JP2009075054A - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP2009075054A
JP2009075054A JP2007246933A JP2007246933A JP2009075054A JP 2009075054 A JP2009075054 A JP 2009075054A JP 2007246933 A JP2007246933 A JP 2007246933A JP 2007246933 A JP2007246933 A JP 2007246933A JP 2009075054 A JP2009075054 A JP 2009075054A
Authority
JP
Japan
Prior art keywords
sensor
wheel bearing
load
sensor unit
sensor units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246933A
Other languages
Japanese (ja)
Other versions
JP4986786B2 (en
Inventor
Hiroshi Isobe
浩 磯部
Toru Takahashi
亨 高橋
Takami Ozaki
孝美 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007246933A priority Critical patent/JP4986786B2/en
Publication of JP2009075054A publication Critical patent/JP2009075054A/en
Application granted granted Critical
Publication of JP4986786B2 publication Critical patent/JP4986786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing with a sensor, capable of correctly detecting a load without the effect of hysteresis. <P>SOLUTION: The wheel bearing is composed of: an external member 1 provided with double-row running faces 3 on the internal circumference; an internal member 2 provided with a running faces 4 opposite to the running faces 3 on the outer circumference; double-row rolling members 5 which intervene between both the running faces 3, 4 facing each other. A sensor unit pair 19 constituted of two sensor units 20 is provided on the outer circumference of a fixed side member 1 of the external member 1 and the internal member 2. The two sensor units 20 are arranged at points with 180° phase difference in the circumferential direction of the fixed side member 1 and is provided with sensors 22 for detecting the deformations of deformation generating member 21. Two contact fixing parts 21a of the sensor units 20 are arranged, on the mutually same phases on the fixed side member 1 in the circumferential direction and an estimation means 40 estimates the load acting on the axle for the wheel bearing by the difference of output signal of the sensor 22 of two sensor units 20 in the sensor unit pair 19. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の外輪フランジの外径面の歪みを検出することにより荷重を検出するセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、固定輪のフランジ部と外径部にわたってL字型部材からなる歪み発生部材を取付け、その歪み発生部材の一部に歪みゲージを貼り付けた車輪用軸受が提案されている(例えば特許文献2)。
特開2002−098138号公報 特開2006−077807号公報
As a technique for detecting a load applied to each wheel of an automobile, a sensor-equipped wheel bearing that detects a load by detecting distortion of an outer diameter surface of an outer ring flange of the wheel bearing has been proposed (for example, Patent Document 1). . In addition, a wheel bearing has been proposed in which a strain generating member made of an L-shaped member is attached over the flange portion and the outer diameter portion of a fixed ring, and a strain gauge is attached to a part of the strain generating member (for example, Patent Documents). 2).
JP 2002-098138 A JP 2006-0777807 A

特許文献1に開示の技術では、固定輪のフランジ部の変形により発生する歪みを検出している。しかし、固定輪のフランジ部の変形には、フランジ面とナックル面の間に、静止摩擦力を超える力が作用した場合に滑りが伴うため、繰返し荷重を印加すると、出力信号にヒステリシスが発生するといった問題がある。
例えば、車輪用軸受に対してある方向の荷重が大きくなる場合、固定輪フランジ面とナックル面の間は、最初は荷重よりも静止摩擦力の方が大きいため滑らないが、ある大きさを超えると静止摩擦力に打ち勝って滑るようになる。その状態で荷重を小さくしていくと、やはり最初は静止摩擦力により滑らないが、ある大きさになると滑るようになる。その結果、この変形が生じる部分で荷重を推定しようとすると、出力信号に図10のようなヒステリシスが生じる。
また、特許文献2に開示の技術においても、L字型部材からなる歪み拡大機構のフランジ面に固定されている部位が、フランジ面とナックル面の滑りの影響を受けるため、上記と同様の問題が生じる。
また、車輪用軸受に作用する上下方向の荷重Fz を検出する場合、荷重Fz に対する固定輪変形量が小さいため歪み量も小さく、上記した技術では検出感度が低く、荷重Fz を精度良く検出できない。
In the technique disclosed in Patent Document 1, distortion generated by deformation of the flange portion of the fixed ring is detected. However, the deformation of the flange portion of the fixed ring involves slipping when a force exceeding the static friction force is applied between the flange surface and the knuckle surface, so that hysteresis is generated in the output signal when a repeated load is applied. There is a problem.
For example, when the load in a certain direction with respect to the wheel bearing increases, the static friction force between the fixed ring flange surface and the knuckle surface does not slip at first, but exceeds a certain size. And it comes to slip over the static friction force. If the load is reduced in this state, it will not slip due to static friction force at first, but it will slip when it reaches a certain size. As a result, when an attempt is made to estimate the load at a portion where this deformation occurs, a hysteresis as shown in FIG. 10 occurs in the output signal.
Also, in the technique disclosed in Patent Document 2, the portion fixed to the flange surface of the distortion expanding mechanism made of an L-shaped member is affected by the sliding of the flange surface and the knuckle surface, so the same problem as described above. Occurs.
Further, when detecting the load Fz in the vertical direction acting on the wheel bearing, the amount of deformation of the fixed wheel with respect to the load Fz is small, so the amount of distortion is also small. With the above technique, the detection sensitivity is low and the load Fz cannot be detected with high accuracy.

そこで、本発明者等は、上記課題を解決するものとして、以下の構成としたセンサ付車輪用軸受を開発した。このセンサ付車輪用軸受における車輪用軸受は、複列の転走面が内周に形成された外方部材と、上記転走面と対向する転走面を外周に形成した内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する。上記外方部材および内方部材のうちの固定側部材の外径面には、この外径面に接触して固定される2つの接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有するセンサユニットを設ける。このセンサユニットの前記2つの接触固定部は、互いに前記固定側部材の円周方向における同位相の位置に配置する。   Accordingly, the present inventors have developed a sensor-equipped wheel bearing having the following configuration in order to solve the above problems. The wheel bearing in this sensor-equipped wheel bearing is an outer member in which a double row rolling surface is formed on the inner periphery, and an inner member in which a rolling surface opposite to the rolling surface is formed on the outer periphery, A double row rolling element interposed between the opposing rolling surfaces of both members, and rotatably supporting the wheel with respect to the vehicle body. A strain generating member having two contact fixing portions fixed in contact with the outer diameter surface is attached to the outer diameter surface of the fixed side member of the outer member and the inner member, and the strain generating member is attached to the strain generating member. A sensor unit having a sensor for detecting distortion of the lever generating member is provided. The two contact fixing portions of the sensor unit are arranged at the same phase position in the circumferential direction of the fixing side member.

このように、センサユニットにおける歪み発生部材の2つの接触固定部を、前記固定側部材の外径面に対して円周方向に同位相として固定すると、歪み発生部材に歪みが集中しやすくなり、それだけ感度が向上する。また、センサユニットは、ヒステリシスの主な原因となる車体取付用フランジの突片に固定していないので、センサの出力信号に生じるヒステリシスが小さくなる。   Thus, when the two contact fixing portions of the strain generating member in the sensor unit are fixed in the same phase in the circumferential direction with respect to the outer diameter surface of the fixed side member, the strain tends to concentrate on the strain generating member, The sensitivity is improved accordingly. Further, since the sensor unit is not fixed to the projecting piece of the vehicle body mounting flange, which is a main cause of hysteresis, the hysteresis generated in the output signal of the sensor is reduced.

しかし、このような構成の場合、荷重の変化に対して出力信号の変化が小さく、温度やノイズ等に起因して出力信号に生じるドリフトにより検出誤差が大きくなる。その結果、車輪用軸受に複合荷重(例えばコーナリング力Fy と垂直方向荷重Fz )が印加した状態では、各方向の荷重をそれぞれ算出することが困難である。   However, in such a configuration, the change of the output signal is small with respect to the change of the load, and the detection error becomes large due to drift generated in the output signal due to temperature, noise, and the like. As a result, it is difficult to calculate the load in each direction in a state where a composite load (for example, the cornering force Fy and the vertical load Fz) is applied to the wheel bearing.

この発明の目的は、ヒステリシスの影響を受けることなく、どのような荷重条件においても、車輪にかかる荷重を正確に検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a sensor-equipped wheel bearing capable of accurately detecting a load applied to a wheel under any load condition without being affected by hysteresis.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、上記転走面と対向する転走面を外周に形成した内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に、その固定側部材の円周方向における180度の位相差をなす位置に配置された2つのセンサユニットからなるセンサユニット対を少なくとも1対設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つの接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有し、このセンサユニットの前記2つの接触固定部は互いに前記固定側部材の円周方向における同位相の位置に配置し、前記センサユニット対における2つのセンサユニットのセンサの出力信号の差分により、車輪用軸受に作用する荷重を推定する推定手段を設けたことを特徴とする。
車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材)にも荷重が印加されて変形が生じる。荷重の印加に伴い外方部材に生じる変形量が軸方向の各位置で異なるが、ここでは、センサユニット対の2つのセンサユニットにおける歪み発生部材の2つの接触固定部が、外方部材の円周方向における互いに同位相の位置に固定されているので、外方部材の歪みが歪み発生部材に集中して伝達されることになり、その歪みがセンサで感度良く検出され、その出力信号に生じるヒステリシスも小さくなる。 また、推定手段は、センサユニット対の2つのセンサユニットの出力信号の差分より、車輪用軸受に作用する荷重を推定するので、各センサユニットの出力信号に温度やノイズによるドリフトがある場合でも、ドリフトの影響をキャンセルもしくは低減できる。
また、荷重方向付近に設置したセンサユニットでは荷重が増加するに従って歪み量も大きくなるが、反荷重方向に設置したセンサユニットでは荷重が増加するに従って歪み量も小さくなる。そのため、2つのセンサユニットの出力信号の差分をとることにより、傾きの大きい出力信号を得ることができる。
また、ある方向への荷重が大きくなると、転動体と転走面が接触している部分と接触していない部分とが外方部材の円周方向に180度の位相差で現れるため、その方向に合わせて2つのセンサユニットを180度の位相差で配置すると、どちらか一方のセンサユニットに転動体から外方部材を経て必ず荷重が伝達されるので、荷重をセンサユニットで確実に検出できる。
これらのことから、ヒステリシスの影響を受けることなく、どのような荷重条件においても、車輪にかかる荷重を正確に検出できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member in which double-row rolling surfaces are formed on the inner periphery, an inner member in which a rolling surface facing the rolling surface is formed on the outer periphery, and both members. In a wheel bearing for supporting a wheel rotatably with respect to a vehicle body, a fixed-side member of the outer member and the inner member is provided. At least one pair of sensor units consisting of two sensor units arranged at a position forming a phase difference of 180 degrees in the circumferential direction of the stationary member is provided on the outer diameter surface, and the sensor unit includes the stationary member. A strain generating member having two contact fixing portions fixed in contact with the outer diameter surface of the sensor, and a sensor attached to the strain generating member for detecting the strain of the strain generating member. The two contact fixing parts are An estimation means is provided which is disposed at the same phase position in the circumferential direction of the constant side member and estimates the load acting on the wheel bearing based on the difference between the sensor output signals of the two sensor units in the sensor unit pair. It is characterized by.
When a load acts between the tire of the wheel and the road surface, the load is also applied to the fixed side member (for example, the outer member) of the wheel bearing, causing deformation. The amount of deformation that occurs in the outer member due to the application of load differs at each position in the axial direction, but here, the two contact fixing parts of the strain generating member in the two sensor units of the sensor unit pair are the circles of the outer member. Since the circumferentially fixed positions are fixed to each other, the distortion of the outer member is concentrated and transmitted to the distortion generating member, and the distortion is detected with high sensitivity by the sensor and is generated in the output signal. Hysteresis is also reduced. Moreover, since the estimation means estimates the load acting on the wheel bearing from the difference between the output signals of the two sensor units of the sensor unit pair, even when the output signal of each sensor unit has a drift due to temperature or noise, The influence of drift can be canceled or reduced.
In addition, the amount of strain increases as the load increases in the sensor unit installed near the load direction, but the amount of strain decreases as the load increases in the sensor unit installed in the anti-load direction. Therefore, an output signal with a large inclination can be obtained by taking the difference between the output signals of the two sensor units.
Further, when the load in a certain direction increases, the portion where the rolling element and the rolling surface are in contact with the portion which is not in contact appears with a phase difference of 180 degrees in the circumferential direction of the outer member. When the two sensor units are arranged with a phase difference of 180 degrees according to the above, the load is surely transmitted to either one of the sensor units from the rolling element through the outer member, so that the load can be reliably detected by the sensor unit.
Therefore, the load applied to the wheel can be accurately detected under any load condition without being affected by hysteresis.

この発明において、前記センサユニット対の2つのセンサユニットは、タイヤ接地面に対して上下位置となる前記固定側部材の外径面の上面部と下面部とに配置し、前記推定手段は、前記2つのセンサユニットのセンサの出力信号から車輪用軸受に作用する垂直方向の荷重を推定するようにしても良い。この構成の場合、ヒステリシスの影響を受けることなく、どのような荷重条件においても、垂直方向にかかる荷重Fz を正確に検出できる。   In the present invention, the two sensor units of the sensor unit pair are arranged on the upper surface portion and the lower surface portion of the outer diameter surface of the fixed side member that is in the vertical position with respect to the tire ground contact surface, and the estimation means includes the You may make it estimate the load of the perpendicular direction which acts on the wheel bearing from the output signal of the sensor of two sensor units. In this configuration, the load Fz applied in the vertical direction can be accurately detected under any load condition without being affected by hysteresis.

この発明において、前記センサユニット対の2つのセンサユニットは、タイヤ接地面に対して前後位置となる前記固定側部材の外径面の右面部と左面部とに配置し、前記推定手段は、前記2つのセンサユニットのセンサの出力信号から駆動力となる荷重を推定するようにしても良い。この構成の場合、ヒステリシスの影響を受けることなく、どのような荷重条件においても、駆動力となる荷重Fx を正確に検出できる。   In the present invention, the two sensor units of the sensor unit pair are arranged on the right surface portion and the left surface portion of the outer diameter surface of the fixed side member that are front and rear positions with respect to the tire ground contact surface, and the estimation means includes the You may make it estimate the load used as a driving force from the output signal of the sensor of two sensor units. In the case of this configuration, the load Fx as a driving force can be accurately detected under any load condition without being affected by hysteresis.

この発明において、さらに車輪用軸受に作用するコーナリング力を検出するコーナリング力検出センサを設け、前記推定手段は、前記センサユニット対における2つの出力信号の差分から、前記コーナリング力検出センサの出力信号分を分離して、車輪用軸受に作用する垂直方向の荷重または駆動力となる荷重を推定するようにしても良い。
コーナリング力Fy に対しては、固定側部材外径面の変形が大きいため、垂直方向の荷重Fz や駆動力による荷重Fx の影響を受けずに、コーナリング力検出センサでコーナリング力Fy のみを検出できる。一方、垂直方向の荷重Fz や駆動力による荷重Fx は、コーナリング力Fy の影響を受けやすいため、センサユニット対における2つの出力信号の差分から、前記コーナリング力検出センサの出力信号分を分離すると、コーナリング力Fy の影響を受けない垂直方向の荷重Fz や駆動力による荷重Fx を推定することができる。
In the present invention, a cornering force detection sensor for detecting a cornering force acting on the wheel bearing is further provided, and the estimating means calculates the output signal component of the cornering force detection sensor from the difference between two output signals in the sensor unit pair. May be separated to estimate the vertical load or the driving force acting on the wheel bearing.
For the cornering force Fy, since the outer diameter of the fixed-side member is greatly deformed, only the cornering force Fy can be detected by the cornering force detection sensor without being affected by the load Fz in the vertical direction and the load Fx due to the driving force. . On the other hand, since the vertical load Fz and the load Fx due to the driving force are easily affected by the cornering force Fy, when the output signal of the cornering force detection sensor is separated from the difference between the two output signals in the sensor unit pair, The load Fz in the vertical direction and the load Fx caused by the driving force that are not affected by the cornering force Fy can be estimated.

この発明において、前記固定側部材の外周に、ナックルに取付ける車体取付用のフランジが設けられ、前記コーナリング力検出センサは、歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有するセンサユニットを、前記固定側部材に取付けてなり、前記歪み発生部材は固定側部材に接触して固定される2つの接触固定部を有し、これら接触固定部のうち1つの接触固定部が前記フランジの側面に固定され、他の1つの接触固定部が前記固定側部材の外径面に固定されるものとしても良い。
上記コーナリング力検出センサの設置部位は、コーナリング力Fy に対して変形量が大きいが、垂直方向の荷重Fz や駆動力による荷重Fx に対して変形量の小さい部位である。これにより、コーナリング力検出センサによりコーナリング力Fy だけを特定して検出できる。
In the present invention, a flange for mounting a vehicle body attached to a knuckle is provided on the outer periphery of the fixed side member, and the cornering force detection sensor is attached to the strain generating member and the strain generating member to reduce the strain of the strain generating member. A sensor unit having a sensor to be detected is attached to the fixed side member, and the strain generating member has two contact fixing portions fixed in contact with the fixed side member, and one of these contact fixing portions The contact fixing portion may be fixed to the side surface of the flange, and the other one contact fixing portion may be fixed to the outer diameter surface of the fixed side member.
The cornering force detection sensor is installed at a portion having a large deformation amount with respect to the cornering force Fy but a small deformation amount with respect to the load Fz in the vertical direction and the load Fx due to the driving force. Thereby, only the cornering force Fy can be specified and detected by the cornering force detection sensor.

この発明において、前記センサユニット対の2つのセンサユニットにおける2つの接触固定部のうちの1つの接触固定部は、前記複列の転走面のうちのアウトボード側の転走面の周辺となる軸方向位置に、他の一つの接触固定部は前記一つの接触固定部よりもさらにアウトボード側に配置しても良い。
このように、センサユニット対の2つのセンサユニットにおける歪み発生部材の1つの接触固定部を、固定側部材(例えば外方部材)の外径面におけるアウトボード側列の転走面の周辺となる軸方向位置に配置した場合、この軸方向位置がタイヤの接地面に加わった荷重が内方部材から転動体を介して伝達される部位であるため、比較的に変形量の大きい部位となる。一方、歪み発生部材の他の1つの接触固定部は、前記1つの接触固定部よりもさらにアウトボード側の軸方向位置に配置されており、この軸方向位置は先の軸方向位置に比べて変形量の小さい部位となる。その結果、外方部材の外径面の歪みが歪み発生部材に拡大して伝達され、その拡大された歪みがセンサで検出される。
In this invention, one contact fixing part of the two contact fixing parts in the two sensor units of the sensor unit pair is the periphery of the rolling surface on the outboard side of the double row rolling surfaces. The other one contact fixing part may be arranged further on the outboard side than the one contact fixing part at the axial position.
In this way, one contact fixing portion of the strain generating member in the two sensor units of the sensor unit pair becomes the periphery of the rolling surface of the outboard side row on the outer diameter surface of the fixing side member (for example, the outer member). When arranged in the axial position, this axial position is a part where the load applied to the ground contact surface of the tire is transmitted from the inner member via the rolling elements, and therefore the part has a relatively large deformation amount. On the other hand, the other one contact fixing portion of the strain generating member is arranged at an axial position on the outboard side further than the one contact fixing portion, and this axial position is compared with the previous axial position. It becomes a part with a small amount of deformation. As a result, the distortion of the outer diameter surface of the outer member is enlarged and transmitted to the distortion generating member, and the enlarged distortion is detected by the sensor.

この発明において、前記センサユニット対の2つのセンサユニットの前記歪み発生部材は切欠き部を有し、前記切欠き部の周辺に前記センサを設けても良い。この構成の場合、固定側部材から歪み発生部材に拡大されて伝達される歪みが切欠き部に集中しやすくなり、センサによる検出感度が向上し、さらに荷重を精度良く検出することができる。   In this invention, the distortion generating member of the two sensor units of the sensor unit pair may have a notch, and the sensor may be provided around the notch. In the case of this configuration, the strain that is transmitted from the fixed member to the strain generating member is easily concentrated on the notch, the detection sensitivity of the sensor is improved, and the load can be detected with high accuracy.

この発明において、前記固定側部材の外周に、ナックルに取付ける車体取付用のフランジが設けられ、このフランジの円周方向複数箇所にボルト孔が設けられ、前記フランジは各ボルト孔が設けられた円周方向部分が他の部分よりも外径側へ突出した突片とされ、前記センサユニット対の2つのセンサユニットは、それぞれ隣合う前記突片の間の中央に配置しても良い。この構成の場合、ヒステリシスの原因となる突片から離れた位置にセンサユニットを設けることとなり、センサの出力信号のヒステリシスがさらに小さくなり、荷重をさらに精度良く検出することができる。   In this invention, a flange for mounting a vehicle body to be attached to a knuckle is provided on the outer periphery of the fixed side member, bolt holes are provided at a plurality of circumferential directions of the flange, and the flange is a circle in which each bolt hole is provided. The circumferential part may be a protruding piece that protrudes to the outer diameter side from the other part, and the two sensor units of the sensor unit pair may be arranged at the center between the adjacent protruding pieces. In the case of this configuration, the sensor unit is provided at a position away from the projecting piece causing the hysteresis, the hysteresis of the output signal of the sensor is further reduced, and the load can be detected with higher accuracy.

この発明において、前記推定手段は、2つのセンサユニットのセンサの各出力信号の差分を、前記各出力信号の絶対値、および前記各出力信号の平均値、および前記各出力信号の振幅のうちの、少なくともいずれか一つにより算出するものとしても良い。
車輪用軸受の回転中には、転走面におけるセンサユニットの近傍部位を通過する転動体の有無によって、センサユニットのセンサの出力信号の振幅に周期的な変化が生じる場合がある。そこで、出力信号における振幅の周期を推定手段で測定することにより、転動体の通過速度つまり車輪の回転数を検出することができる。このように、出力信号に変動が見られる場合は、出力信号の平均値や振幅により荷重を算出することができる。変動が見られない場合は、絶対値より荷重を算出することができる。
In this invention, the estimation means calculates the difference between the output signals of the sensors of the two sensor units from the absolute value of the output signals, the average value of the output signals, and the amplitude of the output signals. It is also possible to calculate at least one of them.
During the rotation of the wheel bearing, there may be a periodic change in the amplitude of the output signal of the sensor of the sensor unit depending on the presence or absence of rolling elements passing through the vicinity of the sensor unit on the rolling surface. Therefore, by measuring the period of the amplitude in the output signal by the estimating means, it is possible to detect the passing speed of the rolling element, that is, the rotational speed of the wheel. As described above, when the output signal varies, the load can be calculated from the average value or amplitude of the output signal. If no change is observed, the load can be calculated from the absolute value.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、上記転走面と対向する転走面を外周に形成した内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に、その固定側部材の円周方向における180度の位相差をなす位置に配置された2つのセンサユニットからなるセンサユニット対を少なくとも1対設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つの接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有し、このセンサユニットの前記2つの接触固定部は互いに前記固定側部材の円周方向における同位相の位置に配置し、前記センサユニット対における2つのセンサユニットのセンサの出力信号の差分により、車輪用軸受に作用する荷重を推定する推定手段を設けたため、ヒステリシスの影響を受けることなく、どのような荷重条件においても、車輪にかかる荷重を正確に検出できる。   The sensor-equipped wheel bearing according to the present invention includes an outer member in which double-row rolling surfaces are formed on the inner periphery, an inner member in which a rolling surface facing the rolling surface is formed on the outer periphery, and both members. In a wheel bearing for supporting a wheel rotatably with respect to a vehicle body, a fixed-side member of the outer member and the inner member is provided. At least one pair of sensor units consisting of two sensor units arranged at a position forming a phase difference of 180 degrees in the circumferential direction of the stationary member is provided on the outer diameter surface, and the sensor unit includes the stationary member. A strain generating member having two contact fixing portions fixed in contact with the outer diameter surface of the sensor, and a sensor attached to the strain generating member for detecting the strain of the strain generating member. The two contact fixing parts are Since the fixed member is disposed at the same phase position in the circumferential direction of the fixed member, and provided with an estimation means for estimating the load acting on the wheel bearing by the difference between the sensor output signals of the two sensor units in the sensor unit pair, Without being affected by hysteresis, the load applied to the wheel can be accurately detected under any load condition.

この発明の一実施形態を図1ないし図7と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには円周方向の複数箇所に車体取付用の雌ねじ孔であるボルト孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト18を前記ボルト孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with bolt holes 14 which are female screw holes for mounting on the vehicle body at a plurality of locations in the circumferential direction. As a result, the vehicle body mounting flange 1 a is attached to the knuckle 16.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−O−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ボルト孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. FIG. 1 is a cross-sectional view taken along the line I-O-I in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each bolt hole 14 protrudes to the outer diameter side from the other portion.

固定側部材である外方部材1の外径面には、2つのセンサユニット20からなるセンサユニット対19が設けられている。これら2つのセンサユニット20は、外方部材1の外径面の円周方向における180度の位相差をなす位置に配置される。ここでは、これら2つのセンサユニット20を、タイヤ接地面に対して上下位置となる外方部材1の外径面における上面部および下面部の2箇所に設けることで、車輪用軸受に作用する垂直方向の荷重Fz を検出するようにしている。具体的には、図2のように、外方部材1の外径面における上面部の、隣り合う2つのフランジ突片1aaの間の中央部に1つのセンサユニット20が配置され、外方部材1の外径面における下面部の、隣り合う2つのフランジ突片1aaの間の中央部に他の1つのセンサユニット20が配置されている。   A sensor unit pair 19 including two sensor units 20 is provided on the outer diameter surface of the outer member 1 that is a stationary member. These two sensor units 20 are arranged at positions that form a phase difference of 180 degrees in the circumferential direction of the outer diameter surface of the outer member 1. Here, by providing these two sensor units 20 at two locations, the upper surface portion and the lower surface portion, on the outer diameter surface of the outer member 1 that is positioned up and down with respect to the tire ground contact surface, the vertical acting on the wheel bearings. The load Fz in the direction is detected. Specifically, as shown in FIG. 2, one sensor unit 20 is arranged in the center between two adjacent flange protrusions 1aa on the upper surface portion of the outer diameter surface of the outer member 1, and the outer member Another sensor unit 20 is arranged at the center between two adjacent flange protrusions 1aa on the lower surface of the outer diameter surface of one.

これらのセンサユニット20は、図3に拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出するセンサ22とでなる。歪み発生部材21は、例えば鋼材等の金属材からなる。歪み発生部材21は、外方部材1の外径面に対向する内面側に張り出した2つの接触固定部21aを両端部に有し、これらの接触固定部21aで外方部材1の外径面に接触して固定される。2つの接触固定部21aのうち、1つの接触固定部21aは、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に配置され、この位置よりもアウトボード側の位置にもう1つの接触固定部21aが配置され、かつこれら両接触固定部21aは互いに外方部材1の円周方向における同位相の位置に配置される。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。なお、外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記歪み発生部材21の接触固定部21aが接触固定される箇所に平坦部を形成するのが望ましい。
また、歪み発生部材21の中央部には内面側に開口する1つの切欠き部21bが形成されている。センサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、前記切欠き部21bの周辺、具体的には歪み発生部材21の外面側で切欠き部21bの背面側となる位置が選ばれており、センサ22は切欠き部21b周辺の歪みを検出する。
As shown in an enlarged sectional view in FIG. 3, these sensor units 20 include a strain generating member 21 and a sensor 22 that is attached to the strain generating member 21 and detects the strain of the strain generating member 21. The strain generating member 21 is made of a metal material such as steel. The strain generating member 21 has two contact fixing portions 21a projecting toward the inner surface facing the outer diameter surface of the outer member 1 at both ends, and the outer diameter surface of the outer member 1 is formed by these contact fixing portions 21a. Fixed in contact with. Of the two contact fixing portions 21a, one contact fixing portion 21a is disposed at an axial position around the rolling surface 3 of the outboard side row of the outer member 1, and is located on the outboard side from this position. Another contact fixing portion 21a is arranged at the position, and both the contact fixing portions 21a are arranged at the same phase position in the circumferential direction of the outer member 1. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. In order to stably fix the sensor unit 20 to the outer diameter surface of the outer member 1, a flat portion is provided at a location where the contact fixing portion 21 a of the strain generating member 21 is fixed to the outer diameter surface of the outer member 1. It is desirable to form.
In addition, one notch portion 21 b that opens to the inner surface side is formed in the central portion of the strain generating member 21. The sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, the position around the notch 21b, specifically, the position on the outer surface side of the strain generating member 21 and the back side of the notch 21b is selected, and the sensor 22 has the notch 21b. Detect peripheral distortion.

歪み発生部材21の2つの接触固定部21aは、それぞれボルト23により外方部材1の外径面へ締結することで固定される。具体的には、これらボルト23は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔24に挿通し、外方部材1の外周部に設けられた雌ねじ孔であるボルト孔25に螺合させる。なお、接触固定部21aの固定方法としては、ボルト23による締結のほか、接着剤などを用いても良い。歪み発生部材21の接触固定部21a以外の箇所では、外方部材1の外径面との間に隙間が生じている。   The two contact fixing portions 21 a of the strain generating member 21 are fixed by being fastened to the outer diameter surface of the outer member 1 by bolts 23. Specifically, these bolts 23 are respectively inserted into bolt insertion holes 24 that penetrate in the radial direction provided in the contact fixing portion 21 a, and are bolt holes 25 that are female screw holes provided in the outer peripheral portion of the outer member 1. Screwed on. In addition, as a fixing method of the contact fixing | fixed part 21a, you may use an adhesive agent etc. besides the fastening by the volt | bolt 23. FIG. At locations other than the contact fixing portion 21 a of the strain generating member 21, a gap is generated between the outer member 1 and the outer diameter surface.

外方部材1には、上記したセンサユニット対19とは別に、車輪用軸受に作用するコーナリング力Fy を検出するコーナリング力検出センサ26が設けられている。このコーナリング力検出センサ26は、歪み発生部材28と、この歪み発生部材28に取付けられて歪み発生部材28の歪みを検出するセンサ29を有するセンサユニット27を、接触固定部30A,30Bを介して外方部材1に固定したものである。   In addition to the sensor unit pair 19 described above, the outer member 1 is provided with a cornering force detection sensor 26 that detects a cornering force Fy acting on the wheel bearing. The cornering force detection sensor 26 includes a sensor unit 27 having a strain generating member 28 and a sensor 29 attached to the strain generating member 28 and detecting the strain of the strain generating member 28 via contact fixing portions 30A and 30B. It is fixed to the outer member 1.

コーナリング力検出センサ26の歪み発生部材28は、図4に拡大断面図で示すように、鋼材等の金属材からなる板材をL字状に折り曲げて形成され、外方部材1のフランジ1aにおけるボルト孔14の近傍のアウトボード側に向く側面に対向する径方向片28aと、外方部材1の外径面に対向する軸方向片28bとを有する。センサ29は径方向片28aの片面に固定される。この歪み発生部材28は、歪み発生部材28と別体とされた2つの接触固定部30A,30Bを介して外方部材1の外周部に、ボルト31,32で締結される。すなわち、径方向片28aに形成されたボルト挿通孔33から第1の接触固定部30Aのボルト挿通孔34に挿通させたボルト31を、外方部材1のフランジ1aにおけるナックルボルト18用のボルト孔14の近傍に設けられたボルト孔35に螺合させる。また、軸方向片28bに形成されたボルト挿通孔36から第2の接触固定部30Bのボルト挿通孔37に挿通させたボルト32を、外方部材1の外径面に設けられたボルト孔38に螺合させる。これにより、歪み発生部材28が外方部材1に締結される。   As shown in the enlarged sectional view of FIG. 4, the distortion generating member 28 of the cornering force detection sensor 26 is formed by bending a plate material made of a metal material such as a steel material into an L shape, and a bolt in the flange 1 a of the outer member 1. It has a radial piece 28 a that opposes the side face facing the outboard near the hole 14, and an axial piece 28 b that faces the outer diameter face of the outer member 1. The sensor 29 is fixed to one surface of the radial piece 28a. The strain generating member 28 is fastened to the outer peripheral portion of the outer member 1 with bolts 31 and 32 via two contact fixing portions 30A and 30B separated from the strain generating member 28. That is, the bolt 31 inserted into the bolt insertion hole 34 of the first contact fixing portion 30A from the bolt insertion hole 33 formed in the radial piece 28a is a bolt hole for the knuckle bolt 18 in the flange 1a of the outer member 1. 14 is screwed into a bolt hole 35 provided in the vicinity of 14. Further, the bolt 32 that is inserted in the bolt insertion hole 37 of the second contact fixing portion 30B from the bolt insertion hole 36 formed in the axial piece 28b is provided in the outer diameter surface of the outer member 1. Screwed on. Thereby, the strain generating member 28 is fastened to the outer member 1.

上記したコーナリング力検出センサ26の設置部位は、コーナリング力Fy に対して変形量が大きいが、垂直方向の荷重Fz や駆動力による荷重Fx に対して変形量の小さい部位である。このため、コーナリング力検出センサ26によりコーナリング力Fy だけを特定して検出できる。ただし、コーナリング力検出センサ26は上記のような構成に限定しなくてもよい。   The cornering force detection sensor 26 is installed at a portion having a large deformation amount with respect to the cornering force Fy but a small deformation amount with respect to the load Fx in the vertical direction and the load Fx due to the driving force. Therefore, only the cornering force Fy can be specified and detected by the cornering force detection sensor 26. However, the cornering force detection sensor 26 may not be limited to the above configuration.

センサユニット対19の2つのセンサ22は推定手段40に接続される。推定手段40は、前記2つのセンサ22の出力信号の差分により、車輪用軸受に作用する荷重を推定する手段であり、信号処理回路や補正回路などが含まれる。ここでは、推定手段40は、前記出力信号の差分と、車輪用軸受に作用する垂直方向の荷重Fz との関係を演算式またはテーブルなどにより設定した関係設定手段(図示せず)を有し、前記出力信号の差分から前記関係設定手段を用いて垂直方向の荷重Fz を出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   The two sensors 22 of the sensor unit pair 19 are connected to the estimation means 40. The estimation means 40 is a means for estimating the load acting on the wheel bearing based on the difference between the output signals of the two sensors 22 and includes a signal processing circuit, a correction circuit, and the like. Here, the estimating means 40 has relation setting means (not shown) in which the relation between the difference between the output signals and the vertical load Fz acting on the wheel bearing is set by an arithmetic expression or a table. The load Fz in the vertical direction is output from the difference between the output signals using the relationship setting means. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

コーナリング力検出センサ26のセンサ29も前記推定手段40に接続される。推定手段40は、前記センサユニット対19の2つのセンサ22の出力信号の差分から、前記コーナリング力検出センサ26の出力信号分を分離することで、前記センサ22の出力信号の差分を補正する。   A sensor 29 of the cornering force detection sensor 26 is also connected to the estimation means 40. The estimation means 40 corrects the difference between the output signals of the sensor 22 by separating the output signal of the cornering force detection sensor 26 from the difference between the output signals of the two sensors 22 of the sensor unit pair 19.

車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。前記センサユニット対19のセンサユニット20を例えば車体取付用フランジ1aの突片1aaに設置して、車体取用フランジ1aの変形から荷重を推定しようとすると、従来例の説明におけるように出力信号にヒステリシスが生じる。ここでは、センサユニット対19の2つのセンサユニット20における歪み発生部材21の2つの接触固定部21aが、外方部材1の円周方向における互いに同位相の位置に固定されている。これにより、外方部材1の歪みが歪み発生部材21に集中して伝達されることになり、その歪みがセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなる。   When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. For example, when the sensor unit 20 of the sensor unit pair 19 is installed on the projecting piece 1aa of the body mounting flange 1a and the load is estimated from the deformation of the body mounting flange 1a, the output signal is output as described in the conventional example. Hysteresis occurs. Here, the two contact fixing portions 21 a of the strain generating member 21 in the two sensor units 20 of the sensor unit pair 19 are fixed at the same phase positions in the circumferential direction of the outer member 1. As a result, the distortion of the outer member 1 is concentrated and transmitted to the distortion generating member 21, and the distortion is detected with high sensitivity by the sensor 22, and the hysteresis generated in the output signal is also reduced.

推定手段40は、センサユニット対19の2つのセンサユニット20のセンサ22の出力信号の差分より、車輪用軸受に作用する垂直方向の荷重Fz を推定する。図5は、車輪用軸受にコーナリング力Fy が作用していない状態で垂直方向の荷重Fz が変化した場合の、前記2つのセンサ22の出力信号の関係を示したグラフである。このグラフでは、各センサ22の出力信号に温度やノイズによるドリフトがない場合を示している。荷重Fz がゼロの状態で歪みが発生しているのは、予圧の影響によるものである。
同図において、垂直方向の荷重Fz が大きくなると、車輪用軸受における上部の転動体荷重(転動体5に加わる荷重)が大きくなるので、外方部材1の外径面の上面部に配置したセンサユニット20におけるセンサ22の出力信号は大きくなる。一方、車輪用軸受における下部の転動体荷重は小さくなるので、外方部材1の外径面の下面部に配置したセンサユニット20におけるセンサ22の出力信号は小さくなる。そのため、上記2つのセンサ22の出力信号の差分をとると、荷重Fz の増加に伴い増大する傾きの大きい出力曲線が得られる。推定手段40は、この差分出力を上記した前記関係設定手段の設定内容と照らし合わせて、車輪用軸受に作用する垂直方向の荷重Fz を推定でき、これより静止時や低速時を問わず車輪のタイヤと路面間の作用力を正確に推定することができる。
The estimation means 40 estimates the vertical load Fz acting on the wheel bearing from the difference between the output signals of the sensors 22 of the two sensor units 20 of the sensor unit pair 19. FIG. 5 is a graph showing the relationship between the output signals of the two sensors 22 when the load Fz in the vertical direction changes in a state where the cornering force Fy is not acting on the wheel bearing. This graph shows a case where the output signal of each sensor 22 has no drift due to temperature or noise. The distortion occurs when the load Fz is zero because of the influence of the preload.
In the figure, when the load Fz in the vertical direction increases, the upper rolling element load (load applied to the rolling element 5) of the wheel bearing increases, so that the sensor disposed on the upper surface portion of the outer diameter surface of the outer member 1 is increased. The output signal of the sensor 22 in the unit 20 increases. On the other hand, since the lower rolling element load in the wheel bearing is reduced, the output signal of the sensor 22 in the sensor unit 20 disposed on the lower surface portion of the outer diameter surface of the outer member 1 is reduced. Therefore, when the difference between the output signals of the two sensors 22 is taken, an output curve having a large slope that increases as the load Fz increases is obtained. The estimation means 40 can estimate the vertical load Fz acting on the wheel bearing by comparing this difference output with the setting contents of the relation setting means described above. The acting force between the tire and the road surface can be accurately estimated.

図6は、車輪用軸受にコーナリング力Fy が作用していない状態で垂直方向の荷重Fz が変化した場合の、前記2つのセンサ22の出力信号の関係をグラフで示したものである。このグラフでは、各センサ22の出力信号に温度やノイズによるドリフトがある場合を示している。このような温度などによるドリフトは、2つのセンサ22の出力信号に同じように生じるので、2つのセンサ22の出力信号の差分をとれば、ドリフト分がキャンセルされる。これにより、推定手段40では、温度やノイズによるドリフトの影響を受けることなく、どのような荷重条件においても垂直方向の荷重Fz を正確に推定できる。   FIG. 6 is a graph showing the relationship between the output signals of the two sensors 22 when the vertical load Fz is changed in a state where the cornering force Fy is not applied to the wheel bearing. This graph shows a case where the output signal of each sensor 22 has a drift due to temperature or noise. Such drift due to temperature or the like occurs in the output signals of the two sensors 22 in the same way. Therefore, if the difference between the output signals of the two sensors 22 is taken, the drift is canceled. Thereby, the estimation means 40 can accurately estimate the load Fz in the vertical direction under any load condition without being affected by drift due to temperature and noise.

図7は、車輪用軸受に一定のコーナリング力Fy が作用している状態で垂直方向の荷重Fz が変化した場合の、前記2つのセンサ22の出力信号の関係をグラフで示したものである。このグラフでは、各センサ22の出力信号に温度やノイズによるドリフトがない場合を示している。図5のグラフと比較すると、センサユニット対19の2つのセンサユニット20のセンサ22の出力信号の差分の曲線は、傾きは同じであるがFz荷重ゼロでの値が異なっている。この値の相違がコーナリング力Fyによって発生する歪み量の差分に相当する。
コーナリング力Fy に対しては、固定側部材である外方部材1の外径面の変形が大きいため、垂直方向の荷重Fz や駆動力による荷重Fx の影響を受けずに、コーナリング力検出センサ26でコーナリング力Fy のみを検出できる。一方、垂直方向の荷重Fz や駆動力による荷重Fx は、コーナリング力Fy の影響を受けやすいため、センサユニット対19における2つのセンサユニット20の出力信号の差分から、前記コーナリング力検出センサ26の出力信号分を分離すると、コーナリング力Fy の影響を受けない垂直方向の荷重Fz を検出できる。そこで、推定手段40は、前記センサ22の出力信号の差分から、コーナリング力検出センサ26で検出されるコーナリング力Fy によって発生する歪み量の差分を除くことにより、コーナリング力Fy に影響されることなく垂直方向の荷重Fz を正確に推定できる。
FIG. 7 is a graph showing the relationship between the output signals of the two sensors 22 when the vertical load Fz changes while a constant cornering force Fy is applied to the wheel bearing. This graph shows a case where the output signal of each sensor 22 has no drift due to temperature or noise. Compared with the graph of FIG. 5, the difference curves of the output signals of the sensors 22 of the two sensor units 20 of the sensor unit pair 19 have the same slope but different values at zero Fz load. This difference in value corresponds to the difference in the amount of distortion generated by the cornering force Fy.
The cornering force detection sensor 26 is not affected by the vertical load Fz or the load Fx due to the driving force because the outer surface of the outer member 1 that is the fixed member is greatly deformed with respect to the cornering force Fy. Only the cornering force Fy can be detected. On the other hand, since the vertical load Fz and the load Fx due to the driving force are easily affected by the cornering force Fy, the output of the cornering force detection sensor 26 is determined from the difference between the output signals of the two sensor units 20 in the sensor unit pair 19. When the signal component is separated, the vertical load Fz that is not affected by the cornering force Fy can be detected. Therefore, the estimation means 40 eliminates the difference in the amount of distortion generated by the cornering force Fy detected by the cornering force detection sensor 26 from the difference in the output signal of the sensor 22 so as not to be influenced by the cornering force Fy. The vertical load Fz can be accurately estimated.

なお、図5〜図7では、荷重Fz の大きさと歪み量は比例関係となっているが、それ以外の関係である場合も考えられる。いずれにしても、推定手段40は、上記したように、予め試験やシミュレーションで求めた設定内容の関係設定手段を用いて、前記2つのセンサ22の出力信号の差分から垂直方向の荷重Fz を推定できる。センサ22の出力信号の差分の曲線の傾きの変化や、図7における歪み量ゼロでの値も同様にして求めることができる。   In FIGS. 5 to 7, the magnitude of the load Fz and the amount of strain are in a proportional relationship, but other cases are also conceivable. In any case, as described above, the estimation unit 40 estimates the vertical load Fz from the difference between the output signals of the two sensors 22 by using the relationship setting unit of the setting contents obtained in advance by tests and simulations. it can. The change in the slope of the difference curve of the output signal of the sensor 22 and the value when the distortion amount is zero in FIG.

推定手段40は、前記センサ22の出力信号から車輪用軸受に作用する荷重を推定する。これにより、静止時や低速時を問わず車輪のタイヤと路面間の作用力を感度良く検出することができる。上記したように、センサユニット19は、ヒステリシスの主な原因となる車体取付用フランジ1aの突片1aaに固定していないので、センサ22の出力信号に生じるヒステリシスが小さくなり、荷重を正確に推定することができる。   The estimation means 40 estimates the load acting on the wheel bearing from the output signal of the sensor 22. This makes it possible to detect the acting force between the wheel tire and the road surface with high sensitivity regardless of whether the vehicle is stationary or at low speed. As described above, since the sensor unit 19 is not fixed to the projecting piece 1aa of the vehicle body mounting flange 1a which is a main cause of hysteresis, the hysteresis generated in the output signal of the sensor 22 is reduced and the load is accurately estimated. can do.

このセンサ付車輪用軸受から得られた検出荷重を自動車の車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。   By using the detected load obtained from the sensor-equipped wheel bearing for vehicle control of the automobile, it is possible to contribute to stable running of the automobile. In addition, when this sensor-equipped wheel bearing is used, a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.

また、車輪用軸受の回転中には、転走面3におけるセンサユニット20の近傍部位を通過する転動体5の有無によって、センサユニット20のセンサ22の出力信号の振幅に、図8に示す波形図のように周期的な変化が生じる場合がある。その理由は、転動体5の通過時とそうでない場合とで変形量が異なり、転動体5の通過周期ごとにセンサ22の出力信号の振幅がピーク値を持つためである。そこで、検出信号におけるこのピーク値の周期を、例えば推定手段40で測定することにより、転動体5の通過速度つまり車輪の回転数を検出することも可能となる。このように、出力信号に変動が見られる場合、推定手段40は、2つのセンサユニット20のセンサ22の出力信号の差分を、出力信号の平均値や振幅により算出することができる。変動が見られない場合は、絶対値より算出することができる。   Further, during the rotation of the wheel bearing, the amplitude of the output signal of the sensor 22 of the sensor unit 20 depends on the presence or absence of the rolling element 5 passing through the vicinity of the sensor unit 20 on the rolling surface 3 as shown in FIG. Periodic changes may occur as shown. This is because the amount of deformation differs between when the rolling element 5 passes and when it does not pass, and the amplitude of the output signal of the sensor 22 has a peak value for each passing period of the rolling element 5. Therefore, by measuring the period of this peak value in the detection signal by, for example, the estimating means 40, it is possible to detect the passing speed of the rolling element 5, that is, the rotational speed of the wheel. As described above, when the output signal varies, the estimation unit 40 can calculate the difference between the output signals of the sensors 22 of the two sensor units 20 based on the average value and the amplitude of the output signals. If there is no change, it can be calculated from the absolute value.

また、この実施形態では、センサユニット対19におけるセンサユニット20の歪み発生部材21に切欠き部21bが設けられ、その切欠き部21bの周辺にセンサ22が設けられているので、外方部材1の外径面から歪み発生部材21に拡大されて伝達される歪みが切欠き部21bに集中しやすくなり、センサ22による検出感度が向上し、さらに正確に荷重を推定することができる。   Further, in this embodiment, the notch 21b is provided in the strain generating member 21 of the sensor unit 20 in the sensor unit pair 19, and the sensor 22 is provided around the notch 21b. The strain transmitted from the outer diameter surface to the strain generating member 21 is easily concentrated on the notch 21b, the detection sensitivity of the sensor 22 is improved, and the load can be estimated more accurately.

また、この実施形態では、センサユニット対19の2つのセンサユニット20を、外方部材1の外径面において、外方部材1における車輪取付用フランジ1aの隣り合う2つの突片1aaの間の中央部相当位置に配置しているので、ヒステリシスの原因となる突片1aaから離れた位置にセンサユニット20を設けることとなり、センサ22の出力信号のヒステリシスがさらに小さくなり、荷重をさらに正確に推定できる。   Further, in this embodiment, the two sensor units 20 of the sensor unit pair 19 are arranged on the outer diameter surface of the outer member 1 between two adjacent projecting pieces 1aa of the wheel mounting flange 1a on the outer member 1. Since the sensor unit 20 is disposed at a position corresponding to the central portion, the sensor unit 20 is provided at a position away from the projecting piece 1aa that causes hysteresis, and the hysteresis of the output signal of the sensor 22 is further reduced, and the load is estimated more accurately. it can.

図9は、この発明の他の実施形態における車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。この実施形態では、先の実施形態において、さらに別のセンサユニット対19Aを設けている。このセンサユニット対19Aも、固定側部材である外方部材1の外径面の円周方向における180度の位相差をなす位置に配置された2つのセンサユニット20Aからなる。この場合、2つのセンサユニット20Aは、タイヤ設置面に対して前後位置となる外方部材1の外径面の右面部と左面部とに配置される。センサユニット20Aの構成は、先の実施形態におけるセンサユニット20の場合と同様である。これら2つのセンサユニット20Aのセンサ22も推定手段40に接続される。その他の構成は先の実施形態の場合と同様である。   FIG. 9: shows the front view which looked at the outward member 1 of the wheel bearing in other embodiment of this invention from the outboard side. In this embodiment, another sensor unit pair 19A is provided in the previous embodiment. This sensor unit pair 19 </ b> A also includes two sensor units 20 </ b> A arranged at a position that forms a phase difference of 180 degrees in the circumferential direction of the outer diameter surface of the outer member 1 that is a fixed member. In this case, the two sensor units 20A are arranged on the right surface portion and the left surface portion of the outer diameter surface of the outer member 1 that are in the front-rear position with respect to the tire installation surface. The configuration of the sensor unit 20A is the same as that of the sensor unit 20 in the previous embodiment. The sensors 22 of these two sensor units 20A are also connected to the estimation means 40. Other configurations are the same as those in the previous embodiment.

センサユニット対19Aの2つのセンサユニット20Aを上記した配置とすることにより、駆動力となる荷重Fx の検出が可能である。推定手段40は、これらのセンサユニット20Aのセンサ22の出力信号の差分から駆動力となる荷重Fx を推定する。荷重Fx に対しては、外方部材1の外径面における左面部と右面部が変形するので、どのような荷重条件においても荷重Fx を正確に推定することができる。この駆動力となる荷重Fx の推定においても、コーナリング力Fy が作用する場合には、垂直方向の荷重Fz の推定の場合と同様に、コーナリング力検出センサ26の出力信号による補正が行なわれる。   By arranging the two sensor units 20A of the sensor unit pair 19A as described above, it is possible to detect the load Fx as a driving force. The estimation means 40 estimates the load Fx that becomes the driving force from the difference between the output signals of the sensors 22 of these sensor units 20A. For the load Fx, the left surface portion and the right surface portion of the outer diameter surface of the outer member 1 are deformed, so that the load Fx can be accurately estimated under any load condition. Also in the estimation of the load Fx as the driving force, when the cornering force Fy is applied, the correction is performed by the output signal of the cornering force detection sensor 26 as in the case of the estimation of the load Fz in the vertical direction.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning one Embodiment of this invention. 同センサ付車輪用軸受における外方部材の正面図である。It is a front view of the outward member in the wheel bearing with a sensor. 図1におけるセンサユニット設置部の拡大断面図である。It is an expanded sectional view of the sensor unit installation part in FIG. 同センサ付車輪用軸受におけるコーナリング力検出センサ設置部の断面図である。It is sectional drawing of the cornering force detection sensor installation part in the wheel bearing with the same sensor. コーナリング力が作用していない状態で垂直方向の荷重が変化した場合のセンサユニットの出力信号の関係を示したグラフである。It is the graph which showed the relationship of the output signal of a sensor unit when the load of a perpendicular direction changes in the state where cornering force is not acting. 図5においてセンサユニットの出力信号にドリフトがある場合を示したグラブである。6 is a grab showing a case where there is a drift in the output signal of the sensor unit in FIG. 一定のコーナリング力が作用している状態で垂直方向の荷重が変化した場合のセンサユニットの出力信号の関係を示したグラフである。It is the graph which showed the relationship of the output signal of a sensor unit when the load of a perpendicular direction changes in the state where fixed cornering force is acting. 同センサ付車輪用軸受におけるセンサユニットの出力信号の波形図である。It is a wave form diagram of the output signal of the sensor unit in the bearing for wheels with the sensor. 他の実施形態における外方部材の正面図である。It is a front view of the outward member in other embodiments. 従来例での出力信号におけるヒステリシスの説明図である。It is explanatory drawing of the hysteresis in the output signal in a prior art example.

符号の説明Explanation of symbols

1…外方部材
1a…車体取付用フランジ
1aa…突片
2…内方部材
3,4…転走面
5…転動体
14…車体取付用のボルト孔
16…ナックル
19,19A…センサユニット対
20,20A…センサユニット
21…歪み発生部材
21a…接触固定部
21b…切欠き部
22…センサ
26…コーナリング力検出センサ
27…センサユニット
28…歪み発生部材
29…センサ
30A,30B…接触固定部
40…推定手段
DESCRIPTION OF SYMBOLS 1 ... Outer member 1a ... Body mounting flange 1aa ... Projection piece 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 14 ... Bolt hole 16 for body mounting ... Knuckles 19, 19A ... Sensor unit pair 20 , 20A ... sensor unit 21 ... strain generating member 21a ... contact fixing portion 21b ... notch 22 ... sensor 26 ... cornering force detection sensor 27 ... sensor unit 28 ... strain generating member 29 ... sensors 30A, 30B ... contact fixing portion 40 ... Estimating means

Claims (9)

複列の転走面が内周に形成された外方部材と、上記転走面と対向する転走面を外周に形成した内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材の外径面に、その固定側部材の円周方向における180度の位相差をなす位置に配置された2つのセンサユニットからなるセンサユニット対を少なくとも1対設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つの接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有し、このセンサユニットの前記2つの接触固定部は互いに前記固定側部材の円周方向における同位相の位置に配置し、前記センサユニット対における2つのセンサユニットのセンサの出力信号の差分により、車輪用軸受に作用する荷重を推定する推定手段を設けたことを特徴とするセンサ付車輪用軸受。
An outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members. In a wheel bearing comprising a double row rolling element, and rotatably supporting the wheel with respect to the vehicle body,
A pair of sensor units comprising two sensor units disposed on the outer diameter surface of the fixed member of the outer member and the inner member at a position that forms a phase difference of 180 degrees in the circumferential direction of the fixed member. At least one pair, and the sensor unit includes a strain generating member having two contact fixing portions fixed in contact with the outer diameter surface of the fixed side member, and the strain generating member attached to the strain generating member. A sensor for detecting distortion; the two contact fixing portions of the sensor unit are arranged at the same phase position in the circumferential direction of the fixed side member, and the sensors of the two sensor units in the sensor unit pair A sensor-equipped wheel bearing, comprising: an estimation means for estimating a load acting on a wheel bearing based on a difference between output signals.
請求項1において、前記センサユニット対の2つのセンサユニットは、タイヤ接地面に対して上下位置となる前記固定側部材の外径面の上面部と下面部とに配置し、前記推定手段は、前記2つのセンサユニットのセンサの出力信号から車輪用軸受に作用する垂直方向の荷重を推定することを特徴とするセンサ付車輪用軸受。   In Claim 1, the two sensor units of the sensor unit pair are arranged on the upper surface portion and the lower surface portion of the outer diameter surface of the fixed side member that is in the vertical position with respect to the tire ground contact surface, A sensor-equipped wheel bearing, wherein a vertical load acting on the wheel bearing is estimated from output signals of sensors of the two sensor units. 請求項1において、前記センサユニット対の2つのセンサユニットは、タイヤ接地面に対して前後位置となる前記固定側部材の外径面の右面部と左面部とに配置し、前記推定手段は、前記2つのセンサユニットのセンサの出力信号から駆動力となる荷重を推定することを特徴とするセンサ付車輪用軸受。   In Claim 1, the two sensor units of the pair of sensor units are arranged on the right surface portion and the left surface portion of the outer diameter surface of the fixed side member which are front and rear positions with respect to the tire ground contact surface, and the estimation means includes A sensor-equipped wheel bearing, wherein a load serving as a driving force is estimated from output signals of sensors of the two sensor units. 請求項1ないし請求項3のいずれか1項において、さらに車輪用軸受に作用するコーナリング力を検出するコーナリング力検出センサを設け、前記推定手段は、前記センサユニット対における2つの出力信号の差分から、前記コーナリング力検出センサの出力信号分を分離して、車輪用軸受に作用する垂直方向の荷重または駆動力となる荷重を推定することを特徴とするセンサ付車輪用軸受。   The cornering force detection sensor for detecting a cornering force acting on the wheel bearing is further provided according to any one of claims 1 to 3, wherein the estimation means is based on a difference between two output signals in the sensor unit pair. A sensor-equipped wheel bearing characterized in that the output signal of the cornering force detection sensor is separated to estimate a load acting as a driving force or a vertical load acting on the wheel bearing. 請求項4において、前記固定側部材の外周に、ナックルに取付ける車体取付用のフランジが設けられ、前記コーナリング力検出センサは、歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有するセンサユニットを、前記固定側部材に取付けてなり、前記歪み発生部材は固定側部材に接触して固定される2つの接触固定部を有し、これら接触固定部のうち1つの接触固定部が前記フランジの側面に固定され、他の1つの接触固定部が前記固定側部材の外径面に固定されることを特徴とするセンサ付車輪用軸受。   5. A flange for mounting a vehicle body attached to a knuckle is provided on an outer periphery of the fixed side member, and the cornering force detection sensor is attached to the strain generating member and the strain generating member. A sensor unit having a sensor for detecting the above is attached to the fixed side member, and the strain generating member has two contact fixing portions fixed in contact with the fixed side member, and one of these contact fixing portions. One contact fixing portion is fixed to a side surface of the flange, and the other one contact fixing portion is fixed to an outer diameter surface of the fixed side member. 請求項1ないし請求項5のいずれか1項において、前記センサユニット対の2つのセンサユニットにおける2つの接触固定部のうちの1つの接触固定部は、前記複列の転走面のうちのアウトボード側の転走面の周辺となる軸方向位置に、他の1つの接触固定部は前記1つの接触固定部よりもさらにアウトボード側に配置したことを特徴とするセンサ付車輪用軸受。   6. The contact fixing part of the two sensor units of the sensor unit pair according to claim 1, wherein one of the contact fixing parts is an out of the double-row rolling surfaces. The sensor-equipped wheel bearing according to claim 1, wherein the other one contact fixing portion is arranged further on the outboard side than the one contact fixing portion at an axial position that is the periphery of the rolling surface on the board side. 請求項1ないし請求項6のいずれか1項において、前記センサユニット対の2つのセンサユニットの前記歪み発生部材は切欠き部を有し、前記切欠き部の周辺に前記センサを設けたことを特徴とするセンサ付車輪用軸受。   The distortion generating member of the two sensor units of the sensor unit pair according to any one of claims 1 to 6, wherein the distortion generating member has a notch, and the sensor is provided around the notch. Features wheel bearing with sensor. 請求項1ないし請求項7のいずれか1項において、前記固定側部材の外周に、ナックルに取付ける車体取付用のフランジが設けられ、このフランジの円周方向複数箇所にボルト孔が設けられ、前記フランジは各ボルト孔が設けられた円周方向部分が他の部分よりも外径側へ突出した突片とされ、前記センサユニット対の2つのセンサユニットは、それぞれ隣合う前記突片の間の中央に配置したことを特徴とするセンサ付車輪用軸受。   In any one of Claims 1 thru | or 7, The flange for the vehicle body attachment attached to a knuckle is provided in the outer periphery of the said fixed side member, The bolt hole is provided in the circumferential direction several places, The said The flange is a projecting piece in which the circumferential portion provided with each bolt hole protrudes to the outer diameter side than the other portion, and the two sensor units of the sensor unit pair are respectively between the adjacent projecting pieces. A wheel bearing with sensor, characterized by being arranged in the center. 請求項1ないし請求項8のいずれか1項において、前記推定手段は、2つのセンサユニットのセンサの各出力信号の差分を、前記各出力信号の絶対値、および前記各出力信号の平均値、および前記各出力信号の振幅のうちの、少なくともいずれか1つにより算出するものであることを特徴とするセンサ付車輪用軸受。   In any one of Claims 1 thru | or 8, The said estimation means is the difference of each output signal of the sensor of two sensor units, the absolute value of each said output signal, and the average value of each said output signal, And a sensor-equipped wheel bearing, wherein the bearing is calculated by at least one of the amplitudes of the output signals.
JP2007246933A 2007-09-25 2007-09-25 Wheel bearing with sensor Expired - Fee Related JP4986786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246933A JP4986786B2 (en) 2007-09-25 2007-09-25 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246933A JP4986786B2 (en) 2007-09-25 2007-09-25 Wheel bearing with sensor

Publications (2)

Publication Number Publication Date
JP2009075054A true JP2009075054A (en) 2009-04-09
JP4986786B2 JP4986786B2 (en) 2012-07-25

Family

ID=40610150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246933A Expired - Fee Related JP4986786B2 (en) 2007-09-25 2007-09-25 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP4986786B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077807A (en) * 2004-09-07 2006-03-23 Jtekt Corp Hub unit with sensor
JP2006308577A (en) * 2005-03-31 2006-11-09 Toyota Central Res & Dev Lab Inc Bearing for automobile wheel, and load measurement method
JP2007057299A (en) * 2005-08-23 2007-03-08 Ntn Corp Wheel bearing with sensor
JP2007057258A (en) * 2005-08-22 2007-03-08 Ntn Corp Wheel bearing with sensor
JP2007078129A (en) * 2005-09-16 2007-03-29 Ntn Corp Bearing for wheel with sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077807A (en) * 2004-09-07 2006-03-23 Jtekt Corp Hub unit with sensor
JP2006308577A (en) * 2005-03-31 2006-11-09 Toyota Central Res & Dev Lab Inc Bearing for automobile wheel, and load measurement method
JP2007057258A (en) * 2005-08-22 2007-03-08 Ntn Corp Wheel bearing with sensor
JP2007057299A (en) * 2005-08-23 2007-03-08 Ntn Corp Wheel bearing with sensor
JP2007078129A (en) * 2005-09-16 2007-03-29 Ntn Corp Bearing for wheel with sensor

Also Published As

Publication number Publication date
JP4986786B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5274343B2 (en) Wheel bearing with sensor
JP5019988B2 (en) Wheel bearing with sensor
JP2010096565A (en) Bearing for wheel with sensor
JP5100567B2 (en) Wheel bearing with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP5153373B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
JP5142683B2 (en) Wheel bearing with sensor
JP4986759B2 (en) Wheel bearing with sensor
JP4986786B2 (en) Wheel bearing with sensor
JP2010230406A (en) Wheel bearing with sensor
JP5219423B2 (en) Wheel bearing with sensor
JP2010090982A (en) Wheel bearing with sensor
JP5219424B2 (en) Wheel bearing with sensor
JP5072551B2 (en) Wheel bearing with sensor
JP2010101720A (en) Wheel bearing with sensor
JP5072608B2 (en) Wheel bearing with sensor
JP2009128264A (en) Wheel bearing with sensor
JP2008303892A (en) Wheel bearing with sensor
JP5264206B2 (en) Wheel bearing with sensor
WO2015005282A1 (en) Vehicle-wheel bearing device with sensor
JP2008213561A (en) Wheel bearing with sensor
JP5224805B2 (en) Wheel bearing with sensor
JP2009069105A (en) Bearing with sensor for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees