JP2009074720A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009074720A
JP2009074720A JP2007242410A JP2007242410A JP2009074720A JP 2009074720 A JP2009074720 A JP 2009074720A JP 2007242410 A JP2007242410 A JP 2007242410A JP 2007242410 A JP2007242410 A JP 2007242410A JP 2009074720 A JP2009074720 A JP 2009074720A
Authority
JP
Japan
Prior art keywords
inner cylinder
low
temperature fluid
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007242410A
Other languages
Japanese (ja)
Inventor
Atsushi Inoue
淳 井上
Masahiro Ishii
雅博 石井
Masanobu Fujimura
昌伸 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2007242410A priority Critical patent/JP2009074720A/en
Publication of JP2009074720A publication Critical patent/JP2009074720A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that it is difficult to make compatible the improvement of heat exchanging performance and the reduction of weight in a conventional countercurrent heat exchanger. <P>SOLUTION: This heat exchanger 1 comprises an inner cylinder 2 having a flow channel 6 for a high-temperature fluid inside, and an outer cylinder 3 forming a flow channel 8 for a low-temperature fluid between an outer peripheral portion of the inner cylinder 2 and itself, and fins 7, 9 for a high temperature and a low temperature fluids are disposed on the flow channels 6, 8 for high-temperature fluid and low-temperature fluids, thus the improvement of heat exchanging performance and the reduction of the weight can be made compatible. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、対向流式の熱交換器の改良に関するものである。   The present invention relates to an improvement of a counter-flow heat exchanger.

対向流式の熱交換器としては、内側に高温流体の流路を有する内筒と、内筒の外周部との間に低温流体の流路を形成する外筒を備え、内筒の壁部を介して高温流体と低温流体の間で熱交換を行なうものがある(特許文献1)。   The counterflow type heat exchanger includes an inner cylinder having a flow path for high-temperature fluid inside and an outer cylinder that forms a flow path for low-temperature fluid between the outer periphery of the inner cylinder, and a wall portion of the inner cylinder There is an apparatus that performs heat exchange between a high-temperature fluid and a low-temperature fluid via a gas (Patent Document 1).

このような熱交換器は、例えば、液体ロケットの燃焼器に適用されており、内側流路に燃焼ガスを流通させると共に、外側流路に酸化剤又は燃料のいずれかを流通させて、燃焼器の冷却を行なうと共に、酸化剤又は燃料の気化促進を図るようにしている(非特許文献1)。
特開2000−74576号公報 『増補版・航空宇宙工学便覧』丸善株式会社、昭和58年4月25日、p.635−636
Such a heat exchanger is applied to, for example, a combustor of a liquid rocket, and circulates a combustion gas in an inner channel and circulates either an oxidant or fuel in an outer channel, In addition, the vaporization of the oxidant or fuel is promoted (Non-patent Document 1).
Japanese Unexamined Patent Publication No. 2000-74576 "Enhanced Edition, Aerospace Engineering Handbook" Maruzen Co., Ltd., April 25, 1983, p. 635-636

しかしながら、上記したような従来の熱交換器にあっては、所望の熱交換性能を得るには、内筒及び外筒の直径や長さといった諸寸法や、熱交換を行なう部分の有効長さを調整する以外になく、熱交換性能を高めようとすると装置全体が大型化する傾向にあることから、熱交換性能の向上と小型軽量化の両立が難しいという問題点があり、このような問題点を解決することが課題であった。   However, in the conventional heat exchanger as described above, in order to obtain a desired heat exchange performance, various dimensions such as the diameter and length of the inner cylinder and the outer cylinder, and the effective length of the portion that performs heat exchange. However, there is a problem that it is difficult to improve the heat exchange performance and reduce the size and weight. The problem was to solve the problem.

本発明は、上記従来の課題に着目して成されたもので、熱交換性能の向上と小型軽量化の両方を実現することができる熱交換器を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and an object thereof is to provide a heat exchanger capable of realizing both improvement in heat exchange performance and reduction in size and weight.

本発明の熱交換器は、請求項1として、内側に高温流体の流路を有する内筒と、内筒の外周部との間に低温流体の流路を形成する外筒を備えると共に、高温流体及び低温流体の各流路にフィンを設けた構成とし、請求項2として、高温流体の流路のフィンが 内筒の軸線方向に沿う板状を成すと共に、内筒の軸回りに所定間隔で設けてある構成とし、請求項3として、低温流体の流路のフィンが、内筒の外周部に設けてあると共に、そのフィンと外筒を接合した構成とし、請求項4として、低温流体の流路のフィンが、内筒の軸回りに螺旋状に形成してある構成としており、上記構成をもって従来の課題を解決するための手段としている。   A heat exchanger according to the present invention includes, as claim 1, an inner cylinder having a flow path for high-temperature fluid inside and an outer cylinder that forms a flow path for low-temperature fluid between the outer periphery of the inner cylinder, According to a second aspect of the present invention, a fin is provided in each flow path of the fluid and the low-temperature fluid, and the fin of the flow path of the high-temperature fluid forms a plate shape along the axial direction of the inner cylinder, and a predetermined interval around the axis of the inner cylinder According to a third aspect of the present invention, the fin of the flow path for the cryogenic fluid is provided at the outer peripheral portion of the inner cylinder, and the fin and the outer cylinder are joined together. The fin of the flow path is formed in a spiral shape around the axis of the inner cylinder, and the above configuration is a means for solving the conventional problems.

本発明の熱交換器によれば、高温流体及び低温流体の各流路におけるフィンの数や形状を選択することで、装置全体の大きさを変えずに熱交換性能を調整することができ、これに伴って装置全体の小型軽量化をも実現することができる。   According to the heat exchanger of the present invention, by selecting the number and shape of the fins in each flow path of the high temperature fluid and the low temperature fluid, the heat exchange performance can be adjusted without changing the size of the entire apparatus, Accordingly, it is possible to reduce the size and weight of the entire apparatus.

図1〜図4は、本発明の熱交換器の一実施例を説明する図である。   1-4 is a figure explaining one Example of the heat exchanger of this invention.

図1に示す熱交換器1は、液体ロケットの燃焼器やノズルの構成部品として用いられるものであって、両端が開放された内筒2と、同じく両端が開放された外筒3と、内筒2及び外筒3の一端側(図1中で左側)に固定した入口側マニホールド4と、内筒2及び外筒3の他端側に固定した出口側マニホールド5を備えている。   A heat exchanger 1 shown in FIG. 1 is used as a component of a liquid rocket combustor or nozzle, and includes an inner cylinder 2 having both ends opened, an outer cylinder 3 having both ends opened, An inlet side manifold 4 fixed to one end side (left side in FIG. 1) of the cylinder 2 and the outer cylinder 3 and an outlet side manifold 5 fixed to the other end side of the inner cylinder 2 and the outer cylinder 3 are provided.

内筒2は、その内側に高温流体の流路6を有すると共に、高温流体の流路6に複数の高温用フィン7が設けてある。高温用フィン7は、内筒2の軸線方向に沿う帯状を成すと共に、内筒2の中心に向けて突出し、図4に示す如く内筒2の軸回りに所定間隔で設けてある。高温用フィン7は、切削加工あるいは予め成形したフィン素材を溶接等により内筒2に固着するなどの手段で形成してある。この実施例の内筒2は、銅又は銅合金製である。なお、図4は、図1に対して高温用フィン7の数を省略している。   The inner cylinder 2 has a high-temperature fluid flow path 6 inside thereof, and a plurality of high-temperature fins 7 are provided in the high-temperature fluid flow path 6. The high-temperature fins 7 form a belt shape along the axial direction of the inner cylinder 2, protrude toward the center of the inner cylinder 2, and are provided at predetermined intervals around the axis of the inner cylinder 2 as shown in FIG. 4. The high-temperature fin 7 is formed by means such as cutting or pre-molded fin material fixed to the inner cylinder 2 by welding or the like. The inner cylinder 2 of this embodiment is made of copper or a copper alloy. In FIG. 4, the number of high-temperature fins 7 is omitted from FIG.

また、内筒2の外周部と外筒3の間には、低温流体の流路8が形成してあり、この低温流体の流路8に、複数の低温用フィン9が設けてある。低温用フィン9は、図2に示すように、切削加工等によって内筒2の外周部に形成してあり、この実施例では、内筒2の軸回りで且つ複数条の螺旋状に形成してある。   A low-temperature fluid flow path 8 is formed between the outer peripheral portion of the inner cylinder 2 and the outer cylinder 3, and a plurality of low-temperature fins 9 are provided in the low-temperature fluid flow path 8. As shown in FIG. 2, the low-temperature fin 9 is formed on the outer peripheral portion of the inner cylinder 2 by cutting or the like. In this embodiment, the low-temperature fin 9 is formed in a spiral shape around the axis of the inner cylinder 2. It is.

この実施例の外筒3は、ニッケル製であって、電鋳により形成してある。すなわち、内筒2の外周部が滑らかな円周面となるように低温用フィン9の間を低融点材料から成る中子で埋めた状態にしてから、内筒2の外周面に電鋳によって外筒3となるニッケル層を形成し、その後、中子を熔融除去することで、低温用フィン9に外筒3を接合した状態にしている。したがって、低温流体の流路8は、図1中に拡大図を示すように、実質的に低温用フィン9の間の溝部分となる。   The outer cylinder 3 of this embodiment is made of nickel and is formed by electroforming. That is, the space between the low-temperature fins 9 is filled with a core made of a low-melting-point material so that the outer peripheral portion of the inner cylinder 2 has a smooth circumferential surface, and then the outer peripheral surface of the inner cylinder 2 is electroformed by electroforming. A nickel layer to be the outer cylinder 3 is formed, and then the core is melted and removed, so that the outer cylinder 3 is joined to the low-temperature fin 9. Therefore, the flow path 8 of the low-temperature fluid substantially becomes a groove portion between the low-temperature fins 9 as shown in an enlarged view in FIG.

また、外筒3は、図3に示すように、両端部近傍に、外側から低温流体の流路8に通じる入口側及び出口側の流通孔10が形成してある。この実施例の流通孔10は、外筒3の両端部近傍の夫々において、円周方向に所定間隔で多数形成してある。   Further, as shown in FIG. 3, the outer cylinder 3 is formed with inlet-side and outlet-side flow holes 10 communicating from the outside to the low-temperature fluid flow path 8 in the vicinity of both ends. A number of flow holes 10 of this embodiment are formed at predetermined intervals in the circumferential direction in the vicinity of both end portions of the outer cylinder 3.

入口側及び出口側のマニホールド4,5は、いずれもステンレス製であって、環状を成すと共に、内筒2及び外筒3の端部にろう付け又は溶接にて固定してあり、この状態で、外筒3の流通孔10を含む外周部との間に、入口側及び出口側の環状流通路11,12を形成している。   The inlet-side and outlet-side manifolds 4 and 5 are both made of stainless steel and have an annular shape, and are fixed to the ends of the inner cylinder 2 and the outer cylinder 3 by brazing or welding. The annular flow passages 11 and 12 on the inlet side and the outlet side are formed between the outer cylinder 3 and the outer peripheral portion including the flow hole 10.

また、入口側及び出口側のマニホールド4,5は、当該熱交換器1に他の配管類を連結するためのフランジ部4a,5aを備えると共に、入口側マニホールド4には低温流体の供給管の接続部4bが、出口側マニホールド5には低温流体の排出管の接続部5bが設けてある。   The inlet-side and outlet-side manifolds 4, 5 include flange portions 4 a, 5 a for connecting other pipes to the heat exchanger 1, and the inlet-side manifold 4 is provided with a low-temperature fluid supply pipe. The connecting portion 4b is provided on the outlet side manifold 5, and a connecting portion 5b for a low temperature fluid discharge pipe is provided.

上記構成を備えた熱交換器1は、先述の如く液体ロケットの燃焼器やノズルの構成部品として用いられるものであるから、内筒2の内側である高温流体の流路6に、図1中で右側から左側へ燃焼ガスを流通させると共に、内筒2と外筒3の間に形成した低温流体の流路8に、燃料として用いるガス(液化天然ガス)や酸化剤(液体酸素)といった低温流体を流通させる。   Since the heat exchanger 1 having the above-described configuration is used as a component of a liquid rocket combustor or a nozzle as described above, the heat exchanger 1 in the high-temperature fluid flow path 6 inside the inner cylinder 2 is formed in FIG. In addition, the combustion gas is circulated from the right side to the left side, and a low temperature fluid such as a gas (liquefied natural gas) or an oxidant (liquid oxygen) used as fuel in the low-temperature fluid flow path 8 formed between the inner cylinder 2 and the outer cylinder 3. Circulate fluid.

このとき、低温流体は、入口側マニホールド4から入口側の流通孔10を経て流路8に供給され、流路8において燃焼ガスと逆向き(図1中で左側から右側)に流れ、出口側の流通孔10から出口側マニホールド5を経て排出される。   At this time, the low-temperature fluid is supplied from the inlet-side manifold 4 through the inlet-side flow hole 10 to the flow path 8 and flows in the flow path 8 in the opposite direction to the combustion gas (from left to right in FIG. 1). From the flow hole 10 through the outlet side manifold 5.

このようにして、熱交換器1は、高温流体と低温流体との間で熱交換を行なって当該熱交換器1を冷却し、且つ低温流体の気化促進を図るものとなっている。この際、熱交換器1は、高温流体及び低温流体の夫々の流路6,8に高温用及び低温用のフィン7,9を設けたことから、各流体に対する流路6,8の接触面積が大きくなって熱交換効率が高められ、しかも、高温用及び低温用のフィン7,9をいずれも共通の内筒2に形成しているので、各流体と内筒2との接触面積が大きく確保されて熱交換効率が非常に高いものとなる。   In this way, the heat exchanger 1 performs heat exchange between the high temperature fluid and the low temperature fluid to cool the heat exchanger 1 and promote vaporization of the low temperature fluid. At this time, since the heat exchanger 1 is provided with the high-temperature and low-temperature fins 7 and 9 in the high-temperature fluid and low-temperature fluid channels 6 and 8, the contact area of the flow channels 6 and 8 with respect to each fluid. The heat exchange efficiency is increased and the fins 7 and 9 for high temperature and low temperature are both formed in the common inner cylinder 2, so that the contact area between each fluid and the inner cylinder 2 is large. As a result, the heat exchange efficiency is very high.

また、熱交換器1は、高温流体の流路6における高温用フィン7が、内筒2の軸回りに所定間隔で設けてあると共に、低温流体の流路8の低温用フィン9が、内筒2の軸回りに螺旋状に設けてあるので、内筒2の円周方向における各流体との接触面積が均一となり、熱交換効率のさらなる向上を実現し得る。   Further, the heat exchanger 1 includes high-temperature fins 7 in the high-temperature fluid flow path 6 provided at predetermined intervals around the axis of the inner cylinder 2, and the low-temperature fluid flow paths 8 in the low-temperature fluid flow path 8 Since it is provided in a spiral shape around the axis of the cylinder 2, the contact area with each fluid in the circumferential direction of the inner cylinder 2 becomes uniform, and further improvement in heat exchange efficiency can be realized.

さらに、熱交換器1は、内筒2の外周部の低温用フィン9と外筒3を接合して内筒2と外筒3を一体化してあるので、熱交換効率が良好であるうえに、製品寿命や信頼性の向上を実現することができる。なお、上記実施例では、内筒2の外周部に電鋳により外筒3を形成した場合を説明したが、拡散接合やろう付けで内筒2と外筒3を互いに接合しても良い。   Furthermore, since the heat exchanger 1 has the inner cylinder 2 and the outer cylinder 3 integrated by joining the low temperature fin 9 and the outer cylinder 3 on the outer peripheral portion of the inner cylinder 2, the heat exchange efficiency is good. Improve product life and reliability. In addition, although the said Example demonstrated the case where the outer cylinder 3 was formed in the outer peripheral part of the inner cylinder 2 by electroforming, you may join the inner cylinder 2 and the outer cylinder 3 mutually by diffusion bonding or brazing.

そして、当該熱交換器1は、上記の如く熱交換性能に優れるうえに、各流路6,8における高温用及び低温用のフィン7,9の数や形状を選択すれば、装置全体の大きさを変えなくても熱交換性能を調整することができ、これに伴って装置全体の小型軽量化をも実現することができる。   The heat exchanger 1 is excellent in heat exchange performance as described above, and if the number and shape of the high-temperature and low-temperature fins 7 and 9 in each of the flow paths 6 and 8 are selected, the size of the entire apparatus can be increased. The heat exchange performance can be adjusted without changing the thickness, and accordingly, the entire apparatus can be reduced in size and weight.

なお、本発明の熱交換器は、その構成の細部、材料及び用途などが上記実施例のみに限定されるものではなく、例えば、図5に示すように、内筒2の内側の高温流体の流路6において、断面十字形の高温用フィン17を設けても良いし、図6に示すように、断面十字形の高温用フィン17と先の実施例で示した帯状の高温用フィン7とを組合わせても良く、また、低温流体の流路における低温用フィンにあっても、螺旋状以外の適宜形状にすることができる。   In addition, the heat exchanger of the present invention is not limited to the above-described embodiment in details of the configuration, material, use, and the like. For example, as shown in FIG. The flow path 6 may be provided with a high-temperature fin 17 having a cross-shaped cross section, and as shown in FIG. 6, the high-temperature fin 17 having a cross-shaped cross section and the belt-shaped high-temperature fin 7 shown in the previous embodiment. In addition, even in the low-temperature fin in the flow path of the low-temperature fluid, an appropriate shape other than a spiral shape can be used.

本発明の熱交換器の一実施例を説明する断面図である。It is sectional drawing explaining one Example of the heat exchanger of this invention. 図1に示す内筒を説明する側面図である。It is a side view explaining the inner cylinder shown in FIG. 図1に示す外筒を説明する側面図である。It is a side view explaining the outer cylinder shown in FIG. 図1に示す内筒の断面図である。It is sectional drawing of the inner cylinder shown in FIG. 内筒の他の形状例を説明する断面図である。It is sectional drawing explaining the other example of a shape of an inner cylinder. 内筒のさらに他の形状例を説明する断面図である。It is sectional drawing explaining the example of another shape of an inner cylinder.

符号の説明Explanation of symbols

1 熱交換器
2 内筒
3 外筒
6 高温流体の流路
7 高温用フィン
8 低温流体の流路
9 低温用フィン
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Inner cylinder 3 Outer cylinder 6 High temperature fluid flow path 7 High temperature fin 8 Low temperature fluid flow path 9 Low temperature fin

Claims (4)

内側に高温流体の流路を有する内筒と、内筒の外周部との間に低温流体の流路を形成する外筒を備えると共に、高温流体及び低温流体の各流路にフィンを設けたことを特徴とする熱交換器。 An inner cylinder having a flow path for high-temperature fluid on the inner side and an outer cylinder for forming a flow path for low-temperature fluid between the outer periphery of the inner cylinder and fins are provided in each flow path for high-temperature fluid and low-temperature fluid A heat exchanger characterized by that. 高温流体の流路のフィンが 内筒の軸線方向に沿う板状を成すと共に、内筒の軸回りに所定間隔で設けてあることを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein fins of the flow path of the high-temperature fluid form a plate shape along the axial direction of the inner cylinder, and are provided at predetermined intervals around the axis of the inner cylinder. 低温流体の流路のフィンが、内筒の外周部に設けてあると共に、そのフィンと外筒を接合したことを特徴とする請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein fins of the flow path of the low-temperature fluid are provided on the outer peripheral portion of the inner cylinder, and the fins and the outer cylinder are joined. 低温流体の流路のフィンが、内筒の軸回りに螺旋状に形成してあることを特徴とする請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein fins of the flow path of the low-temperature fluid are formed in a spiral shape around the axis of the inner cylinder.
JP2007242410A 2007-09-19 2007-09-19 Heat exchanger Pending JP2009074720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242410A JP2009074720A (en) 2007-09-19 2007-09-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242410A JP2009074720A (en) 2007-09-19 2007-09-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009074720A true JP2009074720A (en) 2009-04-09

Family

ID=40609870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242410A Pending JP2009074720A (en) 2007-09-19 2007-09-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009074720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407072B (en) * 2010-11-12 2013-09-01 Asia Vital Components Co Ltd A heat exchanger with shunt structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407072B (en) * 2010-11-12 2013-09-01 Asia Vital Components Co Ltd A heat exchanger with shunt structure

Similar Documents

Publication Publication Date Title
US10989480B2 (en) Counter-flow heat exchanger with helical passages
JP6462026B2 (en) Heat exchanger with branching unit cell
EP3073219B1 (en) Tube in cross-flow conduit heat exchanger
JP2015155792A (en) Heat exchanger and method for manufacturing and using the same
US11892245B2 (en) Heat exchanger including furcating unit cells
US20180010553A1 (en) Rocket engine
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
TW202135096A (en) Block style heat exchanger for heat pipe reactor
JP2006046846A (en) Double pipe heat exchanger
JP2009074720A (en) Heat exchanger
JP2007163092A (en) Double-pipe heat exchanger
JP2005090926A (en) Double pipe type heat exchanger
JP2007183062A (en) Heat exchanger
JP2003156291A (en) Heat exchanger
JP2005024109A (en) Heat exchanger
JP2007240081A (en) Stacked heat exchanger
JP2010112650A (en) Heat exchanger and hot water supply device using the same
JP2003172588A (en) Heat exchanger
JP2022110523A (en) Passage member for heat exchanger, and heat exchanger
JP2003336990A (en) Heat exchanger
JP2003202194A (en) Heat exchanger
JP3985216B2 (en) Connection structure of multiple cylindrical heat exchangers
JP2014109391A (en) Heat exchanger
JP2002213885A (en) Heat exchanger
JP2018204904A (en) Heat exchanger