JP2009076248A - Power storage device and its manufacturing method - Google Patents

Power storage device and its manufacturing method Download PDF

Info

Publication number
JP2009076248A
JP2009076248A JP2007242277A JP2007242277A JP2009076248A JP 2009076248 A JP2009076248 A JP 2009076248A JP 2007242277 A JP2007242277 A JP 2007242277A JP 2007242277 A JP2007242277 A JP 2007242277A JP 2009076248 A JP2009076248 A JP 2009076248A
Authority
JP
Japan
Prior art keywords
storage device
unit
electrolyte
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007242277A
Other languages
Japanese (ja)
Other versions
JP5096851B2 (en
Inventor
Takashi Utsunomiya
隆 宇都宮
Kunio Nakazato
邦雄 中里
Nobuo Ando
信雄 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2007242277A priority Critical patent/JP5096851B2/en
Publication of JP2009076248A publication Critical patent/JP2009076248A/en
Application granted granted Critical
Publication of JP5096851B2 publication Critical patent/JP5096851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To enhance productivity of a power storage device by applying effective technique to the power storage device pouring an electrolyte into an outer packaging film. <P>SOLUTION: The power storage device 10 has a unit housing part 11a for housing a three-electrode laminating unit (an electrode unit) 17; an upper side part 11c positioning in the upper part of the unit housing part 11a in electrolyte pouring; a side part 11e positioning in the side of the unit housing part in electrolyte pouring; and a storage part 11b positioning between the unit housing part 11a and a lower side part 11d, formed in a laminate film (an outer packaging film) 11, and after the lower side part 11d and the side part 11e are sealed, an electrolyte is poured from the upper side part 11c, the electrolyte is stored in the storage part 11b in the lower part of the thee-electrode laminating unit 17, and then the upper side part 11c is sealed, thereby, air can be removed from the laminate film 11 without overflow of the electrolyte. Productivity of the power storage device 10 can be thus enhanced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、外装フィルム内に電解液を注入する蓄電デバイスに適用して有効な技術に関する。   The present invention relates to a technique effective when applied to an electricity storage device in which an electrolytic solution is injected into an exterior film.

電気自動車やハイブリッド自動車等には、リチウムイオン二次電池や電気二重層キャパシタ等の蓄電デバイスが搭載されている。これらの蓄電デバイスには小型化や軽量化が要求されることから、外装容器としてラミネートフィルムを採用するようにしたラミネート型の蓄電デバイスが提案されている。このラミネート型の蓄電デバイスを製造する際には、電極ユニットを一対のラミネートフィルムによって挟み込んだ後に、ラミネートフィルムの外周部を三辺に亘って封止する。そして、袋状に形成されたラミネートフィルム内に規定量の電解液を注入した後に、真空雰囲気下で残りの一辺を封止するようにしている。   Electric vehicles, hybrid vehicles, and the like are equipped with power storage devices such as lithium ion secondary batteries and electric double layer capacitors. Since these power storage devices are required to be reduced in size and weight, a laminate-type power storage device that employs a laminate film as an outer container has been proposed. When manufacturing this laminate-type electricity storage device, after sandwiching the electrode unit between a pair of laminate films, the outer peripheral portion of the laminate film is sealed over three sides. Then, after injecting a specified amount of electrolyte into the bag-shaped laminate film, the remaining one side is sealed in a vacuum atmosphere.

ところで、蓄電デバイスの高容量化や小型化を図る観点から、電極ユニットを構成する電極を密に積層したり、電極ユニットとラミネートフィルムとの間の隙間を狭くしたりする傾向にある。しかしながら、電極ユニットを密に組み立てることは、電極ユニットに対する電解液の浸透性を低下させる要因となり、電極ユニットとラミネートフィルムとの隙間を狭めることは、蓄電デバイス内に一度に注入可能な電解液の量を減らす要因となっていた。すなわち、規定量の電解液を注入するためには、少量の電解液を複数回に亘って注入する必要があるが、このような製造方法では、電解液の注入時間が長引くにつれて電解液の注入量にバラツキが生じやすいだけでなく、電解液に空気中の水分が溶け込んで蓄電デバイスの耐電圧を低下させる要因にもなっていた。   By the way, from the viewpoint of increasing the capacity and miniaturization of the electricity storage device, the electrodes constituting the electrode unit tend to be laminated densely, or the gap between the electrode unit and the laminate film tends to be narrowed. However, assembling the electrode units closely causes a decrease in the permeability of the electrolyte solution to the electrode units, and reducing the gap between the electrode unit and the laminate film means that the electrolyte solution that can be injected into the electricity storage device at a time. It was a factor to reduce the amount. That is, in order to inject a specified amount of electrolyte, it is necessary to inject a small amount of electrolyte multiple times. In such a manufacturing method, the injection of electrolyte becomes longer as the injection time of the electrolyte increases. Not only does the amount easily vary, but also moisture in the air dissolves in the electrolyte, which causes a reduction in the withstand voltage of the electricity storage device.

そこで、ラミネートフィルムを長めに切り出しておき、電極ユニットの上方を液溜め部位として利用するようにした蓄電デバイスが提案されている(例えば、特許文献1参照)。この蓄電デバイスによれば、規定量の電解液を一度に注入することが可能となり、電解液を注入して直ちにラミネートフィルムを封止することが可能となるため、製造工数を低減することが可能となり、電解液の劣化も抑制することが可能となる。
特開2000−311661号公報
In view of this, an electricity storage device has been proposed in which a laminate film is cut out longer and the upper part of the electrode unit is used as a liquid storage part (see, for example, Patent Document 1). According to this electricity storage device, it is possible to inject a specified amount of electrolyte at a time, and it is possible to immediately seal the laminate film after injecting the electrolyte, thus reducing the number of manufacturing steps. Thus, it is possible to suppress deterioration of the electrolytic solution.
JP 2000-311661 A

しかしながら、特許文献1に記載された蓄電デバイスの製造方法にあっては、電極ユニットの上方を液溜め部位として利用することから、蓄電デバイスを真空雰囲気下に配置した場合に電解液が溢れやすい問題がある。すなわち、電極ユニットの上方に電解液が溜められることから、蓄電デバイスを真空雰囲気下に配置してラミネートフィルム内の空気を抜く際には、ラミネートフィルム内から排出される空気と共に電解液が溢れ出してしまうおそれがある。このような電解液の漏れは、蓄電デバイスの生産性を低下させる要因となっていた。   However, in the method for manufacturing an electricity storage device described in Patent Document 1, since the upper part of the electrode unit is used as a liquid storage part, there is a problem that the electrolyte easily overflows when the electricity storage device is arranged in a vacuum atmosphere. There is. That is, since the electrolyte is stored above the electrode unit, when the electricity storage device is placed in a vacuum atmosphere and the air in the laminate film is extracted, the electrolyte overflows with the air discharged from the laminate film. There is a risk that. Such leakage of the electrolyte has been a factor that reduces the productivity of the electricity storage device.

本発明の目的は、蓄電デバイスの生産性を向上させることにある。   An object of the present invention is to improve the productivity of an electricity storage device.

本発明の蓄電デバイスの製造方法は、正極および負極を備える電極ユニットと、前記電極ユニットを挟んで収容する外装フィルムとを有する蓄電デバイスの製造方法であって、前記外装フィルムに、前記電極ユニットが収容されるユニット収容部と、電解液注入時に前記ユニット収容部の下方に位置する下辺部と、電解液注入時に前記ユニット収容部の上方に位置する上辺部と、電解液注入時に前記ユニット収容部の側方に位置する側辺部と、前記ユニット収容部と前記下辺部との間に位置する貯留部とを形成し、前記下辺部および側辺部を封止した後に前記上辺部から電解液を注入し、前記電極ユニット下部の前記貯留部に電解液を溜めた状態のもとで前記上辺部を封止することを特徴とする。   The method for producing an electricity storage device of the present invention is a method for producing an electricity storage device comprising an electrode unit comprising a positive electrode and a negative electrode, and an exterior film that is accommodated with the electrode unit sandwiched therebetween, wherein the electrode unit comprises: A unit accommodating portion to be accommodated, a lower side portion located below the unit accommodating portion when electrolyte solution is injected, an upper side portion located above the unit accommodating portion when electrolyte solution is injected, and the unit accommodating portion when electrolyte solution is injected Forming a side part located on the side of the container and a storage part located between the unit housing part and the lower side part, sealing the lower side part and the side part, and then supplying an electrolytic solution from the upper side part And the upper side portion is sealed under a state in which the electrolytic solution is stored in the storage portion below the electrode unit.

本発明の蓄電デバイスの製造方法は、第1圧力雰囲気下で前記上辺部から電解液を注入し、前記第1圧力雰囲気よりも低圧の第2圧力雰囲気下で前記上辺部を封止することを特徴とする。   In the method for manufacturing an electricity storage device of the present invention, an electrolyte is injected from the upper side under a first pressure atmosphere, and the upper side is sealed under a second pressure atmosphere lower in pressure than the first pressure atmosphere. Features.

本発明の蓄電デバイスは、正極および負極を備える電極ユニットと、前記電極ユニットを挟んで収容する外装フィルムとを有する蓄電デバイスであって、前記外装フィルムは、前記電極ユニットが収容されるユニット収容部と、電解液注入時に前記ユニット収容部の下方に位置する下辺部と、電解液注入時に前記ユニット収容部の上方に位置する上辺部と、電解液注入時に前記ユニット収容部の側方に位置する側辺部と、前記ユニット収容部と前記下辺部との間に位置する貯留部とを形成し、前記下辺部および側辺部が封止された後に前記上辺部から電解液が注入され、前記電極ユニット下部の前記貯留部に電解液を溜めた状態のもとで前記上辺部が封止されることを特徴とする。   An electricity storage device of the present invention is an electricity storage device having an electrode unit including a positive electrode and a negative electrode, and an exterior film that is accommodated with the electrode unit interposed therebetween, wherein the exterior film is a unit accommodation portion in which the electrode unit is accommodated. And a lower side portion located below the unit housing portion when the electrolyte solution is injected, an upper side portion located above the unit housing portion when the electrolyte solution is injected, and a side portion of the unit housing portion when the electrolyte solution is injected. Forming a side part and a storage part located between the unit housing part and the lower side part, and after the lower side part and the side part are sealed, an electrolyte is injected from the upper side part, The upper side portion is sealed under a state in which an electrolytic solution is stored in the storage portion below the electrode unit.

本発明の蓄電デバイスは、第1圧力雰囲気下で前記上辺部から電解液が注入され、前記第1圧力雰囲気よりも低圧の第2圧力雰囲気下で前記上辺部が封止されることを特徴とする。   The electricity storage device of the present invention is characterized in that an electrolyte is injected from the upper side under a first pressure atmosphere, and the upper side is sealed under a second pressure atmosphere lower in pressure than the first pressure atmosphere. To do.

本発明の蓄電デバイスは、前記貯留部内の電解液を前記電極ユニットに含浸させた後に、前記貯留部を異常時のガス溜め部として機能させることを特徴とする。   The electricity storage device according to the present invention is characterized in that, after the electrode unit is impregnated with the electrolytic solution in the storage part, the storage part functions as a gas storage part in an abnormal state.

本発明の蓄電デバイスは、前記貯留部の容量は前記電解液の注入量を下回って設定されることを特徴とする。   The electricity storage device of the present invention is characterized in that the capacity of the reservoir is set to be less than the injection amount of the electrolyte.

本発明の蓄電デバイスは、前記電解液は非プロトン性有機溶媒であることを特徴とする。   The electricity storage device of the present invention is characterized in that the electrolytic solution is an aprotic organic solvent.

本発明の蓄電デバイスは、前記正極と前記負極とを短絡させたときの正極電位が2V(対Li/Li+)以下であることを特徴とする。 The electricity storage device of the present invention is characterized in that a positive electrode potential when the positive electrode and the negative electrode are short-circuited is 2 V (vs. Li / Li + ) or less.

本発明の蓄電デバイスは、前記負極と前記正極との少なくとも一方に短絡するリチウムイオン供給源を有し、前記正極および前記負極が備える集電体にリチウムイオンが通過する貫通孔を形成し、前記負極と前記正極とのいずれか一方に前記リチウムイオン供給源からリチウムイオンをドーピングさせることを特徴とする。   The electricity storage device of the present invention has a lithium ion supply source that is short-circuited to at least one of the negative electrode and the positive electrode, forms a through-hole through which lithium ions pass through a current collector provided in the positive electrode and the negative electrode, One of the negative electrode and the positive electrode is doped with lithium ions from the lithium ion supply source.

本発明によれば、外装フィルムに、電極ユニットが収容されるユニット収容部と、電解液注入時にユニット収容部の下方に位置する下辺部と、電解液注入時にユニット収容部の上方に位置する上辺部と、電解液注入時にユニット収容部の側方に位置する側辺部と、ユニット収容部と下辺部との間に位置する貯留部とを形成し、下辺部および側辺部を封止した後に上辺部から電解液を注入し、電極ユニット下部の貯留部に電解液を溜めた状態のもとで上辺部を封止するので、蓄電デバイスを真空雰囲気下に配置しても電解液が漏れることはない。これにより、蓄電デバイスの生産性を向上させることが可能となる。また、電解液の注液から封止までの時間が短いことから、組立工程内での水分吸収量が低減できるため、蓄電デバイスの性能を向上させることが可能となる。   According to the present invention, the exterior film has a unit housing portion in which the electrode unit is housed, a lower side portion located below the unit housing portion when the electrolyte is injected, and an upper side located above the unit housing portion when the electrolyte is injected. And a storage part located between the unit accommodation part and the lower side part, and the lower side part and the side part are sealed. Later, the electrolyte is injected from the upper side, and the upper side is sealed under the condition that the electrolyte is stored in the storage part below the electrode unit. Therefore, the electrolyte leaks even if the electricity storage device is placed in a vacuum atmosphere. There is nothing. Thereby, it becomes possible to improve productivity of an electrical storage device. In addition, since the time from the injection of the electrolytic solution to the sealing is short, the amount of moisture absorbed in the assembly process can be reduced, so that the performance of the electricity storage device can be improved.

図1は本発明の一実施の形態である蓄電デバイス10を示す斜視図であり、図2は蓄電デバイス10の内部構造を示す分解斜視図である。図1および図2に示すように、蓄電デバイス10は、電極積層ユニット12を挟んで収容する一対のラミネートフィルム(外装フィルム)11を備えている。このラミネートフィルム11として、外側にナイロンフィルム、中心にアルミニウム箔、内側に接着層を有した3層ラミネートフィルムが採用されている。また、ラミネートフィルム11には、電極積層ユニット12を収容するユニット収容部11aと、このユニット収容部11aに隣り合う貯留部11bとが深絞り加工によって形成されている。さらに、ラミネートフィルム11には、電極積層ユニット12を挟んで収容した後に、熱融着処理が施される上辺部11c、下辺部11dおよび側辺部11eが形成されている。なお、貯留部11bの容量は、体積効率を高める観点から、図示のように電解液の注入量を下回って設定されることが好ましい。   FIG. 1 is a perspective view showing an electricity storage device 10 according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing an internal structure of the electricity storage device 10. As shown in FIGS. 1 and 2, the electricity storage device 10 includes a pair of laminate films (exterior films) 11 that are accommodated with an electrode laminate unit 12 interposed therebetween. As this laminate film 11, a three-layer laminate film having a nylon film on the outside, an aluminum foil in the center, and an adhesive layer on the inside is employed. Moreover, the laminate film 11 is formed with a deep drawing process of a unit accommodation portion 11a for accommodating the electrode lamination unit 12 and a storage portion 11b adjacent to the unit accommodation portion 11a. Further, the laminate film 11 is formed with an upper side part 11c, a lower side part 11d, and a side part 11e which are subjected to a heat-sealing process after being accommodated with the electrode laminated unit 12 interposed therebetween. In addition, it is preferable to set the capacity | capacitance of the storage part 11b below the injection amount of electrolyte solution from a viewpoint of improving volumetric efficiency, as shown in the figure.

図3は蓄電デバイス10の内部構造を示す断面図であり、図4は蓄電デバイス10の内部構造を部分的に拡大して示す断面図である。まず、図3に示すように、ラミネートフィルム11内に収容される電極積層ユニット12は、セパレータ13を介して交互に積層される正極14および負極15によって構成されている。電極積層ユニット12の最外部にはリチウム極(リチウムイオン供給源)16が負極15に対向するように配置されており、電極積層ユニット12とリチウム極16とによって三極積層ユニット(電極ユニット)17が構成されている。なお、ラミネートフィルム11内には、リチウム塩を含む非プロトン性有機溶媒からなる電解液が注入されている。   3 is a cross-sectional view showing the internal structure of the electricity storage device 10, and FIG. 4 is a cross-sectional view showing the internal structure of the electricity storage device 10 partially enlarged. First, as shown in FIG. 3, the electrode lamination unit 12 accommodated in the laminate film 11 is composed of positive electrodes 14 and negative electrodes 15 that are alternately laminated via separators 13. A lithium electrode (lithium ion supply source) 16 is disposed on the outermost part of the electrode laminate unit 12 so as to face the negative electrode 15, and the electrode laminate unit 12 and the lithium electrode 16 constitute a three-electrode laminate unit (electrode unit) 17. Is configured. Note that an electrolyte solution made of an aprotic organic solvent containing a lithium salt is injected into the laminate film 11.

図4に示すように、正極14は、多数の貫通孔14aを備える正極集電体14bと、この正極集電体14bに塗工される正極合材層14cとを備えている。また、負極15は、多数の貫通孔15aを備える負極集電体15bと、この負極集電体15bに塗工される負極合材層15cとを備えている。相互に接続される複数の正極集電体14bには、ラミネートフィルム11から突出する正極端子18が接続されており、相互に接続される複数の負極集電体15bには、ラミネートフィルム11から突出する負極端子19が接続されている。さらに、電極積層ユニット12の最外部に配置されるリチウム極16は、ステンレスメッシュ等の導電性多孔体からなるリチウム極集電体16aと、これに貼り付けられる金属リチウム16bとによって構成されており、リチウム極集電体16aは負極集電体15bに対して接続されている。   As shown in FIG. 4, the positive electrode 14 includes a positive electrode current collector 14b having a large number of through holes 14a, and a positive electrode mixture layer 14c applied to the positive electrode current collector 14b. The negative electrode 15 includes a negative electrode current collector 15b having a large number of through holes 15a and a negative electrode mixture layer 15c applied to the negative electrode current collector 15b. A plurality of positive electrode current collectors 14b connected to each other are connected to positive electrode terminals 18 protruding from the laminate film 11, and a plurality of negative electrode current collectors 15b connected to each other are protruded from the laminate film 11. A negative electrode terminal 19 is connected. Further, the lithium electrode 16 disposed at the outermost part of the electrode laminate unit 12 is composed of a lithium electrode current collector 16a made of a conductive porous material such as stainless steel mesh, and metal lithium 16b attached thereto. The lithium electrode current collector 16a is connected to the negative electrode current collector 15b.

正極14の正極合材層14cには、リチウムイオンを可逆的にドーピング・脱ドーピング(以下、ドープ・脱ドープという)することが可能な正極活物質として活性炭が含有されている。また、負極15の負極合材層15cには、リチウムイオンを可逆的にドープ・脱ドープすることが可能な負極活物質として難黒鉛化性炭素粉末が含有されている。すなわち、図示する蓄電デバイス10は、リチウムイオン二次電池と電気二重層キャパシタとの蓄電機構を組み合わせたリチウムイオンキャパシタである。また、負極15に対してリチウム極16からリチウムイオンを予めドープすることにより、負極電位を低下させてエネルギー密度を向上させるようにしている。ここで、蓄電デバイス10の容量を向上させる観点から、正極14と負極15とを短絡させた後の正極電位が2V(対Li/Li+)以下となるように、負極に対してリチウムイオンをドープすることが好ましい。 The positive electrode mixture layer 14c of the positive electrode 14 contains activated carbon as a positive electrode active material capable of reversibly doping / dedoping lithium ions (hereinafter referred to as doping / dedoping). The negative electrode mixture layer 15c of the negative electrode 15 contains non-graphitizable carbon powder as a negative electrode active material capable of reversibly doping and dedoping lithium ions. That is, the power storage device 10 shown in the figure is a lithium ion capacitor that combines a power storage mechanism of a lithium ion secondary battery and an electric double layer capacitor. Further, the negative electrode 15 is pre-doped with lithium ions from the lithium electrode 16 to lower the negative electrode potential and improve the energy density. Here, from the viewpoint of improving the capacity of the electricity storage device 10, lithium ions are applied to the negative electrode so that the positive electrode potential after the positive electrode 14 and the negative electrode 15 are short-circuited is 2 V (vs. Li / Li + ) or less. It is preferable to dope.

図3に示すように、負極15とリチウム極16とは短絡されるため、負極15に対するリチウムイオンのドープは、ラミネートフィルム内に対する電解液の注入によって開始される。また、正極集電体14bや負極集電体15bには多数の貫通孔14a、15aが形成されており、リチウム極16から放出されるリチウムイオンは貫通孔14a、15aを介して各極に移動することが可能となる。これにより、リチウム極16を各負極15に対向させることなく、積層される全ての負極合材層15cに対してスムーズにリチウムイオンをドープすることが可能となっている。なお、本発明において、ドーピング(ドープ)とは、吸蔵、担持、吸着、挿入等を意味しており、正極活物質や負極活物質に対してリチウムイオンやアニオン等が出る状態を意味している。   As shown in FIG. 3, since the negative electrode 15 and the lithium electrode 16 are short-circuited, doping of lithium ions into the negative electrode 15 is started by injecting electrolyte into the laminate film. The positive electrode current collector 14b and the negative electrode current collector 15b are formed with a large number of through holes 14a and 15a, and lithium ions released from the lithium electrode 16 move to each electrode through the through holes 14a and 15a. It becomes possible to do. Thereby, it is possible to dope lithium ions smoothly to all the negative electrode mixture layers 15c to be laminated without causing the lithium electrodes 16 to face the negative electrodes 15. In the present invention, “doping” means occlusion, support, adsorption, insertion, etc., and means a state in which lithium ions, anions, and the like are emitted from the positive electrode active material and the negative electrode active material. .

続いて、本発明の一実施の形態である蓄電デバイス10の製造方法について説明する。図5〜図7は蓄電デバイス10の製造方法を示す説明図である。   Then, the manufacturing method of the electrical storage device 10 which is one embodiment of this invention is demonstrated. 5-7 is explanatory drawing which shows the manufacturing method of the electrical storage device 10. FIG.

まず、図2に示すように、ラミネートフィルム11のユニット収容部11aに挟み込まれるように、ラミネートフィルム11内には三極積層ユニット17が収容される。次いで、図5に示すように、貯留部11b側に位置する下辺部11dと端子が突出する側辺部11eとに対して熱融着処理が施され、ラミネートフィルム11は上辺部11cのみが開口した袋状に形成されることになる。続いて、ラミネートフィルム11の下辺部11dが三極積層ユニット17の下方に位置するように蓄電デバイス10が設置され、大気圧雰囲気下(第1圧力雰囲気下)で上辺部11cより規定量の電解液がラミネートフィルム11内に注入される。注入された電解液は、三極積層ユニット17とラミネートフィルム11との間を通過し、三極積層ユニット17の下方に位置する貯留部11bに流れ込むことになる。   First, as shown in FIG. 2, the three-pole laminated unit 17 is accommodated in the laminate film 11 so as to be sandwiched between the unit accommodating portions 11 a of the laminate film 11. Next, as shown in FIG. 5, the lower side part 11 d located on the storage part 11 b side and the side part 11 e from which the terminal protrudes are subjected to heat fusion treatment, and the laminate film 11 is opened only at the upper side part 11 c. It will be formed in the bag shape. Subsequently, the electricity storage device 10 is installed so that the lower side portion 11d of the laminate film 11 is positioned below the three-pole laminated unit 17, and a specified amount of electrolysis is performed from the upper side portion 11c in an atmospheric pressure atmosphere (first pressure atmosphere). The liquid is injected into the laminate film 11. The injected electrolytic solution passes between the three-pole laminated unit 17 and the laminate film 11 and flows into the storage portion 11 b located below the three-pole laminated unit 17.

このように、ラミネートフィルム11に対して貯留部11bを形成するようにしたので、設計によって定められた規定量の電解液をラミネートフィルム11内に一度に注入することが可能となる。これにより、三極積層ユニット17に対する電解液の浸透を待つことなく、電解液の注入作業を完了させることが可能となり、素早く次の工程に移ることが可能となる。なお、電解液の注入によってリチウムイオンのドープが開始されることから、均一にリチウムイオンのドープを進行させるため、加圧板で蓄電デバイス10を挟み込むことが好ましい。   Thus, since the storage part 11b was formed with respect to the laminate film 11, it becomes possible to inject | pour into the laminate film 11 the electrolyte solution of the defined amount defined by the design at once. Thereby, it is possible to complete the injection operation of the electrolytic solution without waiting for the penetration of the electrolytic solution into the three-pole laminated unit 17, and it is possible to quickly move to the next step. In addition, since dope of lithium ion is started by injection | pouring of electrolyte solution, in order to dope lithium ion uniformly, it is preferable to pinch the electrical storage device 10 with a pressure plate.

続いて、図示しない真空融着機に対して蓄電デバイス10が収容され、図6に示すように大気圧よりも低圧の真空雰囲気下(第2圧力雰囲気下)でラミネートフィルム11内の空気が抜かれた後に、図7に示すようにラミネートフィルム11の上辺部11cに対して熱融着処理が施される。ここで、ユニット収容部11aの上方に貯留部11bを形成して三極積層ユニット17の上方に電解液を溜める構造が採用されていると、真空雰囲気下で三極積層ユニット17に含まれる空気を抜く際に、減圧による膨張や脱泡による泡で押し上げられる電解液がラミネートフィルム11から溢れてしまうおそれがある。しかしながら、本発明の蓄電デバイス10にあっては、ユニット収容部11aの下方に貯留部11bを形成して三極積層ユニット17の下方に電解液を溜めるようにしたので、電解液を溢れさせることなくラミネートフィルム11内から空気を抜くことが可能となる。   Subsequently, the electricity storage device 10 is accommodated in a vacuum fusion machine (not shown), and the air in the laminate film 11 is removed in a vacuum atmosphere (second pressure atmosphere) lower than atmospheric pressure as shown in FIG. After that, as shown in FIG. 7, the heat bonding process is performed on the upper side portion 11 c of the laminate film 11. Here, if a structure in which the storage portion 11b is formed above the unit housing portion 11a and the electrolytic solution is stored above the three-pole laminated unit 17 is employed, the air contained in the three-pole laminated unit 17 in a vacuum atmosphere There is a possibility that the electrolyte solution pushed up by bubbles due to expansion by depressurization or defoaming will overflow from the laminate film 11 when removing. However, in the electricity storage device 10 of the present invention, since the storage portion 11b is formed below the unit housing portion 11a and the electrolytic solution is stored below the three-pole laminated unit 17, the electrolytic solution is overflowed. Therefore, air can be extracted from the laminate film 11.

このように、電解液注入時においてユニット収容部11aの下方に位置するように貯留部11bを形成したので、規定量の電解液を一回でラミネートフィルム11内に注入することができるとともに、電解液の注入後に電解液を溢れさせることなくラミネートフィルム11内の空気を抜くことができるため、蓄電デバイス10の生産性を向上させて製造コストを引き下げることが可能となる。しかも、電解液の注入後にラミネートフィルム11内から空気を抜いて上辺部11cを封止することができるため、電解液が空気に曝される時間を短くすることができ、電解液に溶け込む空気中の水分を極力少なくすることが可能となる。これにより、電解液を広い電位範囲で安定させることができるため、水の電気分解によるガス発生を抑制することができ、蓄電デバイス10の耐久性を向上させることが可能となる。   Thus, since the storage part 11b was formed so that it might be located under the unit accommodating part 11a at the time of electrolyte solution injection | pouring, while being able to inject | pour specified amount electrolyte solution into the laminate film 11 at once, Since the air in the laminate film 11 can be extracted without overflowing the electrolytic solution after the injection of the liquid, the productivity of the electricity storage device 10 can be improved and the manufacturing cost can be reduced. Moreover, since the upper side portion 11c can be sealed by removing air from the laminate film 11 after the electrolyte solution is injected, the time during which the electrolyte solution is exposed to the air can be shortened, and the air dissolved in the electrolyte solution It becomes possible to reduce the water content of the as much as possible. Accordingly, since the electrolytic solution can be stabilized in a wide potential range, gas generation due to water electrolysis can be suppressed, and durability of the electricity storage device 10 can be improved.

また、時間の経過に伴って電解液が三極積層ユニット17に浸透し、貯留部11b内から電解液が放出されることになるが、図7に示すように、空となった貯留部11bを残したまま蓄電デバイス10を使用してもよい。このように、蓄電デバイス10に貯留部11bを残すようにすると、過充電等によって電解液が分解されてガスが発生した場合であっても、ガス溜め部として機能する貯留部11bにガスを案内することができるため、ラミネートフィルム11の破裂を防止して、蓄電デバイス10の安全性を向上させることが可能となる。一方、貯留部11b内の電解液を三極積層ユニット17に浸透させた後に、蓄電デバイス10から貯留部11bを切り離すようにしてもよい。ここで、図8(A)および(B)は蓄電デバイス10から貯留部11bを切り離す際の手順を示す説明図である。図8(A)および(B)に示すように、蓄電デバイス10から貯留部11bを切り離す際には、ラミネートフィルム11のユニット収容部11aと貯留部11bとの間の境界部に対して熱融着処理が施された後に、蓄電デバイス10から貯留部11bが切り離されることになる。このように、貯留部11bを切り離すことにより、蓄電デバイス10の小型化を図ることが可能となる。   Further, as time passes, the electrolytic solution penetrates into the three-pole laminated unit 17 and the electrolytic solution is discharged from the storage portion 11b. However, as shown in FIG. You may use the electrical storage device 10 with leaving. As described above, when the storage unit 11b is left in the power storage device 10, the gas is guided to the storage unit 11b functioning as a gas storage unit even when the electrolyte is decomposed due to overcharge or the like and gas is generated. Therefore, the laminate film 11 can be prevented from rupturing and the safety of the electricity storage device 10 can be improved. On the other hand, the storage unit 11 b may be separated from the electricity storage device 10 after the electrolytic solution in the storage unit 11 b has permeated the three-pole laminated unit 17. Here, FIGS. 8A and 8B are explanatory diagrams illustrating a procedure when the storage unit 11 b is separated from the power storage device 10. As illustrated in FIGS. 8A and 8B, when the storage unit 11 b is separated from the power storage device 10, heat fusion is performed on the boundary portion between the unit storage unit 11 a and the storage unit 11 b of the laminate film 11. After the landing process is performed, the storage unit 11b is disconnected from the power storage device 10. In this way, it is possible to reduce the size of the electricity storage device 10 by separating the storage portion 11b.

以下、前述した蓄電デバイス10の構成要素について下記の順に説明する。[A]負極、[B]正極、[C]負極集電体および正極集電体、[D]セパレータ、[E]電解液、[F]ラミネートフィルム。   Hereinafter, the components of the electricity storage device 10 described above will be described in the following order. [A] negative electrode, [B] positive electrode, [C] negative electrode current collector and positive electrode current collector, [D] separator, [E] electrolyte solution, [F] laminate film.

[A]負極
負極15は、負極集電体15bとこれに一体となる負極合材層15cとを有しており、負極合材層15cには負極活物質が含有されている。この負極活物質としては、イオンを可逆的にドープ・脱ドープできるものであれば特に制限はなく、例えばグラファイト、種々の炭素材料、ポリアセン系物質、錫酸化物、珪素酸化物等が挙げられる。特に、黒鉛や難黒鉛化性炭素は高容量化を図ることができるため、負極活物質として好適である。
[A] Negative Electrode The negative electrode 15 has a negative electrode current collector 15b and a negative electrode mixture layer 15c integrated therewith, and the negative electrode mixture layer 15c contains a negative electrode active material. The negative electrode active material is not particularly limited as long as ions can be reversibly doped / dedoped, and examples thereof include graphite, various carbon materials, polyacene-based materials, tin oxide, and silicon oxide. In particular, graphite and non-graphitizable carbon are suitable as a negative electrode active material because the capacity can be increased.

前述したPAS等の負極活物質は粉末状、粒状、短繊維状等に形成され、この負極活物質をバインダーと混合してスラリーが形成される。そして、負極活物質を含有するスラリーを負極集電体15bに塗工して乾燥させることにより、負極集電体15b上に負極合材層15cが形成される。なお、負極活物質と混合されるバインダーとしては、例えばポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン、ポリアクリレート等の熱可塑性樹脂、スチレンブタジエンゴム(SBR)等のゴム系バインダー等が挙げられ、これらの中でもフッ素系バインダーを用いることが好ましい。このフッ素系バインダーとしては、例えばポリフッ化ビニリデン、フッ化ビニリデン−3フッ化エチレン共重合体、エチレン−4フッ化エチレン共重合体、プロピレン−4フッ化エチレン共重合体等が挙げられる。また、負極合材層15cに対して、アセチレンブラック、グラファイト、金属粉末等の導電性材料を適宜加えるようにしてもよい。   The negative electrode active material such as PAS described above is formed into a powder form, a granular form, a short fiber form, etc., and this negative electrode active material is mixed with a binder to form a slurry. And the negative electrode active material layer 15c is formed on the negative electrode collector 15b by apply | coating the slurry containing a negative electrode active material to the negative electrode collector 15b, and making it dry. Examples of the binder mixed with the negative electrode active material include fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride, thermoplastic resins such as polypropylene, polyethylene, and polyacrylate, and styrene butadiene rubber (SBR). Examples thereof include rubber-based binders, and among these, fluorine-based binders are preferably used. As this fluorine-type binder, a polyvinylidene fluoride, a vinylidene fluoride-trifluoride ethylene copolymer, an ethylene-tetrafluoroethylene copolymer, a propylene-tetrafluoroethylene copolymer etc. are mentioned, for example. Moreover, you may make it add electroconductive materials, such as acetylene black, a graphite, and a metal powder, suitably with respect to the negative mix layer 15c.

[B]正極
正極14は、正極集電体14bとこれに一体となる正極合材層14cとを有しており、正極合材層14cには正極活物質が含有されている。正極活物質としては、イオンを可逆的にドープ・脱ドープできるものであれば特に制限はなく、例えば活性炭、遷移金属酸化物、導電性高分子、ポリアセン系物質等が挙げられる。前述した正極合材層14cに正極活物質として含まれる活性炭は、アルカリ賦活処理され、かつ比表面積600m2/g以上を有する活性炭粒子から形成される。活性炭の原料としては、フェノール樹脂、石油ピッチ、石油コークス、ヤシガラ、石炭系コークス等が使用されるが、フェノール樹脂、石炭系コークスが比表面積を高くできる観点から好適である。
[B] Positive Electrode The positive electrode 14 has a positive electrode current collector 14b and a positive electrode mixture layer 14c integrated therewith, and the positive electrode mixture layer 14c contains a positive electrode active material. The positive electrode active material is not particularly limited as long as it is capable of reversibly doping and dedoping ions, and examples thereof include activated carbon, transition metal oxides, conductive polymers, and polyacene-based materials. The activated carbon contained as the positive electrode active material in the positive electrode mixture layer 14c described above is formed from activated carbon particles that have been subjected to an alkali activation treatment and have a specific surface area of 600 m 2 / g or more. As the raw material for the activated carbon, phenol resin, petroleum pitch, petroleum coke, coconut shell, coal-based coke and the like are used, and phenol resin and coal-based coke are preferable from the viewpoint of increasing the specific surface area.

また、前述した正極合材層14cに正極活物質としてコバルト酸リチウム(LiCoO2)を含有させることにより、蓄電デバイス10をリチウムイオン二次電池として機能させるようにしてもよい。さらに、この他にも、LiXCoO2、LiXNiO2、LiXMnO2、LiXFeO2等のLiXYZ(x,y,zは正の数、Mは金属、2種以上の金属でもよい)の一般式で表されうるリチウム含有金属酸化物、あるいはコバルト、マンガン、バナジウム、チタン、ニッケル等の遷移金属酸化物または硫化物を含有させることも可能である。特に、高電圧を求める場合には、金属リチウムに対して4V以上の電位を有するリチウム含有コバルト酸化物、リチウム含有ニッケル酸化物、あるいはリチウム含有コバルト−ニッケル複合酸化物が特に好適である。 Alternatively, the above-described positive electrode mixture layer 14c may contain lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, thereby causing the electricity storage device 10 to function as a lithium ion secondary battery. In addition to these, Li x M y O z such as Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , and Li x FeO 2 (x, y, z are positive numbers, M is a metal, 2 It is also possible to contain a lithium-containing metal oxide that can be represented by the general formula (which may be a metal of more than one species), or a transition metal oxide or sulfide such as cobalt, manganese, vanadium, titanium, nickel. In particular, when a high voltage is required, lithium-containing cobalt oxide, lithium-containing nickel oxide, or lithium-containing cobalt-nickel composite oxide having a potential of 4 V or more with respect to metallic lithium is particularly suitable.

活性炭やコバルト酸リチウム等の正極活物質は粉末状、粒状、短繊維状等に形成され、この正極活物質をバインダーとして混合してスラリーが形成される。そして、正極活物質を含有するスラリーを正極集電体14bに塗工して乾燥させることにより、正極集電体14b上に正極合材層14cが形成される。なお、正極活物質と混合されるバインダーとしては、例えばSBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン、ポリアクリレート等の熱可塑性樹脂が挙げられる。また、正極合材層14cに対して、アセチレンブラック、グラファイト、金属粉末等の導電性材料を適宜加えるようにしてもよい。   A positive electrode active material such as activated carbon or lithium cobaltate is formed into a powder form, a granular form, a short fiber form, and the like, and the positive electrode active material is mixed as a binder to form a slurry. Then, the positive electrode active material layer 14c is formed on the positive electrode current collector 14b by applying the slurry containing the positive electrode active material to the positive electrode current collector 14b and drying it. Examples of the binder mixed with the positive electrode active material include rubber-based binders such as SBR, fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride, and thermoplastic resins such as polypropylene, polyethylene, and polyacrylate. It is done. Moreover, you may make it add electrically conductive materials, such as acetylene black, a graphite, and a metal powder, with respect to the positive mix layer 14c.

[C]負極集電体および正極集電体
負極集電体15bおよび正極集電体14bとしては、表裏面を貫く貫通孔14a、15aを備えているものが好適であり、例えばエキスパンドメタル、パンチングメタル、網、発泡体等が挙げられる。貫通孔14a、15aの形状や個数等については特に制限はなく、アニオンおよび/またはリチウムイオンの移動を阻害しないものであれば適宜設定可能である。また、負極集電体15bおよび正極集電体14bの材質としては、一般に有機電解質電池に提案されている種々の材質を用いることが可能である。例えば、負極集電体15bの材質として、ステンレス鋼、銅、ニッケル等が挙げられ、正極集電体14bの材質として、アルミニウム、ステンレス鋼等が挙げられる。
[C] Negative electrode current collector and positive electrode current collector The negative electrode current collector 15b and the positive electrode current collector 14b are preferably provided with through holes 14a and 15a penetrating the front and back surfaces, for example, expanded metal, punching A metal, a net | network, a foam, etc. are mentioned. The shape and number of the through holes 14a and 15a are not particularly limited, and can be appropriately set as long as they do not hinder the movement of anions and / or lithium ions. In addition, as materials for the negative electrode current collector 15b and the positive electrode current collector 14b, various materials generally proposed for organic electrolyte batteries can be used. For example, examples of the material of the negative electrode current collector 15b include stainless steel, copper, and nickel, and examples of the material of the positive electrode current collector 14b include aluminum and stainless steel.

[D]セパレータ
セパレータ13としては、電解液、正極活物質、負極活物質等に対して耐久性があり、連通気孔を有する電子伝導性のない多孔質体等が挙げられる。通常は、紙(セルロース)、ガラス繊維、ポリエチレンあるいはポリプロピレン等からなる布、不織布あるいは多孔体が挙げられる。セパレータ13の厚みは、電池の内部抵抗を小さくするために薄い方が好ましいが、電解液の保持量、流通性、強度等を勘案して適宜設定することができる。
[D] Separator Examples of the separator 13 include a porous body that has durability against an electrolytic solution, a positive electrode active material, a negative electrode active material, and the like and has continuous air holes and has no electronic conductivity. Usually, paper (cellulose), glass fiber, polyethylene, polypropylene, or other cloth, nonwoven fabric, or porous material is used. The thickness of the separator 13 is preferably thin in order to reduce the internal resistance of the battery, but can be appropriately set in consideration of the amount of electrolyte retained, the flowability, the strength, and the like.

[E]電解液
電解液としては、高電圧でも電気分解を起こさない観点、リチウムイオンが安定に存在できる観点から、リチウム塩を含む非プロトン性有機溶媒を用いることが好ましい。非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等を単独あるいは混合した溶媒が挙げられる。また、リチウム塩としては、例えばLiClO4、LiAsF6、LiBF4、LiPF6、LiN(C25SO22等が挙げられる。
[E] Electrolytic Solution As the electrolytic solution, it is preferable to use an aprotic organic solvent containing a lithium salt from the viewpoint of not causing electrolysis even at a high voltage and from the viewpoint that lithium ions can exist stably. Examples of the aprotic organic solvent include solvents in which ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like are used alone or in combination. Examples of the lithium salt include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , and LiN (C 2 F 5 SO 2 ) 2 .

[F]ラミネートフィルム
ラミネートフィルム11としては、一般に電池に用いられている種々の材質を用いることが可能である。一般的には、外側にナイロンフィルム、中心にアルミニウム箔、内側に変性ポリプロピレン等の接着層を有した3層ラミネートフィルムが用いられている。
[F] Laminate Film As the laminate film 11, various materials generally used for batteries can be used. In general, a three-layer laminate film having a nylon film on the outside, an aluminum foil in the center, and an adhesive layer such as modified polypropylene on the inside is used.

以下、実施例に基づき、本発明をさらに詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

(実施例1)
(負極の製造)
フラン樹脂炭の原料であるフルフリルアルコールを60℃で24時間保持することにより樹脂を硬化させ、黒色樹脂を得た。得られた黒色樹脂を静置式電気炉内に入れ、窒素雰囲気下にて1200℃まで3時間で昇温し、その到達温度にて2時間保持した。放冷冷却後取り出した試料をボールミルにて粉砕することにより、D50%=5.0μmの難黒鉛化性炭素粉末(水素原子/炭素原子=0.008)である試料を得た。
Example 1
(Manufacture of negative electrode)
The resin was cured by holding furfuryl alcohol, which is a raw material of furan resin charcoal, at 60 ° C. for 24 hours to obtain a black resin. The obtained black resin was placed in a static electric furnace, heated to 1200 ° C. in 3 hours in a nitrogen atmosphere, and held at that temperature for 2 hours. The sample taken out after cooling by cooling was pulverized with a ball mill to obtain a sample of D50% = 5.0 μm non-graphitizable carbon powder (hydrogen atom / carbon atom = 0.008).

次に、上記試料を100重量部と、ポリフッ化ビニリデン粉末10重量部をN−メチルピロリドン80重量部に溶解した溶液とを充分に混合することにより負極スラリーを得た。該負極スラリーを厚さ32μm(気孔率50%)の銅製エキスパンドメタルからなる負極集電体の両面にダイコーターにて均等に塗工し、乾燥、プレス後、厚み70μmの負極を得た。   Next, a negative electrode slurry was obtained by sufficiently mixing 100 parts by weight of the sample and a solution in which 10 parts by weight of polyvinylidene fluoride powder was dissolved in 80 parts by weight of N-methylpyrrolidone. The negative electrode slurry was evenly coated on both surfaces of a negative electrode current collector made of a copper expanded metal having a thickness of 32 μm (porosity 50%) with a die coater, dried and pressed to obtain a negative electrode having a thickness of 70 μm.

(正極の製造)
比表面積2000m2/gの市販活性炭粉末85重量部、アセチレンブラック粉体5重量部、アクリル系樹脂バインダー6重量部、カルボキシメチルセルロース4重量部および水200重量部からなる組成にて充分混合することにより正極スラリーを得た。
(Manufacture of positive electrode)
By mixing thoroughly with a composition comprising 85 parts by weight of commercially available activated carbon powder having a specific surface area of 2000 m 2 / g, 5 parts by weight of acetylene black powder, 6 parts by weight of acrylic resin binder, 4 parts by weight of carboxymethylcellulose and 200 parts by weight of water. A positive electrode slurry was obtained.

厚さ35μm(気孔率50%)のアルミニウム製エキスパンドメタルの両面に非水系のカーボン系導電塗料をスプレー方式にてコーティングし、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚さ(集電体厚さと導電層厚さとの合計)は52μmであり、貫通孔はほぼ導電塗料により閉塞された。該スラリーをロールコーターにて上記正極集電体の両面に均等に塗工し、乾燥、プレス後、厚み129μmの正極を得た。正極の正極層の厚みは77μm、また正極活物質の目付量は3.5mg/cm2であった。 A positive electrode current collector in which a conductive layer was formed was obtained by coating a non-aqueous carbon-based conductive paint on both sides of an aluminum expanded metal having a thickness of 35 μm (porosity 50%) by a spray method and drying. . The total thickness (the total of the current collector thickness and the conductive layer thickness) was 52 μm, and the through hole was almost blocked by the conductive paint. The slurry was evenly coated on both surfaces of the positive electrode current collector with a roll coater, dried and pressed to obtain a positive electrode having a thickness of 129 μm. The thickness of the positive electrode layer of the positive electrode was 77 μm, and the basis weight of the positive electrode active material was 3.5 mg / cm 2 .

(三極積層ユニットの作製)
負極を6.0×7.5cm2(端子溶接部を除く)に11枚カットし、正極を5.8×7.3cm2(端子溶接部を除く)に10枚にカットした。セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を介して、正極集電体、負極集電体の端子溶接部がそれぞれ反対側になるよう配置し、正極と負極とを交互に積層した。なお、電極の最外部が負極となるように積層した。最上部と最下部とはセパレータを配置させて4辺をテープ留めし、正極集電体の端子溶接部(10枚)、負極集電体の端子溶接部(11枚)をそれぞれ幅50mm、長さ50mm、厚さ0.2mmのアルミニウム製正極端子および銅製負極端子に超音波溶接して電極積層ユニットを得た。
(Production of three-pole laminated unit)
The negative electrode was cut into 11 sheets at 6.0 × 7.5 cm 2 (excluding the terminal welded portion), and the positive electrode was cut into 10 sheets at 5.8 × 7.3 cm 2 (excluding the terminal welded portion). The separators were arranged so that the terminal welded portions of the positive electrode current collector and the negative electrode current collector were opposite to each other through a 35 μm thick cellulose / rayon mixed nonwoven fabric as a separator, and the positive electrodes and the negative electrodes were alternately laminated. In addition, it laminated | stacked so that the outermost part of an electrode might become a negative electrode. The uppermost part and the lowermost part have separators arranged and taped on the four sides. The terminal welded part of the positive electrode current collector (10 sheets) and the terminal welded part of the negative electrode current collector (11 sheets) are each 50 mm wide and long. An electrode laminate unit was obtained by ultrasonic welding to an aluminum positive electrode terminal and a copper negative electrode terminal having a thickness of 50 mm and a thickness of 0.2 mm.

リチウム極として、金属リチウム箔を厚さ80μmのステンレス網に圧着したものを用い、該リチウム極を最外部の負極と完全に対向するように電極積層ユニットの上部に1枚配置して三極積層ユニットを得た。なお、リチウム極集電体の端子溶接部は負極端子溶接部に抵抗溶接した。   As a lithium electrode, a metal lithium foil bonded to an 80 μm-thick stainless steel mesh is used, and one lithium electrode is placed on the upper part of the electrode stacking unit so as to be completely opposed to the outermost negative electrode. Got a unit. The terminal welded portion of the lithium electrode current collector was resistance welded to the negative electrode terminal welded portion.

(セルの作製および電解液の含浸)
電極積層ユニットの形状にあわせて深絞りした3.5mmのユニット収容部と、電解液を溜めるためにユニット収容部とは別に深絞りした貯留部とを有したラミネートフィルムの内部へ上記三極積層ユニットを設置し、ラミネートフィルムの下辺部および側辺部の三辺を熱融着した。ここで、電解液を溜めるための貯留部は、ラミネートフィルムの熱融着していない上辺部である残り一辺の対辺に位置するように三辺を熱融着した。
(Cell preparation and electrolyte impregnation)
The above-mentioned three-electrode laminate inside a laminate film having a 3.5 mm unit housing part deeply drawn in accordance with the shape of the electrode lamination unit and a storage part deeply drawn separately from the unit housing part for storing the electrolyte solution The unit was installed, and the lower side and side sides of the laminate film were heat-sealed. Here, the storage part for storing the electrolytic solution was heat-sealed on three sides so as to be located on the opposite side of the remaining one side which is the upper side part of the laminate film which is not heat-sealed.

続いて、熱融着を行っていない残りの一辺に漏斗を挿入し、スポイドにて電解液としてのプロピレンカーボネートに対して1モル/Lの濃度となるようにLiPF6を溶解した溶液を15g注液した。電解液は下部の貯留部へとスムーズに流れた。その後に、残り一辺を減圧下にて融着させ、フィルム型セルを4セル組み立てた。なお、セル内に配置された金属リチウムは負極活物質重量当たり500mAh/g相当である。 Subsequently, a funnel was inserted into the other side where heat fusion was not performed, and 15 g of a solution in which LiPF 6 was dissolved with propoid so as to have a concentration of 1 mol / L with respect to propylene carbonate as an electrolytic solution was poured. Liquid. The electrolyte flowed smoothly into the lower reservoir. Thereafter, the remaining side was fused under reduced pressure to assemble 4 cell-type cells. In addition, the metallic lithium arrange | positioned in a cell is equivalent to 500 mAh / g per negative electrode active material weight.

セル組み立て後、貯留部を上にして、貯留部の電解液を全量セル内部に含浸させた後、貯留部とユニット収容部との間にて熱融着して貯留部を除去した。   After assembling the cell, the reservoir was turned up and the electrolyte in the reservoir was completely impregnated inside the cell, and then heat-sealed between the reservoir and the unit accommodating portion to remove the reservoir.

(セルの初期評価)
電解液を含浸してから20日間放置後に1セルを分解したところ、金属リチウムはいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに500mAh/gのリチウムイオンが予めドープされたと判断した。
(Initial evaluation of the cell)
When one cell was decomposed after being left for 20 days after impregnation with the electrolyte, all of the lithium metal was completely removed, so that 500 mAh / g of lithium ions were pre-doped per unit weight of the negative electrode active material. It was judged.

(セルの特性評価)
1000mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を30分間行った。次いで、500mAの定電流でセル電圧が2.2Vになるまで放電した。この3.8V−2.2Vのサイクルを繰り返し、10回目の放電におけるセル容量およびエネルギー密度を評価した。続いて、60℃の恒温槽内に放置後、3.8Vの電圧を印加し続け、1000時間経過後に室温に戻してセル容量を評価した。結果を60℃での3.8V印加試験後における容量保持率とともに表1に示す。ただし、データは3セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 1000 mA until the cell voltage reached 3.8 V, and then a constant current-constant voltage charge in which a constant voltage of 3.8 V was applied was performed for 30 minutes. Next, the battery was discharged at a constant current of 500 mA until the cell voltage was 2.2V. This cycle of 3.8V-2.2V was repeated, and the cell capacity and energy density in the 10th discharge were evaluated. Subsequently, after being left in a constant temperature bath at 60 ° C., a voltage of 3.8 V was continuously applied, and after 1000 hours, the temperature was returned to room temperature to evaluate the cell capacity. The results are shown in Table 1 together with the capacity retention after the 3.8 V application test at 60 ° C. However, the data is an average of 3 cells.

Figure 2009076248
Figure 2009076248

(比較例1)
電解液を溜める貯留部を有していないラミネートフィルムを用いる以外は実施例1と同様に、三極積層ユニットを3.5mm深絞りしたラミネートフィルムの内部へ設置し、ラミネートフィルムの三辺を熱融着した。
(Comparative Example 1)
As in Example 1, except that a laminate film that does not have a reservoir for storing the electrolyte is used, a three-pole laminate unit is installed inside the laminate film that is deeply drawn by 3.5 mm, and the three sides of the laminate film are heated. Fused.

(電解液の含浸およびセルの作製)
ラミネートフィルムの熱融着を行っていない残りの一辺に漏斗を挿入し、スポイドにて電解液としてのプロピレンカーボネートに対して1モル/Lの濃度となるようにLiPF6を溶解した溶液を少量ずつ注液しながら真空含浸を繰り返し、総量15gを含浸させた。その後に、残り一辺を減圧下にて融着し、フィルム型セルを4セル組み立てた。なお、セル内に配置された金属リチウムは負極活物質重量当たり500mAh/g相当である。
(Impregnation with electrolyte and cell preparation)
A funnel is inserted into the other side where the laminated film is not heat-sealed, and a solution of LiPF 6 dissolved in a dropper so as to have a concentration of 1 mol / L with respect to propylene carbonate as an electrolytic solution. While pouring, the vacuum impregnation was repeated to impregnate a total amount of 15 g. Thereafter, the remaining side was fused under reduced pressure to assemble 4 film type cells. In addition, the metallic lithium arrange | positioned in a cell is equivalent to 500 mAh / g per negative electrode active material weight.

(セルの初期評価)
セルを組み立ててから20日間放置後に1セルを分解したところ、金属リチウムはいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに500mAh/gのリチウムイオンが予めドープされたと判断した。
(Initial evaluation of the cell)
When one cell was disassembled after being left for 20 days after assembling the cell, all of the lithium metal was completely removed, so it was judged that 500 mAh / g lithium ion was pre-doped per unit weight of the negative electrode active material. .

(セルの特性評価)
1000mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を30分間行った。次いで、500mAの定電流でセル電圧が2.2Vになるまで放電した。この3.8V−2.2Vのサイクルを繰り返し、10回目の放電におけるセル容量およびエネルギー密度を評価した。続いて、60℃の恒温槽内に放置後、3.8Vの電圧を印加し続け、1000時間経過後に室温に戻してセル容量を評価した。結果を60℃での3.8V印加試験後における容量保持率とともに表2に示す。ただし、データは3セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 1000 mA until the cell voltage reached 3.8 V, and then a constant current-constant voltage charge in which a constant voltage of 3.8 V was applied was performed for 30 minutes. Next, the battery was discharged at a constant current of 500 mA until the cell voltage was 2.2V. This cycle of 3.8V-2.2V was repeated, and the cell capacity and energy density in the 10th discharge were evaluated. Subsequently, after being left in a constant temperature bath at 60 ° C., a voltage of 3.8 V was continuously applied, and after 1000 hours, the temperature was returned to room temperature to evaluate the cell capacity. The results are shown in Table 2 together with the capacity retention after the 3.8 V application test at 60 ° C. However, the data is an average of 3 cells.

Figure 2009076248
Figure 2009076248

実施例1と比較例1とは、同じ電極積層ユニットを用いているため、初期の放電容量は同じであるが、60℃での3.8V連続印加試験1000時間後の容量保持率は実施例1の方が優れる結果となった。これは、実施例1が電解液の注液方法として電解液を溜める貯留部を有したラミネートフィルムを用い、スムーズに注液を完了させたためと考えられる。該方法によれば、セルの組立てが簡略化され、三極積層ユニットおよび電解液が大気にさらされる時間が極めて短くなったため、水分の吸着量が少なくなり安定化したと推測される。   Since Example 1 and Comparative Example 1 use the same electrode laminate unit, the initial discharge capacity is the same, but the capacity retention after 1000 hours of 3.8 V continuous application test at 60 ° C. The result of 1 was superior. This is thought to be because Example 1 used a laminate film having a reservoir for storing the electrolyte solution as a method for injecting the electrolyte solution, and smoothly completed the injection. According to this method, the assembly of the cell is simplified, and the time during which the three-pole laminated unit and the electrolyte are exposed to the atmosphere is extremely short. Therefore, it is presumed that the amount of moisture adsorption is reduced and stabilized.

(比較例2)
熱融着していない上辺部の一辺を電解液を溜める貯留部側とする以外は、実施例1と同様に外装ラミネートフィルムの三辺を熱融着した。
(Comparative Example 2)
The three sides of the exterior laminate film were heat-sealed in the same manner as in Example 1 except that one side of the upper side that was not heat-sealed was the storage portion side that stores the electrolyte.

(電解液含浸工程およびセル3の作製)
ラミネートフィルムの熱融着を行っていない残りの一辺に漏斗を挿入し、スポイドにて電解液としてのプロピレンカーボネートに対して1モル/Lの濃度となるようにLiPF6を溶解した溶液を、電解液を溜める貯留部に15g注液した。注液直後に残り一辺を融着するために減圧すると、貯留部の電解液が脱泡により激しく飛び散ったため融着できなかった。このため、貯留部の電解液が全てラミネートフィルム内のユニット収納部に流れ落ちた後に、残り一辺を再度減圧下にて融着し、フィルム型セルを4セル組み立てた。なお、セル内に配置された金属リチウムは負極活物質重量当たり500mAh/g相当である。
(Electrolyte impregnation step and production of cell 3)
A funnel is inserted into the other side where the laminated film is not heat-sealed, and a solution in which LiPF 6 is dissolved with propoid so as to have a concentration of 1 mol / L with respect to propylene carbonate as an electrolytic solution is electrolyzed. 15 g of liquid was injected into the reservoir for storing the liquid. When the pressure was reduced in order to fuse the remaining side immediately after the injection, the electrolyte solution in the reservoir portion splattered due to defoaming and could not be fused. For this reason, after all the electrolyte solution of the storage part flowed down to the unit storage part in the laminate film, the remaining one side was again fused under reduced pressure, and 4 film type cells were assembled. In addition, the metallic lithium arrange | positioned in a cell is equivalent to 500 mAh / g per negative electrode active material weight.

セル組み立て後、貯留部とユニット収容部との間にて熱融着して貯留部を除去した。   After the cell assembly, the reservoir was removed by heat fusion between the reservoir and the unit housing.

(セルの初期評価)
電解液を含浸してから20日間放置後に1セルを分解したところ、金属リチウムはいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに500mAh/gのリチウムイオンが予めドープされたと判断した。
(Initial evaluation of the cell)
When one cell was decomposed after being left for 20 days after impregnation with the electrolyte, all of the lithium metal was completely removed, so that 500 mAh / g of lithium ions were pre-doped per unit weight of the negative electrode active material. It was judged.

(セルの特性評価)
1000mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を30分間行った。次いで、500mAの定電流でセル電圧が2.2Vになるまで放電した。この3.8V−2.2Vのサイクルを繰り返し、10回目の放電におけるセル容量およびエネルギー密度を評価した。続いて、60℃の恒温槽内に放置後、3.8Vの電圧を印加し続け、1000時間経過後に室温に戻してセル容量を評価した。結果を60℃での3.8V印加試験後における容量保持率とともに表3に示す。ただし、データは3セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 1000 mA until the cell voltage reached 3.8 V, and then a constant current-constant voltage charge in which a constant voltage of 3.8 V was applied was performed for 30 minutes. Next, the battery was discharged at a constant current of 500 mA until the cell voltage was 2.2V. This cycle of 3.8V-2.2V was repeated, and the cell capacity and energy density in the 10th discharge were evaluated. Subsequently, after being left in a constant temperature bath at 60 ° C., a voltage of 3.8 V was continuously applied, and after 1000 hours, the temperature was returned to room temperature to evaluate the cell capacity. The results are shown in Table 3 together with the capacity retention after the 3.8 V application test at 60 ° C. However, the data is an average of 3 cells.

Figure 2009076248
Figure 2009076248

比較例1と同様に、セルの組立てに時間を要するため、水分の混入量が多くなり、耐久性が実施例1よりも低い結果となったと考えられる。このため、電解液を溜める貯留部から電解液を注液したのでは本発明の効果は得られない。   As in Comparative Example 1, since it takes time to assemble the cell, the amount of moisture mixed in increased, and the durability is considered to be lower than that of Example 1. For this reason, the effect of the present invention cannot be obtained by injecting the electrolyte from the reservoir for storing the electrolyte.

また、本発明を適用することが可能な蓄電デバイスとしては、前述したリチウムイオンキャパシタに限られることなく、リチウムイオンバッテリ、電気二重層キャパシタ等、他の形式のバッテリやキャパシタであってもよい。   The power storage device to which the present invention can be applied is not limited to the above-described lithium ion capacitor, but may be other types of batteries and capacitors such as a lithium ion battery and an electric double layer capacitor.

なお、本発明の蓄電デバイスは、電気自動車やハイブリッド自動車等の駆動用蓄電源または補助用蓄電源として極めて有効である。また、例えば、電動自転車や電動車椅子等の駆動用蓄電源、太陽光発電装置や風力発電装置等に用いられる蓄電源、携帯機器や家庭用電気器具等に用いられる蓄電源として好適に用いることが可能である。   The power storage device of the present invention is extremely effective as a drive storage power source or auxiliary storage power source for an electric vehicle, a hybrid vehicle, or the like. Moreover, for example, it can be suitably used as a storage power source for driving electric bicycles, wheelchairs, etc., a storage power source used for solar power generators, wind power generators, etc., and a storage power source used for portable devices, household appliances, etc. Is possible.

本発明の一実施の形態である蓄電デバイスを示す斜視図である。It is a perspective view which shows the electrical storage device which is one embodiment of this invention. 蓄電デバイスの内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of an electrical storage device. 蓄電デバイスの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of an electrical storage device. 蓄電デバイスの内部構造を部分的に拡大して示す断面図である。It is sectional drawing which expands and shows the internal structure of an electrical storage device partially. 蓄電デバイスの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of an electrical storage device. 蓄電デバイスの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of an electrical storage device. 蓄電デバイスの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of an electrical storage device. (A)および(B)は蓄電デバイスから貯留部を切り離す際の手順を示す説明図である。(A) And (B) is explanatory drawing which shows the procedure at the time of isolate | separating a storage part from an electrical storage device.

符号の説明Explanation of symbols

10 蓄電デバイス
11 ラミネートフィルム(外装フィルム)
11a ユニット収容部
11b 貯留部
11c 上辺部
11d 下辺部
11e 側辺部
13 セパレータ
14 正極
14a 貫通孔
14b 正極集電体
15 負極
15a 貫通孔
15b 負極集電体
16 リチウム極(リチウムイオン供給源)
17 三極積層ユニット(電極ユニット)
10 Power storage device 11 Laminate film (exterior film)
11a Unit accommodating portion 11b Reserving portion 11c Upper side portion 11d Lower side portion 11e Side side portion 13 Separator 14 Positive electrode 14a Through hole 14b Positive electrode current collector 15 Negative electrode 15a Through hole 15b Negative electrode current collector 16 Lithium electrode (lithium ion supply source)
17 Tripolar laminated unit (electrode unit)

Claims (9)

正極および負極を備える電極ユニットと、前記電極ユニットを挟んで収容する外装フィルムとを有する蓄電デバイスの製造方法であって、
前記外装フィルムに、前記電極ユニットが収容されるユニット収容部と、電解液注入時に前記ユニット収容部の下方に位置する下辺部と、電解液注入時に前記ユニット収容部の上方に位置する上辺部と、電解液注入時に前記ユニット収容部の側方に位置する側辺部と、前記ユニット収容部と前記下辺部との間に位置する貯留部とを形成し、
前記下辺部および側辺部を封止した後に前記上辺部から電解液を注入し、前記電極ユニット下部の前記貯留部に電解液を溜めた状態のもとで前記上辺部を封止することを特徴とする蓄電デバイスの製造方法。
A method for producing an electricity storage device having an electrode unit including a positive electrode and a negative electrode, and an exterior film that is accommodated with the electrode unit interposed therebetween,
A unit housing part in which the electrode unit is housed in the exterior film, a lower side part located below the unit housing part when injecting the electrolyte, and an upper side part located above the unit housing part when injecting the electrolyte And forming a side part located on the side of the unit housing part at the time of electrolyte injection, and a storage part located between the unit housing part and the lower side part,
Sealing the lower side part and the side part after injecting an electrolyte from the upper side part and sealing the upper side part in a state where the electrolytic solution is stored in the storage part below the electrode unit. A method for manufacturing an electricity storage device.
請求項1に記載の蓄電デバイスの製造方法において、
第1圧力雰囲気下で前記上辺部から電解液を注入し、前記第1圧力雰囲気よりも低圧の第2圧力雰囲気下で前記上辺部を封止することを特徴とする蓄電デバイスの製造方法。
In the manufacturing method of the electrical storage device according to claim 1,
A method for manufacturing an electricity storage device, comprising injecting an electrolytic solution from the upper side under a first pressure atmosphere and sealing the upper side under a second pressure atmosphere lower in pressure than the first pressure atmosphere.
正極および負極を備える電極ユニットと、前記電極ユニットを挟んで収容する外装フィルムとを有する蓄電デバイスであって、
前記外装フィルムは、前記電極ユニットが収容されるユニット収容部と、電解液注入時に前記ユニット収容部の下方に位置する下辺部と、電解液注入時に前記ユニット収容部の上方に位置する上辺部と、電解液注入時に前記ユニット収容部の側方に位置する側辺部と、前記ユニット収容部と前記下辺部との間に位置する貯留部とを形成し、
前記下辺部および側辺部が封止された後に前記上辺部から電解液が注入され、前記電極ユニット下部の前記貯留部に電解液を溜めた状態のもとで前記上辺部が封止されることを特徴とする蓄電デバイス。
An electricity storage device having an electrode unit including a positive electrode and a negative electrode, and an exterior film that is accommodated with the electrode unit interposed therebetween,
The exterior film includes a unit accommodating portion in which the electrode unit is accommodated, a lower side portion located below the unit accommodating portion when the electrolyte is injected, and an upper side portion located above the unit accommodating portion when the electrolyte is injected. And forming a side part located on the side of the unit housing part at the time of electrolyte injection, and a storage part located between the unit housing part and the lower side part,
After the lower side and side sides are sealed, the electrolyte is injected from the upper side, and the upper side is sealed under the condition that the electrolyte is stored in the storage part below the electrode unit. An electricity storage device characterized by the above.
請求項3記載の蓄電デバイスにおいて、
第1圧力雰囲気下で前記上辺部から電解液が注入され、前記第1圧力雰囲気よりも低圧の第2圧力雰囲気下で前記上辺部が封止されることを特徴とする蓄電デバイス。
The electricity storage device according to claim 3,
An electric storage device, wherein an electrolyte is injected from the upper side under a first pressure atmosphere, and the upper side is sealed under a second pressure atmosphere lower in pressure than the first pressure atmosphere.
請求項3または4記載の蓄電デバイスにおいて、
前記貯留部内の電解液を前記電極ユニットに含浸させた後に、前記貯留部を異常時のガス溜め部として機能させることを特徴とする蓄電デバイス。
The electricity storage device according to claim 3 or 4,
An electrical storage device, wherein after the electrode unit is impregnated with the electrolytic solution in the storage section, the storage section functions as a gas storage section at the time of abnormality.
請求項3〜5のいずれか1項に記載の蓄電デバイスにおいて、
前記貯留部の容量は前記電解液の注入量を下回って設定されることを特徴とする蓄電デバイス。
In the electrical storage device of any one of Claims 3-5,
The capacity of the storage unit is set to be lower than the injection amount of the electrolytic solution.
請求項3〜6のいずれか1項に記載の蓄電デバイスにおいて、
前記電解液は非プロトン性有機溶媒であることを特徴とする蓄電デバイス。
In the electrical storage device of any one of Claims 3-6,
The electrical storage device, wherein the electrolytic solution is an aprotic organic solvent.
請求項3〜7のいずれか1項に記載の蓄電デバイスにおいて、
前記正極と前記負極とを短絡させたときの正極電位が2V(対Li/Li+)以下であることを特徴とする蓄電デバイス。
In the electrical storage device of any one of Claims 3-7,
A power storage device, wherein a positive electrode potential when the positive electrode and the negative electrode are short-circuited is 2 V (vs. Li / Li + ) or less.
請求項3〜8のいずれか1項に記載の蓄電デバイスにおいて、
前記負極と前記正極との少なくとも一方に短絡するリチウムイオン供給源を有し、
前記正極および前記負極が備える集電体にリチウムイオンが通過する貫通孔を形成し、
前記負極と前記正極とのいずれか一方に前記リチウムイオン供給源からリチウムイオンをドーピングさせることを特徴とする蓄電デバイス。
In the electrical storage device of any one of Claims 3-8,
A lithium ion source that is short-circuited to at least one of the negative electrode and the positive electrode;
Forming a through-hole through which lithium ions pass through the current collector of the positive electrode and the negative electrode;
One of the negative electrode and the positive electrode is doped with lithium ions from the lithium ion supply source.
JP2007242277A 2007-09-19 2007-09-19 Method for manufacturing power storage device Expired - Fee Related JP5096851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242277A JP5096851B2 (en) 2007-09-19 2007-09-19 Method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242277A JP5096851B2 (en) 2007-09-19 2007-09-19 Method for manufacturing power storage device

Publications (2)

Publication Number Publication Date
JP2009076248A true JP2009076248A (en) 2009-04-09
JP5096851B2 JP5096851B2 (en) 2012-12-12

Family

ID=40611039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242277A Expired - Fee Related JP5096851B2 (en) 2007-09-19 2007-09-19 Method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP5096851B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022992A (en) * 2010-07-16 2012-02-02 Sony Corp Battery and method for manufacturing the same
US20120034510A1 (en) * 2010-08-06 2012-02-09 Sony Corporation Battery and method for producing the same
JP2012221957A (en) * 2011-04-07 2012-11-12 Samsung Sdi Co Ltd Secondary battery
JP2013178950A (en) * 2012-02-28 2013-09-09 Gs Yuasa Corp Power storage element
CN103354278A (en) * 2013-07-22 2013-10-16 深圳市崧鼎科技有限公司 Aluminium plastic film and packaging method for polymer lithium ion battery
KR101447313B1 (en) * 2012-02-17 2014-10-06 주식회사 엘지화학 Rechargeable battery of pouch type and manufacture method of the same
JP2014207244A (en) * 2014-07-03 2014-10-30 ソニー株式会社 Device of manufacturing battery
JP2014529855A (en) * 2011-08-24 2014-11-13 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Battery module
US20150037663A1 (en) * 2013-07-30 2015-02-05 Lg Chem, Ltd. Battery cell having double sealing structure
EP4203175A1 (en) * 2021-12-15 2023-06-28 SK On Co., Ltd. Lithium secondary battery and method of replenishing electrolyte in lithium secondary battery
EP4203176A1 (en) * 2021-12-15 2023-06-28 SK On Co., Ltd. Battery module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084984A (en) * 1999-09-14 2001-03-30 Yuasa Corp Battery
JP2002117814A (en) * 2000-10-05 2002-04-19 Sanyo Electric Co Ltd Square-shaped sheath can and battery using this
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084984A (en) * 1999-09-14 2001-03-30 Yuasa Corp Battery
JP2002117814A (en) * 2000-10-05 2002-04-19 Sanyo Electric Co Ltd Square-shaped sheath can and battery using this
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022992A (en) * 2010-07-16 2012-02-02 Sony Corp Battery and method for manufacturing the same
US20120034510A1 (en) * 2010-08-06 2012-02-09 Sony Corporation Battery and method for producing the same
KR20120013901A (en) * 2010-08-06 2012-02-15 소니 주식회사 Battery and method for producing the same
JP2012038584A (en) * 2010-08-06 2012-02-23 Sony Corp Battery and manufacturing method thereof
CN102376973A (en) * 2010-08-06 2012-03-14 索尼公司 Battery and method for producing the same
KR101893608B1 (en) * 2010-08-06 2018-08-30 가부시키가이샤 무라타 세이사쿠쇼 Battery and method for producing the same
US9219290B2 (en) 2010-08-06 2015-12-22 Sony Corporation Battery and method for producing the same
JP2012221957A (en) * 2011-04-07 2012-11-12 Samsung Sdi Co Ltd Secondary battery
JP2014529855A (en) * 2011-08-24 2014-11-13 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Battery module
KR101447313B1 (en) * 2012-02-17 2014-10-06 주식회사 엘지화학 Rechargeable battery of pouch type and manufacture method of the same
JP2013178950A (en) * 2012-02-28 2013-09-09 Gs Yuasa Corp Power storage element
CN103354278A (en) * 2013-07-22 2013-10-16 深圳市崧鼎科技有限公司 Aluminium plastic film and packaging method for polymer lithium ion battery
US20150037663A1 (en) * 2013-07-30 2015-02-05 Lg Chem, Ltd. Battery cell having double sealing structure
KR20150014893A (en) * 2013-07-30 2015-02-09 주식회사 엘지화학 Battery Cell Having Double Sealing Portion of Structure
KR101627357B1 (en) * 2013-07-30 2016-06-07 주식회사 엘지화학 Battery Cell Having Double Sealing Portion of Structure
US9735402B2 (en) * 2013-07-30 2017-08-15 Lg Chem, Ltd. Battery cell having double sealing structure
JP2014207244A (en) * 2014-07-03 2014-10-30 ソニー株式会社 Device of manufacturing battery
EP4203175A1 (en) * 2021-12-15 2023-06-28 SK On Co., Ltd. Lithium secondary battery and method of replenishing electrolyte in lithium secondary battery
EP4203176A1 (en) * 2021-12-15 2023-06-28 SK On Co., Ltd. Battery module

Also Published As

Publication number Publication date
JP5096851B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5096851B2 (en) Method for manufacturing power storage device
KR101848577B1 (en) Method for producing nonaqueous electrolyte secondary cell
JP4934607B2 (en) Power storage device
JP5091573B2 (en) Electricity storage device
JP6644658B2 (en) Lithium ion battery
JP4705566B2 (en) Electrode material and manufacturing method thereof
JP5236765B2 (en) Organic electrolyte capacitor
KR101573106B1 (en) Wound-type accumulator
EP2086044A2 (en) Electric storage device
EP2228862A1 (en) Wound-type electric storage device with an additional ion source
JP2009200302A (en) Method of manufacturing electricity storage device, and electricity storage device
JP2009123385A (en) Power storage device
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
JP5855893B2 (en) Method for producing non-aqueous lithium storage element
TW200522408A (en) Manufacturing method of electrochemical device
JP2008097991A (en) Electric storage device
JP2008300667A (en) Accumulation device
JP2014232666A (en) Nonaqueous electrolyte secondary battery
JP2005285447A (en) Lithium-ion secondary battery
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
JP5308646B2 (en) Lithium ion capacitor
JP2010161249A (en) Lithium ion capacitor
JP2009188141A (en) Electric power storage device
JP2009076249A (en) Power storage device
JP2009199962A (en) Separator-incorporated electrode, its manufacturing method, and power storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees