JP2008261830A - Low voltage deuterium nuclear fusion device - Google Patents

Low voltage deuterium nuclear fusion device Download PDF

Info

Publication number
JP2008261830A
JP2008261830A JP2007128599A JP2007128599A JP2008261830A JP 2008261830 A JP2008261830 A JP 2008261830A JP 2007128599 A JP2007128599 A JP 2007128599A JP 2007128599 A JP2007128599 A JP 2007128599A JP 2008261830 A JP2008261830 A JP 2008261830A
Authority
JP
Japan
Prior art keywords
voltage
deuterium
cathode
fusion device
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128599A
Other languages
Japanese (ja)
Inventor
Joshin Uramoto
上進 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007128599A priority Critical patent/JP2008261830A/en
Publication of JP2008261830A publication Critical patent/JP2008261830A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deuterium fusion reaction device of low voltage. <P>SOLUTION: A thin paper blotted with car-battery liquid (H<SB>2</SB>O+H<SB>2</SB>SO<SB>4</SB>) and heavy water D<SB>2</SB>O is nipped between two aluminum plates in vacuum and is used as the anode and cathode. A pinhole is made on the cathode plate. Voltage V between both poles is set about 16 V and magnetic field B0 of about 2 G is applied in parallel to the electrodes. After a 25 second elapse, helium ion He<SP>++</SP>several times of the H<SP>+</SP>and D<SP>+</SP>currents develop in voltage-resonantly from the pinhole of the cathode. Then, when V is raised to 100 V, even if V and B0 are cut off, He<SP>++</SP>current lasts for a long time continuously. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

はじめに
高温核融合では負電子eと重水素イオンDを高エネルギ−の10Kev以上に加熱し、D+Dのク−ロン反発を抑え、ヘリウムイオンHe++にして核融合エネルギ−を得る。それは太陽の中心部か水爆を模倣することであり、具体的応用例としては、閉じ込め磁場を用いるトカマクかヘリカルプラズマ核融合研究装置、及び、レ−ザ−慣性核融合研究装置である。しかし、研究を始めて50年以上経った現在も原理的見通しが確立していない。
一方、最近話題になった<常温核融合装置>は化学的液体エネルギーと物理的核融合エネルギ−の区別がつかず、やはり原理的にも不明である。
かくて、地上の現核融合研究装置は全て絶望的であり、著者は[別の自然現象と素粒子の基本]に注目しなければならないと考えている。具体的には太陽の中心部でなく太陽周辺のコロナの〜100万度と永続性。次に、負電荷の第3世代素粒子タウ粒子(電荷=電子電荷e、質量=3312倍の電子質量)である。
本発明では上の注目の下に発見された、物理的に正確な別の重水素核融合を示

Figure 2008261830
要旨
真空中に、二枚のアルミ板の間にカ−バッテリ−液(HO+HSO)と重水DOを染ませた薄い紙を挟み、電圧Vをかけ、陽極と陰極にする。この陰極板に小穴を
Figure 2008261830
16Vとして、そのアルミ板面に平行に弱磁場B(2ガウス以上)もかけ、〜25sec経過すると陰極の小穴から、<電圧共振的>にH,D電流の数倍のヘリウムイオンHe++が発生する。続いてVを100V以上に上げると、V,Bを切ってもHe++イオン電流のみが永続する。即ち、He++の≧100V,〜1μA/cmの自己点火の重水素核融合装置ができる。
以上の現象は太陽コロナの〜100万度(100eV)の加熱と永続性に類似している。
本文
図1に低電圧重水素核融合装置の基本を示す。図で二つのAlは陽極Aと陰極Kを形成する平面の薄いアルミ(〜0.1mm)板(箔)、Pはカ−バッテリ−液(HO+HSO)と重水DOを染ました薄い紙(〜0.1mm)、BはAl板に平行にかけた弱磁場(≧2ガウス)、Vは100Vまでの直流電源、Bは90度曲げ磁場型質量分析器の磁場、BCはその分析器のビ−ムコレクタ−、iはBCへの電流、Dは重水素正イオン、He++はヘリウム正イオン(2価)を示す。
この装置は回転ポンプによって10〜10Paの真空中に配置され、液体から気体化され、更に一部イオン化される(電場によって)。
図2は正イオン電流の電圧に対する共振現象<電圧共振>を示す。図1の直流
Figure 2008261830
その質量分析器のBCへの電流iが急に数倍増大し、重水素正イオンDからヘリウム正イオンHe++になる。
*直交磁場型質量分析器でのイオンの質量mは
m=Ze(Br)/V=8.8×10−2Z(Br)/V
で評価される。ここに、eは電子の電荷、Bはガウス単位の分析磁場、
rはcm単位の曲率半径、Vはボルト単位のイオン加速電圧、mは電子
の質量である。Zは荷電数である。
Figure 2008261830
かけるとBCへの電流iが共振的に増大しHe++が発生することが注目すべき実験
Figure 2008261830
なお、紙Pに染ませるカ−バッテリ−液の代わりに単なる純水HO,重水DOではH,D(OH,ODと共に)しか現れず、HSO,DSOの存在が重要であった。換言すれば、SO −−が上の質量分析器で測定されており、電圧共振とHe++発生に決定的であり、その濃度は共振電圧を支配することも実験的に判明している。
Figure 2008261830
3に示したように、永続的にHe++イオン電流が(≧100V,1μA/cm)発生する。即ち、D+D⇒He+++エネルギ−放出、の[自己点火]の低電圧重水素核融合装置となる。
図4に陽極A、陰極K間の電圧分布を示すと、真空中で乾燥した紙PからAl陰
Figure 2008261830
後に、電源電圧を上げて、任意の電圧Vで電源を切ってHe++イオン電流維持時間を示してある。V=16Vでは〜1min、50Vで〜5min、70Vで〜20min、85Vで〜12hour(半日)、100Vで永続する、即ち、自己点火(出力/入力⇒∞)の核融合炉となる。事実、現在半年以上持続している。
最後に、真空中に置かねばならないのは真空ポンプを要するので、電力損失にもなり、真の自己点火にならない。そこで図6のように、図1の装置を大気中に出すには、Al陰極Kとビ−ムコレクタ−BCの距離を5mm以下にする。このようにすると、図1の真空中の場合と同程度(≧3/4)のHe++ビ−ム電流iとなる。この理由は、HO,DOの圧力が気温10℃で〜0.01気圧であり、He++のエネルギ−100eV以上では平均自由行程が長く、衝突が小さくなるためと考えられる。
なお、陰極Kの小穴を多くすると、He++電流iは比例して増大する。即ち、Al板(箔)と薄い紙、カ−バッテリ−液と少しの重水を増加させるだけで上の重水素核融合装置の出力は増大する。
重要な実験事実
Figure 2008261830
場B≧2ガウス[Al陰極に平行な]の必要性,紙に染ませた液の温度が〜300°Kとすれば電子のサイクロトロン半径は0.3cmに対応、(3)最終電圧V≧100Vで自己点火になる。
太陽コロナ加熱〜ニュ−トリノとの類似
上の自己点火している重水素核融合装置の陰極K面にほぼ垂直に、図7に示した平面コンデンサ−(詳細は特願2002−294264参照)の面を向ける。かくて、コンデンサー回路の電圧VをV≧90Vにすると、コンデンサ−回路に(電子)電流が発生(〜20nA)する。次にこのコンデンサ−の面を太陽周辺のコロナに向けるとやはりV≧90Vで電流が受かる。明らかに、太陽中心部からの電子ニュ−トリノと相違する(これは160V以上でないと発生しない)。これ等の実験事実からタウニュ−トリノντで重水素イオンD間の核融合が起こり、
ντ+D+D⇒τ+He+++(Energy△mc
でヘリウムイオンが発生したと考えられる。ここにτはタウ粒子で電子の3312倍の質量を持ち(m=3312m、mは電子の質量)、電荷は電子と同じeである。このτは重水素イオンDの質量3680mに近いので(3312/3680=0.9)、重水素正イオン間のク−ロン反発力を抑制して核融合D+D⇒He++を起こしている。
一方、太陽の中心部では、電子e中のP−P(H−H)チェ−ン反応で 〜1500eVでク−ロン反発力を抑制し高温核融合を起こしている。また地上の磁場閉じ込め高温プラズマ核融合では10KeV以上の高密度重水素イオンを、長時間閉じ込める必要がある。これ等は全て、電子eによる正イオン間のク−ロン反発力の中和のためである。しかし、第3世代素粒子τでは100eV以上で瞬時にして、自己点火の重水素核融合を生ずる。コロナと低電圧重水素核融合装置がそれを証明している。
*電極材料の問題
化学的<常温核融合>で以前に話題になったパラジウムPdを陰極Al板の代わりに使用した結果、図1で弱磁場BをかけなくてもV=21VでヘリウムHe++イオンが発生したが約30secで間欠(BCへのイオン電流i;8nA〜0)し安定しなかった。次にBをかけても、大きな変動があり(約10secで8nA〜4nA)、V≧100Vにしても自己点火は起きなかった。Pdは重水素を吸収するためと考えられる。
他にAl板以外では、SUS板でも同様な結果を得ている。Cu板ではHSOと化学反応するので共振電圧が16Vより低下し、〜7Vになり安定しなかった。
Figure 2008261830
はアルミ箔と紙の面積を増大すれば出力の大きな自己点火の重水素核融合装置となる。Introduction In high temperature nuclear fusion, negative electrons e and deuterium ions D + are heated to 10 Kev or more of high energy, suppressing K + repulsion of D + + D + to obtain helium ions He ++ to obtain fusion energy. . It is to imitate the center of the sun or hydro bomb, and specific applications are tokamak or helical plasma fusion research devices using confined magnetic fields and laser inertial fusion research devices. However, the principle prospect has not been established even after more than 50 years since the beginning of research.
On the other hand, the <cold fusion device>, which has recently become a hot topic, is indistinguishable in principle because it cannot distinguish between chemical liquid energy and physical fusion energy.
Thus, all on-ground nuclear fusion research devices are hopeless, and the author believes that they must pay attention to [other natural phenomena and elementary particle fundamentals]. Specifically, the corona around the sun, not the center of the sun, has a durability of ~ 1 million degrees. Next, negatively charged third generation elementary particle tau particles (charge = electron charge e , mass = 3312 times the electron mass).
The present invention demonstrates another physically accurate deuterium fusion discovered under the above attention.
Figure 2008261830
Abstract A thin paper dyed with a car battery solution (H 2 O + H 2 SO 4 ) and heavy water D 2 O is sandwiched between two aluminum plates in a vacuum, and a voltage V is applied to form an anode and a cathode. Make a small hole in this cathode plate
Figure 2008261830
At 16 V, a weak magnetic field B 0 (2 Gauss or more) is also applied in parallel to the aluminum plate surface. After ˜25 sec, helium ions He several times as large as H + , D + current from the small hole of the cathode to <voltage resonant> ++ occurs. Increasing the V to 100V or more followed, V, only He ++ ion current is also off the B 0 is permanent. That is, a self-ignition deuterium fusion apparatus with He ++ ≧ 100 V and ˜1 μA / cm 2 can be obtained.
The above phenomenon is similar to ~ 1 million degrees (100 eV) heating and permanence of the solar corona.
Text Figure 1 shows the basics of a low-voltage deuterium fusion device. In the figure, two Al are thin aluminum (˜0.1 mm) plates (foils) that form the anode A and the cathode K, and P is a car battery solution (H 2 O + H 2 SO 4 ) and heavy water D 2 O. thin paper was Mashi dyed (~0.1mm), B 0 is a weak magnetic field applied parallel to the Al plate (≧ 2 Gauss), V is the DC power supply to 100 V, B M 90 degree bend magnetic field magnetic sector mass analyzer , BC is the beam collector of the analyzer, i is the current to BC, D + is a deuterium positive ion, and He ++ is a helium positive ion (divalent).
This device is placed in a vacuum of 10 to 10 2 Pa by a rotary pump, gasified from a liquid, and further partially ionized (by an electric field).
FIG. 2 shows a resonance phenomenon <voltage resonance> with respect to the voltage of the positive ion current. DC in Figure 1
Figure 2008261830
The current i to the BC of the mass analyzer suddenly increases several times and changes from deuterium positive ions D + to helium positive ions He ++ .
* Mass m of the ions in the orthogonal magnetic field type mass analyzer m = Ze (B M r) 2 m e / V i = 8.8 × 10 -2 Z (B M r) 2 m e / V i
It is evaluated with. Where e is the charge of the electron, B M is the analytical magnetic field in Gaussian units,
r is the radius of curvature in cm, the V i ion acceleration voltage in volts, is m e is the electron mass. Z is the number of charges.
Figure 2008261830
Note that when applied, the current i to the BC increases resonantly and He ++ is generated.
Figure 2008261830
It should be noted that only pure water H 2 O and heavy water D 2 O, instead of the car battery solution to be dyed on the paper P, appear only as H + and D + (with OH and OD ), and H 2 SO 4 and D The presence of 2 SO 4 was important. In other words, SO 4 −− is measured by the above mass analyzer and is decisive for voltage resonance and He ++ generation, and its concentration has been experimentally found to dominate the resonance voltage.
Figure 2008261830
As shown in FIG. 3, a He ++ ion current is permanently generated (≧ 100 V, 1 μA / cm 2 ). That is, it becomes a low voltage deuterium fusion device of [self ignition] of D + + D + ⇒He ++ + energy release.
FIG. 4 shows the voltage distribution between the anode A and the cathode K. From the paper P dried in a vacuum, the Al anode
Figure 2008261830
Later, the power supply voltage is raised, the power supply is turned off at an arbitrary voltage V, and the He ++ ion current maintaining time is shown. At V = 16V, it is ˜1 min, 50V˜5 min, 70V˜20 min, 85V˜12 hour (half day), 100 V permanent, that is, a self-ignition (output / input → ∞) fusion reactor. In fact, it lasts more than half a year now.
Finally, since it is necessary to place a vacuum pump in the vacuum, it causes power loss and does not result in true self-ignition. Therefore, as shown in FIG. 6, in order to bring the apparatus of FIG. 1 into the atmosphere, the distance between the Al cathode K and the beam collector BC is set to 5 mm or less. In this way, the He ++ beam current i is about the same as that in the vacuum of FIG. 1 (≧ 3/4). The reason for this is considered that the pressure of H 2 O, D 2 O is ˜0.01 atm at an air temperature of 10 ° C., and the mean free path is long and the collision becomes small when the energy of He ++ is −100 eV or more.
If the number of small holes in the cathode K is increased, the He ++ current i increases in proportion. That is, the output of the above deuterium fusion device increases only by increasing the Al plate (foil), the thin paper, the car battery liquid and a little heavy water.
Important experimental facts
Figure 2008261830
Necessity of field B 0 ≧ 2 gauss [parallel to Al cathode], if the temperature of the liquid dyed on paper is ~ 300 ° K, the electron cyclotron radius corresponds to 0.3 cm, (3) final voltage V When it is ≧ 100V, self-ignition occurs.
Solar corona heating-similar to neutrino Above the self-ignited deuterium fusion device cathode K surface almost perpendicular to the planar capacitor shown in FIG. 7 (see Japanese Patent Application No. 2002-294264 for details) Turn the face. Thus, when the voltage V C of the capacitor circuit is set to V C ≧ 90 V, an (electron) current is generated in the capacitor circuit (˜20 nA). Next, when the surface of the capacitor is directed to the corona around the sun, the current is still received at V C ≧ 90V. Obviously, it is different from the electronic neutrino from the center of the sun (this will only occur at 160V or higher). From these experimental facts, fusion between deuterium ions D + occurs in Taunu-Torino ν τ ,
ν τ + D + + D + ⇒τ + He ++ + (Energy Δmc 2 )
It is thought that helium ions were generated. Here tau - has electrons 3312 times the mass in tau (m = 3312m e, m e is the electron mass), charge the same e the electron - is. The tau - so close to the deuterium ions D + mass 3680m e (3312/3680 = 0.9 ), click between the deuterium positive ions - to suppress Ron repulsion Fusion D + + D + ⇒He ++ Has caused.
On the other hand, in the central part of the sun, the K-repulsive force is suppressed at ˜1500 eV by the P—P (H + -H + ) chain reaction in the electron e to cause high temperature nuclear fusion. In addition, high-temperature plasma fusion on the ground requires high-density deuterium ions of 10 KeV or higher to be confined for a long time. These are all due to the neutralization of the repulsive force between the positive ions by the electrons e . However, the third generation elementary particle τ instantly produces self-ignition deuterium fusion at 100 eV or more. Corona and the low-voltage deuterium fusion device prove this.
* Problems chemical electrode material results using palladium Pd became topic previously <cold fusion> instead of the cathode Al plate, helium He at even V = 21V, without applying a weak magnetic field B 0 in FIG. 1 Although ++ ion was generated, it was not stable because it was intermittent (ion current i to BC; 8 nA to 0) in about 30 seconds. Then be multiplied by the B 0, there is a large variation (8nA~4nA in about 10sec), self-ignition did not occur even if the V ≧ 100V. Pd is considered to absorb deuterium.
Other than the Al plate, similar results are obtained with the SUS plate. Since the Cu plate chemically reacted with H 2 SO 4 , the resonance voltage decreased from 16V and became unstable at ˜7V.
Figure 2008261830
If the area of aluminum foil and paper is increased, it will become a self-ignition deuterium fusion device with high output.

低電圧重水素核融合装置(真空中)の組織図。Organizational diagram of low-voltage deuterium fusion device (in vacuum). 陽極−陰極間の電圧V=16Vのとき、陰極の小穴からの正イオン電流iの分析磁場への依存性。<電圧共振>の発見Dependence of the positive ion current i from the small hole of the cathode on the analytical magnetic field when the anode-cathode voltage V = 16V. Discovery of <Voltage Resonance> 電圧共振の後V=100Vに上げ、Vを切って長年月が経ったときのHe++電流の分析磁場特性。<自己点火>の発見Analytical magnetic field characteristics of He ++ current when V is increased to 100 V after voltage resonance and V is turned off for many years. Discovery of <self-ignition> 陽極−陰極間の<電位分布>。<Potential distribution> between anode and cathode. 電圧共振の後Vを任意電圧に上げて切ったときのHe++イオン電流の持続時間。<持続時間>。Duration of He ++ ion current when V is turned up to an arbitrary voltage after voltage resonance. <Duration>. 図1の真空中の低電圧重水素核融合装置を大気中に出したときの組織図<低電圧重水素核融合装置(大気中)>。Organizational diagram when the low-voltage deuterium fusion device in vacuum in FIG. 1 is put out into the atmosphere <low-voltage deuterium fusion device (in air)> 低電圧重水素核融合装置(大気中)と太陽周辺コロナからのタウニュ−トリノの平面コンデンサ−による検出図。Detection diagram by low-voltage deuterium fusion device (in air) and planar capacitor of Taunu Turin from solar corona.

符号の説明Explanation of symbols

[図1] 図1図面参照
[図2] i:正イオン電流、H:水素正イオン電流、D:重水素正イオン電流、He++:ヘリウム2価正イオン電流、B:陽極と陰極のアルミ板に平行にかけた弱磁場。
[図3] 図1図面参照
[図4] V:陽極−陰極の電圧。図1図面参照
[図5】 t=∞:持続時間が無限大になる(自己点火を示す)。
[図6] Ins.:陽極と紙(P)の間に挿入した絶縁膜。図1参照
[図7] M:平面金属板、DO:重水を染ませた紙、Ins.:絶縁膜、ντ:タウニュ−トリノ、I:電子電流、He++:ヘリウムイオン。
[FIG. 1] Refer to FIG. 1 [FIG. 2] i: positive ion current, H + : hydrogen positive ion current, D + : deuterium positive ion current, He ++ : helium divalent positive ion current, B 0 : with anode Weak magnetic field applied in parallel to the cathode aluminum plate.
[FIG. 3] See FIG. 1 [FIG. 4] V: Voltage of anode-cathode. See FIG. 1 [FIG. 5] t = ∞: duration is infinite (indicating self-ignition).
[FIG. 6] Ins. : An insulating film inserted between the anode and paper (P). See FIG. 1 [FIG. 7] M: plane metal plate, D 2 O: paper stained with heavy water, Ins. : Insulating film, ν τ : Taunu-Torino, I e : electron current, He ++ : helium ion.

Claims (1)

金属板の間に重水を含む液体を染ませた紙または絶縁膜を挟み、金属板間に電圧をかけ、且つ、金属板に平行な磁場をかけ、陰極側の金属板の穴から出てくるヘリウムイオンを電源として利用する重水素核融合装置。  Helium ions coming out from the hole in the metal plate on the cathode side, with paper or an insulating film dyed with liquid containing heavy water sandwiched between the metal plates, applying a voltage between the metal plates and applying a magnetic field parallel to the metal plates Deuterium fusion device that uses as a power source.
JP2007128599A 2007-04-12 2007-04-12 Low voltage deuterium nuclear fusion device Pending JP2008261830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128599A JP2008261830A (en) 2007-04-12 2007-04-12 Low voltage deuterium nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128599A JP2008261830A (en) 2007-04-12 2007-04-12 Low voltage deuterium nuclear fusion device

Publications (1)

Publication Number Publication Date
JP2008261830A true JP2008261830A (en) 2008-10-30

Family

ID=39984402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128599A Pending JP2008261830A (en) 2007-04-12 2007-04-12 Low voltage deuterium nuclear fusion device

Country Status (1)

Country Link
JP (1) JP2008261830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077360A (en) * 2007-09-21 2009-04-09 Joshin Uramoto Neutrino communication using nuclear fusion device
US20140098917A1 (en) * 2011-04-26 2014-04-10 Alessandro MEIARINI Method and apparatus for generating energy by nuclear reactions of hydrogen adsorbed by orbital capture on a nanocrystalline structure of a metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302496A (en) * 2002-04-10 2003-10-24 Joshin Uramoto Generator or hydrogen negative ion and 'ki'
JP2006258780A (en) * 2005-03-16 2006-09-28 Joshin Uramoto Measurement of heavy water content in water by capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302496A (en) * 2002-04-10 2003-10-24 Joshin Uramoto Generator or hydrogen negative ion and 'ki'
JP2006258780A (en) * 2005-03-16 2006-09-28 Joshin Uramoto Measurement of heavy water content in water by capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077360A (en) * 2007-09-21 2009-04-09 Joshin Uramoto Neutrino communication using nuclear fusion device
US20140098917A1 (en) * 2011-04-26 2014-04-10 Alessandro MEIARINI Method and apparatus for generating energy by nuclear reactions of hydrogen adsorbed by orbital capture on a nanocrystalline structure of a metal
JP2014517918A (en) * 2011-04-26 2014-07-24 ピャンテッリ,シルヴィア Method and apparatus for generating energy by nuclear reaction of hydrogen adsorbed by orbital capture on metal nanocrystal structures

Similar Documents

Publication Publication Date Title
Zhang et al. Surface charge density of triboelectric nanogenerators: Theoretical boundary and optimization methodology
Iriyama et al. A new kind of all-solid-state thin-film-type lithium-ion battery developed by applying a DC high voltage
Wang et al. Electron power absorption dynamics in magnetized capacitively coupled radio frequency oxygen discharges
Gallot-Lavallée Dielectric materials and electrostatics
Block Model experiments on aurorae and magnetic storms
Barengolts et al. Dynamics of the changes in the parameters of the arc plasma during the destruction of a helium-induced tungsten fuzz by arc pulses
Maurya et al. Charge dissipation and self focusing limit in high current density ion beam transport through a micro glass capillary
Zhong et al. Numerical characterization of the breakdown process of dc-driven micro-discharges sustained by thermionic emission
JP2008261830A (en) Low voltage deuterium nuclear fusion device
Yip et al. Manipulating the electron distribution through a combination of electron injection and MacKenzie’s Maxwell Demon
US11296620B2 (en) Metallic glow discharge diode and triode devices with large cold cathode as efficient charge generator—a power cell
Fujiwara et al. An oxygen negative ion source of a new concept using solid oxide electrolytes
Fan et al. Mechanisms of fine structure formation in dielectric barrier discharges
CN101322223A (en) System, apparatus, and method for increasing particle density and energy by creating a controlled plasma environment into a gaseous media
Yujun et al. Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster
Galaly et al. Determination of cathode fall thickness in magnetized dc plasma for argon gas discharge
Surzhikov Numerical simulating the two-dimensional structure of the Penning discharge using the modified drift-diffusion model
Orphanou et al. Modeling of a carbon nanotube ultracapacitor
Mitea et al. Generation of microdischarges in diamond substrates
Zeng et al. Sulfur dioxide (SO2) gas transfer process enhanced by corona discharge
He et al. Study of the discharge mode in micro-hollow cathode
Hur et al. Production and decay mechanism of atmospheric pressure homogeneous discharge generated by two L-shaped electrodes
Song et al. Particle simulation on the ion acceleration in vacuum arc discharge
Grzebyk et al. Improved properties of the MEMS-type ion-sorption micropump
Shuqun et al. Characteristics of the plasma sheath in helium discharge within dielectric tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207