201128223 P61980036TW 32590twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電潤濕顯示器與電潤濕效應的 控制方法,且特別是有關於一種電潤濕顯示器與應用於電 潤濕顯示器的控制方法。 【先前技術】 電潤濕顯示器為一種結構簡單的顯示器。當未施加電 場於電潤濕顯示器時,油墨佈滿絕緣層表面,入射光直接 被油墨吸收而使晝面呈現暗態。反之,若要使晝面呈現亮 態’則可施加電場使油墨收縮,進而使入射光被反射層反 射至顯示器外部以呈現亮態。 當在電潤濕元件的兩端外加電場時,水中的離子會往 電潤濕元件的中間層(intermediate layer )移動,其中部份 的離子在外加電場移除後,仍會殘留於中間層而造成電荷 殘餘(charge trapping ),進而使油墨維持部份收縮的狀態 而造成灰階控制不易。只有當殘餘電荷被完全釋放,油墨 才能再次佈滿中間層表面。然而釋放殘餘電荷所耗費之時 間會降低電潤濕單元的反應速度,進而影響顯示器的顯示 品質與應用場合。 【發明内容】 本發明提供一種電潤濕顯示器,能減少電荷殘餘的致 應’進而提升灰階控制的準確度。 201128223 ro I%w36TW 32590twf.doc/n 本發明提供一種電潤濕顯示器 進而提升灰階控制的準確度。 王的電%, 本發明提供-種電潤濕效應的控制方法,能減 殘餘的效應,進而提升灰階控制的準確度。 何 —ίΓ月ί—實施例提出—種電潤濕顯示器。電潤渴顯 不為包括1潤群元、—開_及—控㈣ : 元具有-第-端與相對於第—端的—第二端。電們^早 =壓=潤濕顯示器的灰階,其中跨壓的峨: 日守間正負父替變化。開關接收一控制信號、—第 -第二電壓與-參考電壓。開關依據控制信號於一第 間分別將第-電壓與參考電壓傳送至第—端與第二: 成對應的跨壓,以及於—第二時間分職參考電壓與二 電壓傳送至第-端與第二端以形成對應的跨壓。第1〜 的跨壓與第二時_跨壓極性相反。控_產生並:間 制信號至開關。 咬趣 本發明之一實施例還提出一種電潤濕顯示器。 顯示器包括-電潤濕單心—開關以及—控制器。 單元依據-跨壓控制電潤濕顯示器的灰階,其巾跨^鐵 隨時間正負交㈣化且大小固定。電舰單元包括、^ 導電層第二導電層、—第—中間層、—第二中間爲、 及-顯示介質層。第二導電層相對於第—導電層。第^ 間層配置於第二導電層上。第二中間層配置於第—導中 上,且面向第二中間層。顯示介質層配置於第—中間】層 第二中間層間。開關依據一控制信號將一電壓與—灰^輿 "Τ電 201128223 roiy8Wj01'w 32590twf.doc/n 壓分別傳送至第一導電層與第二導電層以於一第一時間形 成對應的跨壓,以及將參考電壓與一電壓分別傳送至第一 導電層與第二導電層以於一第二時間形成對應的跨壓。第 一時間的跨壓與第二時間的跨壓極性相反。控制器產生並 傳送控制信號至開關。 本發明之一實施例又提出一種電潤濕效應的控制方 法。此方法適用於一電潤濕顯示器,其中電潤濕顯示器包 括一開關與一電潤濕單元◊電潤濕效應的控制方法包括以 下步驟。首先,傳送一控制信號至開關。接著,雙切開關 依據控制信號於一第一時間分別傳送一第一電壓與一參考 電壓至電潤濕單元的一第一導電層與一第二導電層以形成 /跨壓。再來,開關依據控制信號於一第二時間分別傳送 參考電壓與一第二電壓至電潤濕單元的第一導電層與第二 導電^以形成跨壓,其中跨壓的極性隨時間正負交替變 化。最後,電潤濕單元依據跨壓的變化控制電潤渴 哭 的灰階。 - 基於上述,本發明實施例的電潤濕顯示器與電潤濕交 應的控制方法主要是彻正貞極性交替變化且彳 層的殘餘電荷,進而提升電潤濕顯示器的万 應t又與提升灰階控制的準確度’或是使収貞極 壓並搭配對稱性的結構來確保均句電場的產生 減與以提升灰階控^準=奸電縣顯4的反肩 為讓本發明之上述_和優點能更_驗,下文牟 201128223 ro iyttuu36TW 32590twf.doc/n 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 第一實施例 一圖1A繪不為本發明第一實施例之電潤濕顯示器川〇 的示意圖。請參照圖1A,電潤濕顯示器1〇〇包括—^潤濕 單元110、一開關120以及一控制器。電潤渴 具有一^端m與相對於第—端112的—第端m。 電潤濃單元i i 0依據一跨壓Vpιχ控制電潤濕顯示器 灰階。 圖1Β為圖1Α之電壓Vi、V2、參考電壓Vref與跨壓 Vnx隨時間變化的波形圖。如圖1B所示’跨壓v概的極 ,隨8守間正負交替變化。請同時參照圖1A與圖1B,控制 m產生並傳送一控制信号虎SC至開目120。控制信號 。歹,為—脈波調變(pulse width modulation,PWM)信 ,開關+120接收控制信號sc、電壓v广V2與參考電壓 ’開目120依據控制信號SC控制開關的切換依 關UO&I1和電壓%送入電潤濕單元110。詳言之,開 !^間Tl分別將電壓Vl與參考電壓Vref傳送至電 =早凡U0的第一端112與第二端114以形成對應的跨 =叹於時間T2分別將參考電壓Vref與電壓^傳 中日士 H U2與第二端114以形成對應的跨壓VPD(,其 太二V的跨壓Vpix與時間T2的跨壓Vpix極性相反。在 本A例中,開gl2G例如為一雙切開關。 201128223 P61980036TW 32590twf.doc/n 另一方面,時間Ti的跨壓Vpixi極性例如為正,而 時間I的跨壓VPIX之極性例如為負。除此之外,本實施 例的電壓V〗與電壓V2存在一比例關係,即Vi = kV2,其 中k#l。也就是說’電壓Vl大於或小於電壓%。本實施 例是以電壓Vi大於電壓vz為例,且本實施例的參考電壓 Vref例如為一接地電壓,即Vref=0。值得注意的是,參考 電壓vref也可為其他固定電壓,並不受限於此。 除此之外,本實施例的電潤濕單元110的第一端112 與第二端114例如分別為一導電層n2a與一導電層 114a。另外,電潤濕單元110包括一中間層(intermediate layer) 116以及一顯示介質層118。中間層ι16配置於導 電層114a上,且中間層u6例如為包括疏水層 (hydrophobic )、絕緣層(insuiat〇r layer )及其他複合結 構(以上皆未繪示)等。顯示介質層118則是配置於導電 層112a與導電層114a間。另外,電潤濕單元1更包括 一基板117。導電層114a配置於基板117上。基板117例 如包括一反射層(未繪示)以反射入射光(例如光線L)。 如圖1A所示,顯示介質層Π8包括一液體118a與一 液體118b。液體118b配置於導電層114a上。部份的液體 118b被液體118a包覆’其中液體118a與液體11此不相 溶。在本實施例中,液體118a為導電性液體(例如為水), 而液體118b非導電性液體(例如為油墨),且液體uga 與118b内更可以加入其他染料。當跨壓νριχ形成於導電 層112a與導電層114a間時,該液體118b會呈現一收縮狀 201128223 P61980036TW 32590twf.doc/n201128223 P61980036TW 32590twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to an electrowetting display and a method for controlling the electrowetting effect, and in particular to an electrowetting display and application Control method for electrowetting displays. [Prior Art] An electrowetting display is a display having a simple structure. When no electric field is applied to the electrowetting display, the ink fills the surface of the insulating layer, and the incident light is directly absorbed by the ink to make the face appear dark. Conversely, if the face is to be in a bright state, an electric field can be applied to cause the ink to shrink, thereby causing the incident light to be reflected by the reflective layer to the outside of the display to present a bright state. When an electric field is applied to both ends of the electrowetting element, ions in the water move toward the intermediate layer of the electrowetting element, and some of the ions remain in the intermediate layer after being removed by the applied electric field. This causes charge trapping, which in turn causes the ink to maintain a partially contracted state, which makes gray scale control difficult. Only when the residual charge is completely released can the ink fill the surface of the intermediate layer again. However, the time it takes to release the residual charge reduces the reaction speed of the electrowetting cell, which in turn affects the display quality and application of the display. SUMMARY OF THE INVENTION The present invention provides an electrowetting display that reduces the charge residual response and thereby improves the accuracy of gray scale control. 201128223 ro I%w36TW 32590twf.doc/n The present invention provides an electrowetting display to further improve the accuracy of gray scale control. The power of the king, the present invention provides a control method for the electrowetting effect, which can reduce the residual effect and further improve the accuracy of the gray scale control. HE — Γ Γ ί — The embodiment proposes an electrowetting display. The electric thirst is not included in the first group, the first end and the second end. Electricity ^ early = pressure = wet display gray scale, which cross-pressure 峨: day-to-day positive and negative father change. The switch receives a control signal, a -second voltage and a reference voltage. The switch transmits the first voltage and the reference voltage to the first end and the second corresponding to the cross voltage according to the control signal, and the second time divided reference voltage and the second voltage are transmitted to the first end and The second end is formed to form a corresponding cross pressure. The 1st to the cross pressure is opposite to the second time _ cross pressure. Control_Generate and: Intermit the signal to the switch. Biting an embodiment of the present invention also provides an electrowetting display. The display includes an electrowetting single core-switch and a controller. The unit is based on the cross-pressure control of the gray scale of the electrowetting display, and the towel cross-iron is positively and negatively crossed (four) and fixed in size. The electric ship unit includes a second conductive layer of a conductive layer, a first intermediate layer, a second intermediate layer, and a display medium layer. The second conductive layer is opposite to the first conductive layer. The second interlayer is disposed on the second conductive layer. The second intermediate layer is disposed on the first guide and faces the second intermediate layer. The display medium layer is disposed between the second intermediate layer of the first-middle layer. The switch transmits a voltage to the first conductive layer and the second conductive layer according to a control signal to transmit a corresponding voltage across the first conductive layer and the second conductive layer respectively. And transmitting a reference voltage and a voltage to the first conductive layer and the second conductive layer respectively to form a corresponding voltage across the second time. The cross-pressure at the first time is opposite to the cross-pressure at the second time. The controller generates and transmits a control signal to the switch. An embodiment of the invention further proposes a method of controlling the electrowetting effect. The method is applicable to an electrowetting display wherein the electrowetting display comprises a switch and an electrowetting unit. The method of controlling the electrowetting effect comprises the following steps. First, a control signal is sent to the switch. Then, the double-cut switch transmits a first voltage and a reference voltage to a first conductive layer and a second conductive layer of the electrowetting cell to form/cross-pressure according to the control signal. Then, the switch respectively transmits the reference voltage and the second voltage to the first conductive layer and the second conductive electrode of the electrowetting cell according to the control signal to form a voltage across the second, wherein the polarity of the voltage across the voltage alternates with positive and negative times. Variety. Finally, the electrowetting unit controls the gray scale of the electric thirst crying according to the change in the cross pressure. - Based on the above, the control method of the electrowetting display and the electrowetting according to the embodiment of the present invention is mainly to completely change the polarity of the alternating layer and the residual charge of the germanium layer, thereby improving the universality of the electrowetting display and improving The accuracy of the gray-scale control' is either a structure that makes the extreme pressure and symmetry to ensure that the generation of the electric field is reduced and the gray-scale control is controlled. The above-mentioned _ and advantages can be further tested, and the following is exemplified by the following example, and the following description is given in detail with reference to the accompanying drawings. [Embodiment] FIG. 1A is a schematic view showing an electrowetting display of the first embodiment of the present invention. Referring to Figure 1A, the electrowetting display 1 includes a wetting unit 110, a switch 120, and a controller. The electric thirst has a terminal m and a first end m relative to the first end 112. The electrowetting unit i i 0 controls the gray scale of the electrowetting display according to a cross pressure Vpιχ. Fig. 1 is a waveform diagram of the voltage Vi, V2, the reference voltage Vref, and the voltage across the voltage Vnx of Fig. 1 as a function of time. As shown in Fig. 1B, the voltage across the voltage v is alternating with the positive and negative of the 8th guard. Referring to FIG. 1A and FIG. 1B simultaneously, the control m generates and transmits a control signal Tiger SC to the opening 120. control signal .歹, is the pulse width modulation (PWM) signal, the switch +120 receives the control signal sc, the voltage v wide V2 and the reference voltage 'opens 120 according to the control signal SC control switch switching UO&I1 and The voltage % is sent to the electrowetting unit 110. In detail, the interval T1 respectively transmits the voltage V1 and the reference voltage Vref to the first end 112 and the second end 114 of the U0 to form a corresponding span = sigh at time T2, respectively, the reference voltage Vref and The voltage passes through the Japanese H U2 and the second end 114 to form a corresponding trans-voltage VPD (the cross-voltage Vpix of the T2 is opposite to the voltage Vpix of the time T2. In the present example, the gl2G is, for example, A double-cut switch. 201128223 P61980036TW 32590twf.doc/n On the other hand, the cross-voltage Vpixi polarity of time Ti is, for example, positive, and the polarity of the voltage across the voltage VPIX of time I is, for example, negative. In addition, the voltage of this embodiment V is in a proportional relationship with the voltage V2, that is, Vi = kV2, where k#1. That is, the voltage V1 is greater than or less than the voltage %. In this embodiment, the voltage Vi is greater than the voltage vz, and the embodiment is The reference voltage Vref is, for example, a ground voltage, that is, Vref=0. It is to be noted that the reference voltage vref may be other fixed voltages, and is not limited thereto. In addition, the electrowetting unit 110 of the present embodiment is additionally provided. The first end 112 and the second end 114 are, for example, a conductive layer n2a and a conductive layer 114, respectively. In addition, the electrowetting unit 110 includes an intermediate layer 116 and a display dielectric layer 118. The intermediate layer ι16 is disposed on the conductive layer 114a, and the intermediate layer u6 includes, for example, a hydrophobic layer and an insulating layer. (insuiat〇r layer) and other composite structures (not shown above), etc. The display dielectric layer 118 is disposed between the conductive layer 112a and the conductive layer 114a. In addition, the electrowetting unit 1 further includes a substrate 117. Conductive The layer 114a is disposed on the substrate 117. The substrate 117 includes, for example, a reflective layer (not shown) to reflect incident light (e.g., light L). As shown in Fig. 1A, the display medium layer 8 includes a liquid 118a and a liquid 118b. 118b is disposed on the conductive layer 114a. A portion of the liquid 118b is covered by the liquid 118a, wherein the liquid 118a is incompatible with the liquid 11. In the present embodiment, the liquid 118a is a conductive liquid (for example, water), and the liquid 118b non-conductive liquid (for example, ink), and other dyes may be added to the liquid uga and 118b. When the cross-voltage νρι is formed between the conductive layer 112a and the conductive layer 114a, the liquid 118b will exhibit a charge Shaped 201128223 P61980036TW 32590twf.doc / n
詳細來說,當未施外加電場時,油墨(液體^肋)佈 滿中間層116的表面並位於晝素牆(pixel wall) 119之間, 入射光(例如光線L)直接被油墨(液體118b)吸收’進 而使畫面呈現暗態。反之,欲使畫面呈現亮態,可施加電 壓(例如為跨壓VPIx )使油墨收縮(如圖1A的液體118b 所示)’露出基板117上的反射層(未繪示)。如此一來, 光線L便能被反射層(未繪示)反射至顯示器100的外部, 而使晝面呈現亮態。而油墨的收縮主要是因為外加電場使 水(液體118a)中的離子(未繪示)往中間層116移動, 而將油墨(液體118b)給撥開,進而使油墨(液體118b) 收縮聚集在一起。 承上述,本實施例就是利用電潤濕單元110第一端112 與第二端114間的跨壓vPIX來控制液體118b的收縮。其 中跨壓VPIX與電壓V!、電壓V2與參考電壓Vref有關。詳 言之,跨壓VpIX為電壓Vi與參考電壓Vref的壓差或參考 電壓Vref與電壓乂2的壓差。 請同時參照圖1A與圖1B,在時間T!的時候,開關 120依據控制信號SC將電壓V!與參考電壓Vref分別傳送 至電潤濕單元110的第一端112與第二端114。此時,電 潤濕早元1 10的跨壓Vpix = Vi-Vref。另一方面’在時間丁2 時,開關120依據控制信號SC將參考電壓Vref與電壓V2 分別傳送至電潤濕單元110的第一端112與第二端114, 進而產生跨壓VPIX = Vref-V2於電潤濕單元110上。 201128223 i^oiyeuujofW 32590twf.doc/n 在本實施例中,由於參考電壓^為接地電壓,且電 壓v〗與V2皆正電壓,因此時間T】的跨壓Vpix與時間τ2 的跨廢νΡΙΧ之極性相反。換言之,如圖1Β所示,時間丁1 =跨壓νΡΙΧ之極性為正’而時間τ2的跨壓V犯之極性為 負。另外’又因為本實施例的電壓V1大於電壓%,故 而言’跨壓1在_ T1的絕對值大 在 日夺間丁2的絕對值,即|Vl—Vr小|Vref—v2|。簡單^在 ,間Tl與時間T2所分別對應的跨壓VPIX*但極性相反且 ί二 此種施加非對稱能量於電潤濕單元⑽的 * 應時間。此外,隨時間正負交替變 =t)獲付改善,並且提升電難顯示器则灰 準確度。而由於殘餘電荷的減少,中間層 SC而:二广短爾控制信號 丁】等於時間丁2;而在期„2 ;=: 信號SC (例如為脈波 trapping)的增加,則可_由、^成電何殘餘(charge 編㈣Τ2錢長蝴s(WVpk>g時的= 201128223 r〇^suu36TW 32590twf.doc/n m 間P2所示的狀態。當铁,在增 _中’時間Tl也可小於時:期;=他實 幅(即跨壓VpIX > 0時㈣η2例如田期間P】的正振 )料電荷殘餘‘ge 來缩短時Η 了廿π且4 ^控制k號SC的工作週期 木細鈕%間T】並延長負振幅( 的時間T2。其中時間Τι與 ::::幅) no的反射率以提供更不_灰階。s 裔 改面,由難缝Vl與電壓V2的大小,亦能 改k跨壓VPIX的正負振幅,豆中 刀月b V2與來考雷懕v沾兰二中正負振幅为別為電壓%、 因此隨著轉Vl與轉V2 加袂, 大。如此-來,由於施加能量的丄== 反應速率亦可獲得提升。此外,使用者== 信號SC的頻率來調整跨壓Vpix的頻率。“,= 間P4所示,當控制信號sc (例如 頻 率,’跨壓^的頻率也同時減為其二 另Ί方面,在期間P5,由於電壓~與v2皆為ον, 如二’f單儿110的跨壓Vpix也為〇。此時,液體U8b(例 D在缺乏外加電場的情況下會平舖於中間層116上 方’並吸收來自外界的光線L,進而使晝面呈現暗態。因 由調整電壓Vi與V2的大小,便能控制液體⑽ 程度以影響光線L的通過與否,進而達到 暗態的控制。 — 儿 11 201128223 ^oiybuujofW 32590twf.doc/n 第二實施例 圖2A繪不為本發明第二實施例之電潤濕顯示与200 的示意圖。請參照圖2A,本實施例之電潤濕顯示器2〇〇 與第一實施例的電潤濕顯示器100類似,惟二者差異之處 在於:本實施例的電潤濕單元11〇更包括中間層216。如 圖2A所示,中間層216配置於導電層112a上,且面向中 間層116。顯示介質層118配置於中間層116與中間声216 間。 ' 另一方面,在本實施例中,原本第一實施例的電壓 %與電壓V!相同。也就是說,開關120於時間Τι依據控 制信號SC分別將電壓V】與參考電壓Vref傳送至導電層 112a與導電層114a以形成對應的跨壓VPIX,以及於時間 12將參考電壓Vref與電壓Vi分別傳送至導電層112&與導 電層114a以形成對應的跨壓vPIX’其中時間τ】的跨壓γΡΙΧ 與時間T2的跨壓▽1^大小相等但極性相反。 假設在沒有中間層216的情況下,當電壓ν]在時間 丁2由導電層114a送入電潤濕單元11 〇時’由於電荷(未 繪示)必須先通過中間層116才能在電潤濕單元11〇的第 —端112與第二端114感應出液體118b (例如油墨)收縮 所需的電場,因此電場強度容易受到中間層丨16内殘留電 荷的影響。然而當電壓V!在時間T!由導電層U2a送入 4 ’電荷(未繪示)是直接在電潤濕單元1 1〇的第一端1 12 與第二端114產生感應電場,並維持原有電場強度。因此, 由上述可知’本貫施例加了中間層216的電潤濕顯示器2〇〇 12 201128223 P61980036TW 32590twf.doc/n 能夠確保均勻電場的產生,進而增加灰階控制的準確度與 減少電潤濕單元110的反應時間。 圖2B為圖2A之電壓V〗、參考電壓vref與跨壓vPIX 隨時間變化的波形圖。如圖2Β所示,跨壓νΡΙΧ的極性隨 時間正負交替變化。請同時參照圖2Α與圖2Β,控制器130 產生並傳送控制信號SC至開關120。控制信號SC例如為 一脈波調變(pulse width modulation, PWM)信號。開關 12〇接收控制信號sc、電壓v]與參考電壓Vref。接著,開 關120依據控制信號SC將分別電壓V!與參考電壓乂^傳 送至電潤濃單元11〇的第一端112與第二端114以於時間 Τι形成對應的跨壓vPIX,以及分別將參考電壓與電壓 νι傳送至第一端112與第二端114以於時間丁2形成對應 的]%壓VHX,其中時間I的跨壓與時間丁2的跨壓極性相 反。在本貫施例中,開關120例如為一雙切開關。 另一方面,時間Tl的跨壓之極性例如為正,而時間 A的%壓之極性例如為負。除此之外,本實施例的電壓 於參考電壓Vref’且參考電壓Vref例如為一接地電壓。 值件左,¾的是’參考電壓Vfef也可為其他固定·,並不 受限於此。 與第-實施例相同’本實施例主要是利用電潤濕單元 〇第^•端112與第二端114的跨壓v概來控制液體腿 j縮。其中跨壓Vpix與電壓Vi與參考電壓乂 #有關。 ’跨壓Vpix為電麗Vl與參考電壓Vref#壓差或參 。、壓vref與電壓Vl的壓差。在時間Τι的時候,開關12〇 13 201128223 P61980036TW 32590twf.doc/n 依據控制信號SC將電壓V!與參考電壓vref分別傳送至電 潤濕單元110的導電層112a與導電層114a。此時,電潤 濕單元11〇的跨壓vPIX = vrvref。另一方面,在時間下2 時,開關120依據控制信號SC將參考電壓Vref與電壓% 分別傳送至電潤濕單元110的導電層112a與導電層 114a ’進而產生跨壓VPD( = Vref -V^於電潤濕單元11 〇上。 在本實施例中’由於參考電壓Vref為接地電壓,且電 壓V!為正電壓,因此時間&的跨壓與時間I的跨壓大小 相同但極性相反。換言之’如圖2B所示,時間Τ!的跨墨 vPIX之極性為正,而時間A的跨壓Vpix之極性為負,且 跨壓vPIX的正負振幅彼此對稱。因此,藉由使用中間層116 與216的對稱結構,便能確保電壓%無論是從導電層 或114 b送入都能於電潤濕單元丨〇 〇上產生均勻的電場,進 而增加灰階控制的準確度,與減少電潤濕單元11〇的反應 時間。 ^ 除此之外,時間Tl與時間&的長短可依據控制信號 SC而被調整。如圖2B所示,在期間Pi、P3、P4時,時ς τ!等於時間丁2。而在期間!>2時,時間Τι大於時間^,其 例如是藉由將㈣錢sc(例如為脈波 ς 週期㈣咖〇增加或減少。詳細來說,若期間 振1te造f。電何殘餘(ehairgetIiapping)的增加,則可藉由辦 力口控制信號sc的卫作週期來縮短時心並長正^ 如期㈣所示)。雜,在其他實施例中,= 丁1也可小於時間T2°例如當綱μ正振幅造成電荷^ 201128223 P61980036TW 32590twf.doc/n 留(charge trapping)的增加,則可藉由減少控制作於扣 的工作週期雜短_了】並延長負振幅的時^2 另-方面,藉由調整電壓Vl的大小,亦能改變跨壓 vPIX的正貞振幅。此外,制者也可籍由調整控制信號sc 的頻率以控制跨壓VPIX的頻率。舉例來說,如期間^所 示,田控制彳s號(例如為脈波調變信號)的頻率減半時, 跨壓VPIX的頻率也同時減為其餘期間匕〜匕的―半。, ®第三實施例 圖3為應用圖1B與圖2 b之電潤濕效應之控制方法的 步驟流程圖。本實施例的方法適用於一電潤濕顯示器,而 電潤濕顯示器包括-開關與-電潤濕單元,其例如為圖认 與圖2A的電潤屬顯示益1 〇〇的開關12〇(例如為雙切開關) 與電潤濕單兀110。以下敘述請參照圖3並搭配圖1A〜圖 2B。 如圖3所示,本實施例的電潤濕效應之控制方法首先 • 是傳送控制信號SC至開關(例如開關120)(步驟sll〇)。 在本實施例中,控制信號SC例如是由控制器(例如控制 器 130)產生的脈波調變(pulse width modulation,PWM) 信號。接著,開關(例如開關120)依據控制信號sC於時 間T〗分別傳送電壓V!與參考電壓Vref至電潤濕單元uo 的導電層112a與導電層114a以形成跨壓vPIX (步驟 S120)。再來’開關依據控制信號SC於時間丁2分別傳送 參考電壓vref與電壓V2至電潤濕單元11〇的導電層112a 15 201128223 P61980036TW 32590twf.doc/n 與導電層114a以形成跨壓VPIX,其中跨壓Vpw的極性隨 時間正負交替變化(步驟S130)。最後,電潤濕單元u〇 依據跨壓乂?0(的變化改變油墨118b的移動,進而控制電 潤濕顯示器的灰階(步驟S140)。 請參照圖1B與圖2B,本實施例之控制方法更包括開 關依據控制彳g號SC調整時間T〗與時間丁2的比例。另外, 電壓Vi與電壓V2存在一比例關係,即Vi==6;V2,其中ω 為只數。以第一實施例的圖1Β為例,0為不等於1的實 數,(即V〗关V2)。詳細來說,圖1Β是以電壓%大於電 壓V2且電壓%與%皆大於參考電壓%打的情況來作圖, ,中電壓V〗與V2皆為正電壓且參考電壓V时為接地電 壓。值得注意的是,在其他實施例中,電壓V1也可以小於 電壓V2,且參考電壓vref也可為其他固定電壓。另一方面, 以第一貫施例的圖2B為例,ω = 1 ’即電壓Vi等於電壓 V2 ° 除此之外,如圖1B與圖2B所示,時間Τι的跨壓Vpix 之極性例如為正,而時間A的跨壓VPIX之極性為負。時 間凡與時間A的長短以及電壓%與%的大小皆可依據 控制彳§號SC而被調整,進而達到減少電荷殘餘的效果。 另—方面,控制信號SC同樣也能用來調整跨壓Vpix的頻 率以微調灰階或減少殘餘電荷現象。關於此部分的詳細說 明可參照第一與第二實施例,在此就不加贅述。 綜上所述,本發明實施例的電潤濕顯示器由於利用不 同的輸入電壓產生正負極性交替變化且非對稱的跨壓,因 16 201128223 P61980036TW 32590twf.doc/n 此能夠改善中間層的殘餘電荷,縮短油墨的反應時間並提 升電潤濕顯示器的反應速度與提升灰階控制的準確度。另 外,利用正負極性交替變化的跨壓並搭配對稱性的結構也 能確保均勻電場的產生,以提升電潤濕顯示器的反應速與 灰階控制的準確度。除此之外,由於殘餘電荷的減少,中 間層被電荷擊穿的機率也跟著降低,因此中間層的厚度可 以製作得較薄,進而降低電潤濕顯示器所需的驅動能^。In detail, when no external electric field is applied, the ink (liquid rib) is covered with the surface of the intermediate layer 116 and located between the pixel walls 119, and the incident light (for example, the light L) is directly inked (the liquid 118b) ) absorbs 'and then makes the picture appear dark. Conversely, to cause the picture to be in a bright state, a voltage (e.g., across voltage VPIx) can be applied to cause the ink to shrink (as shown by liquid 118b in Figure 1A) to expose a reflective layer (not shown) on substrate 117. In this way, the light L can be reflected by the reflective layer (not shown) to the outside of the display 100, so that the surface is bright. The shrinkage of the ink is mainly because the applied electric field causes ions (not shown) in the water (liquid 118a) to move toward the intermediate layer 116, and the ink (liquid 118b) is pulled away, thereby causing the ink (liquid 118b) to shrink and gather. together. In view of the above, this embodiment utilizes the cross-pressure vPIX between the first end 112 and the second end 114 of the electrowetting unit 110 to control the contraction of the liquid 118b. The mid-span voltage VPIX is related to the voltage V! and the voltage V2 is related to the reference voltage Vref. In detail, the voltage across the voltage VpIX is the voltage difference between the voltage Vi and the reference voltage Vref or the voltage difference between the reference voltage Vref and the voltage 乂2. Referring to FIG. 1A and FIG. 1B simultaneously, at time T!, the switch 120 transmits the voltage V! and the reference voltage Vref to the first end 112 and the second end 114 of the electrowetting unit 110 according to the control signal SC, respectively. At this time, the voltage of the early weak 1 10 is Vpix = Vi-Vref. On the other hand, at time 2, the switch 120 transmits the reference voltage Vref and the voltage V2 to the first end 112 and the second end 114 of the electrowetting unit 110 according to the control signal SC, thereby generating a trans-voltage VPIX = Vref- V2 is on the electrowetting unit 110. 201128223 i^oiyeuujofW 32590twf.doc/n In this embodiment, since the reference voltage ^ is the ground voltage, and the voltages v and V2 are both positive voltages, the polarity of the cross-voltage Vpix at time T] and the time τ2 across the waste ΡΙΧ in contrast. In other words, as shown in Fig. 1A, the time D1 = the polarity across the pressure ν 为 is positive 'and the cross-pressure V of the time τ 2 is negative. Further, since the voltage V1 of the present embodiment is larger than the voltage %, the absolute value of the cross-pressure 1 at _T1 is larger than the absolute value of the dipole 2, that is, |V1 - Vr is small | Vref - v2|. The simple cross-over, T1 and time T2 respectively correspond to the cross-pressure VPIX* but opposite in polarity and ί2. This applies an asymmetric energy to the electrowetting cell (10). In addition, the positive and negative changes over time = t) the improvement is paid, and the electric difficulty display is grayed out. And because of the reduction of residual charge, the intermediate layer SC and the second wide-short control signal are equal to the time D2; and in the period „2 ;=: the signal SC (for example, pulse trapping) increases, ^成电余残(charge 编(四)Τ2钱长蝴蝶 s(WVpk>g=201128223 r〇^suu36TW 32590twf.doc/nm state shown by P2. When iron, in increment _ middle' time Tl can also be less than Time: period; = his real amplitude (ie, cross-pressure VpIX > 0 (four) η2, for example, during the period P], the charge remnant 'ge to shorten the time Η π and 4 ^ control the work cycle of the k number SC Thin button % between T] and extend the negative amplitude (time T2. where time Τι and :::: amplitude) no reflectivity to provide more _ gray scale. s ami change, by difficult Vl and voltage V2 Size, can also change the positive and negative amplitude of VPIX across the pressure, the bean in the knife b v2 and the test 懕 懕 v dim two positive and negative amplitude is not the voltage %, so with the turn Vl and turn V2 twist, large. In this way, the 反应 == reaction rate due to the applied energy can also be improved. In addition, the user == the frequency of the signal SC to adjust the frequency across the voltage Vpix. ", = between P4 When the control signal sc (for example, the frequency, the frequency across the voltage is also reduced to two, in the period P5, since the voltage ~ and v2 are both ον, as the crossover voltage Vpix of the two 'f single 110 is also At this time, the liquid U8b (Example D will be laid flat above the intermediate layer 116 in the absence of an applied electric field) and absorbs the light L from the outside, thereby causing the surface of the surface to be dark. Due to the adjustment of the voltages Vi and V2 The liquid (10) degree can be controlled to affect the passage of the light L, thereby achieving the control of the dark state. - 儿11 201128223 ^oiybuujofW 32590twf.doc/n Second Embodiment FIG. 2A is not a second embodiment of the present invention The electrowetting display 200 is similar to the electrowetting display 100 of the first embodiment, but the difference is that the The electrowetting cell 11 further includes an intermediate layer 216. As shown in Fig. 2A, the intermediate layer 216 is disposed on the conductive layer 112a and faces the intermediate layer 116. The display dielectric layer 118 is disposed between the intermediate layer 116 and the intermediate sound 216. On the other hand, in this embodiment, the original The voltage % of an embodiment is the same as the voltage V!. That is, the switch 120 transmits the voltage V] and the reference voltage Vref to the conductive layer 112a and the conductive layer 114a, respectively, according to the control signal SC to form a corresponding voltage across the VPIX. And at time 12, the reference voltage Vref and the voltage Vi are respectively transmitted to the conductive layer 112& and the conductive layer 114a to form a corresponding voltage across the voltage vPIX' where the time τ 的 is equal to the cross-voltage ▽ 1 of the time T2 But the polarity is reversed. It is assumed that in the absence of the intermediate layer 216, when the voltage ν] is fed into the electrowetting cell 11 by the conductive layer 114a at time 2, 'the electric charge (not shown) must first pass through the intermediate layer 116 to be electrowetting. The first end 112 and the second end 114 of the unit 11 感应 induce an electric field required for the liquid 118b (e.g., ink) to contract, and thus the electric field strength is susceptible to the residual charge in the intermediate layer 丨16. However, when the voltage V! is fed by the conductive layer U2a at a time T!, the 4' charge (not shown) directly generates an induced electric field at the first end 1 12 and the second end 114 of the electrowetting cell 1 1〇, and maintains Original electric field strength. Therefore, it can be seen from the above that the electrowetting display 2 2011 12 201128223 P61980036 TW 32590 twf.doc/n with the intermediate layer 216 can ensure the generation of a uniform electric field, thereby increasing the accuracy of the gray scale control and reducing the electric run. The reaction time of the wet unit 110. 2B is a waveform diagram of the voltage V of FIG. 2A, the reference voltage vref, and the voltage across the voltage vPIX as a function of time. As shown in Fig. 2Β, the polarity across the voltage νΡΙΧ alternates with positive and negative times. Referring to FIG. 2A and FIG. 2 simultaneously, the controller 130 generates and transmits a control signal SC to the switch 120. The control signal SC is, for example, a pulse width modulation (PWM) signal. The switch 12A receives the control signal sc, the voltage v], and the reference voltage Vref. Next, the switch 120 transmits the respective voltages V! and the reference voltages 至 to the first end 112 and the second end 114 of the electrowetting cell 11〇 according to the control signal SC to form a corresponding trans-voltage vPIX at a time ,, and respectively The reference voltage and voltage νι are transmitted to the first end 112 and the second end 114 to form a corresponding [%] voltage VHX at time 2, wherein the voltage across the time I is opposite to the voltage across the time. In the present embodiment, the switch 120 is, for example, a double cut switch. On the other hand, the polarity of the voltage across time T1 is, for example, positive, and the polarity of the % voltage of time A is, for example, negative. In addition to this, the voltage of the present embodiment is at the reference voltage Vref' and the reference voltage Vref is, for example, a ground voltage. The value is left, 3⁄4 is that the reference voltage Vfef can also be other fixed, and is not limited to this. The same as the first embodiment, the present embodiment mainly utilizes the voltage across the voltage of the electrowetting unit 〇 terminal 112 and the second end 114 to control the liquid leg shrinkage. The cross voltage Vpix and the voltage Vi are related to the reference voltage 乂 #. 'Transverse voltage Vpix is the voltage difference or reference of the voltage Vl and the reference voltage Vref#. The pressure difference between the voltage vref and the voltage Vl. At time ,ι, the switch 12〇 13 201128223 P61980036TW 32590twf.doc/n transmits the voltage V! and the reference voltage vref to the conductive layer 112a and the conductive layer 114a of the electrowetting cell 110, respectively, according to the control signal SC. At this time, the voltage across the voltage of the electric humidification unit 11 is vPIX = vrvref. On the other hand, at time 2, the switch 120 transmits the reference voltage Vref and the voltage % to the conductive layer 112a and the conductive layer 114a' of the electrowetting cell 110 according to the control signal SC, thereby generating a voltage across the VPD (= Vref -V). ^ In the electrowetting unit 11 。. In the present embodiment, 'since the reference voltage Vref is the ground voltage, and the voltage V! is a positive voltage, the time & the cross-voltage is the same as the time I of the cross-pressure but the opposite polarity In other words, as shown in Fig. 2B, the polarity of the cross-ink vPIX of the time Τ! is positive, and the polarity of the cross-voltage Vpix of the time A is negative, and the positive and negative amplitudes of the cross-voltage vPIX are symmetrical with each other. Therefore, by using the intermediate layer The symmetrical structure of 116 and 216 ensures that the voltage % can generate a uniform electric field on the electrowetting cell 无论 whether it is fed from the conductive layer or 114 b, thereby increasing the accuracy of the gray scale control and reducing the electric power. The reaction time of the wetting unit 11〇. ^ In addition, the length of the time T1 and the time & can be adjusted according to the control signal SC. As shown in Fig. 2B, during the period Pi, P3, P4, the time ς τ ! Equal to time D. 2. During the period! > 2, The interval 大于 is greater than the time ^, which is, for example, by increasing or decreasing the (iv) money sc (for example, the pulse wave period (4) curry. In detail, if the period 1 e makes an increase in ehairgetIiapping, then The center of the clock can be shortened by the guard cycle of the control port sc, and the length is as shown in (4). In other embodiments, =1 can also be less than time T2°, for example, when the amplitude is positive Causes the charge ^ 201128223 P61980036TW 32590twf.doc / n increase (charge trapping), can be reduced by reducing the control period of the buckle work cycle _ _ and extending the negative amplitude of the ^ 2 other aspects, by adjusting The magnitude of the voltage Vl can also change the positive amplitude of the voltage across the voltage vPIX. In addition, the controller can also adjust the frequency of the control signal sc to control the frequency of the voltage across the VPIX. For example, as shown in the period ^, the field control When the frequency of the 彳s (for example, the pulse modulation signal) is halved, the frequency of the cross-voltage VPIX is also reduced to the half of the remaining period 匕~匕., the third embodiment FIG. 3 is the application of FIG. 1B and FIG. Flow chart of the steps of the control method of electrowetting effect of 2 b. The method of the embodiment is applicable to an electrowetting display, and the electrowetting display comprises a switch-and-wetting unit, for example, a switch 12 图 which is shown in Fig. 2A. It is a double-cut switch) and an electrowetting unit 110. The following description refers to FIG. 3 and is combined with FIG. 1A to FIG. 2B. As shown in FIG. 3, the control method of the electrowetting effect of the present embodiment firstly transmits a control signal. SC to a switch (such as switch 120) (step sll 〇). In the present embodiment, the control signal SC is, for example, a pulse width modulation (PWM) signal generated by a controller (e.g., the controller 130). Next, the switch (e.g., switch 120) respectively transmits voltage V! and reference voltage Vref to conductive layer 112a and conductive layer 114a of electrowetting cell uo at time T according to control signal sC to form voltage across voltages VPIX (step S120). Then, the switch transmits the reference voltage vref and the voltage V2 to the conductive layer 112a 15 201128223 P61980036TW 32590twf.doc/n of the electrowetting cell 11〇 and the conductive layer 114a according to the control signal SC to form a voltage across the VPIX. The polarity of the voltage across the voltage Vpw alternates with positive and negative times (step S130). Finally, the electrowetting cell u〇 changes the gray scale of the electrowetting display according to the change of the ink 118b according to the change of the pressure threshold 0 (step S140). Referring to FIG. 1B and FIG. 2B, the control of the embodiment The method further comprises the switch adjusting the time T 〗 and the time 丁 2 according to the control 彳g No. SC. In addition, the voltage Vi has a proportional relationship with the voltage V2, that is, Vi==6; V2, where ω is only the number. FIG. 1A of the embodiment is an example, and 0 is a real number not equal to 1, (ie, V is off V2). In detail, FIG. 1A is a case where the voltage % is greater than the voltage V2 and the voltage % and % are greater than the reference voltage %. For the drawing, the medium voltages V and V2 are both positive voltages and the reference voltage V is the ground voltage. It should be noted that in other embodiments, the voltage V1 may also be smaller than the voltage V2, and the reference voltage vref may also be On the other hand, in the case of FIG. 2B of the first embodiment, ω = 1 ', that is, the voltage Vi is equal to the voltage V2 °, and as shown in FIG. 1B and FIG. 2B, the cross-pressure of time Τι The polarity of Vpix is, for example, positive, while the polarity of the voltage VPIX of time A is negative. Time and time The length of A and the magnitudes of % and % of voltage can be adjusted according to the control 彳§ SC to achieve the effect of reducing charge residual. On the other hand, the control signal SC can also be used to adjust the frequency of the voltage across the Vpix to fine tune. Gray scale or reduction of residual charge phenomenon. For a detailed description of this part, reference may be made to the first and second embodiments, and no further description is made herein. In summary, the electrowetting display of the embodiment of the present invention utilizes different inputs. The voltage produces alternating positive and negative polarity and asymmetric cross-over, due to 16 201128223 P61980036TW 32590twf.doc/n This can improve the residual charge of the intermediate layer, shorten the reaction time of the ink and improve the reaction speed of the electrowetting display and improve the gray scale control. In addition, the use of a cross-pressure alternating with positive and negative polarity and a symmetrical structure can also ensure the generation of a uniform electric field to improve the response speed of the electrowetting display and the accuracy of gray scale control. Since the residual charge is reduced, the probability of the intermediate layer being broken down by the charge is also reduced, so the thickness of the intermediate layer can be made thinner. This in turn reduces the drive power required for electrowetting displays.
雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 一圖1A繪示為本發明第一實施例之電潤濕顯示器1〇〇 的示意圖。 圖為圖1A之電壓V〗、V2、參考電壓vref與跨壓 Vpix隨時間變化的波形圖。 圖2A繪示為本發明第二實施例之電潤濕顯示器2〇〇 的示意圖。 為圖2A之電壓νι、參考電壓Vref與跨壓VPIX 、時間變化的波形圖。 圖3為應用圖1B與圖2B之電潤濕效應之控制方法的 步驟流程圖。 17 201128223 lOiysuuj&TW 32590twf.doc/n 【主要元件符號說明】 100、200 :電潤濕顯示器 110 :電潤濕單元 112 :第一端 114 :第二端 112a、114a :導電層 116、216 :中間層 117 :基板 118 :顯示介質層 118a、118b :液體 119 :晝素牆 120:開關 130 :控制器 S110〜S140 :步驟 Vpix .跨壓 V!、V2 :電壓 Vref :參考電壓 SC :控制信號 L :光線 I、T2 :時間 Ρ!〜Ρ4 :期間Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic view showing an electrowetting display 1A according to a first embodiment of the present invention. The figure is a waveform diagram of the voltage V, V2, the reference voltage vref and the voltage across the Vpix of Fig. 1A as a function of time. 2A is a schematic view of an electrowetting display 2A according to a second embodiment of the present invention. It is a waveform diagram of the voltage νι of FIG. 2A, the reference voltage Vref, and the voltage across the voltage VPIX. Fig. 3 is a flow chart showing the steps of the control method for applying the electrowetting effect of Figs. 1B and 2B. 17 201128223 lOiysuuj&TW 32590twf.doc/n [Main component symbol description] 100, 200: electrowetting display 110: electrowetting unit 112: first end 114: second end 112a, 114a: conductive layers 116, 216: Intermediate layer 117: substrate 118: display medium layer 118a, 118b: liquid 119: halogen wall 120: switch 130: controller S110 to S140: step Vpix. across voltage V!, V2: voltage Vref: reference voltage SC: control signal L: Light I, T2: Time Ρ!~Ρ4: Period