JP2009077360A - Neutrino communication using nuclear fusion device - Google Patents

Neutrino communication using nuclear fusion device Download PDF

Info

Publication number
JP2009077360A
JP2009077360A JP2007274406A JP2007274406A JP2009077360A JP 2009077360 A JP2009077360 A JP 2009077360A JP 2007274406 A JP2007274406 A JP 2007274406A JP 2007274406 A JP2007274406 A JP 2007274406A JP 2009077360 A JP2009077360 A JP 2009077360A
Authority
JP
Japan
Prior art keywords
receiver
voltage
cathode
transmitter
fusion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007274406A
Other languages
Japanese (ja)
Inventor
Joshin Uramoto
上進 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007274406A priority Critical patent/JP2009077360A/en
Publication of JP2009077360A publication Critical patent/JP2009077360A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

<P>PROBLEM TO BE SOLVED: To attain an inexpensive and simple neutrino communication by using a low-voltage deuterium nuclear fusion device. <P>SOLUTION: In a communication apparatus, (1) a receiver nips a paper soaked with a car battery liquid and heavy water between two Al plates that form an anode and a cathode and applies a DC voltage V<SB>0</SB>(finally 100V or higher) thereacross. There is a small hole on the cathode Al and helium ions are generated and enters a beam collector. (2) A transmitter has the same configuration as the receiver but there is no small hole on the cathode Al and an anode side is turned toward the receiver. A voltage between the anode and the cathode adds a variation voltage ΔVsinωt to V<SB>0</SB>. Eccentricity in the Al plate planes of the receiver and the transmitter is adjusted in accordance with a distance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

電磁波による通信は、今日全く一般的である。しかし、電磁波は導体で遮断されたり、反射されたりするので通信領域はやはり極限される。かくて、ニュ−トリノ通信もその直進性のために考えられている。
従来のニュートリノ発生法は巨大な高エネルギ−加速器を利用するものだった。またニュートリノ検出法は1000トン以上の純水と1000本以上の光電子増倍管による(カミオカンデの例)ものだった。従って巨額の建設費(100億円以上)と巨大な建造物を要した。そのため、実用ニュ−トリノ通信装置は不可能だった。
本発明の図1の受信機は、すでに発表した(特願2007−128599)低電圧重水素核融合装置である。二枚のAl板の間にカ−バッテリ液と重水に染ました薄い紙を挟んであり、陽極Aと陰極Kに直流電圧V(100V以上)をかけて自己点火装置にしてある。そこでは、He++イオンが陰極Kの穴から発生してビ−ムコレクタ−BCに入っている。この状態ではHe++イオン電流は負電荷のタウ素粒子τ(特願2002−294264)に打ち消されている。次に遠方に発信機として、反対に向けたもう一つの重水素核融合装置が配置してあり、図2に示す。その陽極側から反タウニュ−トリノνが発信し、受信機まで直進する(導体に遮断されない)。このときその陽極Aと陰極K間の電圧を受信機と同じVにすると、受信機の負電荷のタウ素粒子τが中和され(正電荷のタウ素粒子τが発生)He++イオン電流が出現する。そのVを0.9V以下に下げると、再びHe++イオン電流は打ち消される(τが発生)。発信機のVに、−Δ Vsin ωtの交流電圧を加えると、図3のように遠方から受信機のHe++イオン電流を変化させることができる。即ち、通信ができる。
受信機と発信機を、例えば図4に示したように20cm×20cmの平面板の核融合装置にすると、その間の距離2.5Kmで受信機の発信機平面に対する偏りθは〜8’、10Kmで〜2’以内で、反ニュ−トリノνは直進し、〜1KHzまでの変化するHe++イオン電流により通信できる。
本発明の核融合によるニュ−トリノ通信は装置が簡単で安価になったので、ニュ−トリノの物質貫通力と直進性が利用できて、電磁波にできない海底や、地球の裏側、月の裏側への通信が可能になった。
Communication using electromagnetic waves is quite common today. However, since the electromagnetic wave is blocked or reflected by the conductor, the communication area is still limited. Thus, Nutrino communication is also considered because of its straightness.
The conventional neutrino generation method uses a huge high-energy accelerator. The neutrino detection method was based on 1000 tons of pure water and 1000 photomultiplier tubes (example of Kamiokande). Therefore, huge construction costs (over 10 billion yen) and huge buildings were required. Therefore, a practical neutrino communication device was not possible.
The receiver of FIG. 1 of the present invention is a low-voltage deuterium fusion device that has already been published (Japanese Patent Application No. 2007-128599). A thin paper dyed in a car battery solution and heavy water is sandwiched between two Al plates, and a direct voltage V 0 (100 V or more) is applied to the anode A and the cathode K to form a self-ignition device. There, He ++ ions are generated from the hole in the cathode K and enter the beam collector BC. In this state, the He ++ ion current is canceled by the negatively charged taurium particles τ (Japanese Patent Application No. 2002-294264). Next, another deuterium fusion device facing in the opposite direction is arranged as a transmitter in the distance, as shown in FIG. An anti-Taunu-Torino v * is transmitted from the anode side and travels straight to the receiver (not blocked by the conductor). At this time, when the voltage between the anode A and the cathode K is set to V 0 which is the same as that of the receiver, the negatively charged taurine particles τ of the receiver are neutralized (positively charged taurine particles τ + are generated) He ++ An ion current appears. When the V 0 is lowered to 0.9 V 0 or less, the He ++ ion current is canceled again (τ is generated). When an AC voltage of −ΔVsin ωt is applied to V 0 of the transmitter, the He ++ ion current of the receiver can be changed from a distance as shown in FIG. That is, communication is possible.
When the receiver and the transmitter are, for example, a 20 cm × 20 cm flat plate fusion device as shown in FIG. 4, the deviation θ of the receiver with respect to the transmitter plane at a distance of 2.5 Km is ˜8 ′, 10 Km. Within ~ 2 ', the anti-neutrino ν * goes straight and can communicate with varying He ++ ion currents up to ~ 1KHz.
The neutrino communication by nuclear fusion according to the present invention is simple and inexpensive, so the neutrino's material penetration and straightness can be used, and it can be used to move to the seabed, the back of the earth and the back of the moon. Communication became possible.

重水素核融合装置の受信機Deuterium fusion device receiver 重水素核融合装置の発信機Deuterium fusion device transmitter 発信機の電圧変動と受信機のHe++イオン電流の対応Correspondence between voltage fluctuation of transmitter and He ++ ion current of receiver 受信機と発信機の距離とそれ等の平面の偏りの関係The relationship between the distance between the receiver and the transmitter and their plane deviation

符号の説明Explanation of symbols

[図1]Al:アルミ板、薄い紙:バッテリ−液と重水に染ました紙、He++:ヘリウム2価正イオン、BC:ビ−ムコレクタ−、A:陽極、K:陰極、V:A−K間電圧、τ:負電荷のタウ素粒子、τ:正電荷のタウ素粒子、i:He++イオン電流。
[図2]ν:反タウニュ−トリノ、絶縁膜:ポリエチレン、V−Δ Vsin ωt:発信機の変動電圧(Δ Vsin ωt:交流電圧)。
[図3]0.9V:発信機のA,K間電圧がVより10%下がる変動点、i:発信機の電圧に対応する受信機のHe++イオン電流、t:時間。
[図4]X:受信機と発信機の距離、θ:受信機平面と発信機平面の偏り、BC:受信機のビ−ムコレクタ−、A:発信機の陽極。
[Figure 1] Al: aluminum plate, thin paper: Battery - liquid and Soma a paper heavy water, the He ++: helium divalent cations, BC: bi - Mukorekuta -, A: anode, K: cathode, V 0: Voltage between AK, τ : negatively charged taurine particles, τ + : positively charged taurine particles, i: He ++ ion current.
[FIG. 2] ν * : anti-Tau-Turino, insulating film: polyethylene, V 0 −Δ V sin ωt: fluctuation voltage of the transmitter (Δ Vsin ωt: AC voltage).
[FIG. 3] 0.9 V 0 : Fluctuation point where the voltage between A and K of the transmitter is 10% lower than V 0 , i: He ++ ion current of the receiver corresponding to the voltage of the transmitter, t: Time.
[FIG. 4] X: Distance between receiver and transmitter, θ: Deviation between receiver plane and transmitter plane, BC: Beam collector of receiver, A: Anode of transmitter.

Claims (1)

受信機側に、タウニュ−トリノとヘリウムイオンHe++を発生する一つの重水素核融合装置を配置し、発信機側に、向きを反対にしたもう一つの重水素核融合装置を配置し、反タウニュ−トリノを送って、受信側のHe++流を変化させ通信を行なう通信装置。One deuterium fusion device that generates Taunu-Torino and helium ions He ++ is placed on the receiver side, and another deuterium fusion device with the opposite direction is placed on the transmitter side. A communication device that performs communication by sending a Taunu-Torino and changing the He ++ flow on the receiving side.
JP2007274406A 2007-09-21 2007-09-21 Neutrino communication using nuclear fusion device Pending JP2009077360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274406A JP2009077360A (en) 2007-09-21 2007-09-21 Neutrino communication using nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274406A JP2009077360A (en) 2007-09-21 2007-09-21 Neutrino communication using nuclear fusion device

Publications (1)

Publication Number Publication Date
JP2009077360A true JP2009077360A (en) 2009-04-09

Family

ID=40611872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274406A Pending JP2009077360A (en) 2007-09-21 2007-09-21 Neutrino communication using nuclear fusion device

Country Status (1)

Country Link
JP (1) JP2009077360A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214295A (en) * 1999-01-20 2000-08-04 Joshin Uramoto Neutrino beam communication apparatus
JP2003302496A (en) * 2002-04-10 2003-10-24 Joshin Uramoto Generator or hydrogen negative ion and 'ki'
JP2004093542A (en) * 2002-08-30 2004-03-25 Joshin Uramoto Neutrino research facilities using capacitor type hydrogen/deuterium ion source
JP2006258780A (en) * 2005-03-16 2006-09-28 Joshin Uramoto Measurement of heavy water content in water by capacitor
JP2008261830A (en) * 2007-04-12 2008-10-30 Joshin Uramoto Low voltage deuterium nuclear fusion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214295A (en) * 1999-01-20 2000-08-04 Joshin Uramoto Neutrino beam communication apparatus
JP2003302496A (en) * 2002-04-10 2003-10-24 Joshin Uramoto Generator or hydrogen negative ion and 'ki'
JP2004093542A (en) * 2002-08-30 2004-03-25 Joshin Uramoto Neutrino research facilities using capacitor type hydrogen/deuterium ion source
JP2006258780A (en) * 2005-03-16 2006-09-28 Joshin Uramoto Measurement of heavy water content in water by capacitor
JP2008261830A (en) * 2007-04-12 2008-10-30 Joshin Uramoto Low voltage deuterium nuclear fusion device

Similar Documents

Publication Publication Date Title
Shan et al. An inverting TENG to realize the AC mode based on the coupling of triboelectrification and air-breakdown
Lafleur et al. Control of the ion flux and ion energy in CCP discharges using non-sinusoidal voltage waveforms
Hong et al. Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli
Passoni et al. Energetic ions at moderate laser intensities using foam-based multi-layered targets
Xiao et al. Evaluation of normalized energy recovery (NER) in microbial fuel cells affected by reactor dimensions and substrates
Jiang et al. Self-powered seawater desalination and electrolysis using flowing kinetic energy
Liang et al. Multi-unit hydroelectric generator based on contact electrification and its service behavior
CN103770953A (en) Active control device and method for spacecraft structure potential
JP2001087773A (en) Water magnetic treatment device
Marino et al. Boosting the voltage of a salinity-gradient-power electrochemical cell by means of complex-forming solutions
Wu et al. The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting
JP2009077360A (en) Neutrino communication using nuclear fusion device
Fu et al. Performance parameters analysis of reverse electrodialysis process: Sensitive to the repeating unit pairs, inflow velocity and feed concentration
Ebihara Simulation study of near-Earth space disturbances: 2. Auroral substorms
CN106025174B (en) A kind of sea water generator and its preparation method and application based on carbon black-graphene/waterborne polyurethane coating composite conductive thin film
Li et al. Driving electrochemical membrane processes with coupled ionic diodes
CN208087277U (en) Salt is converted into the apparatus and system of soda acid
JP2000214295A (en) Neutrino beam communication apparatus
Ebihara et al. Evolution of auroral substorm as viewed from MHD simulations: dynamics, energy transfer and energy conversion
Ling et al. Highly efficient power conversion from salinity gradients with ion-selective polymeric nanopores
CN116401905B (en) Structure optimization method and device based on electrodialysis efficiency improvement
Gaire et al. Photonic Synthesis of High-performance Manganese Oxide Thin Film Electrode with ultra-long Lifetime for Supercapacitor Applications
TW201128223A (en) Electrowetting display device and method of controlling electrowetting effect
CN102202456B (en) Accelerating pulse forming device of dielectric wall accelerator
JP2008261830A (en) Low voltage deuterium nuclear fusion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814