JP2009074660A - Dynamic pressure gas bearing - Google Patents

Dynamic pressure gas bearing Download PDF

Info

Publication number
JP2009074660A
JP2009074660A JP2007246231A JP2007246231A JP2009074660A JP 2009074660 A JP2009074660 A JP 2009074660A JP 2007246231 A JP2007246231 A JP 2007246231A JP 2007246231 A JP2007246231 A JP 2007246231A JP 2009074660 A JP2009074660 A JP 2009074660A
Authority
JP
Japan
Prior art keywords
protrusion
gas film
foil
underfoil
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007246231A
Other languages
Japanese (ja)
Inventor
Masanao Ando
昌尚 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007246231A priority Critical patent/JP2009074660A/en
Publication of JP2009074660A publication Critical patent/JP2009074660A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to prevent, without increasing the number of parts, a gas film pressure from lowering due to wedge-shaped space width expansion resulting from upper foil deformation. <P>SOLUTION: There is provided the dynamical pressure gas bearing equipped with a foil portion that is provided between a stationary member to be mounted with a shaft and a pressure receiving rotating potion provided in the shaft and includes a basal portion whose whole portion can be spliced to the stationary portion and an elastic supporting portion having a plurality of projections which can be thrust elastically into the basal portion, an under foil arranged on a side of the stationary portion, and the upper foil that is spliced to the under foil and builds up a wedge-shaped space between itself and the pressure receiving rotating potion in order to form a gas film when the shaft rotates. In the dynamical pressure gas bearing, a form is held whose width gets smaller as proceeding to a downstream side of the gas film. Within an elastic supporting portion 51 of the under foil 5, an elastic coefficient of the projection 53 is made larger as proceeding to the downstream side of the gas film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、航空機のエアサイクルマシン、ヘリウム液化装置の膨張タービン、自動車のターボチャージャ等の高速回転機械に使用される軸受に関し、特に、軸を取り付ける対象である固定部材と軸に設けた回転受圧部との間に形成された気体膜により荷重を支持する動圧気体軸受に関する。   The present invention relates to bearings used in high-speed rotating machines such as aircraft air cycle machines, helium liquefaction equipment expansion turbines, automobile turbochargers, and the like, and in particular, a fixed member to which a shaft is attached and a rotational pressure provided on the shaft. The present invention relates to a dynamic pressure gas bearing that supports a load by a gas film formed between the first and second portions.

高速回転機械用に使用される軸受として、たとえば米国特許第3635534号明細書に示されているように、軸を取り付ける対象である固定部材と軸に設けた回転受圧部との間に形成した楔状の空間により両部材間に薄い気体膜を生じさせ、この気体膜の潤滑作用により荷重を支持する動圧気体軸受が知られている。このような動圧気体軸受はスラスト軸受に適用されている。   As a bearing used for a high-speed rotating machine, for example, as shown in US Pat. No. 3,635,534, a wedge shape formed between a fixed member to which a shaft is attached and a rotary pressure receiving portion provided on the shaft. There is known a dynamic pressure gas bearing in which a thin gas film is formed between both members due to the space and the load is supported by the lubricating action of the gas film. Such a dynamic pressure gas bearing is applied to a thrust bearing.

このような従来の動圧気体軸受の一例として、固定部材に係止された可撓性を有する環状のフォイルを設け、このフォイルの一部にうねり部を形成してこのうねり部と前記回転受圧部との間における初期楔状空間から回転受圧部とフォイルの間隙に導入された気体の圧力により、フォイルが撓んで隣接する支持突起間に複数の楔状空間を繰り返し形成するようにする構成が考えられている(特許文献1参照)。
特開2007−92994号公報
As an example of such a conventional dynamic pressure gas bearing, a flexible annular foil locked to a fixed member is provided, and a swell portion is formed in a part of the foil so that the swell portion and the rotational pressure receiving member are formed. It is conceivable that the foil is bent by the pressure of the gas introduced into the gap between the rotary pressure receiving portion and the foil from the initial wedge-shaped space between the portions, and a plurality of wedge-shaped spaces are repeatedly formed between adjacent support protrusions. (See Patent Document 1).
JP 2007-92994 A

ところで、前記特許文献1記載の構成では、固定部材に係止された環状のアンダーフォイルと、一部にうねり部を形成してなる環状のアッパーフォイルとを設け、このアッパーフォイルのうねり部と前記回転受圧部との間における初期楔状空間を形成しているとともに、前記アンダーフォイルとアッパーフォイルとの間の空間にアッパーフォイルを支持させるべく支持台を設ける構成が採用されている。   By the way, in the structure of the said patent document 1, the cyclic | annular underfoil latched by the fixing member and the cyclic | annular upper foil which forms a wavy part in part are provided, The waviness part of this upper foil, and the said A configuration is adopted in which an initial wedge-shaped space is formed between the rotating pressure-receiving portion and a support base is provided in the space between the underfoil and the upper foil to support the upper foil.

しかして、前記アッパーフォイルは薄い板状の部材であり、アンダーフォイル及び支持台の弾性係数及び高さが一定である場合は、気体膜圧力が高い箇所においてはアッパーフォイルが大きく撓み、これに伴い回転受圧部との間の空間が大きくなる。その際、この空間における気体膜圧力が該空間の拡開に伴い低下してしまう不具合が発生する。ところが、前記特許文献1の構成に代表される従来の構成では、アンダーフォイル及び支持台の弾性係数を箇所ごとに設定することが困難であった。   Thus, the upper foil is a thin plate-like member, and when the elastic coefficient and height of the underfoil and the support base are constant, the upper foil is greatly bent at a location where the gas film pressure is high, The space between the rotary pressure receiving part is increased. In that case, the malfunction that the gas film pressure in this space falls with expansion of this space generate | occur | produces. However, in the conventional configuration represented by the configuration of Patent Document 1, it is difficult to set the elastic coefficients of the underfoil and the support base for each part.

本発明は、以上に述べた課題を解決すべく構成するものである。   The present invention is configured to solve the problems described above.

すなわち、本発明に係る動圧気体軸受は、軸を取り付ける対象である固定部材と軸に設けた回転受圧部との間に設けられるフォイル部を具備してなり、前記フォイル部が、前記固定部材に略全体が添接可能な基部及びこの基部に対して弾性突没可能な複数の突起を有する弾性支持部を有し前記固定部材側に配してなる円環形の板状をなすアンダーフォイルと、このアンダーフォイルに添接させてなり軸の回転の際に気体膜を形成すべく前記回転受圧部との間にクサビ状空間を含む気体膜を形成するアッパーフォイルとを具備するものであって、前記アンダーフォイルの弾性支持部が径方向に延伸する縦要素及び周方向に延伸する横要素とを有するメッシュ状であり、前記縦要素及び横要素の交点の一部又は全部に前記突起を設けていることを特徴とする。   That is, the dynamic pressure gas bearing according to the present invention includes a foil portion provided between a fixing member to which a shaft is attached and a rotation pressure receiving portion provided on the shaft, and the foil portion is the fixing member. An underfoil having an annular plate-like shape having an elastic support portion having a base portion that can be attached substantially entirely to the base portion and a plurality of protrusions that can be elastically projected and retracted with respect to the base portion. And an upper foil that forms a gas film including a wedge-shaped space between the rotating pressure receiving portion and the rotary pressure receiving portion so as to form a gas film when rotating the shaft. The under-foil elastic support portion has a mesh shape having a longitudinal element extending in the radial direction and a transverse element extending in the circumferential direction, and the protrusion is provided at a part or all of the intersection of the longitudinal element and the transverse element. That And butterflies.

このようなものであれば、各交点に設けた突起の弾性係数を独立して設定することができ、例えば、気体膜の下流側に向かうにつれ突起の弾性係数を大きく設定することにより、気体膜の下流側に向かうにつれてアッパーフォイルが受ける弾性力が大きくなる。すなわち、気体膜の下流側においてアッパーフォイルは固定部材と大きく離間し、クサビ状空間の幅を小さく保つことができる。さらに、アンダーフォイルの各突起が受ける圧力は、各突起が独立して受けるので、各突起の形状は隣接する突起の形状に影響を受けない。従って、部品点数の増大を招くことなく、アッパーフォイルが変形しクサビ状空間の幅が拡開することに伴う気体膜圧力の低下を防ぐことができる。   If this is the case, the elastic coefficient of the protrusion provided at each intersection can be set independently. For example, by increasing the elastic coefficient of the protrusion toward the downstream side of the gas film, the gas film The elastic force received by the upper foil increases toward the downstream side. That is, the upper foil is greatly separated from the fixing member on the downstream side of the gas film, and the width of the wedge-shaped space can be kept small. Furthermore, since the pressure received by each protrusion of the underfoil is independently received by each protrusion, the shape of each protrusion is not affected by the shape of the adjacent protrusion. Therefore, without causing an increase in the number of parts, it is possible to prevent the gas film pressure from decreasing due to the deformation of the upper foil and the expansion of the width of the wedge-shaped space.

また、負荷容量が高い気体膜を構成できるようにするための構成として、前記弾性支持部内で前記アッパーフォイルと前記回転受圧部間に発生する圧力分布に応じて気体膜厚さの分布を設定できるよう前記弾性支持部内の弾性係数を分布させているものや、前記弾性支持部内で気体膜の下流側に向かうにつれ該部位の突起の弾性係数を大きくしているものが挙げられる。このような構成であれば、前記圧力が高くなる部位の前記弾性係数を大きくし、前記アッパーフォイルと前記回転受圧部間に形成したクサビ状空間の形状を維持できるからである。特に、後者のようなものであれば、前記アッパーフォイルと前記回転受圧部間に形成したクサビ状空間の下流において前記弾性係数を大きくしていることにより、このクサビ状空間の下流において気体膜厚さが小さくなる形状を維持できる。   Further, as a configuration for enabling a gas film having a high load capacity to be configured, a distribution of a gas film thickness can be set according to a pressure distribution generated between the upper foil and the rotary pressure receiving portion in the elastic support portion. Examples are those in which the elastic coefficient in the elastic support part is distributed, and those in which the elastic coefficient of the protrusions of the part increases as it goes downstream of the gas film in the elastic support part. This is because, with such a configuration, the elastic coefficient of the portion where the pressure increases can be increased, and the shape of the wedge-shaped space formed between the upper foil and the rotary pressure receiving portion can be maintained. In particular, in the case of the latter, by increasing the elastic coefficient downstream of the wedge-shaped space formed between the upper foil and the rotary pressure receiving portion, the gas film thickness is reduced downstream of the wedge-shaped space. The shape which becomes small can be maintained.

また、アッパーフォイルがアンダーフォイルと添接する点の高さを適切に設定できるようにするための構成として、前記アッパーフォイルと前記回転受圧部間に発生する圧力分布に応じて突起の突出幅を変化させているものや、前記弾性支持部内で気体膜の下流側に向かうにつれ該部位の突起の突出幅を大きくしているものが挙げられる。このような構成であれば、前記圧力が高くなる部位の前記突起の突出幅を大きくし、前記圧力が高くなる部位において突起が大きく沈み込むようにすることにより、該部位において大きな弾性付勢力を発生させ、前記アッパーフォイルと前記回転受圧部間に形成したクサビ状空間の形状を維持できるからである。特に、後者の構成であれば、気体膜の下流側に向かうにつれ突起の突出幅を大きく設定することにより、気体膜の下流側に向かうにつれて突起が大きく沈み込むようにし、このことにより気体膜の下流側においてアッパーフォイルはアンダーフォイルからより大きな弾性付勢力を受けるようにできる。従って、全体としては気体膜の下流側に向かうにつれてクサビ状空間の幅が小さくなる形状を保つことができる。   In addition, as a configuration for enabling the height of the point where the upper foil comes into contact with the under foil to be appropriately set, the protrusion width of the protrusion is changed according to the pressure distribution generated between the upper foil and the rotary pressure receiving portion. And the one in which the protrusion width of the protrusion of the portion increases in the elastic support portion toward the downstream side of the gas film. With such a configuration, by increasing the protrusion width of the protrusion at the portion where the pressure increases, and by causing the protrusion to sink greatly at the portion where the pressure increases, a large elastic biasing force is generated at the portion. This is because the wedge-shaped space formed between the upper foil and the rotary pressure receiving portion can be maintained. In particular, in the latter configuration, the protrusion width of the protrusion is set larger toward the downstream side of the gas film so that the protrusion sinks greatly toward the downstream side of the gas film. On the downstream side, the upper foil can receive a larger elastic biasing force from the underfoil. Therefore, as a whole, the shape in which the width of the wedge-shaped space becomes smaller toward the downstream side of the gas film can be maintained.

加えて、高い気体膜圧力を受ける部位においてアッパーフォイルが受ける弾性付勢力をより大きくし、アッパーフォイルをさらに効果的に保形するための態様として、前記アッパーフォイルと前記回転受圧部間に発生する圧力分布に応じて、該部位の突起の単位面積当たりの個数を変化させているものが挙げられる。   In addition, as a mode for further increasing the elastic urging force received by the upper foil at a portion that receives a high gas film pressure and retaining the upper foil more effectively, it is generated between the upper foil and the rotary pressure receiving portion. The thing which changes the number per unit area of the protrusion of this part according to pressure distribution is mentioned.

また、高い気体膜圧力を受ける部位においてアッパーフォイルが受ける弾性付勢力をより大きくし、アッパーフォイルをさらに効果的に保形するための他の態様として、例えば、気体膜の下流側に向かうにつれ該部位の突起の単位面積当たりの個数を多くしているものが挙げられる。   Further, as another aspect for further increasing the elastic biasing force received by the upper foil at a portion that receives a high gas film pressure and more effectively retaining the upper foil, for example, as it goes to the downstream side of the gas film, The thing which increases the number per unit area of the processus | protrusion of a site | part is mentioned.

そして、寸法のわずかな製造誤差や温度変化に伴う形状変化、また回転受圧部の触れ回りに対応させるための態様として、前記アンダーフォイルに前記固定部材側に向け突出する逆突起を設け、この逆突起が弾性変形により突没可能なものであって、前記逆突起の弾性係数を前記弾性支持部内の突起の弾性係数よりも小さくしているものが挙げられる。このような構成のものであれば、さらに、前記格子を設けていない部位を利用して、任意の位置に逆突起を設けることができるため、アンダーフォイルの全面にわたり突起と異なる弾性係数を設定できるからである。そして、前記突起とこの逆突起を同時期形成できるため、製造コストの削減を図ることもできる。   Then, as a mode for dealing with slight manufacturing errors in dimensions, changes in shape due to temperature changes, and contact with the rotating pressure receiving part, a reverse protrusion that protrudes toward the fixing member is provided on the underfoil. The protrusion can be projected and retracted by elastic deformation, and the elastic coefficient of the reverse protrusion is made smaller than the elastic coefficient of the protrusion in the elastic support portion. With such a configuration, a reverse protrusion can be provided at an arbitrary position using a portion where the lattice is not provided, so that an elastic coefficient different from the protrusion can be set over the entire surface of the underfoil. Because. And since the said protrusion and this reverse protrusion can be formed simultaneously, the manufacturing cost can also be reduced.

本発明に係る動圧気体軸受の構成によれば、アンダーフォイルの各突起が受ける圧力は、各突起が独立して受けるので、各突起の形状は隣接する突起の形状に影響を受けない。従って、部品点数の増大を招くことなく、アッパーフォイルが変形しクサビ状空間の幅が拡開することに伴う気体膜圧力の低下を防ぐことができる。   According to the configuration of the dynamic pressure gas bearing according to the present invention, the pressure received by each protrusion of the underfoil is independently received by each protrusion, so that the shape of each protrusion is not affected by the shape of the adjacent protrusion. Therefore, without causing an increase in the number of parts, it is possible to prevent the gas film pressure from decreasing due to the deformation of the upper foil and the expansion of the width of the wedge-shaped space.

さらに、各交点に設けた突起の弾性係数を独立して設定しつつ、気体膜の圧力分布に応じて突起の弾性係数を変化させているものであれば、例えば、気体膜の下流側に向かうにつれて突起の弾性係数を大きくすることにより、気体膜の下流側に向かうにつれてアッパーフォイルが受ける弾性力が大きくなる。すなわち、気体膜の下流側においてアッパーフォイルは固定部材と大きく離間し、クサビ状空間の幅を小さく保つことができる。   Furthermore, if the elastic coefficient of the protrusion provided at each intersection is set independently, and the elastic coefficient of the protrusion is changed according to the pressure distribution of the gas film, for example, it goes to the downstream side of the gas film. As the elastic modulus of the protrusion increases, the elastic force received by the upper foil increases toward the downstream side of the gas film. That is, the upper foil is greatly separated from the fixing member on the downstream side of the gas film, and the width of the wedge-shaped space can be kept small.

一方、アッパーフォイルと前記回転受圧部間に発生する圧力分布に応じて突起の突出幅を変化させているものであれば、例えば、気体膜の下流側に向かうにつれ突起の突出幅を大きく設定することにより、気体膜の下流側に向かうにつれて突起が大きく沈み込むようにし、このことにより気体膜の下流側においてアッパーフォイルはアンダーフォイルからより大きな弾性付勢力を受けるようにできる。従って、全体としては気体膜の下流側に向かうにつれてクサビ状空間の幅が小さくなる形状を保つことができる。   On the other hand, if the protrusion width of the protrusion is changed according to the pressure distribution generated between the upper foil and the rotary pressure receiving portion, for example, the protrusion width of the protrusion is set to be larger toward the downstream side of the gas film. As a result, the protrusions sink greatly toward the downstream side of the gas film, so that the upper foil can receive a larger elastic biasing force from the under foil on the downstream side of the gas film. Therefore, as a whole, the shape in which the width of the wedge-shaped space becomes smaller toward the downstream side of the gas film can be maintained.

以下、本発明の一実施形態を、図1〜図5を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態に係る軸受は、図1に概略正面図を示すように、軸2を取り付ける対象である固定部材1と軸2に設けた回転受圧部3との間に設けられたフォイル部4と、このフォイル部4と前記回転受圧部3との間にクサビ状空間を含む気体膜Sとを具備してなる。   As shown in a schematic front view in FIG. 1, the bearing according to the present embodiment includes a foil portion 4 provided between a fixing member 1 to which a shaft 2 is attached and a rotation pressure receiving portion 3 provided on the shaft 2. A gas film S including a wedge-shaped space is provided between the foil part 4 and the rotary pressure receiving part 3.

前記フォイル部4は、前記図1に示すように、前記固定部材1に略全体が添接可能な基部52、及びこの基部52に対して弾性突没可能な複数の突起53を有する弾性支持部51を有し前記固定部材1側に配してなるアンダーフォイル5と、このアンダーフォイル5に添接させてなり前記回転受圧部3との間に前記クサビ状空間を含む気体膜Sを形成するアッパーフォイル6とを具備する。ここで、図2にアンダーフォイル5の平面図、図3にアンダーフォイル5の要部の斜視図をそれぞれ示している。また、前記図1ではアンダーフォイル5及びアッパーフォイル6は形状の理解を容易にするため、一定の厚さで示されているが、実際には、例えば0.1〜0.2mmの平板状であり、かつ軸1を巻回する環状に形成されている。なお、本発明が提供するアンダーフォイル5及びアッパーフォイル6は、その周囲に3個形成された凹部に対して、固定部1に植設されたピン(図示略)がそれぞれ係合し、位置決めが保障されている。   As shown in FIG. 1, the foil part 4 includes an elastic support part having a base part 52 that can be almost entirely attached to the fixing member 1 and a plurality of protrusions 53 that can be elastically projected and retracted with respect to the base part 52. The gas film S including the wedge-shaped space is formed between the underfoil 5 having 51 and disposed on the fixing member 1 side and the rotary pressure receiving portion 3 in contact with the underfoil 5. And an upper foil 6. Here, FIG. 2 shows a plan view of the underfoil 5, and FIG. 3 shows a perspective view of a main part of the underfoil 5. Further, in FIG. 1, the under foil 5 and the upper foil 6 are shown to have a constant thickness in order to facilitate understanding of the shape. And is formed in an annular shape around which the shaft 1 is wound. In addition, the underfoil 5 and the upper foil 6 provided by the present invention are engaged with pins (not shown) implanted in the fixed part 1 with three recesses formed around the underfoil 5 and the upper foil 6, respectively. Guaranteed.

前記アッパーフォイル6には少なくとも1個以上、具体的には120度間隔に3箇所のうねり部(図示略)を形成しているとともに、このうねり部と前記固定部材1との間に前記アンダーフォイル5の弾性支持部51が位置するようにしている。より具体的には、前記アンダーフォイル5の突起53の先端がそれぞれ前記アッパーフォイル6に当接するようにしている。   The upper foil 6 has at least one, more specifically, three waviness portions (not shown) at intervals of 120 degrees, and the underfoil is between the waviness portion and the fixing member 1. 5 elastic support portions 51 are positioned. More specifically, the tips of the protrusions 53 of the underfoil 5 are in contact with the upper foil 6 respectively.

一方、アンダーフォイル5には、前記図2及び図3に示すように、また、図2における要部の拡大図を図4に示すように、径方向に延伸する縦要素511及び周方向に延伸する横要素512を有するメッシュ形状に前記弾性支持部51を形成している。その上で、これら縦要素511と横要素512との交点を上方に突出させて突起53を設けている。また、このアンダーフォイル5の最外周部は基部52と同一高さをなす外周輪部56としているとともに、中央部には軸2を挿通可能な軸挿通孔を設け、その開口縁近傍を基部52と同一高さをなす内周輪部57としている。ここで、この突起53の突出高さは、例えば、前記クサビ状空間を含む気体膜Sの幅が大きな部分すなわち入口に対応する部分では小さくしている。一方、前記クサビ状空間を含む気体膜Sの幅が小さな部分では突起53の突出高さを大きくしている。また、この突起53は弾性により突没可能であるが、弾性係数を、例えば、前記クサビ状空間を含む気体膜Sの幅が大きな部分すなわち気体膜の上流側では小さく、前記クサビ状空間の幅が小さな部分すなわち気体膜の下流側(図4の矢印Rが向かう側)では前記弾性係数を大きくしている。なお、突起の弾性係数は気体膜の下流側に向かうにつれ大きくしつつ突出高さを全ての突起53で等しくする構成を採用してももちろんよい。   On the other hand, the underfoil 5 has a longitudinal element 511 extending in the radial direction and a circumferential extension as shown in FIG. 2 and FIG. 3 and an enlarged view of the main part in FIG. The elastic support portion 51 is formed in a mesh shape having a transverse element 512 to be formed. In addition, the projection 53 is provided by projecting the intersection of the vertical element 511 and the horizontal element 512 upward. Further, the outermost peripheral portion of the underfoil 5 is an outer peripheral ring portion 56 having the same height as the base portion 52, and a shaft insertion hole through which the shaft 2 can be inserted is provided at the center portion, and the vicinity of the opening edge of the base portion 52 is provided. It is set as the inner peripheral ring part 57 which makes the same height. Here, the protrusion height of the protrusion 53 is reduced, for example, in a portion where the width of the gas film S including the wedge-shaped space is large, that is, a portion corresponding to the inlet. On the other hand, the protruding height of the protrusion 53 is increased in a portion where the width of the gas film S including the wedge-shaped space is small. The protrusion 53 can be protruded and retracted by elasticity, but the elastic coefficient is, for example, small at the portion where the width of the gas film S including the wedge-shaped space is large, that is, upstream of the gas film, and the width of the wedge-shaped space. The elastic modulus is increased in a small portion, that is, on the downstream side of the gas film (the side where the arrow R in FIG. 4 is directed). Of course, it is possible to adopt a configuration in which the protrusions have the same elastic modulus as they go to the downstream side of the gas film, and the protrusion height is made equal for all protrusions 53.

具体的には、本実施形態では突起53、53の中間の部分を前記平坦部52と同一平面上にある凹部54とし、この凹部54と前記突起53との間の部分を傾斜部55としているが、弾性係数を変える場合は、気体膜の上流側などで弾性係数を小さくする場合には、傾斜部55の幅を小さくしたり、あるいは長さを長くして突起53の弾性係数を小さくし、気体膜の下流側などで弾性係数を大きくする場合には、この傾斜部55の幅を大きくしたり、あるいは長さを短くすることにより、突起53の弾性係数を大きくするようにして、気体膜の圧力分布に応じて弾性係数を変化させている。また、突出高さを変える場合は、例えば、上流側では傾斜を小さくして突出高さを小さくし、また下流側では、傾斜を大きくして突出高さを大きくするなど、気体膜の圧力分布に応じて突出高さを変化することができる。また、図2におけるx−x断面図を図5に示すように、基部52には、前記固定部材1側に向け突出し弾性変形により突没可能な逆突起59を設けている。この逆突起59は、前記固定部材1に優先して当接するが、この逆突起59の弾性係数は、前記弾性支持部51内のどの突起53の弾性係数よりも小さくしている。すなわち、軸2及び回転受圧部3が回転した際に発生する気体膜の圧力により、この逆突起59が優先して弾性変形するようにしている。なお、前記図4においては、突起53、凹部54、傾斜部55、及び逆突起59の一部のみに符号を付しているが、前記突起53である部位、前記凹部54である部位、前記傾斜部55である部位、及び前記逆突起59である部位にそれぞれ同一のパターンを付すことにより、各パターンが付された部位がそれぞれ突起53、凹部54、傾斜部55、及び逆突起59であることを示すようにしている。また、前記図2及び図3においても、前記突起53である部位、前記凹部54である部位、前記傾斜部55である部位、及び前記逆突起59である部位にそれぞれ前記図4に付したものと同様のパターンを付している。   Specifically, in this embodiment, the intermediate portion between the protrusions 53 and 53 is a recess 54 that is on the same plane as the flat portion 52, and the portion between the recess 54 and the protrusion 53 is an inclined portion 55. However, when changing the elastic coefficient, when reducing the elastic coefficient on the upstream side of the gas film, etc., the width of the inclined portion 55 is reduced, or the length is increased to reduce the elastic coefficient of the protrusion 53. In the case where the elastic coefficient is increased on the downstream side of the gas film or the like, the elastic coefficient of the projection 53 is increased by increasing the width of the inclined portion 55 or shortening the length, thereby reducing the gas. The elastic modulus is changed according to the pressure distribution of the membrane. In addition, when changing the protrusion height, for example, the pressure distribution of the gas film is reduced by decreasing the inclination on the upstream side to reduce the protrusion height and increasing the inclination on the downstream side to increase the protrusion height. The protrusion height can be changed according to the above. Further, as shown in FIG. 5, which is a sectional view taken along line xx in FIG. 2, the base 52 is provided with a reverse protrusion 59 that protrudes toward the fixing member 1 and can be retracted by elastic deformation. The reverse protrusion 59 abuts preferentially on the fixing member 1, and the elastic coefficient of the reverse protrusion 59 is smaller than the elastic coefficient of any protrusion 53 in the elastic support portion 51. That is, the reverse projection 59 is preferentially elastically deformed by the pressure of the gas film generated when the shaft 2 and the rotation pressure receiving portion 3 are rotated. In FIG. 4, only a part of the protrusion 53, the recessed portion 54, the inclined portion 55, and the reverse protrusion 59 are denoted by reference numerals, but the portion that is the protrusion 53, the portion that is the recessed portion 54, By attaching the same pattern to the portion that is the inclined portion 55 and the portion that is the reverse protrusion 59, the portions to which the respective patterns are attached are the protrusion 53, the concave portion 54, the inclined portion 55, and the reverse protrusion 59, respectively. I am trying to show that. 2 and 3, the portion corresponding to the protrusion 53, the portion corresponding to the recess 54, the portion corresponding to the inclined portion 55, and the portion corresponding to the reverse protrusion 59 are attached to FIG. 4. The same pattern is attached.

ここで、軸2及び回転受圧部3が回転すると、回転受圧部3とフォイル部4との隙間の空気が空気の粘性により引張られ、回転受圧部3とフォイル部4との隙間が次第に挟まっている前記クサビ状空間の領域で圧力が上昇する。この圧力上昇によって、まず、アッパーフォイル6が下方に向かう作用を受ける。この際、アッパーフォイル6はアンダーフォイル5の突起53に圧接し、前記アンダーフォイル5が下方に向かう作用を受ける。この作用を受けて、前記逆突起59が弾性変形してアンダーフォイル5の表面形状が変化し、突起53のほぼ全てが前記アッパーフォイル6に当接して弾性変形する。一方、前記アッパーフォイル6は、この突起53から上方に向かう弾性力を受ける。この弾性力は、例えば、前記クサビ状空間の入口部分すなわち気体膜Sの上流側では小さく、周方向中間部以降、すなわち気体膜の下流側では前記入口部分における弾性力よりも大きな所定の大きさである。そして、アッパーフォイル6が前記突起53からこのような弾性力を受けることにより、クサビ状空間を含む気体膜Sの形状が、例えば、入口部分から下流側に進むにつれ幅が小さくなるなど、適切な形状に維持され、前記弾性支持部51の上方部分において空気の圧力上昇が生じる。この圧力上昇により軸受は回転受圧部3を非接触で支えることになる。   Here, when the shaft 2 and the rotation pressure receiving portion 3 rotate, the air in the gap between the rotation pressure receiving portion 3 and the foil portion 4 is pulled by the viscosity of the air, and the gap between the rotation pressure receiving portion 3 and the foil portion 4 is gradually sandwiched. The pressure increases in the region of the wedge-shaped space. As a result of this pressure increase, the upper foil 6 is first subjected to a downward action. At this time, the upper foil 6 is brought into pressure contact with the protrusion 53 of the underfoil 5, and the underfoil 5 is subjected to a downward action. In response to this action, the reverse protrusion 59 is elastically deformed and the surface shape of the underfoil 5 is changed, and almost all of the protrusion 53 is in contact with the upper foil 6 and elastically deforms. On the other hand, the upper foil 6 receives an upward elastic force from the protrusion 53. This elastic force is, for example, a predetermined magnitude that is small at the inlet portion of the wedge-shaped space, that is, upstream of the gas film S, and larger than the elastic force at the inlet portion after the circumferential intermediate portion, that is, downstream of the gas film. It is. When the upper foil 6 receives such an elastic force from the protrusion 53, the shape of the gas film S including the wedge-shaped space is appropriate, for example, as the width decreases from the inlet portion to the downstream side. The shape is maintained, and an air pressure rise occurs in the upper portion of the elastic support portion 51. Due to this pressure increase, the bearing supports the rotary pressure receiving portion 3 in a non-contact manner.

従って、本実施形態に係る軸受の構成を採用すれば、例えば、前記クサビ状空間の幅が小さく空気の圧力が高くなる気体膜の下流側の部位において突起53の弾性係数を大きくしてアッパーフォイル6の沈み込みを抑制するなど、気体膜Sの厚みを適切な値に保持することができる。   Therefore, if the structure of the bearing according to the present embodiment is employed, for example, the upper foil is increased by increasing the elastic coefficient of the protrusion 53 in the downstream portion of the gas film where the width of the wedge-shaped space is small and the air pressure is high. The thickness of the gas film S can be maintained at an appropriate value, for example, the subsidence of 6 can be suppressed.

また、前記アンダーフォイル5が円環形の板状をなし、このアンダーフォイル5の弾性支持部51を径方向に延伸する縦要素511及び周方向に延伸する横要素512とを有するメッシュ状に形成しているとともに、前記縦要素511及び横要素512の交点に前記突起53を設けているので、プレス成形などのみにより簡単な構成で前記弾性支持部51を形成することができる。   The underfoil 5 has an annular plate shape, and the elastic support portion 51 of the underfoil 5 is formed in a mesh shape having longitudinal elements 511 extending in the radial direction and transverse elements 512 extending in the circumferential direction. In addition, since the protrusion 53 is provided at the intersection of the vertical element 511 and the horizontal element 512, the elastic support portion 51 can be formed with a simple configuration only by press molding or the like.

そして、前記アンダーフォイル5に前記固定部材1側に突出する逆突起59を設け、この逆突起59が弾性変形により突没可能であるとともに、前記逆突起59の弾性係数を全ての前記突起53の弾性係数よりも小さくしているので、アンダーフォイル5及びアッパーフォイル6の寸法のわずかな製造誤差や温度変化に伴う形状変化を前記逆突起59の弾性変形により吸収させることができる。また、回転体の位置の変動に追随させることができる。   The underfoil 5 is provided with a reverse projection 59 that protrudes toward the fixing member 1, and the reverse projection 59 can protrude and retract by elastic deformation. Since the elastic modulus is smaller than the elastic coefficient, a slight manufacturing error in the dimensions of the underfoil 5 and the upper foil 6 and a shape change accompanying a temperature change can be absorbed by the elastic deformation of the reverse protrusion 59. Moreover, it can be made to follow the fluctuation | variation of the position of a rotary body.

なお、各部の具体的な構成は、以上に述べたような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上述した実施形態において、図6に示すように、凹部54と前記突起53との間の傾斜部55の幅寸法を気体膜の下流側(矢印Rが向かう側)に向かうにつれ大きくすることにより、気体膜の下流側に向かうにつれ突起53の弾性係数を大きくするようにしてもよい。また、例えば、径方向に弾性係数や、突起の高さを変化させてもよい。また、同図に示すように、基部52において外周板部56から内周側に向かう形状に逆突起59を設けてもよい。   For example, in the above-described embodiment, as shown in FIG. 6, the width dimension of the inclined portion 55 between the recess 54 and the protrusion 53 is increased toward the downstream side of the gas film (the side where the arrow R is directed). Thus, the elastic coefficient of the projection 53 may be increased as it goes downstream of the gas film. Further, for example, the elastic coefficient and the height of the protrusion may be changed in the radial direction. Further, as shown in the figure, a reverse protrusion 59 may be provided in the base 52 in a shape from the outer peripheral plate portion 56 toward the inner peripheral side.

さらに、上述した実施形態において、図5に対応する図を図7に示すように、横要素512の一部に切れ目を設け、切り端近傍の部位に逆突起59を設けてもよい。   Further, in the above-described embodiment, as shown in FIG. 7 corresponding to FIG. 5, a cut may be provided in a part of the lateral element 512, and the reverse protrusion 59 may be provided in a portion near the cut end.

加えて、アンダーフォイルの凹凸部を縦要素及び横要素が一定ピッチをなすメッシュ状に構成し、それらの交点の一部のみに突起を設けるようにしてもよい。この場合、例えば、クサビ状空間の幅が小さくなる部分に凸部を多く設定するとよい。また、図8に示すように、気体膜の下流側(矢印Rが向かう側)に向かうにつれ縦要素511及び横要素512の密度を大きくし、これらの交点全てに突起を設けることにより気体膜の下流側に向かうにつれ突起の単位面積当たりの個数を多くするようにしてもよい。   In addition, the uneven portion of the underfoil may be formed in a mesh shape in which the vertical elements and the horizontal elements form a constant pitch, and protrusions may be provided only at some of the intersections. In this case, for example, a large number of convex portions may be set in a portion where the width of the wedge-shaped space is reduced. Further, as shown in FIG. 8, the density of the vertical elements 511 and the horizontal elements 512 is increased toward the downstream side of the gas film (the side to which the arrow R is directed), and projections are provided at all of these intersections to provide the gas film. The number of protrusions per unit area may be increased toward the downstream side.

加えて、前記突起は、上述した実施形態では径方向に延伸する傾斜部及び周方向に延伸する傾斜部により支持させているが、これらのうち一方のみにより支持させるようにしてももちろんよい。さらに、このような突起を片持ち支持させるように傾斜部を構成してもよい。そして、各突起を支持する傾斜部の板厚を変更することにより、各突起の弾性係数を変化させるようにしてももちろんよい。   In addition, in the above-described embodiment, the protrusion is supported by the inclined portion extending in the radial direction and the inclined portion extending in the circumferential direction. However, the protrusion may be supported by only one of them. Further, the inclined portion may be configured to support such a protrusion in a cantilever manner. Of course, the elastic coefficient of each protrusion may be changed by changing the thickness of the inclined portion supporting each protrusion.

さらに、アンダーフォイルの弾性支持部内において、突起の弾性係数を等しく設定しつつ、例えば、気体膜の下流側に向かうにつれ突起の突出高さを大きくするようにしてもよい。このように構成すれば、気体流の発生以前の段階において気体膜の下流側に対応する部位のクサビ状空間の幅が小さく、気体流が発生すると下流側で気体膜の圧力が大きくなるが、下流側の突起はより多く沈み込んで強い弾性付勢力をアッパーフォイルに与えることができ、しかも気体流の発生以前の段階では突起の突出高が大きいので、気体膜の圧力とアンダーフォイルによる弾性付勢力を均衡させつつ、気体膜の下流側に向かうにつれクサビ状空間の幅が小さくなる形状を維持できるようにすることができる。もちろん、気体膜の下流側に向かうにつれ突起の弾性係数を大きくしてもよい。また、径方向で高さや弾性係数を変えたり、また下流方向に高さや弾性係数を高くした後、もう一度高さを低くするなど、最適な気体膜厚を形成できるよう、任意の変化を与えてもよい。   Further, in the elastic support portion of the underfoil, for example, the protrusion height of the protrusion may be increased toward the downstream side of the gas film while setting the elastic coefficient of the protrusion to be equal. If configured in this way, the width of the wedge-shaped space in the portion corresponding to the downstream side of the gas film in the stage before the generation of the gas flow is small, and when the gas flow is generated, the pressure of the gas film increases on the downstream side, The protrusion on the downstream side sinks more and can give a strong elastic biasing force to the upper foil, and the protrusion height of the protrusion is large before the gas flow is generated, so the elasticity of the gas film and the underfoil is added. While balancing the power, it is possible to maintain a shape in which the width of the wedge-shaped space becomes smaller toward the downstream side of the gas film. Of course, the elastic modulus of the protrusion may be increased toward the downstream side of the gas film. In addition, change the height and elastic modulus in the radial direction, increase the height and elastic modulus in the downstream direction, and then reduce the height once again, so that an arbitrary change can be given so that an optimal gas film thickness can be formed. Also good.

また、前記逆突起は、上述した実施形態のように横要素を分断して設ける態様や外周部に別途設ける態様以外の方法で設けてもよく、また、温度が略一定な環境下に設ける場合等においては省略してもよい。   Further, the reverse protrusion may be provided by a method other than the aspect in which the transverse element is divided and provided separately in the outer peripheral portion as in the above-described embodiment, or when the temperature is provided in an environment where the temperature is substantially constant. Etc. may be omitted.

その他、本発明の趣旨を損ねない範囲で種々に変形してよい。   In addition, various modifications may be made without departing from the spirit of the present invention.

本発明の一実施形態に係る軸受の正面図。The front view of the bearing which concerns on one Embodiment of this invention. 同実施形態に係る軸受のアンダーフォイルの平面図。The top view of the underfoil of the bearing which concerns on the same embodiment. 同実施形態に係る軸受のアンダーフォイルの要部の斜視図。The perspective view of the principal part of the underfoil of the bearing which concerns on the same embodiment. 図2における要部を拡大して示す図。The figure which expands and shows the principal part in FIG. 図2におけるx−x断面図。Xx sectional drawing in FIG. 本発明の他の実施態様に係る軸受のアンダーフォイルの平面図。The top view of the underfoil of the bearing which concerns on the other embodiment of this invention. 本発明の他の実施態様に係る図5に対応する図。The figure corresponding to FIG. 5 which concerns on the other embodiment of this invention. 本発明の他の実施態様に係る軸受のアンダーフォイルの概略平面図。The schematic plan view of the underfoil of the bearing which concerns on the other embodiment of this invention.

符号の説明Explanation of symbols

1…固定部材
2…軸
3…回転受圧部
4…フォイル部
5…アンダーフォイル
51…弾性支持部
52…基部
53…突起
59…逆突起
6…アッパーフォイル
S…気体膜
DESCRIPTION OF SYMBOLS 1 ... Fixed member 2 ... Shaft 3 ... Rotation pressure receiving part 4 ... Foil part 5 ... Underfoil 51 ... Elastic support part 52 ... Base 53 ... Protrusion 59 ... Reverse protrusion 6 ... Upper foil S ... Gas film

Claims (8)

軸を取り付ける対象である固定部材と軸に設けた回転受圧部との間に設けられるフォイル部を具備してなり、前記フォイル部が、前記固定部材に略全体が添接可能な基部及びこの基部に対して弾性突没可能な複数の突起を有する弾性支持部を有し前記固定部材側に配してなる円環形の板状をなすアンダーフォイルと、このアンダーフォイルに添接させてなり軸の回転の際に気体膜を形成すべく前記回転受圧部との間にクサビ状空間を含む気体膜を形成するアッパーフォイルとを具備するものであって、前記アンダーフォイルの弾性支持部が径方向に延伸する縦要素及び周方向に延伸する横要素とを有するメッシュ状であり、前記縦要素及び横要素の交点の一部又は全部に前記突起を設けていることを特徴とする動圧気体軸受。 A foil portion is provided between a fixing member to which a shaft is attached and a rotation pressure receiving portion provided on the shaft, and the foil portion includes a base portion that can be substantially entirely attached to the fixing member, and the base portion. An underfoil having an elastic support portion having a plurality of protrusions that can be elastically projected and retracted and arranged on the side of the fixing member, and an underfoil attached to the underfoil. An upper foil that forms a gas film including a wedge-shaped space between the rotation pressure receiving portion and the rotation pressure receiving portion to form a gas film during rotation, wherein the elastic support portion of the underfoil is radially provided A hydrodynamic gas bearing having a mesh shape having a longitudinal element extending and a transverse element extending in the circumferential direction, wherein the protrusion is provided at a part or all of an intersection of the longitudinal element and the transverse element. 前記弾性支持部内で前記アッパーフォイルと前記回転受圧部間に発生する圧力分布に応じて気体膜厚さの分布を設定できるよう前記弾性支持部内の弾性係数を分布させていることを特徴とする請求項1記載の動圧気体軸受。 The elastic coefficient in the elastic support part is distributed so that the distribution of the gas film thickness can be set in accordance with the pressure distribution generated between the upper foil and the rotary pressure receiving part in the elastic support part. Item 1. A hydrodynamic gas bearing according to Item 1. 前記弾性支持部内で気体膜の下流側に向かうにつれ該部位の突起の弾性係数を大きくしていることを特徴とする請求項1記載の動圧気体軸受。 2. The dynamic pressure gas bearing according to claim 1, wherein the elastic coefficient of the protrusion of the portion is increased toward the downstream side of the gas film in the elastic support portion. 前記アッパーフォイルと前記回転受圧部間に発生する圧力分布に応じて突起の突出幅を変化させていることを特徴とする請求項1記載の動圧気体軸受。 2. The hydrodynamic gas bearing according to claim 1, wherein a protrusion width of the protrusion is changed in accordance with a pressure distribution generated between the upper foil and the rotary pressure receiving portion. 前記弾性支持部内で気体膜の下流側に向かうにつれ該部位の突起の突出幅を大きくしていることを特徴とする請求項1記載の動圧気体軸受。 2. The hydrodynamic gas bearing according to claim 1, wherein the protrusion width of the protrusion of the portion is increased toward the downstream side of the gas film in the elastic support portion. 前記アッパーフォイルと前記回転受圧部間に発生する圧力分布に応じて、該部位の突起の単位面積当たりの個数を変化させていることを特徴とする請求項1、2、3、4又は5記載の動圧気体軸受。 6. The number of projections per unit area of the portion is changed according to a pressure distribution generated between the upper foil and the rotary pressure receiving portion. Dynamic pressure gas bearing. 前記気体膜の下流側に向かうにつれ該部位の突起の単位面積当たりの個数を多くしていることを特徴とする請求項1、2、3、4、5又は6記載の動圧気体軸受。 The dynamic pressure gas bearing according to claim 1, wherein the number of projections per unit area of the portion is increased toward the downstream side of the gas film. 前記アンダーフォイルに前記固定部材側に向け突出する逆突起を設け、この逆突起が弾性変形により突没可能にしていることを特徴とする請求項1、2、3、4、5、6又は7記載の動圧気体軸受。 8. A reverse projection that protrudes toward the fixing member is provided on the underfoil, and the reverse projection can be projected and retracted by elastic deformation. The hydrodynamic gas bearing described.
JP2007246231A 2007-09-21 2007-09-21 Dynamic pressure gas bearing Pending JP2009074660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246231A JP2009074660A (en) 2007-09-21 2007-09-21 Dynamic pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246231A JP2009074660A (en) 2007-09-21 2007-09-21 Dynamic pressure gas bearing

Publications (1)

Publication Number Publication Date
JP2009074660A true JP2009074660A (en) 2009-04-09

Family

ID=40609825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246231A Pending JP2009074660A (en) 2007-09-21 2007-09-21 Dynamic pressure gas bearing

Country Status (1)

Country Link
JP (1) JP2009074660A (en)

Similar Documents

Publication Publication Date Title
JP4935702B2 (en) Dynamic pressure gas bearing mounting structure
JP5321332B2 (en) Dynamic pressure gas bearing
JP4973590B2 (en) Dynamic pressure gas bearing
JP5487766B2 (en) Dynamic pressure gas bearing
CN104769296B (en) Thrust bearing
KR101293197B1 (en) Foil bearing
KR100807889B1 (en) Dynamic pressure type fluid bearing
JP6268847B2 (en) Thrust bearing
JP3616016B2 (en) Shaft seal mechanism and gas turbine
JP6582431B2 (en) Thrust bearing
CN105980718B (en) Radial foil bearing
KR20140028138A (en) Radial foil bearing
JP6444511B2 (en) Foil bearing, method for adjusting the gap bearing gap geometry, and corresponding manufacturing method for the foil bearing
JP2007092994A (en) Dynamic-pressure gas bearing
CN104937291A (en) Thrust bearing
JP2006057828A (en) Top foil locking mechanism
KR20220027205A (en) Flexible Foil Thrust Bearings
JP2009074660A (en) Dynamic pressure gas bearing
JP4911048B2 (en) Dynamic pressure gas bearing
JP2003247542A (en) Foil gas bearing and production method therefor
JP5757095B2 (en) Dynamic pressure gas bearing
JP3861018B2 (en) Foil bearing
JP2012154448A (en) Dynamic pressure gas bearing
JP5800420B2 (en) Journal bearing
CN219082079U (en) Radial air bearing and supporting foil thereof