iの振幅はR相の負荷電流IR((S相およびT相の負荷電流IS,IT)の振幅の31/2倍となるため、電圧抑制付過電流継電器50は、次式で示すように負荷電流Iを1/31/2倍して補正負荷電流I’を算出する。
I’=I×1/31/2=(−0.5IR+0.5IS−1.5IT)×1/31/2
|I’|=|−0.5IR+0.5IS−1.5IT|×1/31/2
=|IR|(=|IS|=|IT|)
Therefore, the load current I input from the variable composite current transformer 10 to the overcurrent relay 50 with voltage suppression when no short circuit accident has occurred is the same as in the overcurrent relay 4 according to the first embodiment described above. Thus, a current obtained by multiplying the negative polarity R-phase load current I R by 0.5 (= −0.5I R ) and a current obtained by multiplying the S-phase load current I S by 0.5 (= 0.5I S). ) And a current obtained by multiplying the negative polarity T-phase load current I T by 1.5 (= −1.5I T ), and the amplitude of the load current I is the R-phase load current I R (S-phase). And the amplitude of the T-phase load currents I S and I T ) is 3 1/2 times the amplitude (see FIG. 2A).
I = −0.5I R + 0.5I S −1.5I T
| I | = | −0.5I R + 0.5I S −1.5I T |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I R |
= 3 1/2 × | I R | (= 3 1/2 × | I S | = 3 1/2 × | I T |)
Thus, the amplitude of the load current I is 3 1/2 times the amplitude of the R-phase load current I R ((S-phase and T-phase load currents I S , I T ). The relay 50 calculates the corrected load current I ′ by multiplying the load current I by 1/3 1/2 as shown by the following equation.
I ′ = I × 1/3 1/2 = (− 0.5 I R +0.5 I S −1.5 I T ) × 1/3 1/2
| I ′ | = | −0.5I R + 0.5I S −1.5I T | × 1/3 1/2
= | I R | (= | I S | = | I T |)

また、短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、短絡電流IRyは、上述した第1の実施例による過電流継電器4における場合と同様にして、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合(図3(a)参照)
Ry=0.5(IFS−IFR
|IRy|=|0.5(IFS−IFR)|=|IFS|(=|IFR|)
(2)S相−T相間の短絡事故の場合(図3(b)参照)
Ry=0.5IFS−1.5IFT
|IRy|=|0.5IFS−1.5IFT|=2×|IFS|(=2×|IFT|)
(3)T相−R相間の短絡事故の場合(図4(a)参照)
Ry=−(0.5IFR+1.5IFT
|IRy|=|0.5IFR+1.5IFT|=|IFR|(=|IFT|)
(4)R相−S相−T相間の短絡事故の場合(図4(b)参照)
Ry=−0.5IFR+IFS−1.5IFT
|IRy|=|−0.5IFR+0.5IFS−1.5IFT
={(31/2/2)2+1.521/2×|IFR
=31/2×|IFR|(=31/2×|IFS|=31/2×|IFT|)
Moreover, when the short-circuit currents flowing in the R-phase, S-phase, and T-phase of the transmission and distribution line when a short-circuit accident occurs are represented by I FR , I FS , and I FT , the short-circuit current I Ry is the first implementation described above. As in the case of the overcurrent relay 4 according to the example, it is expressed as follows according to the accident aspect.
(1) In case of short-circuit accident between R phase and S phase (see Fig. 3 (a))
I Ry = 0.5 (I FS -I FR )
| I Ry | = | 0.5 (I FS −I FR ) | = | I FS | (= | I FR |)
(2) In the case of a short circuit accident between the S phase and the T phase (see FIG. 3B)
I Ry = 0.5I FS -1.5I FT
| I Ry | = | 0.5 I FS −1.5 I FT | = 2 × | I FS | (= 2 × | I FT |)
(3) In the case of a short circuit accident between T phase and R phase (see Fig. 4 (a))
I Ry = − (0.5I FR + 1.5I FT )
| I Ry | = | 0.5 I FR +1.5 I FT | = | I FR | (= | I FT |)
(4) In the case of a short circuit accident between R phase, S phase, and T phase (see FIG. 4B)
I Ry = −0.5 I FR + I FS −1.5 I FT
| I Ry | = | −0.5 I FR +0.5 I FS −1.5 I FT |
= {(3 1/2 / 2) 2 +1.5 2 } 1/2 × | I FR |
= 3 1/2 × | I FR | (= 3 1/2 × | I FS | = 3 1/2 × | I FT |)

電圧抑制付過電流継電器50は、検出感度および動作時間をすべての事故様相に対して同じにするため、以下に示すようにして補正短絡電流IRy’を算出する。
(1)R相−S相間の短絡事故の場合
短絡電流IRyの振幅はS相の短絡電流IFS(R相の短絡電流IFR)の振幅となるため、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1=−0.5IFR+0.5IFS
|IRy’|=|−0.5IFR+0.5IFS|=|IFS|(=|IFR|)
(2)S相−T相間の短絡事故の場合
短絡電流IRyの振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅の2倍となるため、次式で示すように短絡電流IRyを1/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/2=(0.5IFS−1.5IFT)×1/2
|IRy’|=|0.5IFS−1.5IFT|×1/2=|IFS|(=|IFT|)
(3)T相−R相間の短絡事故の場合
短絡電流IRyの振幅はR相の短絡電流IFR(T相の短絡電流IFT)の振幅となるため、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1=−(0.5IFR+1.5IFT
|IRy’|=|0.5IFR+1.5IFT|=|IFR|(=|IFT|)
(4)R相−S相−T相間の短絡事故の場合
短絡電流IRyの振幅はR相の短絡電流IFR(S相およびT相の短絡電流IFS,IFT)の振幅の31/2倍となるため、次式で示すように短絡電流IRyを1/31/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/31/2=(−0.5IFR+0.5IFS−1.5IFS)×1/31/2
|IRy’|=|−0.5IFR+0.5IFS−1.5IFS|×1/31/2
=|IFR|(=|IFS|=|IFT|)
The overcurrent relay with voltage suppression 50 calculates the corrected short-circuit current I Ry ′ as follows in order to make the detection sensitivity and the operation time the same for all accident aspects.
(1) In the case of a short-circuit accident between the R phase and the S phase The amplitude of the short circuit current I Ry is the amplitude of the S phase short circuit current I FS (R phase short circuit current I FR ). The corrected short-circuit current I Ry ′ is calculated by multiplying I Ry by 1.
I Ry '= I Ry × 1 = −0.5 I FR +0.5 I FS
| I Ry '| == −− 0.5 I FR +0.5 I FS | = | I FS | (= | I FR |)
(2) In the case of a short circuit accident between the S phase and the T phase The amplitude of the short circuit current I Ry is twice the amplitude of the S phase short circuit current I FS (T phase short circuit current I FT ). The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1/2.
I Ry '= I Ry × 1/2 = (0.5I FS −1.5I FT ) × 1/2
| I Ry '| = | 0.5 I FS −1.5 I FT | × 1/2 = | I FS | (= | I FT |)
(3) In the case of a short-circuit accident between the T phase and the R phase The amplitude of the short circuit current I Ry is the amplitude of the R phase short circuit current I FR (T phase short circuit current I FT ). The corrected short-circuit current I Ry ′ is calculated by multiplying I Ry by 1.
I Ry '= I Ry × 1 = − (0.5 I FR +1.5 I FT )
| I Ry '| = | 0.5 I FR +1.5 I FT | = | I FR | (= | I FT |)
(4) R-phase -S phase -T phase amplitude when the short-circuit current I Ry of short circuit of the short-circuit current of the R-phase I FR (shorts S-phase and T-phase current I FS, I FT) 3 of the amplitudes of 1 / 2 times. Therefore, the short-circuit current I Ry as shown in the following equation 1/3 1/2 to calculate the correction circuit current I Ry '.
I Ry '= I Ry × 1/3 1/2 = (− 0.5 I FR +0.5 I FS −1.5 I FS ) × 1/3 1/2
| I Ry '| = | −0.5I FR + 0.5I FS −1.5I FS | × 1/3 1/2
= | I FR | (= | I FS | = | I FT |)

また、電圧抑制付過電流継電器50は、上述した第1の事故様相判定方法を用いて事故様相を判定する場合には、以下に示すようにして抑制電圧VRyを求める。
(1)正常時
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを抑制電圧VRyとする。
Ry=VRS
(2)R相−S相間の短絡事故の場合
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを抑制電圧VRyとする。
Ry=VRS
(3)S相−T相間の短絡事故の場合
計器用変圧器6から入力されるS相およびT相の相電圧VS,VTより求めたS相−T相の線間電圧VSTを抑制電圧VRyとする。
Ry=VST
(4)T相−R相間の短絡事故の場合
計器用変圧器6から入力されるT相およびR相の相電圧VT,VRより求めたT相−R相の線間電圧VTRを抑制電圧VRyとする。
Ry=VTR
(5)R相−S相−T相間の短絡事故の場合
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを抑制電圧VRyとする。
Ry=VRS
The overcurrent relay with voltage suppression 50 obtains the suppression voltage V Ry as follows when determining the accident aspect using the first accident aspect determination method described above.
(1) Normal time The R-phase and S-phase line voltage V RS obtained from the R-phase and S-phase voltages V R and V S inputted from the instrument transformer 6 is defined as a suppression voltage V Ry .
V Ry = V RS
(2) In case of short-circuit accident between R-phase and S-phase R-phase and S-phase line voltage V RS obtained from R-phase and S-phase phase voltages V R and V S input from instrument transformer 6 The suppression voltage is V Ry .
V Ry = V RS
(3) In the case of a short-circuit accident between the S phase and the T phase The S-phase and T-phase line voltage V ST obtained from the S-phase and T-phase phase voltages V S and V T input from the instrument transformer 6 The suppression voltage is V Ry .
V Ry = V ST
(4) In the case of a short-circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase obtained from the phase voltages V T and V R of the T phase and the R phase input from the instrument transformer 6 The suppression voltage is V Ry .
V Ry = V TR
(5) In case of short-circuit accident between R phase, S phase, and T phase R-phase and S-phase line voltage obtained from R-phase and S-phase phase voltages V R and V S input from instrument transformer 6 Let V RS be the suppression voltage V Ry .
V Ry = V RS

また、電圧抑制付過電流継電器50は、上述した第2または第3の事故様相判定方法を用いて事故様相を判定する場合には、計器用変圧器6から入力されるT相およびR相の相電圧VT,VRより求めたT相−R相の線間電圧VTR(図2(b)参照)を用いて、事故様相に応じて以下のようにして抑制電圧VRyを求める。なお、V=VTR∠(210°+α)とする。
(1)正常時
Ry=V
(2)R相−S相間の短絡事故の場合
Ry=2×V×cos(60°+α)
(3)S相−T相間の短絡事故の場合
Ry=2×V×cos(60°+α)
(4)T相−R相間の短絡事故の場合
Ry=V
(5)R相−S相−T相間の短絡事故の場合
Ry=V
Further, the overcurrent relay 50 with voltage suppression, when determining the accident aspect using the second or third accident aspect determination method described above, the T-phase and R-phase input from the instrument transformer 6 Using the T-phase to R-phase line voltage V TR (see FIG. 2B) obtained from the phase voltages V T and V R , the suppression voltage V Ry is obtained as follows according to the accident aspect. Note that V = V TR ∠ (210 ° + α).
(1) When normal V Ry = V
(2) In case of short circuit accident between R phase and S phase V Ry = 2 × V × cos (60 ° + α)
(3) In case of short circuit accident between S phase and T phase V Ry = 2 × V × cos (60 ° + α)
(4) In case of short-circuit accident between T phase and R phase V Ry = V
(5) In case of short circuit between R phase, S phase and T phase V Ry = V

また、電圧抑制付過電流継電器50は、上述した第4の事故様相判定方法を用いて事故様相を判定する場合には、事故様相判定用変圧器110から入力される合成電圧VR-S-2Tを用いて、事故様相に応じて以下のようにして抑制電圧VRyを求める。
(1)正常時
Ry=VR-S-2T
(2)R相−S相間の短絡事故の場合
Ry=110×(VR-S-2T−83.15)/26.85
(3)S相−T相間の短絡事故の場合
Ry=110×(VR-S-2T−103.94)/6.06
(4)T相−R相間の短絡事故の場合
Ry=110×(VR-S-2T−20.79)/89.21
(5)R相−S相−T相間の短絡事故の場合
Ry=VR-S-2T
Further, the overcurrent relay 50 with voltage suppression uses the composite voltage V RS-2T input from the accident aspect determination transformer 110 when determining the accident aspect using the fourth accident aspect determination method described above. The suppression voltage V Ry is obtained as follows according to the accident aspect.
(1) When normal V Ry = V RS-2T
(2) In the case of a short-circuit accident between the R phase and the S phase V Ry = 110 × (V RS-2T −83.15) /26.85
(3) In the case of a short circuit accident between the S phase and the T phase V Ry = 110 × (V RS-2T −103.94) /6.06
(4) In the case of a short circuit accident between the T phase and the R phase V Ry = 110 × (V RS-2T -20.79) /89.21
(5) In case of short circuit between R phase, S phase and T phase V Ry = V RS-2T

また、電圧抑制付過電流継電器50は、上述した第5の事故様相判定方法を用いて事故様相を判定する場合には、事故様相判定用変圧器120から入力される合成電圧VR-S+2Tを用いて、事故様相に応じて以下のようにして抑制電圧VRyを求める。
(1)正常時
Ry=VR-S+2T
(2)R相−S相間の短絡事故の場合
Ry=110×(VR-S+2T−83.15)/26.85
(3)S相−T相間の短絡事故の場合
Ry=110×(VR-S+2T−20.79)/89.21
(4)T相−R相間の短絡事故の場合
Ry=110×(VR-S+2T−103.94)/6.06
(5)R相−S相−T相間の短絡事故の場合
Ry=VR-S+2T
The overcurrent relay with voltage suppression 50 determines the accident aspect using the fifth accident aspect determination method described above, and the combined voltage V R-S + input from the accident aspect determination transformer 120. Using 2T , the suppression voltage V Ry is obtained as follows according to the accident aspect.
(1) When normal V Ry = V R-S + 2T
(2) In the case of a short circuit accident between the R phase and the S phase V Ry = 110 × (V R−S + 2T −83.15) /26.85
(3) In the case of a short circuit accident between S phase and T phase V Ry = 110 × (V R−S + 2T −20.79) /89.21
(4) In the case of a short-circuit accident between the T phase and the R phase V Ry = 110 × (V R−S + 2T −103.94) /6.06
(5) In case of short circuit between R phase, S phase and T phase V Ry = V R-S + 2T

電圧抑制付過電流継電器50は、抑制電圧VRyに応じて電流整定値の倍率を規定する電圧抑制特性によって決定される電流整定値を補正短絡電流IRy’の振幅が超えた場合には、第1乃至第3の遮断器21〜23を一括遮断する。図18に電圧抑制特性の一例を示す。 The overcurrent relay with voltage suppression 50 corrects the current set value determined by the voltage suppression characteristic that defines the magnification of the current set value according to the suppression voltage V Ry when the amplitude of the correction short-circuit current I Ry ′ exceeds The first to third circuit breakers 2 1 to 2 3 are collectively cut off. FIG. 18 shows an example of voltage suppression characteristics.

なお、可変合成変流器10では第1乃至第3の変流器31〜33から入力される電流の合成電流比を“−0.5:0.5:−1.5”としたが、“−0.5:−1.5:0.5”、“0.5:−0.5:−1.5”、“0.5:−1.5:−0.5”、“−1.5:0.5:−0.5”または“−1.5:−0.5:0.5”としてもよい。 In the variable composite current transformer 10, the composite current ratio of the currents input from the first to third current transformers 3 1 to 3 3 is “−0.5: 0.5: −1.5”. Are "-0.5: -1.5: 0.5", "0.5: -0.5: -1.5", "0.5: -1.5: -0.5", It may be “−1.5: 0.5: −0.5” or “−1.5: −0.5: 0.5”.

以上の説明では、可変合成変流器では第1乃至第3の変流器31〜33から入力される電流を合成電流比−0.5:0.5:−1.5(合成電流比−x1:x2:−x3(x1,x2,x3>0))で合成したが、合成電流比±x1:±x2:±x3(x1,x2,x3>0)で合成してもよい(たとえば、合成電流比x1:x2:x3、合成電流比x1:−x2:x3または合成電流比−x1:x2:−x3としてもよい)。ここで、好ましくは、x1、x2およびx3のうちの少なくとも1つは他のものと異なる値とする。
なお、同じ合成電流比であってもx1,x2およびx3の値をm倍する(たとえば、合成電流比x1:x2:x3を合成電流比mx1:mx2:mx3とする)ことにより、可変合成変流器から出力される短絡電流IRyの電流値をm倍にすることができる。また、合成電流比の+および−の組合せを逆にする(たとえば、合成電流比x1:−x2:x3を合成電流比−x1:x2:−x3とする)ことにより、可変合成変流器から出力される短絡電流IRyの位相を反転させることができる。
In the above description, in the variable composite current transformer, the current input from the first to third current transformers 3 1 to 3 3 is expressed as the composite current ratio −0.5: 0.5: −1.5 (the composite current. The ratio is −x 1 : x 2 : −x 3 (x 1 , x 2 , x 3 > 0)), but the combined current ratio ± x 1 : ± x 2 : ± x 3 (x 1 , x 2 , may be synthesized in x 3> 0) (e.g., synthetic current ratio x 1: x 2: x 3 , the combined current ratio x 1: -x 2: x 3 or synthetic current ratio -x 1: x 2: - x 3 may also be used). Here, preferably, at least one of x 1 , x 2 and x 3 is a value different from the others.
Even if the combined current ratio is the same, the values of x 1 , x 2 and x 3 are multiplied by m (for example, the combined current ratio x 1 : x 2 : x 3 is changed to the combined current ratio mx 1 : mx 2 : mx 3 Thus, the current value of the short-circuit current I Ry output from the variable composite current transformer can be increased by m times. Further, by reversing the combination of the combined current ratio + and − (for example, the combined current ratio x 1 : −x 2 : x 3 is set to the combined current ratio −x 1 : x 2 : −x 3 ), The phase of the short-circuit current I Ry output from the variable composite current transformer can be inverted.

表5に、合成電流比を変えたときのR相−S相間の短絡事故時の短絡電流IRyの振幅、S相−T相間の短絡事故時の短絡電流IRyの振幅、T相−R相間の短絡事故時の短絡電流IRyの振幅およびR相−S相−T相間の短絡事故時の短絡電流IRyの振幅の比の一例を示す。
Table 5 shows the amplitude of the short-circuit current I Ry at the time of the short-circuit accident between the R phase and the S phase when the composite current ratio is changed, the amplitude of the short-circuit current I Ry at the time of the short-circuit accident between the S phase and the T phase, and the T phase-R. An example of the ratio of the amplitude of the short circuit current I Ry at the time of the short circuit accident between the phases and the amplitude of the short circuit current I Ry at the time of the short circuit accident between the R phase, the S phase, and the T phase is shown.

図19に、第1乃至第3の変流器31〜33から入力される電流を可変合成変流器10において合成電流比0.5:1.0:1.5(合成電流比x1:x2:x3)で合成して図1に示した過電流継電器4に入力する例を示す。この可変合成変流器10からは、送配電線のR相を流れる電流を0.5倍した電流とS相を流れる電流とT相を流れる電流を1.5倍した電流との和電流が出力される。 In FIG. 19, the current input from the first to third current transformers 3 1 to 3 3 is converted into a composite current ratio of 0.5: 1.0: 1.5 (combined current ratio x in the variable composite current transformer 10. 1 : x 2 : x 3 ) and an example of inputting to the overcurrent relay 4 shown in FIG. From this variable composite current transformer 10, the sum of the current flowing through the R phase of the power transmission and distribution line by 0.5 times, the current flowing through the S phase, and the current flowing through the T phase by 1.5 times is obtained. Is output.

したがって、短絡事故が発生していないときに可変合成変流器10から過電流継電器4に入力される負荷電流IはR相の負荷電流IRを0.5倍した電流とS相の負荷電流ISとT相の負荷電流ITを1.5倍した電流とのベクトル和となり、負荷電流Iの振幅はR相の負荷電流IR(S相およびT相の負荷電流IS,IT)の振幅の31/2/2となる(図20参照)。
I=0.5IR+IS+1.5IT
|I|=|0.5IR+IS+1.5IT
=(31/2/2)×|IR|(=(31/2/2)×|IS|=(31/2/2)×|IT|)
Therefore, the load current I is the current and the S-phase of the load current which is 0.5 times the load current I R of the R-phase short-circuit accident is input from the variable synthetic current transformer 10 when not occur overcurrent relay 4 I load current I T S and T phases becomes the vector sum of 1.5 times the current, the load current load current of the amplitude of I is R phase I R (S-phase and T-phase of the load current I S, I T ) Of 3 1/2 / 2 (see FIG. 20).
I = 0.5I R + I S + 1.5I T
| I | = | 0.5I R + I S + 1.5I T |
= (3 1/2 / 2) × | I R | (= (3 1/2 / 2) × | I S | = (3 1/2 / 2) × | I T |)

また、短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、短絡電流IRyは、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合(図21(a)参照)
Ry=0.5IFR+IFS
|IRy|=|0.5IFR+IFS|=(1/2)×|IFS|(=(1/2)×|IFR|)
(2)S相−T相間の短絡事故の場合(図21(b)参照)
Ry=IFS+1.5IFT
|IRy|=|IFS+1.5IFT|=(1/2)×|IFT|(=(1/2)×|IFS|)
(3)T相−R相間の短絡事故の場合(図22(a)参照)
Ry=0.5IFR+1.5IFT
|IRy|=|0.5IFR+1.5IFT|=|IFT|(=|IFR|)
(4)R相−S相−T相間の短絡事故の場合(図22(b)参照)
Ry=0.5IFR+IFS+1.5IFT
|IRy|=|0.5IFR+IFS+1.5IFT
=(31/2/2)×|IFR|(=(31/2/2)×|IFS|=(31/2/2)×|IFT|)
In addition, when the short-circuit current that flows in the R-phase, S-phase, and T-phase of the transmission and distribution line when a short-circuit accident occurs is represented by I FR , I FS , I FT , the short-circuit current I Ry is It is expressed as
(1) In the case of a short-circuit accident between the R phase and the S phase (see FIG. 21A)
I Ry = 0.5 I FR + I FS
| I Ry | = | 0.5 I FR + I FS | = (1/2) × | I FS | (= (1/2) × | I FR |)
(2) In the case of a short-circuit accident between the S phase and the T phase (see FIG. 21B)
I Ry = I FS + 1.5I FT
| I Ry | = | I FS +1.5 I FT | = (1/2) × | I FT | (= (1/2) × | I FS |)
(3) In the case of a short-circuit accident between the T phase and the R phase (see FIG. 22A)
I Ry = 0.5I FR + 1.5I FT
| I Ry | = | 0.5 I FR +1.5 I FT | = | I FT | (= | I FR |)
(4) In case of short circuit between R phase, S phase and T phase (see Fig. 22 (b))
I Ry = 0.5 I FR + I FS +1.5 I FT
| I Ry | = | 0.5 I FR + I FS +1.5 I FT |
= (3 1/2 / 2) × | I FR | (= (3 1/2 / 2) × | I FS | = (3 1/2 / 2) × | I FT |)

このように、負荷電流Iの振幅が31/2/2倍になるとともに、R相−S相間の短絡事故およびS相−T相間の短絡事故における短絡電流IRyの振幅がT相−R相間の短絡事故における短絡電流IRyの振幅の1/2倍になり、また、R相−S相−T相間の短絡事故における短絡電流IRyの振幅がT相−R相間の短絡事故における短絡電流IRyの振幅の31/2/2倍になる。そのため、この例では、負荷電流IおよびR相−S相−T相間の短絡事故における短絡電流IRyを2/31/2倍にし、R相−S相間の短絡事故およびS相−T相間の短絡事故における短絡電流IRyを2倍にし、T相−R相間の短絡事故における短絡電流IRyを1倍するように調整または補正して、短絡保護継電器の検出感度および動作時間をすべての事故様相に対して同じにする。 As described above, the amplitude of the load current I is 3 1/2 / 2 times, and the amplitude of the short-circuit current I Ry in the short-circuit accident between the R phase and the S-phase and the short-circuit accident between the S phase and the T phase is T-phase-R. is 1/2 times the amplitude of the short-circuit current I Ry in short circuit between the phases, also, short amplitude of the short-circuit current I Ry in short circuit of the R-phase -S phase -T phase is in a short circuit accident T phase -R phase It becomes 3 1/2 / 2 times the amplitude of the current I Ry . Therefore, in this example, the short-circuit current I Ry in the short-circuit accident between the load current I and the R-phase / S-phase / T-phase is multiplied by 2/3 1/2 , and the short-circuit accident between the R-phase and S-phase and between the S-phase and T-phase of double the short-circuit current I Ry in short circuit, a short circuit current I Ry adjustment or correction as multiplying 1 in short-circuit fault of T phase -R phase, all the detection sensitivity and operating time of the short-circuit protection relay Make the same for the accident aspect.

上述した第4の事故様相判定方法においてR相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを反極性方向で2倍して合成するように事故様相判定用変圧器110の2次側を結線し、上述した第5の事故様相判定方法においてR相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを極性方向で2倍して合成するように事故様相判定用変圧器120の2次側を結線したが、R相の相電圧VRを極性方向または反極性方向でa倍して、S相の相電圧VSを極性方向または反極性方向でb倍して、T相の相電圧VTを極性方向または反極性方向でc倍して合成するように事故様相判定用変圧器の2次側を結線してもよい。この事故様相判定用変圧器から出力される合成電圧VaR+bS+cTは次式で表される。
aR+bS+cT=±aVR±bVS±cVT
In the fourth accident mode determination method described above, the R-phase phase voltage V R is doubled in the polarity direction, the S-phase phase voltage V S in the opposite polarity direction, and the T-phase phase voltage V T in the opposite polarity direction. The secondary side of the accident aspect determination transformer 110 is connected so as to be combined, and in the fifth accident aspect determination method described above, the phase voltage V R of the R phase is set in the polarity direction and the phase voltage V S of the S phase is set. In the opposite polarity direction, the secondary side of the accident phase determination transformer 120 was connected so that the phase voltage V T of the T phase was doubled and synthesized in the polarity direction, but the phase voltage VR of the R phase was changed to the polarity direction. Alternatively, multiply by a in the antipolar direction, multiply the S phase voltage V S by b in the polar or antipolar direction, and synthesize the T phase voltage V T by c in the polar or antipolar direction. As such, the secondary side of the transformer for determining an accident aspect may be connected. The composite voltage V aR + bS + cT output from this accident aspect determination transformer is expressed by the following equation.
V aR + bS + cT = ± aV R ± bV S ± cV T

以上では、送配電線において使用される短絡保護継電器との組合せで本発明の可変合成変流器について説明したが、本発明の可変合成変流器は、たとえばロボットの手足を駆動するための三相モータ(三相負荷)に電力を供給する三相交流回路において使用されている短絡保護装置と組み合わせても、同様の効果を得ることができる。   Although the variable composite current transformer of the present invention has been described above in combination with the short-circuit protective relay used in the transmission and distribution lines, the variable composite current transformer of the present invention is, for example, three for driving the limbs of a robot. The same effect can be obtained even when combined with a short-circuit protection device used in a three-phase AC circuit that supplies power to a phase motor (three-phase load).

本発明の第1の実施例による保護継電装置について説明するための図である。It is a figure for demonstrating the protection relay apparatus by 1st Example of this invention. 短絡事故が発生していないときの負荷電流IとT相−R相の線間電圧VTRおよびR相の相電圧VRとについて説明するための図である。It is a diagram for explaining the load current I and the T-phase -R phase phase voltage V R of the line voltage V TR and R-phase when a short circuit does not occur. 短絡事故が発生したときに図1に示した可変合成変流器10から過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the overcurrent relay 4 from the variable synthetic | combination current transformer 10 shown in FIG. 1 when a short circuit accident generate | occur | produces. 短絡事故が発生したときに図1に示した可変合成変流器10から過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the overcurrent relay 4 from the variable synthetic | combination current transformer 10 shown in FIG. 1 when a short circuit accident generate | occur | produces. 図1に示した送配電線のR相−S相間に短絡事故が発生したときに過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating the short circuit current IRy input into the overcurrent relay 4 when the short circuit accident generate | occur | produces between R phase-S phases of the power transmission and distribution line shown in FIG. 図1に示した送配電線のS相−T相間に短絡事故が発生したときに過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the overcurrent relay 4 when a short circuit accident generate | occur | produces between the S phase-T phases of the power transmission and distribution line shown in FIG. 図1に示した送配電線のT相−R相間に短絡事故が発生したときに過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the overcurrent relay 4 when a short circuit accident generate | occur | produces between the T phase-R phases of the power transmission and distribution line shown in FIG. 図1に示した送配電線のR相−S相−T相間に短絡事故が発生したときに過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the overcurrent relay 4 when a short circuit accident generate | occur | produces between R phase-S phase-T phases of the power transmission and distribution line shown in FIG. 本発明の第2の実施例による保護継電装置について説明するための図である。It is a figure for demonstrating the protective relay apparatus by the 2nd Example of this invention. 本発明の第3の実施例による保護継電装置について説明するための図である。It is a figure for demonstrating the protection relay apparatus by the 3rd Example of this invention. 本発明の第4の実施例による保護継電装置について説明するための図である。It is a figure for demonstrating the protective relay apparatus by the 4th Example of this invention. 第2の事故様相判定方法について説明するための図である。It is a figure for demonstrating the 2nd accident aspect determination method. 第3の事故様相判定方法について説明するための図である。It is a figure for demonstrating the 3rd accident aspect determination method. 第4の事故様相判定方法において用いられる事故様相判定用変圧器110の構成を示す図である。It is a figure which shows the structure of the transformer 110 for an accident aspect determination used in the 4th accident aspect determination method. 第5の事故様相判定方法において用いられる事故様相判定用変圧器120の構成を示す図である。It is a figure which shows the structure of the transformer 120 for accident aspect determination used in the 5th accident aspect determination method. 図1に示した過電流継電器4などの検出感度および動作時間を同じにするための演算処理部の一構成例を示す図である。It is a figure which shows the example of 1 structure of the arithmetic processing part for making detection sensitivity and operation time, such as the overcurrent relay 4 shown in FIG. 1, the same. 本発明の第5の実施例による保護継電装置について説明するための図である。It is a figure for demonstrating the protective relay apparatus by the 5th Example of this invention. 電圧抑制特性の一例を示す図である。It is a figure which shows an example of a voltage suppression characteristic. 第1乃至第3の変流器31〜33から入力される電流を合成電流比0.5:1.0:1.5で合成して図1に示した過電流継電器4に入力する例を示した図である。The currents input from the first to third current transformers 3 1 to 3 3 are combined at a combined current ratio of 0.5: 1.0: 1.5 and input to the overcurrent relay 4 shown in FIG. It is the figure which showed the example. 短絡事故が発生していないときに図19に示した可変合成変流器10から過電流継電器4に入力される負荷電流Iについて説明するための図である。It is a figure for demonstrating the load current I input into the overcurrent relay 4 from the variable synthetic | combination current transformer 10 shown in FIG. 19 when the short circuit accident has not generate | occur | produced. 短絡事故が発生したときの図19に示した可変合成変流器10から過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the overcurrent relay 4 from the variable composite current transformer 10 shown in FIG. 19 when a short circuit accident generate | occur | produces. 短絡事故が発生したときの図19に示した可変合成変流器10から過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the overcurrent relay 4 from the variable composite current transformer 10 shown in FIG. 19 when a short circuit accident generate | occur | produces. 末端回路の送配電線などで過電流継電器を2相にだけ設置して短絡事故からの保護を図る従来方法を説明するための図である。It is a figure for demonstrating the conventional method which protects from a short circuit accident by installing an overcurrent relay only in two phases by the transmission / distribution line etc. of a terminal circuit.

符号の説明Explanation of symbols

1 電源
1〜26 第1乃至第6の遮断器
1,32 第1および第2の変流器
4,30 過電流継電器
1,42 第1および第2の過電流継電器
5 変圧器
6 計器用変圧器
10 可変合成変流器
101,102 第1および第2の可変合成変流器
20 電流差動継電器
50 電圧抑制付過電流継電器
601,602 第1および第2のPCM電流差動継電器
71 事故様相判定回路
721〜723 第1乃至第3の振幅調整回路
73 選択スイッチ
110,120 事故様相判定用変圧器
1L,2L 第1および第2の送配電線
I,IR,IS,IT 負荷電流
I’ 補正負荷電流
1,I1R,I1S,I1T 1次負荷電流
2,I2R,I2S,I2T 2次負荷電流
a,IaR,IaS,IaT 送電端負荷電流
b,IbR,IbS,IbT 受電端負荷電流
Ry,IFR,IFS,IFT 短絡電流
Ry’ 補正短絡電流
R,VS,VT 相電圧
RS,VST,VTR 線間電圧
R-S-2T,VR-S+2T 合成電圧
Ry 抑制電圧
SW スイッチ制御信号
θ インピーダンス角
k1,k2 第1および第2の電圧値
α,β 角度範囲
γ,δ 第1および第2の角度範囲
1〜K8 第1乃至第8の合成電圧値
ε1〜ε8 第1乃至第8の合成電圧角度範囲
λ1〜λ8 第1乃至第8の短絡電流角度範囲
1 power supply 2 1 to 2 6 first to sixth circuit breakers 3 1 and 3 2 first and second current transformers 4 and 30 overcurrent relays 4 1 and 4 2 first and second overcurrent relays 5 Transformer 6 Instrument transformer 10 Variable composite current transformer 10 1 , 10 2 First and second variable composite current transformer 20 Current differential relay 50 Overcurrent relay 60 1 , 60 2 with voltage suppression First and second 2 PCM current differential relays 71 Accident appearance judgment circuits 72 1 to 72 3 First to third amplitude adjustment circuits 73 Selection switches 110 and 120 Accident appearance judgment transformers 1L and 2L First and second transmission and distribution lines I, I R , I S , I T load current I ′ corrected load currents i 1 , I 1R , I 1S , I 1T primary load current i 2 , I 2R , I 2S , I 2T secondary load current I a , I aR , I aS , I aT transmitting end load current I b , I bR , I bS , I bT receiving end load current I Ry , I FR , I FS , I FT short Fault current I Ry 'Corrected short-circuit current V R , V S , V T phase voltage V RS , V ST , V TR line voltage V RS-2T , V R-S + 2T composite voltage V Ry suppression voltage S SW switch control Signal θ Impedance angles k1, k2 First and second voltage values α, β Angle ranges γ, δ First and second angle ranges K 1 to K 8 First to eighth combined voltage values ε 1 to ε 8 First to eighth combined voltage angle ranges λ 1 to λ 8 First to eighth short-circuit current angle ranges

Claims (16)

三相交流回路の第1乃至第3の相に流れる短絡電流を検出するための可変合成変流器であって、前記第1乃至第3の相に流れる短絡電流を合成電流比±x1:±x2:±x3(x1,x2,x3>0)で合成することを特徴とする、可変合成変流器。 A variable combined current transformer for detecting a short-circuit current flowing in the first to third phases of the three-phase AC circuit, wherein the short-circuit current flowing in the first to third phases is a combined current ratio ± x 1 : ± x 2 : A variable synthesis current transformer characterized by synthesis at ± x 3 (x 1 , x 2 , x 3 > 0). 三相交流回路の第1乃至第3の相に流れる短絡電流を検出するための可変合成変流器(10,101,102)であって、前記第1乃至第3の相に流れる短絡電流を合成電流比x1:x2:x3、合成電流比x1:−x2:x3または合成電流比−x1:x2:−x3(x1,x2,x3>0)で合成することを特徴とする、可変合成変流器。 A variable composite current transformer (10, 10 1 , 10 2 ) for detecting a short-circuit current flowing in the first to third phases of a three-phase AC circuit, the short-circuit flowing in the first to third phases The combined current ratio x 1 : x 2 : x 3 , the combined current ratio x 1 : −x 2 : x 3 or the combined current ratio −x 1 : x 2 : −x 3 (x 1 , x 2 , x 3 > 0), a variable synthesis current transformer characterized by synthesis. 前記三相交流回路の短絡事故の事故様相を判定して、前記可変合成変流器によって検出された短絡電流に前記事故様相の判定結果に応じた所定の倍数を掛ける演算処理手段を備えることを特徴とする、請求項1または2記載の可変合成変流器。   Computation processing means is provided for determining the accident aspect of the short circuit accident of the three-phase AC circuit and multiplying the short circuit current detected by the variable composite current transformer by a predetermined multiple according to the determination result of the accident aspect. The variable composite current transformer according to claim 1 or 2, characterized in that 短絡事故から三相交流回路を保護するための保護継電装置であって、
請求項1乃至3いずれかに記載の可変合成変流器と、
該可変合成変流器から入力される短絡電流に基づいて短絡事故を検出すると、前記三相交流回路の第1乃至第3の相に設置された遮断器を一括遮断する短絡保護継電器と、
を具備することを特徴とする、保護継電装置。
A protective relay device for protecting a three-phase AC circuit from a short circuit accident,
A variable composite current transformer according to any one of claims 1 to 3,
A short-circuit protection relay that collectively shuts off the circuit breakers installed in the first to third phases of the three-phase AC circuit when a short-circuit fault is detected based on a short-circuit current input from the variable composite current transformer;
A protective relay device comprising:
前記保護継電装置が、
前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段と、
前記可変合成変流器によって検出された短絡電流に該事故様相判定手段における事故様相の判定結果に応じた所定の倍数を掛ける演算処理手段と、
をさらに具備することを特徴とする、請求項4記載の保護継電装置。
The protective relay device is
Accident aspect determining means for determining the accident aspect of the short circuit accident of the three-phase AC circuit;
Arithmetic processing means for multiplying the short-circuit current detected by the variable composite current transformer by a predetermined multiple according to the determination result of the accident aspect in the accident aspect determination means;
The protective relay device according to claim 4, further comprising:
前記事故様相判定手段が、前記三相交流回路の3つの線間電圧(VRS,VST,VTR)、3つの相電圧(VR,VS,VT)または相・線間電圧に基づいて該三相交流回路の短絡事故の事故様相を判定することを特徴とする、請求項5記載の保護継電装置。 The accident mode determination means determines whether the three-phase AC circuit has three line voltages (V RS , V ST , V TR ), three phase voltages (V R , V S , V T ), or a phase / line voltage. 6. The protective relay device according to claim 5, wherein an accident aspect of a short-circuit accident of the three-phase AC circuit is determined based on the basis. 前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)および1つの相電圧(VR,VS,VT)の電圧値および位相に基づいて該三相交流回路の短絡事故の事故様相を判定することを特徴とする、請求項5記載の保護継電装置。 The accident mode determination means is based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) and one phase voltage (V R , V S , V T ) of the three-phase AC circuit. 6. The protective relay device according to claim 5, wherein an accident aspect of a short circuit accident of the three-phase AC circuit is determined. 前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて該三相交流回路の短絡事故の事故様相を判定することを特徴とする、請求項5記載の保護継電装置。 The accident mode judging means is configured to detect a voltage value and a phase of one line voltage (V RS , V ST , V TR ) of the three-phase AC circuit and a short circuit current (I Ry ) input from the variable composite current transformer. 6. The protective relay device according to claim 5, wherein an accident aspect of a short circuit accident of the three-phase AC circuit is determined based on the phase of the three-phase AC circuit. 前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を反極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S-2T)を得るための事故様相判定用変圧器(110)をさらに具備し、
前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する、
ことを特徴とする請求項5記載の保護継電装置。
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to second phases are used for determining the accident aspect of the short-circuit fault of the three-phase AC circuit, where the secondary side is connected so as to synthesize the phase voltage (V T ) by doubling in the opposite polarity direction. An accident mode judging transformer (110) for obtaining a composite voltage (V RS-2T ) of the phase voltages of the three phases;
The accident aspect determination means is based on the voltage value and phase of the composite voltage input from the accident aspect determination transformer and the phase of the short-circuit current (I Ry ) input from the variable composite current transformer. Determine the accident aspect of the short circuit accident of the three-phase AC circuit,
The protective relay device according to claim 5.
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相電圧の合成電圧(VR-S+2T)を得るための事故様相判定用変圧器(120)をさらに具備し、
前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する、
ことを特徴とする請求項5記載の保護継電装置。
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to third are used for determining the accident aspect of the short-circuit accident of the three-phase AC circuit in which the secondary side is connected so that the phase voltage (V T ) is doubled and synthesized in the polarity direction. An accident mode judging transformer (120) for obtaining a composite voltage (V R-S + 2T ) of the phase voltage of
The accident aspect determination means is based on the voltage value and phase of the composite voltage input from the accident aspect determination transformer and the phase of the short-circuit current (I Ry ) input from the variable composite current transformer. Determine the accident aspect of the short circuit accident of the three-phase AC circuit,
The protective relay device according to claim 5.
前記三相交流回路の第1の相電圧(VR)を極性方向または反極性方向でa倍して、該三相交流回路の第2の相電圧(VS)を極性方向または反極性方向でb倍して、該三相交流回路の第3の相電圧(VT)を極性方向または反極性方向でc倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相電圧の合成電圧(VaR+bS+cT)を得るための事故様相判定用変圧器をさらに具備し、
前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記可変合成変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する、
ことを特徴とする請求項5記載の保護継電装置。
The first phase voltage (V R ) of the three-phase AC circuit is multiplied by a in the polarity direction or the antipolar direction, and the second phase voltage (V S ) of the three-phase AC circuit is changed in the polarity direction or antipolar direction. And the secondary side is connected so that the third phase voltage (V T ) of the three-phase AC circuit is multiplied by c in the polarity direction or the opposite polarity direction to be combined, and the three-phase AC A fault condition determining transformer for obtaining a composite voltage (V aR + bS + cT ) of the first to third phase voltages used for determining an accident aspect of a short circuit accident of a circuit;
The accident aspect determination means is based on the voltage value and phase of the composite voltage input from the accident aspect determination transformer and the phase of the short-circuit current (I Ry ) input from the variable composite current transformer. Determine the accident aspect of the short circuit accident of the three-phase AC circuit,
The protective relay device according to claim 5.
前記可変合成変流器が、送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する可変合成変流器(10)であり、
前記短絡保護継電器が、前記可変合成変流器から入力される短絡電流(IRy)に基づいて短絡事故を検出すると、前記送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する過電流継電器(4)である、
ことを特徴とする、請求項4乃至11いずれかに記載の保護継電装置。
The variable synthesis current transformer synthesizes the currents input from the first to third current transformers (31 to 3 3 ) installed in the first to third phases of the transmission and distribution lines, respectively. A current transformer (10),
When the short-circuit protection relay detects a short-circuit fault based on the short-circuit current (I Ry ) input from the variable composite current transformer, the first short-circuit protection relay is installed in each of the first to third phases of the transmission and distribution line. An overcurrent relay (4) that collectively cuts off the first to third circuit breakers (2 1 to 2 3 );
The protective relay device according to claim 4, wherein
前記可変合成変流器が、変圧器(5)の1次側の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する第1の可変合成変流器(101)と、前記変圧器の2次側の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の変流器(34〜36)から入力される電流を合成する第2の可変合成変流器(102)とであり、
前記短絡保護継電器が、前記第1の可変合成変流器から入力される短絡電流と前記第2の可変合成変流器から入力される短絡電流との差電流に基づいて短絡事故を検出すると、前記変圧器の1次側の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)と該変圧器の2次側の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)とを一括遮断する電流差動継電器(20)である、
ことを特徴とする、請求項4乃至11いずれかに記載の保護継電装置。
The variable composite current transformer is input from first to third current transformers (3 1 to 3 3 ) installed in the first to third phases on the primary side of the transformer (5), respectively. A first variable current transformer (10 1 ) for combining currents, and fourth to sixth current transformers (3) installed in the first to third phases on the secondary side of the transformer, respectively. 4 to 3 6 ) and a second variable current transformer (10 2 ) for synthesizing the current input from
When the short-circuit protection relay detects a short-circuit accident based on a difference current between a short-circuit current input from the first variable composite current transformer and a short-circuit current input from the second variable composite current transformer, First to third circuit breakers (2 1 to 2 3 ) respectively installed in the first to third phases on the primary side of the transformer and the first to third circuit breakers on the secondary side of the transformer A current differential relay (20) that collectively cuts off the fourth to sixth circuit breakers (2 4 to 2 6 ) respectively installed in the three phases;
The protective relay device according to claim 4, wherein
前記可変合成変流器が、第1の送配電線(1L)の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する第1の可変合成変流器(101)と、第2の送配電線(2L)の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の変流器(34〜36)から入力される電流を合成する第2の可変合成変流器(102)とであり、
前記短絡保護継電器が、前記第1の可変合成変流器から入力される短絡電流と第2の可変合成変流器から入力される短絡電流との和電流に基づいて短絡事故を検出すると、前記第1の送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)と前記第2の送配電線の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)とを一括遮断する過電流継電器(30)である、
ことを特徴とする、請求項4乃至11いずれかに記載の保護継電装置。
The variable composite current transformer is input from first to third current transformers (3 1 to 3 3 ) installed in the first to third phases of the first transmission and distribution line (1L), respectively. The first variable current transformer (10 1 ) for synthesizing currents and the fourth to sixth current transformers installed in the first to third phases of the second transmission / distribution line (2L), respectively. (at 3 4-3 6) second variable synthesizing current transformer for combining a current input (10 2) and,
When the short-circuit protection relay detects a short-circuit accident based on a sum current of a short-circuit current input from the first variable composite current transformer and a short-circuit current input from the second variable composite current transformer, The first to third circuit breakers (2 1 to 2 3 ) installed in the first to third phases of the first transmission / distribution line and the first to third of the second transmission / distribution line, respectively. An overcurrent relay (30) that collectively disconnects the fourth to sixth circuit breakers (2 4 to 2 6 ) respectively installed in the phases of
The protective relay device according to claim 4, wherein:
前記可変合成変流器が、電源端母線側の送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する第1の可変合成変流器(101)と、受電端母線側の前記送配電線の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の変流器(34〜36)から入力される電流を合成する第2の可変合成変流器(102)とであり、
前記短絡保護継電器が、前記第1の可変合成変流器から入力される短絡電流と前記第2の可変合成変流器から入力される短絡電流との差電流に基づいて短絡事故を検出すると、前記電源端母線側の前記送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)と前記受電端母線側の前記送配電線の第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)とをそれぞれ一括遮断する第1および第2のパルス符号変調電流差動継電器(601,602)である、
ことを特徴とする、請求項4乃至11いずれかに記載の保護継電装置。
Current input from the first to third current transformers (3 1 to 3 3 ) installed in the first to third phases of the transmission / distribution line on the power supply end bus side of the variable composite current transformer A first variable current transformer (10 1 ) for synthesizing the power supply, and fourth to sixth current transformers (10 1 ) installed in the first to third phases of the transmission and distribution lines on the power receiving end bus side ( 3 4 to 3 6 ) and a second variable synthesis current transformer (10 2 ) for synthesizing the current input from
When the short-circuit protection relay detects a short-circuit accident based on a difference current between a short-circuit current input from the first variable composite current transformer and a short-circuit current input from the second variable composite current transformer, The first to third circuit breakers (2 1 to 2 3 ) installed in the first to third phases of the transmission / distribution line on the power supply end bus side and the transmission / distribution line on the power reception end bus side First and second pulse code modulation current differential relays (60 1 , 60 1 , 60) that collectively shut off the fourth to sixth circuit breakers (2 4 to 2 6 ) respectively installed in the first to third phases. 60 2 ),
The protective relay device according to claim 4, wherein:
前記可変合成変流器が、送配電線の第1乃至第3の相にそれぞれ設置された第1乃至第3の変流器(31〜33)から入力される電流を合成する可変合成変流器(10)であり、
前記短絡保護継電器が、前記可変合成変流器から入力される短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)を用いて算出した抑制電圧(VRy)とに基づいて短絡事故を検出すると、前記送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する電圧抑制付過電流継電器(50)である、
ことを特徴とする、請求項4乃至11いずれかに記載の保護継電装置。
The variable synthesis current transformer synthesizes the currents input from the first to third current transformers (31 to 3 3 ) installed in the first to third phases of the transmission and distribution lines, respectively. A current transformer (10),
The short-circuit protection relay uses a suppression voltage (V R , V ST , V TR ) calculated using a short-circuit current (I Ry ) input from the variable composite current transformer and a line voltage (V RS , V ST , V TR ) of the transmission / distribution line. Ry ) and a voltage that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) respectively installed in the first to third phases of the transmission and distribution line. An overcurrent relay with suppression (50),
The protective relay device according to claim 4, wherein:
JP2007244866A 2007-09-21 2007-09-21 Variable composite current transformer and protective relay device Withdrawn JP2009077566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244866A JP2009077566A (en) 2007-09-21 2007-09-21 Variable composite current transformer and protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244866A JP2009077566A (en) 2007-09-21 2007-09-21 Variable composite current transformer and protective relay device

Publications (1)

Publication Number Publication Date
JP2009077566A true JP2009077566A (en) 2009-04-09

Family

ID=40612003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244866A Withdrawn JP2009077566A (en) 2007-09-21 2007-09-21 Variable composite current transformer and protective relay device

Country Status (1)

Country Link
JP (1) JP2009077566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859985A (en) * 2010-05-18 2010-10-13 遵义长征电器开关设备有限责任公司 Field bus type intellectualized low-voltage switch device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859985A (en) * 2010-05-18 2010-10-13 遵义长征电器开关设备有限责任公司 Field bus type intellectualized low-voltage switch device

Similar Documents

Publication Publication Date Title
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
JP2009077562A (en) Two-phase bushing current transformer and protective relay device
EP2680385B1 (en) Differential protection in electrical power networks
JP2011153910A (en) Leak current measuring device and measurement method in electric apparatus
US20090086388A1 (en) Control method for preventing malfunction of over current ground relay due to reverse power
Sevov et al. Differential protection for power transformers with non-standard phase shifts
JP2009077566A (en) Variable composite current transformer and protective relay device
JP2009077563A (en) Three-phase bushing current transformer and protective relay device
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
JP2009077564A (en) Three-phase bushing current transformer and protective relay device
JP2010166783A (en) Directional protective relay device and directional power relay device
JP2009044954A (en) Cross-through current transformer and protective relay system
JP2009077560A (en) Two-phase bushing current transformer, voltage transformer for judging failure situation and protective relay device
JP4948316B2 (en) limiter
JP2010148269A (en) Protective relay system
JP2010166778A (en) Directional protective relay device and directional power relay device
CN102696161A (en) Fuzzy interference relay and method for current differential protection of a transmission line
JP2009050147A (en) Overcurrent relay apparatus with voltage suppression function
JP2009033817A (en) Overcurrent relay device with voltage suppression
JP2009295839A (en) Cross through current transformer, terminal block, and protective relay device
JP2009033818A (en) Overcurrent relay device with voltage suppression
JP2010166777A (en) Directional protective relay device and directional power relay device
JP2009027826A (en) Protective relay device
JP2009027825A (en) Protective relay device
JP2010166784A (en) Different-line different-phase cross through current transformer and line selecting relay device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207