JP2009074837A - Three-dimensional shape measurement apparatus - Google Patents

Three-dimensional shape measurement apparatus Download PDF

Info

Publication number
JP2009074837A
JP2009074837A JP2007242193A JP2007242193A JP2009074837A JP 2009074837 A JP2009074837 A JP 2009074837A JP 2007242193 A JP2007242193 A JP 2007242193A JP 2007242193 A JP2007242193 A JP 2007242193A JP 2009074837 A JP2009074837 A JP 2009074837A
Authority
JP
Japan
Prior art keywords
optical path
path length
data
interference fringe
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007242193A
Other languages
Japanese (ja)
Other versions
JP4388113B2 (en
Inventor
Pavlovsky Michal
ミハル・パヴロフスキー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2007242193A priority Critical patent/JP4388113B2/en
Priority to KR1020080090749A priority patent/KR101011925B1/en
Priority to TW097135689A priority patent/TWI379067B/en
Priority to CNA2008102118799A priority patent/CN101393016A/en
Publication of JP2009074837A publication Critical patent/JP2009074837A/en
Application granted granted Critical
Publication of JP4388113B2 publication Critical patent/JP4388113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02071Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by measuring path difference independently from interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/08Optical projection comparators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/60Reference interferometer, i.e. additional interferometer not interacting with object

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for reducing a measurement time, and implementing a three-dimensional measurement. <P>SOLUTION: An optical path forming section 5 receives a wideband light from a wideband light source 1, branches it to a reference optical path and a measurement optical path, causes it to enter into the reference optical path and the measurement optical path, combines reflection lights from a reference mirror and a to-be-measured object, and outputs a combined light to an imaging means 10. An optical path length varying means 8 varies an optical path length of the measurement optical path. The imaging means takes an image of an output from the optical path forming section at timing when aliasing occurs in response to a change in the optical path length, and obtains interference pattern data including an interference pattern. The optical path length detecting means 20 is configured so as to remove a frequency component generated by aliasing from the interference pattern data obtained by the imaging means and obtain a particular optical path length indicating a characteristic value of the interference pattern. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数のスペクトラム(以下、波長で説明する。)を有する広帯域光(例えば、白色光)による干渉現象を用いて被測定物の形状を立体的に測定する三次元形状測定装置に関する。特に、広帯域光の一方を遠端に参照鏡を有する参照光路に入射し、広帯域光の他方を遠端に被測定物を有する測定光路へ入射し、参照鏡(反射鏡)及び被測定物からの各戻り光による干渉を生じさせる干渉部(干渉計)において、参照光路又は測定光路のいずれかの光路長を変化して得られた干渉縞が生ずる光路長を基に、被測定物の形状を測定する三次元形状測定装置であって、その干渉縞が生ずる光路長を求める時間を短縮する技術に関する。   The present invention relates to a three-dimensional shape measuring apparatus that three-dimensionally measures the shape of an object to be measured using an interference phenomenon caused by broadband light (for example, white light) having a plurality of spectrums (hereinafter, described in terms of wavelengths). In particular, one of the broadband light is incident on a reference optical path having a reference mirror at the far end, and the other of the broadband light is incident on a measurement optical path having an object to be measured at the far end, from the reference mirror (reflecting mirror) and the object to be measured. The shape of the object to be measured based on the optical path length in which the interference fringes obtained by changing the optical path length of either the reference optical path or the measurement optical path in the interference section (interferometer) that causes interference due to each return light The present invention relates to a technique for shortening the time for obtaining the optical path length in which the interference fringes occur.

一般的に、上記の干渉現象を用いた形状測定装置においては、参照光路と測定光路の双方の光路長が等しくなったときに、干渉縞が最大の輝度を示すことを利用している。つまり、参照光路又は測定光路のいずれかの光路長を変化させ(以下、参照光路の光路長を固定とし、測定光路の光路長を変化させるとして説明する。)、そのとき生じる干渉縞が最大の輝度を示す位置の光路長(光路長の変化量:以下「特定光路長」と言う。)を、光路長の変化方向における被測定物の変位として測定している(特許文献1)。   In general, the shape measuring apparatus using the above interference phenomenon utilizes the fact that interference fringes exhibit the maximum luminance when the optical path lengths of both the reference optical path and the measurement optical path are equal. That is, the optical path length of either the reference optical path or the measurement optical path is changed (hereinafter, the optical path length of the reference optical path is fixed and the optical path length of the measurement optical path is changed), and the interference fringes generated at that time are the largest. An optical path length at a position indicating luminance (a change amount of the optical path length: hereinafter referred to as “specific optical path length”) is measured as a displacement of the object to be measured in the change direction of the optical path length (Patent Document 1).

特許文献1においては、時間変化とともに光路長を変化させて得られた干渉光を基に、B成分(ブルー色の帯域成分)、G成分(グリーン色の帯域成分)及びR成分(レッド色の帯域成分)に分波して、それぞれ光路長の変化に対する干渉縞の位相の変化を検出して、三者の位相が一致するところの光路長を干渉縞が最大の輝度を示す位置の特定光路長と認定している。認定された特定光路長から形状測定を行っている。   In Patent Document 1, a B component (blue band component), a G component (green band component), and an R component (red color component) are obtained based on interference light obtained by changing the optical path length with time. (Band component) to detect the change in the phase of the interference fringe with respect to the change in the optical path length, and the specific optical path of the position where the interference fringe shows the maximum luminance is the optical path length where the three phases match Certified as head. The shape is measured from the authorized specific optical path length.

特願2006−371632号Japanese Patent Application No. 2006-371632

一般的に、形状測定装置は、多くの数の被測定物の測定を実施することから、幾らかでも測定時間の短縮を望まれている。短縮するにあたって、改善の対象要素としては、光路長の可変時間(或いは速度)、カメラの撮像時間、撮像回数等があるが、撮像時間は、カメラの撮像素子の固有の最小露光時間の制約を受ける。   In general, since the shape measuring apparatus measures a large number of objects to be measured, it is desired to reduce the measuring time to some extent. In shortening, the improvement target elements include the variable time (or speed) of the optical path length, the imaging time of the camera, the number of times of imaging, etc., but the imaging time is limited by the inherent minimum exposure time of the imaging element of the camera. receive.

そこで、以下、測定時間と言う観点から従来技術を考察する。特許文献1の場合は、干渉光のデータを基に干渉縞の位相を特定し、特定光路長を求めているが、このとき、干渉光のアナログデータから、干渉光を表すデジタルデータに変換して、時間領域(光路長領域)のデータをFFT変換して、周波数領域上で各帯域成分に分離し、再び時間領域で各帯域成分の干渉縞を得て、その位相の一致点を求める。このとき、取得したデジタルデータから干渉縞を再現するためには、一般的にはサンプリング定理等からして、その再現しようとする干渉縞の1周期当たり少なくとも3ポイントのデータが取得できる繰り返しの取得タイミングでデジタルデータに変換する必要がある。   Therefore, the prior art will be considered below from the viewpoint of measurement time. In the case of Patent Document 1, the phase of the interference fringe is specified based on the interference light data and the specific optical path length is obtained. At this time, the analog data of the interference light is converted into digital data representing the interference light. Thus, the time domain (optical path length domain) data is subjected to an FFT transform and separated into each band component on the frequency domain, and interference fringes of each band component are obtained again in the time domain, and the phase coincidence point is obtained. At this time, in order to reproduce the interference fringes from the acquired digital data, it is generally repeated acquisition that can obtain at least three points of data per cycle of the interference fringes to be reproduced from the sampling theorem or the like. It is necessary to convert to digital data at the timing.

一般に、形状測定装置において干渉法により測定された干渉縞は、そのデジタルデータによりモデル的には図7(A)のように変化した光路長に対する輝度の変化で表され、そのスペクトラム分布は図7(B)のように周波数対振幅の座標上で表される。このとき図7(A)の干渉縞の包絡線幅Δt(例えば、半値幅:ピークの輝度値が1/2になったところの横軸の幅)は、図7(B)の周波数の帯域幅ΔF(例えば、半値幅:ピークの振幅が1/2になったところの横軸の幅)と相関を有することが知られている。したがって、包絡線幅Δtによっては、図7(B)のように帯域幅ΔFは狭くなり、下部の周波数帯域にΔFcのスペースのある条件が得られる。つまり、帯域幅ΔFが図7(B)の二点鎖線で示されるように周波数が0に(直流成分)近づくまでの広帯域にならないという条件が得られる。   In general, the interference fringes measured by the interference method in the shape measuring apparatus are represented by the change in luminance with respect to the optical path length changed as shown in FIG. 7A by the digital data, and the spectrum distribution is shown in FIG. It is expressed on the frequency vs. amplitude coordinate as shown in (B). At this time, the envelope width Δt of the interference fringes in FIG. 7A (for example, the half-value width: the width on the horizontal axis where the peak luminance value is halved) is the frequency band of FIG. It is known to have a correlation with the width ΔF (for example, the half width: the width of the horizontal axis where the peak amplitude is halved). Therefore, depending on the envelope width Δt, the bandwidth ΔF is narrowed as shown in FIG. 7B, and a condition having a space of ΔFc in the lower frequency band is obtained. That is, the condition that the bandwidth ΔF does not become a wide band until the frequency approaches 0 (DC component) as indicated by a two-dot chain line in FIG. 7B is obtained.

サンプリングの定理からすると、サンプリング周波数Fsが、干渉縞に含まれる最高周波数成分より十分に高い周波数であれば、図7(B)のように本来の干渉縞が有する周波数成分を再現できるが、そのサンプリング周波数Fsを低くするに連れ、エイリアシングが生じる。つまり、図7(C)に示すように、本来の所望の周波数成分(実線部分)とエイリアシングによる折返し周波数成分(点線部分)が、再現される周波数が下がる(分周されているのと同様になる。)とともに、図7(D)のように互いに近づき、そして図(E)のように高低がひっくり変える状態になる。   According to the sampling theorem, if the sampling frequency Fs is sufficiently higher than the highest frequency component included in the interference fringes, the frequency component of the original interference fringes can be reproduced as shown in FIG. As the sampling frequency Fs is lowered, aliasing occurs. That is, as shown in FIG. 7C, the frequency of the original desired frequency component (solid line portion) and the aliasing frequency component due to aliasing (dotted line portion) is reduced (as in the case of frequency division). 7), they are close to each other as shown in FIG. 7D, and the height is changed over as shown in FIG.

そこで、本発明者は、次のことに着眼した。つまり、図7(B)に示すように干渉縞自身の帯域特性にΔFcのスペースがあるため、サンプリング周波数Fsを選ぶことにより、図7(E)に示すように所望の周波数成分と折返し周波数成分とが周波数的に分離した状態にすることができる。したがって、図7(F)のように折返し周波数成分をフィルタで除くとともに、さらにサンプリング周波数を下げたことにより周波数を低くなった分だけ、周波数軸を伸長することにより、再現が可能である。   Therefore, the present inventor has focused on the following. That is, as shown in FIG. 7B, there is a space of ΔFc in the band characteristics of the interference fringe itself, so that by selecting the sampling frequency Fs, a desired frequency component and a folded frequency component as shown in FIG. Can be separated in frequency. Therefore, as shown in FIG. 7F, the aliasing frequency component is removed by a filter, and reproduction is possible by extending the frequency axis as much as the frequency is lowered by further lowering the sampling frequency.

そうすれば、サンプリング定理を満足する周波数より低い周波数でも干渉縞の所望の周波数成分を得ることができる。つまりは、サンプリング周波数Fsを下げた分、データ取得回数を減らすことにより、測定時間の短縮が図れることに着眼した。   Then, a desired frequency component of interference fringes can be obtained even at a frequency lower than the frequency that satisfies the sampling theorem. In other words, we focused on shortening the measurement time by reducing the number of times of data acquisition by reducing the sampling frequency Fs.

本発明は、測定時間を短くして三次元測定を行える技術を提供する。   The present invention provides a technique capable of performing three-dimensional measurement by shortening the measurement time.

上記目的と達成するためには、干渉縞の包絡線幅Δt、帯域幅ΔF、及びその最高周波数Fhとの関係を考察する必要があるが、一般には、干渉縞の周期は、元々の干渉を発生させる源になる広帯域光源の光源の中心波長の周期λの約1/2である。そのときの干渉縞の包絡線幅Δtは、上記したようにその広帯域光源の帯域幅ΔFに依存する。一般には、ΔF≪[1/(λ/2)]<Fhを満足するので、十分に図7(B)のように下部の周波数帯域にスペースΔFc(=Fh−ΔF)を有することができる。   In order to achieve the above object, it is necessary to consider the relationship between the envelope fringe width Δt, the bandwidth ΔF, and its maximum frequency Fh. In general, the period of the interference fringes determines the original interference. It is about ½ of the period λ of the center wavelength of the light source of the broadband light source that is the source to be generated. The envelope width Δt of the interference fringes at that time depends on the bandwidth ΔF of the broadband light source as described above. In general, since ΔF << [1 / (λ / 2)] <Fh is satisfied, a space ΔFc (= Fh−ΔF) can be sufficiently provided in the lower frequency band as shown in FIG. 7B.

具体的には、請求項1に記載の発明は、複数スペクトラムを有する広帯域光を出力する広帯域光源(1)と、該広帯域を、光参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させ、前記参照鏡からの反射光と照射された前記被測定物の照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、該光路長可変手段による該光路長の変化に対して、エイリアシングが生じるタイミングで前記光路形成部からの出力を撮像することによって、干渉縞を含む干渉縞データを取得する撮像手段(10)と、前記撮像手段から出力される該干渉縞データから前記エイリアシングによって生じた周波数成分を除き、前記干渉縞の特徴値を示すときの特定光路長を求める光路長検出手段(14)とを備え、求めた該特定光路長を基に、前記被測定物の形状を測定する構成とした。   Specifically, the invention described in claim 1 is a broadband light source (1) that outputs broadband light having a plurality of spectrums, and a measurement optical path in which the broadband includes a reference optical path having an optical reference mirror and an object to be measured. And an optical path forming unit (5) for combining and outputting the reflected light from the reference mirror and each reflected light from the irradiation position of the irradiation range of the object to be measured; An optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path, and the optical path forming section at a timing at which aliasing occurs with respect to the change of the optical path length by the optical path length varying means Imaging means (10) for acquiring interference fringe data including interference fringes by imaging the output from, and removing frequency components generated by the aliasing from the interference fringe data output from the imaging means; And an optical path length detecting means for obtaining a specific optical path length when indicating the feature values of the serial interference fringes (14), based on 該特 constant light path length was determined and configured to measure the shape of the object to be measured.

請求項2に記載の発明は、請求項1に記載の発明において、前記光路長可変手段による前記光路長の変化に対して、前記エイリアシングが生じるタイミングとは、該光路長可変手段による該光路長の変化が、前記広帯域光のほぼ中心波長をλとしたとき、λ/6よりを越える間隔である構成とした。   According to a second aspect of the present invention, in the first aspect of the present invention, the timing at which the aliasing occurs with respect to the change in the optical path length by the optical path length varying means is the optical path length by the optical path length varying means. The change is such that the interval exceeds λ / 6, where λ is the central wavelength of the broadband light.

請求項3に記載の発明は、請求項1又は2に記載の発明において、前記撮像手段は、固有の最小露光時間で撮像し、かつ前記光路長可変手段が前記光路長を変化させる速度をvとしたとき、前記光路長の変化がλ/(6v)を越える時間間隔を前記タイミングとして撮像する構成とした。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the image pickup means picks up an image with a specific minimum exposure time, and the speed at which the optical path length varying means changes the optical path length is v. In this case, the time interval in which the change in the optical path length exceeds λ / (6v) is taken as the timing.

請求項4に記載の発明は、請求項1、2又は3に記載の発明において、前記光路長検出手段は、前記撮像手段から出力される前記干渉縞データを周波数領域のデータに変換して、該撮像手段が前記データを取得における前記エイリアシングによる不要成分を除外して新たな干渉縞データを選択する干渉縞データ選択部(14a)と、該新たな干渉縞データを基に、前記特徴値を表す前記特定光路長を求める光路長算出部(14c)とを備えた。   The invention according to claim 4 is the invention according to claim 1, 2, or 3, wherein the optical path length detection means converts the interference fringe data output from the imaging means into frequency domain data, An interference fringe data selection unit (14a) for selecting new interference fringe data by removing unnecessary components due to the aliasing in acquiring the data by the imaging means, and the feature value based on the new interference fringe data. An optical path length calculation unit (14c) for obtaining the specific optical path length to be expressed.

請求項5に記載の発明は、請求項4に記載の発明において、前記光路長検出手段は、前記干渉縞データ選択部で選択された前記新たな干渉縞データから少なくとも2つの波長成分を抽出する波長選択部(14d)を有し、前記光路長算出部は、前記抽出された少なくとも2つの波長成分の位相差がほぼゼロになる前記光路長を前記特定光路長として求める、構成とした。   The invention according to claim 5 is the invention according to claim 4, wherein the optical path length detecting means extracts at least two wavelength components from the new interference fringe data selected by the interference fringe data selection unit. A wavelength selection unit (14d) is included, and the optical path length calculation unit obtains the optical path length at which the phase difference between the extracted at least two wavelength components is substantially zero as the specific optical path length.

本発明によれば、エイリアシングが生じるタイミングで干渉縞データを取得(サンプリング)し、そのエイリアシングに起因して生じた不要周波数成分を除去して、変位を測定する構成であるから、エイリアシングが生じるようにデータ取得タイミングの期間を長くし、つまりデータ取得回数を減らし、その分の光学的処理時間を減らすことができ、測定時間を短縮できる。つまり、主たる測定時間として、[光路長可変時間+データ取得回数×(露光時間+取得処理時間)]で表されるとすると、データ取得回数が減る分だけ、測定時間が短縮できる。   According to the present invention, interference fringe data is acquired (sampled) at the timing when aliasing occurs, unnecessary frequency components generated due to the aliasing are removed, and displacement is measured, so that aliasing occurs. In addition, the data acquisition timing period can be lengthened, that is, the number of data acquisition times can be reduced, the optical processing time can be reduced accordingly, and the measurement time can be shortened. In other words, if the main measurement time is represented by [variable optical path length + data acquisition times × (exposure time + acquisition processing time)], the measurement time can be shortened by the reduction in the number of data acquisitions.

本発明に係る実施形態を、図を用いて説明する。図1は、第1の実施形態の機能構成を示す図である。図2は、干渉縞を説明するための図である。図3は、図1の光路長検出手段を変えた第2の実施形態を示す図である。図4は、図3の干渉縞データ選択部の動作を説明するための図である。図5、図6は、図3の光路長可変手段の動作を説明するための図で、図5は、各周波数成分の干渉縞を示し、図6は、その位相特性を示す。図7は、図1の実施形態においてエイシアリングの影響を除いて干渉縞を求める動作を説明するための図である。なお、図7は、「発明が解決しようとする課題」の欄で本発明の背景を説明するための図でもある。   Embodiments according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a functional configuration of the first embodiment. FIG. 2 is a diagram for explaining interference fringes. FIG. 3 is a diagram showing a second embodiment in which the optical path length detection unit in FIG. 1 is changed. FIG. 4 is a diagram for explaining the operation of the interference fringe data selection unit of FIG. 5 and 6 are diagrams for explaining the operation of the optical path length varying unit in FIG. 3, FIG. 5 shows interference fringes of each frequency component, and FIG. 6 shows the phase characteristics thereof. FIG. 7 is a diagram for explaining an operation for obtaining interference fringes by removing the influence of aliasing in the embodiment of FIG. FIG. 7 is also a diagram for explaining the background of the present invention in the column “Problems to be Solved by the Invention”.

[1.第1の実施形態の全体構成]
第1の実施形態は、上記したように、サンプリング定理を満足するタイミングより遅いタイミング、つまりエイリアシングが生じるタイミングで撮像手段としてのカメラ10により撮像して得られるそれぞれのデータから、エイリアシングにより生じた不要成分を除き、本来のサンプリング定理を満足するタイミングで得られる干渉縞と同等のデータを抽出する。そして、その抽出された干渉縞の強度のピーク値の生ずる光路長(光路長を干渉縞が生ずるまでに光路長を変化させたときの変化量でも良い。)を特定光路長(変位)を求める構成である。
以下の説明で、測定光路の光路長を変化させたときに、干渉縞が生ずる光路長(光路長を干渉縞が生ずるまでに光路長を変化させたときの変化量)を「特定光路長」と言うことがあり、これがその被測定物の形状の変位を示す。
[1. Overall Configuration of First Embodiment]
In the first embodiment, as described above, the unnecessary timing generated by the aliasing from the respective data obtained by imaging with the camera 10 as the imaging means at the timing later than the timing satisfying the sampling theorem, that is, the timing when aliasing occurs. Excluding the components, data equivalent to the interference fringes obtained at the timing satisfying the original sampling theorem is extracted. Then, the specific optical path length (displacement) is obtained from the optical path length in which the peak value of the intensity of the extracted interference fringe is generated (the optical path length may be the amount of change when the optical path length is changed before the interference fringe is generated). It is a configuration.
In the following description, when the optical path length of the measurement optical path is changed, the optical path length in which the interference fringe is generated (the change amount when the optical path length is changed before the interference fringe is generated) is “specific optical path length”. This indicates the displacement of the shape of the object to be measured.

図1で、光源1は、干渉を起こさせるために広帯域に亘る多数の波長成分を有する、コヒーレンシーの低い光を出射する白色光源を用いる。コリメータレンズ2は、光源1からの白色光(広帯域光)を集光してビームスプリッター3へ送る。ビームスプリッター3は、白色光の方向を変換して対物レンズ4へ送る。対物レンズ4は、白色光を平行光にしてビームスプリッター5(光路形成部)へ送る。ビームスプリッター5は、対物レンズ4から受けた白色光を2方向へ分岐し、一つは測定光として被測定物7へ送り(ビームスプリッター5から被測定物7への光路を測定光路とする。)、他の一つは参照光として参照鏡6へ送る(ビームスプリッター5から参照鏡6への光路を参照光路とする。)。この例では、ビームスプリッター5と参照鏡6との間は固定、つまり参照光路の光路長は一定の固定長さとされている。
ビームスプリッター5の代わりに、ハーフミラーで構成することもできる。
In FIG. 1, the light source 1 uses a white light source that emits light with low coherency having a large number of wavelength components over a wide band in order to cause interference. The collimator lens 2 collects the white light (broadband light) from the light source 1 and sends it to the beam splitter 3. The beam splitter 3 converts the direction of white light and sends it to the objective lens 4. The objective lens 4 converts white light into parallel light and sends it to the beam splitter 5 (optical path forming unit). The beam splitter 5 branches the white light received from the objective lens 4 in two directions, and one is sent as measurement light to the measurement object 7 (the optical path from the beam splitter 5 to the measurement object 7 is used as a measurement optical path). The other one is sent to the reference mirror 6 as reference light (the optical path from the beam splitter 5 to the reference mirror 6 is taken as the reference optical path). In this example, the distance between the beam splitter 5 and the reference mirror 6 is fixed, that is, the optical path length of the reference optical path is fixed.
Instead of the beam splitter 5, a half mirror can be used.

測定光路は、被測定物7の表面上の測定したい所望の照射範囲を同時に白色光で照射される構成にされている。   The measurement optical path is configured so that a desired irradiation range to be measured on the surface of the object to be measured 7 is simultaneously irradiated with white light.

被測定物7は、光路長可変手段としてのピエゾ8の上に搭載されている。ピエゾ8は、圧電素子で構成され、光路長制御手段16からの指示により、連続的に、被測定物7をXY平面(図1の紙面に直交する面)に対してZ軸方向(図1の紙面の上下方向)へ変位(移動)させることにより測定光路の光路長を所定速度で可変制御する。   The DUT 7 is mounted on a piezo 8 as an optical path length varying unit. The piezo 8 is composed of a piezoelectric element, and in accordance with an instruction from the optical path length control means 16, the object to be measured 7 is continuously moved in the Z-axis direction (FIG. 1) with respect to the XY plane (surface orthogonal to the paper surface of FIG. The optical path length of the measurement optical path is variably controlled at a predetermined speed by being displaced (moved) in the vertical direction of the paper surface.

なお、ここでは、本発明における光路長を変化させる可変方法としては、連続的な可変であり、可変速度を一定として、説明するが、後記するカメラ等によるデータ取得タイミングに比べ細かいステップ状に可変しても良い。   Here, the variable method for changing the optical path length in the present invention will be described by assuming that the variable speed is continuous and the variable speed is constant. However, the variable method is variable in finer steps than the data acquisition timing by a camera or the like described later. You may do it.

ピエゾ8は、光路長制御手段16の制御によって、ビームスプリッター5の固定位置に対して測定光路の光路長を変化させる手段(光路長可変手段)である。なお、ここでは、参照光路の光路長を固定、測定光路の光路長を変化させることで説明するが、干渉縞を生成するには、ピエゾ8を参照鏡6へ取り付け、測定光路を固定とし、参照光路の光路長を可変する構成にしても可能である。   The piezo 8 is means (optical path length variable means) that changes the optical path length of the measurement optical path with respect to the fixed position of the beam splitter 5 under the control of the optical path length control means 16. Here, the description will be given by fixing the optical path length of the reference optical path and changing the optical path length of the measurement optical path. However, in order to generate interference fringes, the piezo 8 is attached to the reference mirror 6, the measurement optical path is fixed, A configuration in which the optical path length of the reference optical path is variable is also possible.

参照鏡6及び被測定物7のそれぞれから反射されてきた白色光(以下、「戻り光」と言うことがある。)は、ビームスプリッター5で合波(合成)され、さらに対物レンズ4で集光される。戻り光は、ビームスプリッター3を通過して結像レンズ9により平行光にされてカメラ10へ入力される。   White light (hereinafter also referred to as “returned light”) reflected from each of the reference mirror 6 and the DUT 7 is combined (combined) by the beam splitter 5 and collected by the objective lens 4. To be lighted. The return light passes through the beam splitter 3, is converted into parallel light by the imaging lens 9, and is input to the camera 10.

このとき、光路長制御手段16からの指示で、ピエゾ8が測定光路の光路長を変化させる距離(或いは変化させるときの時間間隔)に応じて、カメラ10が戻り光を撮像することにより、戻り光による干渉縞が撮像される(実際は、撮像は、戻り光を撮像しているだけであるが、中には後に撮像データを展開したときに現れる戻り光による干渉縞を含むので、「干渉縞を撮像」と表現している。)。撮像された干渉縞は、メモリ13に記憶される。このとき、測定光路は、上記のように被測定物7の所望の照射範囲全体を白色光により同時に照射する構成にされているので、照射範囲の各照射位置、つまり測定したい位置(以下、「測定位置」と言う。)からの戻り光に対応する干渉縞が撮像される。   At this time, in response to an instruction from the optical path length control means 16, the camera 10 captures the return light according to the distance (or the time interval at which the piezo 8 changes the optical path length of the measurement optical path). Interference fringes due to light are imaged (actually, the imaging only captures the return light, but since there are interference fringes due to the return light that appears when the imaging data is developed later, Is referred to as “imaging”.) The captured interference fringes are stored in the memory 13. At this time, since the measurement optical path is configured to simultaneously irradiate the entire desired irradiation range of the DUT 7 with white light as described above, each irradiation position of the irradiation range, that is, a position to be measured (hereinafter, “ An interference fringe corresponding to the return light from “measurement position” is imaged.

なお、図1の光学系の変形としては、対物レンズ4の位置を図1の位置の代わりに、測定光路と参照光路のそれぞれに対物レンズを配置する光学系を構成することもできるので、本発明は、図1の光学系に限らない。ただし、以下の説明は、図1に沿って説明する。   As a modification of the optical system in FIG. 1, an optical system in which the objective lens 4 is disposed in each of the measurement optical path and the reference optical path instead of the position in FIG. 1 can be configured. The invention is not limited to the optical system of FIG. However, the following description will be described with reference to FIG.

カメラ10による撮影のタイミング及びメモリ13による記憶のタイミングは、本発明のデータの取得タイミングであり、いずれも光路長制御手段16により同期して出力される。つまり、光路長制御手段16が所定速度でピエゾ8へ光路長を可変指示する一方で、所定時間間隔のタイミング信号を生成してカメラ10及びメモリ13に送り、そのタイミングでデータの取得を行わせる。つまり、カメラ10及びメモリ13は、そのタイミング信号のタイミングで戻り光の撮像データ(戻り光の輝度を示す輝度データになる。)を取り込み、記憶する。   The timing of shooting by the camera 10 and the timing of storage by the memory 13 are the data acquisition timing of the present invention, and both are output in synchronization by the optical path length control means 16. That is, the optical path length control means 16 variably instructs the piezo 8 on the optical path length at a predetermined speed, while generating a timing signal at predetermined time intervals and sending it to the camera 10 and the memory 13 to acquire data at that timing. . That is, the camera 10 and the memory 13 capture and store the imaging data of the return light (the brightness data indicating the brightness of the return light) at the timing of the timing signal.

一般に、広帯域光による干渉縞は、広帯域光の中心波長λの半分の繰り返し周期を有する。このλ/2周期の波形を取得して再現するには、エイリアシングの発生を防止するため、通常であれば、その周期に3つのデータが要求されるので、λ/(2×3)より早い繰り返しのタイミングでデータ取得をする必要がある。   In general, interference fringes due to broadband light have a repetition period that is half the center wavelength λ of broadband light. In order to prevent the occurrence of aliasing in order to acquire and reproduce the waveform of this λ / 2 period, normally, since three data are required in that period, it is faster than λ / (2 × 3). It is necessary to acquire data at repeated timing.

本発明ではエイリアシングが生じるタイミングでデータを取得しているので、カメラ10による撮影のタイミング及びメモリ13の記憶タイミングは、λ/6より遅い(長い)繰り返し周期(以下、「サンプリングタイミングFs」ということがある。)である。具体的には、光路長制御手段16がピエゾ8を駆動して光路長を可変する速度をvとすれば、光路長制御手段16はλ/6vより遅い時間間隔の制御信号をカメラ10及びメモリ13へ送り、その制御信号のタイミングでデータを取得させる。光路長制御手段16がピエゾ8をアナログではなくステップで駆動させるときは、λ/6vに比べ早い時間間隔のタイミング信号を生成してピエゾ8へ光路長の可変指示をする。   In the present invention, since data is acquired at the timing when aliasing occurs, the shooting timing by the camera 10 and the storage timing of the memory 13 are slower (longer) than λ / 6 (hereinafter referred to as “sampling timing Fs”). There is.) Specifically, if the speed at which the optical path length control means 16 drives the piezo 8 to change the optical path length is v, the optical path length control means 16 sends a control signal with a time interval slower than λ / 6v to the camera 10 and the memory. The data is acquired at the timing of the control signal. When the optical path length control means 16 drives the piezo 8 in steps instead of analog, it generates a timing signal with a time interval earlier than λ / 6v and instructs the piezo 8 to change the optical path length.

結局、メモリ13は、そのタイミング信号の時間間隔をアドレスとして撮像データを記憶する。これらのタイミング進行方向(つまりアドレス方向)が、光路長方向(Z軸方向)を表すことになる。そのとき、その撮像データを測定位置(Xm、Yp)と合わせて記憶する。測定位置(Xm、Yp)の情報は、カメラ10の撮像素子の位置に対応したXY方向の画素の位置である。図2に、メモリ13に記憶されたデータから次に説明する信号処理手段20の処理によって得られた干渉縞の例を示す。   Eventually, the memory 13 stores imaging data using the time interval of the timing signal as an address. These timing progression directions (that is, address directions) represent the optical path length direction (Z-axis direction). At that time, the imaging data is stored together with the measurement position (Xm, Yp). The information on the measurement position (Xm, Yp) is the position of the pixel in the XY direction corresponding to the position of the image sensor of the camera 10. FIG. 2 shows an example of interference fringes obtained from the data stored in the memory 13 by the processing of the signal processing means 20 described below.

信号処理手段20は、光路長検出手段14と変位演算手段15とを備えている。
光路長検出手段14は、図1のように、干渉縞データ選択部14a、光路長算出部14cで構成される。干渉縞データ選択部14aは、メモリ13からの撮像データ、例えば、測定位置(Xm、Yp)のデータを受けて、FFTにより周波数領域のデータに変換する。そうすると、図7(E)に示すようにエイリアシングによる周波数成分(図7(E)点線部分)と本来の干渉縞の周波数成分の各データが存在するので、フィルタにより分離して、エイリアシングによる周波数成分を除き、干渉縞の成分(図7(E)実線部分)を分離して取り出す。
The signal processing means 20 includes an optical path length detection means 14 and a displacement calculation means 15.
As shown in FIG. 1, the optical path length detector 14 includes an interference fringe data selector 14a and an optical path length calculator 14c. The interference fringe data selection unit 14a receives imaging data from the memory 13, for example, data of measurement positions (Xm, Yp), and converts the data into frequency domain data by FFT. Then, as shown in FIG. 7 (E), since there are each data of the frequency component due to aliasing (dotted line portion in FIG. 7 (E)) and the original interference fringe frequency component data, they are separated by a filter and the frequency component due to aliasing is present. The interference fringe component (solid line part in FIG. 7E) is separated and extracted.

その後、干渉縞データ選択部14aは、周波数軸を本来の周波数軸、つまり、エイリアシングを生じないようにデータ取得のときのサンプリングタイミングでサンプリングリングしたときの周波数領域の周波数軸に縮尺を戻して(本来のサンプリング周波数より低い周波数でアンプリングしているため、いわば周波数軸が分周された形で表されるので、それを戻す。)、時間領域のデータに再変換して、つまり干渉縞データとして光路長算出部14cへ送る(図2は、そのときの干渉縞のデータである。)。   Thereafter, the interference fringe data selection unit 14a returns the scale to the original frequency axis, that is, the frequency axis of the frequency domain when sampling is performed at the sampling timing at the time of data acquisition so as not to cause aliasing ( Since it is amplified at a frequency lower than the original sampling frequency, the frequency axis is expressed in a frequency-divided form, so it is returned.) Re-converted into time-domain data, that is, interference fringe data To the optical path length calculation unit 14c (FIG. 2 shows interference fringe data at that time).

なお、図2の干渉縞の波形で、干渉縞の特徴値である干渉縞のほぼ中央のピーク位置は、参照光路の光路長と測定光路の光路長が同一になった場合である。また、白色光による干渉縞の波長は、広帯域光の要素となる各波長の合成で作られ、それらの帯域のほぼ中央の波長λの1/2になる。また、図2の白色光による干渉縞の光路長方向への広がり、つまり干渉縞の包絡線の幅Δtは、白色光のコヒーレンシーの程度、言い換えると周波数領域における周波数成分の幅ΔFによる。コヒーレンシーが低いほど、つまりΔFが小さいほど、幅Δは狭くなる(図7(A)、(B)を参照)。干渉縞の周波数成分の最高周波数をFhとすれば、周波数成分の幅ΔFは、ΔF≪[1/(λ/2)]<Fhを満たし、そして、幅ΔFを小さくすると(コヒーレンシーを良くすると)、干渉縞の振幅がほぼ一定になりピークがなくなるので、干渉縞のピーク値を把握できる程度の干渉縞の幅Δtなるように幅ΔFを決定する。例えば、モデル的な説明ながら、幅ΔFを最高周波数Fh/2を下回るように、光源1の帯域幅を決定すれば、図7(E)に示すように、サンプリング後の周波数帯域中の右半分に干渉縞の実周波数成分、左半分にエイリアシングによる周波数成分に振り分けられ、かつFh/2をカットとするハイパスフィルターにより干渉縞の実周波数成分のみを抽出することができる。   In the waveform of the interference fringes in FIG. 2, the peak position at the center of the interference fringe, which is the characteristic value of the interference fringes, is when the optical path length of the reference optical path and the optical path length of the measurement optical path are the same. In addition, the wavelength of the interference fringes due to the white light is made by combining the wavelengths that are the elements of the broadband light, and becomes half the wavelength λ at the center of those bands. Further, the spread of interference fringes in the optical path length direction due to white light in FIG. 2, that is, the width Δt of the envelope of the interference fringes depends on the degree of coherency of white light, in other words, the width ΔF of the frequency component in the frequency domain. The lower the coherency, that is, the smaller ΔF, the narrower the width Δ (see FIGS. 7A and 7B). If the maximum frequency of the interference fringe frequency component is Fh, the frequency component width ΔF satisfies ΔF << [1 / (λ / 2)] <Fh, and the width ΔF is reduced (to improve coherency). Since the amplitude of the interference fringe becomes substantially constant and the peak disappears, the width ΔF is determined so that the interference fringe width Δt is such that the peak value of the interference fringe can be grasped. For example, if the bandwidth of the light source 1 is determined so that the width ΔF is less than the maximum frequency Fh / 2 while being described as a model, as shown in FIG. 7E, the right half in the frequency band after sampling is shown. It is possible to extract only the actual frequency component of the interference fringe by a high-pass filter that is divided into the actual frequency component of the interference fringe and the frequency component due to aliasing in the left half and cuts Fh / 2.

光路長検出手段14は、干渉縞のピーク位置を求めて、その位置の光路長を決定する(特定光路長)。「ピーク位置」(或いは、「ピークの位置」)とは、白色光による干渉縞の輝度(振幅)が最大(以下、「ピーク」と言う。)となる横軸上の位置であって、図2で、横軸は、測定光路の光路長方向(Z軸方向:図1の紙面の上下方向)であり、また光路長可変するときの時間軸方向(カメラ10により所定時間間隔で撮像されるときの時間軸方向)である。   The optical path length detection means 14 obtains the peak position of the interference fringes and determines the optical path length at that position (specific optical path length). “Peak position” (or “peak position”) is a position on the horizontal axis where the luminance (amplitude) of interference fringes due to white light is maximum (hereinafter referred to as “peak”). 2, the horizontal axis is the optical path length direction of the measurement optical path (Z-axis direction: the vertical direction of the drawing in FIG. 1), and the time axis direction when the optical path length is variable (images are taken by the camera 10 at predetermined time intervals). Time axis direction).

一方、メモリ13に記憶される撮像データは、メモリ13に記憶されたタイミング(サンプリングタイミング)で記憶される(図2は、それらを結んで連続的に表現したものである。)ので、光路長検出手段14は、干渉縞データ選択部14aからは、干渉縞についての離散的なデータを受け取る。このように離散的なため、振幅の極大点と包絡線のピーク位置が一致しないことがあるが、滑らかな特性であるから前後の振幅の極大点から補間演算により、包絡線のピーク位置を求めても良い。例えば、離散的な撮像データから干渉縞のピークを求める方法としては、光路長を段階的に変化させ、その変化した所定の光路長毎に撮像した離散的な撮像データを基に次の処理を行う技術がある。撮像データから得られる干渉縞のデータからデジタル・ハイパスフィルタにより直流成分を除外する。交流成分となったデータを二乗して整流する。整流された繰り返し成分に比べ低い繰り返し成分を通過させるデジタル・ローパスフィルタを通して積分し、干渉縞の包絡線データを算出する。このとき、ピーク位置の細かさの要求に応じて、整流された繰り返し成分の間を例えば二乗特性で補間し、補間された繰り返し成分を積分して包絡線データを求める。この包絡線データのピークとなる位置を求める。なお、撮像データのタイミング(時間間隔)と干渉縞の周期に関わらず、信号処理手段20は、特開平9−318329号公報に記載のように、離散的処理でピーク位置を求めてもよい。   On the other hand, the imaging data stored in the memory 13 is stored at the timing (sampling timing) stored in the memory 13 (FIG. 2 is a continuous representation by connecting them), so the optical path length. The detection means 14 receives discrete data about interference fringes from the interference fringe data selection unit 14a. Because of this discrete nature, the maximum point of the amplitude and the peak position of the envelope may not match, but because of the smooth characteristics, the peak position of the envelope is obtained by interpolation from the front and rear maximum points of the amplitude. May be. For example, as a method of obtaining the peak of interference fringes from discrete imaging data, the optical path length is changed stepwise, and the following processing is performed based on the discrete imaging data taken for each of the changed predetermined optical path lengths. There is technology to do. A direct current component is excluded from the interference fringe data obtained from the imaging data by a digital high-pass filter. The AC component is squared and rectified. Integration is performed through a digital low-pass filter that passes a repetitive component lower than the rectified repetitive component, and envelope data of interference fringes is calculated. At this time, according to a request for the fineness of the peak position, the rectified repetitive components are interpolated with, for example, a square characteristic, and the interpolated repetitive components are integrated to obtain envelope data. The position that becomes the peak of the envelope data is obtained. Regardless of the timing (time interval) of the imaging data and the period of the interference fringes, the signal processing means 20 may obtain the peak position by discrete processing as described in JP-A-9-318329.

変位演算手段15は、被測定物7の測定範囲の各測定位置における干渉縞のピーク位置の光路長、つまり各特定光路長であって、図2の例えば測定位置(Xm、Yp)における特定波長t1と、同様にして求めた、基準測定位置(Xs、Ys)における特定波長t0との差t0−t1から、基準測定位置に対する測定値における被測定物の形状の変位を求める。   The displacement calculation means 15 is the optical path length of the peak position of the interference fringes at each measurement position in the measurement range of the object 7 to be measured, that is, each specific optical path length, for example, the specific wavelength at the measurement position (Xm, Yp) in FIG. From the difference t0-t1 between the specific wavelength t0 at the reference measurement position (Xs, Ys), which is obtained in the same manner, the displacement of the shape of the object to be measured at the measurement value with respect to the reference measurement position is obtained.

[第2の実施形態]
図3、図4及び図5を基に説明する(但し、図4は、動作原理を説明するための図でもある。)。第2の実施形態は、図1の第1の実施形態が干渉縞のピーク位置を振幅から求めていたのに対して、複数周波数成分、例えば、レッドの成分の波長における位相とグリーン成分の波長の位相が一致した光路長を特定光路長として求める形態である。図1の信号処理手段20を図3の信号処理手段20aに置き代え、さらに図5のカメラ10をカラーカメラにしたものである。したがって、図1で、光源1は、広帯域に亘る多数の波長成分に少なくとも2波の波長帯域の成分を含む光源であって、ここでは、例えば、レッド、グリーンの各色の波長帯を含む光源を用いる。レッド、グリーンの各色の波長の光を合成して用いても良い。信号処理手段20a以外の他の構成、動作、タイミング等は、図1と同じである。以下、信号処理手段20aについて説明する。
[Second Embodiment]
This will be described with reference to FIGS. 3, 4 and 5 (however, FIG. 4 is also a diagram for explaining the operating principle). In the second embodiment, the peak position of the interference fringes is obtained from the amplitude in the first embodiment of FIG. Is obtained as the specific optical path length. The signal processing means 20 in FIG. 1 is replaced with the signal processing means 20a in FIG. 3, and the camera 10 in FIG. 5 is replaced with a color camera. Accordingly, in FIG. 1, a light source 1 is a light source that includes components in a wavelength band of at least two waves in a large number of wavelength components over a wide band, and here, for example, a light source that includes wavelength bands of red and green colors. Use. You may combine and use the light of the wavelength of each color of red and green. Other configurations, operations, timings, and the like other than the signal processing means 20a are the same as those in FIG. Hereinafter, the signal processing means 20a will be described.

図3で干渉縞データ選択部14eは、図1の干渉縞データ選択部14aと基本的に同じであるが、本発明のメインの構成の一つでもあるので、図4を用いて説明する。干渉縞データ選択部14eは、カメラ10やメモリ13が、上記のようにエイリアシングを起こすタイミング(λ/6より長い期間のタイミング)でデータを取得しているので、メモリ13からの時間領域データをFFTで周波数領域データに変換して、そのエイリアシングによる不要成分をフィルタリングして、干渉縞の周波数成分を取得して、かつ周波数軸を元に戻して波長選択部14dへ送る。   The interference fringe data selection unit 14e in FIG. 3 is basically the same as the interference fringe data selection unit 14a in FIG. 1, but is also one of the main configurations of the present invention, and will be described with reference to FIG. Since the interference fringe data selection unit 14e acquires data at the timing when the camera 10 and the memory 13 cause aliasing as described above (timing longer than λ / 6), the time-domain data from the memory 13 is acquired. It converts into frequency domain data by FFT, filters the unnecessary component by the aliasing, acquires the frequency component of the interference fringe, returns the frequency axis to the original, and sends it to the wavelength selection unit 14d.

干渉縞データ選択部14eは、FFTによって、得られた図4(D)のデータのうち、右半分のデータ(図4(D)で薄い灰色で示すデータ)を所望のデータとしてフィルタで選択して残し、その前の周波数帯にある不要成分を除去する。そして図4(D)の周波数軸を伸長して(図4(E)の灰色の領域で示す右半分)元に戻して波長選択部14dへ送る。   The interference fringe data selection unit 14e selects the right half data (data shown in light gray in FIG. 4D) as desired data from the obtained data of FIG. Unnecessary components in the previous frequency band are removed. Then, the frequency axis in FIG. 4D is expanded (the right half indicated by the gray area in FIG. 4E) and returned to the wavelength selection unit 14d.

ここで、図4を用いて、全般的な原理的な説明をしておく。図4(A)は、レッド、グリーンの各波長成分による干渉縞であり、正常なサンプリングタイミングT0(上記λ/6vより早いタイミング)で測定した場合での例である。図4(B)は、図4(A)の周波数領域に変換したデータである。そして、この場合は、フィルタにより左半分のデータが選択され、そして利用される。本発明ように、例えば、正常なサンプリングタイミングのT0の半分で、かつエイリアシングが発生するタイミングでデータ取得(サンプリング)すると、図4(A)に代わって図(C)のような時間領域のデータに得られる。周波数領域のデータとしては、図4(B)のデータに代わって、図4(D)のように図4(B)周波数成分の分布にくらべ、左右の分布が入れ替わったデータが得られる。つまり図4(B)の右側の不要な成分がエイリアシングにより図4(D)の左側の周波数位置に現れ、図4(B)の左側の本来の干渉縞の成分が図4(D)の右側の周波数位置に現れる。そして、図4(D)の周波数軸は、図4(B)周波数軸に比べ、サンプリング周波数の関係で半分にされている。したがって、図4(B)の左の成分波形と図4(D)の右の成分波形が同じなので、これをフィルタで分離し、かつ図4(E)のように縮尺を変えれば、本来得たい図4(B)の左半分の周波数成分のデータを得ることができる。   Here, a general principle will be described with reference to FIG. FIG. 4A shows interference fringes due to red and green wavelength components, and is an example when measured at normal sampling timing T0 (timing earlier than λ / 6v). FIG. 4B shows data converted into the frequency domain of FIG. In this case, the left half data is selected by the filter and used. As in the present invention, for example, when data acquisition (sampling) is performed at half the normal sampling timing T0 and at the timing when aliasing occurs, data in the time domain as shown in FIG. 4C is used instead of FIG. Is obtained. As the data in the frequency domain, instead of the data in FIG. 4B, data in which the left and right distributions are interchanged as compared with the distribution of the frequency components in FIG. 4B as shown in FIG. 4D is obtained. That is, an unnecessary component on the right side of FIG. 4B appears at the frequency position on the left side of FIG. 4D due to aliasing, and the original interference fringe component on the left side of FIG. 4B is the right side of FIG. 4D. Appears at the frequency position. The frequency axis in FIG. 4D is halved in relation to the sampling frequency compared to the frequency axis in FIG. Therefore, since the left component waveform in FIG. 4B and the right component waveform in FIG. 4D are the same, if they are separated by a filter and the scale is changed as shown in FIG. The data of the frequency component in the left half of FIG. 4 (B) can be obtained.

図3で、波長選択部14dは、干渉縞データ選択部14eから送られてきた周波数領域のデータを受けてフィルタにより、例えば、周波数が、ブルー(B)成分、グリーン(G)成分、レッド(R)成分の3つに分類し、それぞれの成分を光路長出部14fへ送る。光路長算出部14f内では、B位相算出部14f1、G位相算出部14f2、R位相算出部14f1mのそれぞれが、時間領域において該当する成分の位相変化を求める(例えば、直交復調して位相を求める。)。図5が光路長の変化(横軸)に対するそれらの各位相変化(縦軸)を示す。そして、光路長決定手段14f4が、図6に示すように、3成分の位相が一致した光路長をその測定位置における特定光路長として決定する。このとき、データが離散的であることから、位相の一致点の光路長を特定しにくい場合は、上記のように補間する等の方法を用いる。   In FIG. 3, the wavelength selection unit 14 d receives the frequency domain data transmitted from the interference fringe data selection unit 14 e and filters, for example, with a frequency of blue (B) component, green (G) component, red ( R) The components are classified into three components, and each component is sent to the optical path length extension unit 14f. In the optical path length calculation unit 14f, each of the B phase calculation unit 14f1, the G phase calculation unit 14f2, and the R phase calculation unit 14f1m obtains a phase change of a corresponding component in the time domain (for example, obtains a phase by orthogonal demodulation) .) FIG. 5 shows each phase change (vertical axis) with respect to a change in optical path length (horizontal axis). Then, as shown in FIG. 6, the optical path length determination unit 14f4 determines the optical path length in which the phases of the three components coincide with each other as the specific optical path length at the measurement position. At this time, since the data is discrete, when it is difficult to specify the optical path length of the phase coincidence point, a method such as interpolation as described above is used.

上記構成のうち、信号処理手段20,20a及び光路長制御手段16は,CPU及びメモリで構成することができる。   Among the above configurations, the signal processing means 20 and 20a and the optical path length control means 16 can be constituted by a CPU and a memory.

以上のように、エイリアシングが生じるタイミングでデータを取得して測定できるので、データ取得回数を減らすことができる。したがって、主たる測定時間として、[光路長可変時間+データ取得回数×(露光時間+取得処理時間)]で表されるとすると、データ取得回数が減る分だけ、測定時間が短縮することができる。   As described above, since data can be acquired and measured at the timing when aliasing occurs, the number of times of data acquisition can be reduced. Therefore, if the main measurement time is represented by [variable optical path length + number of data acquisition times × (exposure time + acquisition processing time)], the measurement time can be shortened by the reduction in the number of data acquisition times.

第1の実施形態の機能構成を示す図である。It is a figure which shows the function structure of 1st Embodiment. 干渉縞を説明するための図である。It is a figure for demonstrating an interference fringe. 図1の光路長検出手段を変えた第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment which changed the optical path length detection means of FIG. 図3の干渉縞データ選択部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the interference fringe data selection part of FIG. 図3の光路長可変手段の動作を説明するための図で、各周波数成分の干渉縞を示す。It is a figure for demonstrating operation | movement of the optical path length variable means of FIG. 3, and shows the interference fringe of each frequency component. 図3の光路長可変手段の動作を説明するための図で、各周波数成分の位相特性を示す。FIG. 4 is a diagram for explaining the operation of the optical path length varying unit in FIG. 3 and shows the phase characteristics of each frequency component. 第1の実施形態においてエイリアシングの影響を除いて干渉縞を求める動作を説明するための図である。また、「発明が解決しようとする課題」の欄で本発明の背景を説明するための図でもある。It is a figure for demonstrating the operation | movement which calculates | requires an interference fringe except the influence of aliasing in 1st Embodiment. It is also a diagram for explaining the background of the present invention in the column “Problems to be Solved by the Invention”.

符号の説明Explanation of symbols

1 光源
2 コリメータレンズ
3 ビームスプリッター
4 対物レンズ
5 ビームスプリッター
6 参照鏡
7 被測定物
8 ピエゾ
9 結像レンズ
10 カメラ
13 メモリ
14 光路長検出手段
14a、14e 干渉縞データ選択部
14d 波長選択部
14、14f 光路長算出部
15 変位演算手段
16 光路長制御手段
18 ユーザインタフェース
20、20a 信号処理手段
DESCRIPTION OF SYMBOLS 1 Light source 2 Collimator lens 3 Beam splitter 4 Objective lens 5 Beam splitter 6 Reference mirror 7 Measured object 8 Piezo 9 Imaging lens 10 Camera 13 Memory 14 Optical path length detection means 14a, 14e Interference fringe data selection part 14d Wavelength selection part 14, 14f Optical path length calculation unit 15 Displacement calculation means 16 Optical path length control means 18 User interfaces 20, 20a Signal processing means

Claims (5)

複数スペクトラムを有する広帯域光を出力する広帯域光源(1)と、該広帯域光を、参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させ、前記参照鏡からの反射光と照射された前記被測定物の照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、該光路長可変手段による該光路長の変化に対して、エイリアシングが生じるタイミングで前記光路形成部からの出力を撮像することによって、干渉縞を含む干渉縞データを取得する撮像手段(10)と、前記撮像手段から出力される該干渉縞データから前記エイリヤシングによって生じた周波数成分を除き、前記干渉縞の特徴値を示すときの特定光路長を求める光路長検出手段(14)とを備え、求めた該特定光路長を基に、前記被測定物の形状を測定することを特徴とする三次元形状測定装置。   A broadband light source (1) that outputs broadband light having a plurality of spectrums, and the broadband light is branched and incident on a reference optical path having a reference mirror and a measurement optical path on which an object to be measured is arranged, and reflected from the reference mirror An optical path forming unit (5) for combining and outputting the light and each reflected light from the irradiation position of the irradiation range of the object to be measured, and the optical path length of either the reference optical path or the measurement optical path The optical path length varying means (8) for changing the optical path, and the interference path including interference fringes by imaging the output from the optical path forming section at the timing when aliasing occurs with respect to the change in the optical path length by the optical path length varying means. An imaging unit (10) for acquiring fringe data, and a specific light when the interference fringe data output from the imaging unit excludes a frequency component generated by the aliasing and indicates a characteristic value of the interference fringe And an optical path length detecting means (14) for determining the length, obtained based on 該特 constant light path length, the three-dimensional shape measuring apparatus characterized by measuring the shape of the object to be measured. 前記光路長可変手段による前記光路長の変化に対して、前記エイリアシングが生じるタイミングとは、該光路長可変手段による該光路長の変化が、前記広帯域光のほぼ中心波長をλとしたとき、λ/6よりを越える間隔であることを特徴とする請求項1に記載の三次元形状測定装置。   The timing at which the aliasing occurs with respect to the change in the optical path length by the optical path length varying means is defined as λ when the change in the optical path length by the optical path length varying means is approximately the center wavelength of the broadband light. The three-dimensional shape measuring apparatus according to claim 1, wherein the distance exceeds / 6. 前記撮像手段は、固有の最小露光時間で撮像し、かつ前記光路長可変手段が前記光路長を変化させる速度をvとしたとき、前記光路長の変化がλ/(6v)を越える時間間隔を前記タイミングとして撮像することを特徴とする請求項2に記載の三次元形状測定装置。   The image pickup means picks up an image with a specific minimum exposure time, and when the speed at which the optical path length changing means changes the optical path length is v, a time interval in which the change in the optical path length exceeds λ / (6v) The three-dimensional shape measuring apparatus according to claim 2, wherein imaging is performed as the timing. 前記光路長検出手段は、前記撮像手段から出力される前記干渉縞データを周波数領域のデータに変換して、該撮像手段が前記データを取得における前記エイリアシングによる不要成分を除外して新たな干渉縞データを選択する干渉縞データ選択部(14a)と、該新たな干渉縞データを基に、前記特徴値を表す前記特定光路長を求める光路長算出部(14c)とを備えたことを特徴とする請求項1、2又は3に記載の三次元形状測定装置。   The optical path length detection means converts the interference fringe data output from the imaging means into frequency domain data, and the imaging means removes unnecessary components due to the aliasing in acquiring the data to obtain new interference fringes. An interference fringe data selection unit (14a) for selecting data, and an optical path length calculation unit (14c) for obtaining the specific optical path length representing the feature value based on the new interference fringe data The three-dimensional shape measuring apparatus according to claim 1, 2 or 3. 前記光路長検出手段は、前記干渉縞データ選択部で選択された前記新たな干渉縞データから少なくとも2つの波長成分を抽出する波長選択部(14d)を有し、
前記光路長算出部は、前記抽出された少なくとも2つの波長成分の位相差がほぼゼロになる前記光路長を前記特定光路長として求める、ことを特徴とする請求項4に記載の三次元形状測定装置。
The optical path length detection means includes a wavelength selection unit (14d) that extracts at least two wavelength components from the new interference fringe data selected by the interference fringe data selection unit,
The three-dimensional shape measurement according to claim 4, wherein the optical path length calculation unit obtains the optical path length at which a phase difference between the extracted at least two wavelength components is substantially zero as the specific optical path length. apparatus.
JP2007242193A 2007-09-19 2007-09-19 3D shape measuring device Expired - Fee Related JP4388113B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007242193A JP4388113B2 (en) 2007-09-19 2007-09-19 3D shape measuring device
KR1020080090749A KR101011925B1 (en) 2007-09-19 2008-09-16 An apparatus for measuring three-dimensional shape
TW097135689A TWI379067B (en) 2007-09-19 2008-09-17 Measuring device of 3-dimensional shape
CNA2008102118799A CN101393016A (en) 2007-09-19 2008-09-18 Three-dimensional shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242193A JP4388113B2 (en) 2007-09-19 2007-09-19 3D shape measuring device

Publications (2)

Publication Number Publication Date
JP2009074837A true JP2009074837A (en) 2009-04-09
JP4388113B2 JP4388113B2 (en) 2009-12-24

Family

ID=40493434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242193A Expired - Fee Related JP4388113B2 (en) 2007-09-19 2007-09-19 3D shape measuring device

Country Status (4)

Country Link
JP (1) JP4388113B2 (en)
KR (1) KR101011925B1 (en)
CN (1) CN101393016A (en)
TW (1) TWI379067B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109873A1 (en) 2009-03-25 2010-09-30 株式会社Sumco Silicon wafer and method for manufacturing same
JP2012078269A (en) * 2010-10-05 2012-04-19 Naoyuki Furuyama Ranging method and laser ranging device
WO2015105169A1 (en) * 2014-01-10 2015-07-16 Ntn株式会社 Height detection device, coating device, and height detection method
JP2016070918A (en) * 2014-10-01 2016-05-09 本田技研工業株式会社 Manufacturing method of molding, shape measurement method and shape measurement device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033131B (en) * 2012-12-10 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 The measurement mechanism of semiconductor microactuator plane array and method
JP6762608B2 (en) * 2016-09-06 2020-09-30 株式会社日立ハイテクサイエンス Three-dimensional shape measurement method using a scanning white interference microscope
CN110125802B (en) * 2019-04-17 2020-12-01 郑州磨料磨具磨削研究所有限公司 Online detection method and system for tiny abrasion loss of superhard material grinding wheel
JP2023002228A (en) * 2021-06-22 2023-01-10 昭和電工株式会社 Information processing device and magnetic sensor system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220955B2 (en) * 1996-05-31 2001-10-22 株式会社東京精密 Non-contact surface shape measuring method and device
JP4197339B2 (en) 2006-01-16 2008-12-17 アンリツ株式会社 3D shape measuring device
JP3870275B2 (en) 2006-07-24 2007-01-17 国立大学法人 和歌山大学 Phase analysis method of projection grating using aliasing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109873A1 (en) 2009-03-25 2010-09-30 株式会社Sumco Silicon wafer and method for manufacturing same
JP2012078269A (en) * 2010-10-05 2012-04-19 Naoyuki Furuyama Ranging method and laser ranging device
WO2015105169A1 (en) * 2014-01-10 2015-07-16 Ntn株式会社 Height detection device, coating device, and height detection method
JP2015148604A (en) * 2014-01-10 2015-08-20 Ntn株式会社 Height detection device, coating device, and height detection method
JP2016070918A (en) * 2014-10-01 2016-05-09 本田技研工業株式会社 Manufacturing method of molding, shape measurement method and shape measurement device

Also Published As

Publication number Publication date
KR20090030222A (en) 2009-03-24
KR101011925B1 (en) 2011-02-01
CN101393016A (en) 2009-03-25
JP4388113B2 (en) 2009-12-24
TW200914791A (en) 2009-04-01
TWI379067B (en) 2012-12-11

Similar Documents

Publication Publication Date Title
JP4388113B2 (en) 3D shape measuring device
JP5467321B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP4865930B2 (en) System and method for generating an optically sectioned image using both structured and uniform illumination
JPH0560528A (en) Input device for three-dimensional information
JP2006052954A (en) Multiplied spectral interference light coherence tomography
CN113091634B (en) Rapid microscopic morphology measuring method suitable for white light scanning interference
CN109520619B (en) Correlated imaging spectral camera based on non-Rayleigh speckle field and imaging method thereof
JP4090860B2 (en) 3D shape measuring device
JP2007033216A (en) White interference measuring instrument, and white interference measuring method
JP4197339B2 (en) 3D shape measuring device
JP4756024B2 (en) 3D shape measuring device
JP4852651B2 (en) Multiplexed spectral interferometric optical coherence tomography
US11713961B2 (en) Systems, methods, and media for multiple reference arm spectral domain optical coherence tomography
US20150308887A1 (en) Method of Vibration Measurement and Interferometer
JP4218809B2 (en) 3D shape measuring device
JP2006300792A (en) Interferometer and fourier spectral device
JP2006250853A (en) Object surface shape measuring method and its system
JP4180084B2 (en) Three-dimensional shape measuring apparatus and measuring method
JP5544679B2 (en) Step surface shape measuring method and measuring device
JP2010117372A (en) Multiplexed spectral interference light coherence tomography
JP5518187B2 (en) Deformation measurement method
JP5454769B2 (en) Spectroscopic solid shape measuring apparatus and spectral solid shape measuring method
JP2007071817A (en) Two-light flux interferometer and method for measuring shape of object to be measured using interferometer
JP2001343221A (en) Apparatus and method for measuring surface
JP2006208632A (en) Optical measuring instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees