JP3616016B2 - Shaft seal mechanism and gas turbine - Google Patents

Shaft seal mechanism and gas turbine Download PDF

Info

Publication number
JP3616016B2
JP3616016B2 JP2001032132A JP2001032132A JP3616016B2 JP 3616016 B2 JP3616016 B2 JP 3616016B2 JP 2001032132 A JP2001032132 A JP 2001032132A JP 2001032132 A JP2001032132 A JP 2001032132A JP 3616016 B2 JP3616016 B2 JP 3616016B2
Authority
JP
Japan
Prior art keywords
thin plate
rotating shaft
pressure side
pressure
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001032132A
Other languages
Japanese (ja)
Other versions
JP2002013647A (en
Inventor
秀和 上原
種宏 篠原
弘一 赤城
雅則 由里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001032132A priority Critical patent/JP3616016B2/en
Priority to CA002359933A priority patent/CA2359933C/en
Priority to DE60121539T priority patent/DE60121539T8/en
Priority to EP01125628A priority patent/EP1231416B1/en
Priority to US09/983,881 priority patent/US7066468B2/en
Publication of JP2002013647A publication Critical patent/JP2002013647A/en
Application granted granted Critical
Publication of JP3616016B2 publication Critical patent/JP3616016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン、蒸気タービン、圧縮機、水車、冷凍機、ポンプなどの大型流体機械の回転軸等に用いて好適な軸シール機構に関する。
本発明はまた、高温高圧のガスをタービンに導いて膨張させ、ガスの熱エネルギーを機械的な回転エネルギーに変換して動力を発生させるガスタービンに関し、特にその回転軸に適用される軸シール機構に関する。
【0002】
【従来の技術】
ガスタービンにおいて、静翼と回転軸との間には、高圧側から低圧側に漏れる燃焼ガスの漏れ量を低減するための軸シール機構が設けられている。この軸シール機構としては、非接触型のラビリンスシールが従来から幅広く使用されている。ところで、このラビリンスシールは、回転過渡期の軸振動、或いは過渡的な熱変形時にもフィン先端の隙間が接触しないようにフィン先端の隙間をある程度大きくしなければならないため、ガスの漏れ量が大きい。このようなラビリンスシールに代え、漏れ量の低減を狙って開発されたシール材としてブラシシールがある。
【0003】
図16(a),(b)はこの種のブラシシールの概略構成図である。同図において、符号1は回転軸、符号2はケーシング、符号3は低圧側側板、符号4は高圧側側板、符号5はろう付け部、符号6はワイヤである。ワイヤ6は、回転軸1の振動、或いは熱変形による偏心などを吸収できるように適度の剛性を有する線径50〜100μmのフィラメントで構成され、ワイヤ6間は隙間がないように幅3〜5mmの密集した束となっている。また、ワイヤ6は回転軸1の外周と鋭角をなすように回転方向に対して傾斜して取付けられている。ワイヤ6の先端は回転軸1の外周に対して所定の予圧をもって接触しており、この接触によって軸方向の漏れ量を低減する構造となっている。
【0004】
ワイヤ6は、回転軸1に対して接触摺動し、雰囲気条件或いは周速によって発熱して赤熱状態になるため、使用条件に応じてインコネル、ハステロイなどの耐高熱材が用いられている。また、ワイヤ6とともに回転軸1外周の摺動面も摩耗するため、回転軸1の摺動面には耐摩耗材がコーティングされている。さらに、ワイヤ6は回転軸1の軸方向の剛性が小さいので、低圧側側板3の内径を回転軸1の外周とほぼ等しくすることでワイヤ6の破損が防止されている。
【0005】
また、この他にも、例えば図17に示すようなリーフシール10が開発されてきている。このリーフシール10は、同図に示すように、回転軸11の軸方向に所定の幅寸法を有する平板状の薄板18を回転軸11の周方向に多層に配置した構造となっている。
これら薄板18は、その外周側基端のみがケーシング12内にろう付け(ろう付け部15)されており、回転軸11の外周をシールすることによって回転軸11の周囲空間を高圧側領域と低圧側領域とに分けている。また、薄板18の両側において、高圧側領域には高圧側側板14、低圧側領域には低圧側側板13がそれぞれ圧力作用方向のガイド板として装着されている。
【0006】
薄板18は、板厚で決まる所定の剛性を回転軸11の軸方向に持つように設計されている。また、薄板18は回転軸11の回転方向に対して回転軸11の周面となす角が鋭角となるようにケーシング12に取付けられており、回転軸11の停止時には薄板18の先端が所定の予圧で回転軸11に接触しているが、回転軸11の回転時には回転軸11が回転することで生じる動圧効果によって薄板18の先端が浮上するため、薄板18と回転軸11とが非接触状態となる。
多層に配置した平板状の各薄板18どうしの間には、僅かに隙間19が設けられている。この隙間19は、シール径が十分に大きいため、換言すれば回転軸11の径が十分に大きいために、外周側基端から内周側先端まで実質的にほぼ一定とみなすことができる。
【0007】
上記のように構成された軸シール機構においては、回転軸11の軸方向に幅を有する薄板18が、回転軸11の周方向に多層に配置されており、これら薄板18が回転軸11の周方向に柔らかい可撓性を有し、軸方向には剛性の高いシール機構を構成している。
このシール機構によれば、シール部材である各薄板18が回転軸11の軸方向に平行配置されることにより、ケーシング12に固定される外周側のろう付けは、回転軸11の軸方向に強固なものとなる。これにより、従来のブラシシールに見られるケーシングからのワイヤ脱落のように、薄板18がケーシング12から脱落するのを防止できるようになっている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記説明のブラシシールでは、次のような問題点がある。
すなわち、このブラシシールにおいては、ワイヤ6間からの漏れと、ワイヤ6先端が回転軸1外周と接触する摺動面からの漏れとが問題となるが、シール差圧がワイヤ6の線径、低圧側側板3の配置等から決まる許容値を越えると、ワイヤ6全体が低圧側に変形を生じて倒れ、ワイヤ6と回転軸1との間が吹き抜け状態となってシール機能を失ってしまう恐れがあるという問題である。
【0009】
ブラシシールを構成するワイヤ6の剛性は回転軸1の軸振れに対する追随性および回転軸1との適正な予圧などで決められているが、ワイヤ6の線径を太くするなどして剛性を上げるにも限界がある。したがって、ワイヤ6の剛性に支配される回転軸1軸方向のシール差圧は0.5MPa程度が限界で、大きな差圧をシールすることができない。また、ワイヤ6の線径は通常約50〜100μmと非常に細く、回転軸1の周面と接触して摺動することによりワイヤ6が破断して脱落する危険性があり、ガスタービンを長時間にわたって使用するには問題があった。
【0010】
また、ワイヤ6先端からのガス漏れ量は、ワイヤ6が回転軸1の周面に接触して摺動するため、ラビリンスシールなどと比べて飛躍的に小さいが、ワイヤ6先端間からの漏れ量を安定して小さく保持することが難しいという問題もある。
また、ワイヤ6と回転軸1の周面とが接触して摺動するので、回転軸1の表面には耐摩耗材のコーティングが必要である。しかしながら、大径の回転軸1の周面に対して長時間の使用に耐える耐摩耗材のコーティングを形成する技術が確立されておらず、ワイヤ6および回転軸1の摩耗が大きいため、ブラシシールの寿命が短く交換頻度が高い。
【0011】
また、上記説明のリーフシール10においても、次のような問題点がある。
このリーフシール10は、回転軸11の回転によって生じる動圧効果によって薄板18の先端が回転軸11の表面から浮上して回転軸11との接触を回避し、過大な発熱及び摩耗を防止できる構造となっている。しかし、低圧側側板13及び薄板18間の隙間と、高圧側側板14及び薄板18間の隙間とが等しくなるように低圧側側板13ならびに高圧側側板14を設けた場合、高圧側から加圧された際に、薄板18に対してこれを回転軸11の半径方向中心に向かって変形させるような圧力荷重が加わることが確認されており、動圧効果の小さい起動時等には非接触状態をつくることが困難となっていた。
【0012】
したがって、以上説明のブラシシール及びリーフシールのいずれにおいても、ガス漏れ量低減と耐摩耗性向上との両方を達成するには更なる改良を必要としていた。
【0013】
本発明は、上記事情に鑑みてなされたものであり、高圧側から低圧側へのガスの漏れ量を低減するとともに耐摩耗性に優れた軸シール機構及び、これを備えたガスタービンの提供を目的としている。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決するために以下の手段を採用した。
すなわち、本発明の請求項1記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、前記ガス圧調整手段が、前記薄板と前記低圧側側板との間の隙間を、前記薄板と前記高圧側側板との間の隙間よりも大きくする隙間寸法調節であることを特徴とする。
【0015】
請求項2記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、前記ガス圧調整手段が、前記薄板と前記低圧側側板との間の隙間を、前記薄板と前記高圧側側板との間の隙間よりも大きくする隙間寸法調節であることを特徴とする。
【0016】
上記請求項1または2記載の軸シール機構によれば、ガス圧調整手段を設けたことで、薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の回転軸に面した面を下面、その裏側を上面とし、該薄板に対して高圧側側板から低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方が高くなるので、薄板先端が浮上して回転軸と非接触状態となる。
【0017】
これについて詳しく説明すると、高圧側から低圧側に向かって流れるガスは、回転軸周面と薄板先端との間,ならびに各薄板の上下面に沿って流れる。このとき、各薄板の上下面に沿って流れるガスは、高圧側側板と回転軸周面との間から流入し,対角に向かって広がりをもって流れ、同時に該薄板の上下面に垂直に加わるガス圧は、前記先端部分に近いほど大きく、かつ外周側基端に向かうほど小さくなる三角分布形状となる。この上下面それぞれの圧力分布形状は互いに略同じものとなるが、各薄板が回転軸の周面に対して鋭角をなすように斜めに配置されているので、これら上下面における各圧力分布の相対位置がずれており、薄板の外周基端側から先端側に向かう任意点における上下面のガス圧を比較した場合、両者で差が生じることとなる。
【0018】
つまり、下面に加わるガス圧(これをFbとする)の方が上面に加わるガス圧(これをFaとする)よりも高くなるので、薄板を回転軸より浮かせるように変形させる方向に作用する。このとき、薄板の先端近傍部分では逆となり、上面にのみガス圧が加わる(薄板の最先端部分を、回転軸周面に対して面接触するように斜めに切り取った場合、下面に相当する部分がなくなるので。)が、この力は、回転軸周面と薄板先端との間を流れるガスのガス圧が、薄板先端を回転軸周面から浮かせる方向に作用(これをFcとする)して打ち消すので、薄板先端を回転軸に押さえ込もうとする力を生じさせない。したがって、薄板に加わるガス圧による圧力荷重は、(Fb+Fc)>Faとなるので、薄板が回転軸周面より浮くようにこれを変形させることが可能となる。
【0019】
この他、従来のブラシシールのワイヤと比較した場合、ケーシングに対する固定部の大きさが比較的大きく取れるので、薄板をケーシングに対して強固に固定することもできるようになる。
また、薄板の先端は、回転軸の軸方向では剛性が高くてかつ回転軸の周方向では柔らかくなっているので、差圧方向(軸方向)への変形を起こし難くなってシール差圧の許容値が引き上げられることに加えて、回転軸の振動に際して薄板と回転軸との接触が緩和されるようになっている。
【0021】
さらに、上記請求項1又は2に記載の軸シール機構によれば、高圧側から加圧された際に、薄板を通過してガスが高圧側から低圧側へ流れようとするが、このとき、薄板と低圧側側板との間の隙間を、薄板と高圧側側板との間の隙間よりも大きくして広く空間を空けておくことで、高圧側側板と回転軸周面との間から流入したガスは薄板の上下面に沿って対角に向かい広く流れると同時に,外周側基端には低圧の領域が広がる。これにより、薄板の幅方向に垂直な断面に沿った任意位置で、該薄板の上下面に加わるガス圧分布を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。したがって、前述の理由により、薄板の上下面における圧力差を生じせしめて、該薄板を回転軸周面より浮くように変形させて非接触状態を形成することができる。
【0022】
請求項記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、前記ガス圧調整手段が、前記低圧側側板の前記回転軸半径方向の長さ寸法を前記高圧側側板の前記回転軸半径方向の長さ寸法よりも短くする側板寸法調節であることを特徴とする。
請求項4記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、前記ガス圧調整手段が、前記低圧側側板の前記回転軸半径方向の長さ寸法を前記高圧側側板の前記回転軸半径方向の長さ寸法よりも短くする側板寸法調節であることを特徴とする。
【0023】
上記請求項3又は4に記載の軸シール機構によれば、高圧側から加圧された際に,薄板を通過してガスが高圧側から低圧側へ流れようとするが、このとき、低圧側側板の回転軸半径方向の長さ寸法を高圧側側板の回転軸半径方向の長さ寸法よりも短くして低圧側に広い空間を空けておくことで、高圧側側板と回転軸周面との間から流入したガスは,薄板の上下面に沿って対角に向かって広く流れると同時に,外周側基端に低圧の領域が広がる。これにより、薄板の幅方向に垂直な断面に沿った任意位置で、該薄板の上下面に加わるガス圧分布を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。したがって、前述の理由により、薄板の上下面における圧力差を生じせしめて、該薄板を回転軸周面より浮くように変形させて非接触状態を形成することができる。
【0024】
請求項5記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、前記ガス圧調整手段が、前記薄板の高圧側に配されてかつ前記回転軸方向に可撓性を有する可撓板であることを特徴とする。
請求項6記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、前記ガス圧調整手段が、前記薄板の高圧側に配されてかつ前記回転軸方向に可撓性を有する可撓板であることを特徴とする。
【0025】
上記請求項5又は6に記載の軸シール機構によれば、高圧側から加圧された際に,薄板を通過してガスが高圧側から低圧側へ流れようとするが、このとき、回転軸方向に可撓性を有する可撓板を薄板の高圧側に設ける(例えば、高圧側側板を回転軸方向に可撓性を有する薄肉板状としたり、もしくは、高圧側側板と薄板との間の隙間に回転軸軸方向に可撓性を有する薄肉板を設けるなど。)と、高圧側のガス圧による可撓板の撓みによって,薄板と高圧側側板との間の隙間が狭まり,薄板と低圧側側板との間の隙間より小さくなる。したがって,高圧側側板と回転軸周面との間から流入したガスは,薄板の上下面に沿って対角に向かって広く流れると同時に,外周側基端に低圧の領域が広がる。これにより、薄板の幅方向に垂直な断面に沿った任意位置で、該薄板の上下面に加わるガス圧分布を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。したがって、前述の理由により、薄板の上下面における圧力差を生じせしめて、該薄板を回転軸周面より浮くように変形させて非接触状態を形成することができる。
【0026】
請求項記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、前記ガス圧調整手段が、前記薄板の高圧側に配されて前記回転軸方向に可撓性を有し、かつその全周で2ヶ所以上のスリットが形成されているスリット付き可撓板であることを特徴とする。
請求項8記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、前記ガス圧調整手段が、前記薄板の高圧側に配されて前記回転軸方向に可撓性を有し、かつその全周で2ヶ所以上のスリットが形成されているスリット付き可撓板であることを特徴とする。
【0027】
上記請求項7又は8に記載の軸シール機構によれば、高圧側から加圧された際に,薄板を通過してガスが高圧側から低圧側へ流れようとするが、このとき、回転軸方向に可撓性を有し、かつその全周で2ヶ所以上のスリットが形成されているスリット付き可撓板を薄板の高圧側に設ける(例えば、高圧側側板を、全周で2ヶ所以上のスリット形状が形成されてかつ回転軸方向に可撓性を有する薄板としたり、もしくは、高圧側側板と薄板との間に回転軸方向に可撓性を有してかつ全周で2ヶ所以上のスリットが形成された薄肉板を配置すなど。)と、高圧側のガス圧による可撓板の撓みによって,薄板と高圧側側板との間の隙間が狭まり,薄板と低圧側側板との間の隙間より小さくなる。したがって,高圧側側板と回転軸周面との間から流入したガスは,薄板の上下面に沿って対角に向かって広く流れると同時に,外周側基端に低圧の領域が広がる。これにより、薄板の幅方向に垂直な断面に沿った任意位置で、該薄板の上下面に加わるガス圧分布を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。したがって、前述の理由により、薄板の上下面における圧力差を生じせしめて、該薄板を回転軸周面より浮くように変形させて非接触状態を形成することができる。
【0028】
請求項記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、前記ガス圧調整手段が、前記回転軸の軸線方向に前記低圧側側板を貫く複数の通風孔であることを特徴とする。
請求項10記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、前記ガス圧調整手段が、前記回転軸の軸線方向に前記低圧側側板を貫く複数の通風孔であることを特徴とする。
【0029】
上記請求項9又は10に記載の軸シール機構によれば、高圧側から加圧された際に、薄板を通過してガスが高圧側から低圧側へ流れようとするが、このとき、回転軸の軸線方向に低圧側側板を貫く複数の通風孔を該低圧側側板に設けておく(例えば、低圧側側板に対して回転軸軸方向に向かって形成された複数の導圧孔を設けたり、もしくは、低圧側側板の材質として多孔質材を採用するなど。)ことで、高圧側側板と回転軸周面との間から流入したガスは,薄板の上下面に沿って対角に向かって広く流れると同時に,外周側基端に低圧の領域が広がる。これにより、薄板の幅方向に垂直な断面に沿った任意位置で、該薄板の上下面に加わるガス圧分布を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。したがって、前述の理由により、薄板の上下面における圧力差を生じせしめて、該薄板を回転軸周面より浮くように変形させて非接触状態を形成することができる。
【0030】
請求項11記載の軸シール機構は、回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなす軸シール機構であり、前記薄板と、前記低圧側側板との間に、高圧側から低圧側に向かうガスの通過を許可するガス通過空間が形成されていることを特徴とする。
【0031】
上記請求項11記載の軸シール機構によれば、高圧側から加圧された際に、薄板を通過してガスが高圧側から低圧側へ流れようとするが、このとき、薄板の軸方向の低圧側に、高圧側から低圧側に向かうガスの通過を許可するガス通過空間が形成されていることで、高圧側側板と回転軸周面との間から流入したガスは,薄板の上下面に沿って対角に向かって広く流れると同時に,外周側基端に低圧の領域が広がる。これにより、薄板の幅方向に垂直な断面に沿った任意位置で、該薄板の上下面に加わるガス圧分布を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。したがって、前述の理由により、薄板の上下面における圧力差を生じせしめて、該薄板を回転軸周面より浮くように変形させて非接触状態を形成することができる。
【0032】
請求項12記載の軸シール機構は、請求項1,2,5〜8のいずれか1項に記載の軸シール機構において、前記低圧側側板と前記薄板との間には、該低圧側側板に向かって前記薄板が接近しようとした場合に、該薄板を支持して、これら低圧側側板及び薄板間の隙間寸法を維持する隙間寸法調整手段が設けられていることを特徴とする。
【0033】
請求項13記載の軸シール機構は、請求項12記載の軸シール機構において、前記隙間寸法調整手段が、前記薄板側に向かって突出するように前記低圧側側板の側に設けられた第1の段形状部であり、該第1の段形状部が、前記低圧側側板に沿って前記回転軸周りの環状をなしていることを特徴とする。
【0034】
請求項14記載の軸シール機構は、請求項13記載の軸シール機構において、前記第1の段形状部に、前記環状の内周側及び外周側の空間を連通させる通気孔が形成されていることを特徴とする。
【0035】
請求項15記載の軸シール機構は、請求項12記載の軸シール機構において、前記隙間寸法調整手段、前記薄板側に向かって突出するように前記低圧側側板の側に設けられた第2の段形状部であり、該第2の段形状部が、互いに間隔を置いた状態で、前記低圧側側板に沿って前記回転軸周りの環状をなすように間欠配置された複数枚の環状分割板からなることを特徴とする。
【0036】
請求項16記載の軸シール機構は、請求項13〜15のいずれか1項に記載の軸シール機構において、前記第1または第2の段形状部が、前記回転軸を軸心とする同心円状に複数段が設けられていることを特徴とする。
【0037】
請求項17記載の軸シール機構は、請求項12記載の軸シール機構において、前記隙間寸法調整手段が、前記薄板側に向かって突出するように前記低圧側側板の側に設けられた第3の段形状部であり、該第3の段形状部が、前記薄板側から前記低圧側側板を見た場合に、該低圧側側板の内周側から外周側に向かってスパイラル状に配置された複数枚のスパイラル板からなり、これらスパイラル板間には、互いに間隔が設けられていることを特徴とする。
【0038】
請求項18記載の軸シール機構は、請求項13記載の軸シール機構において、前記第1の段形状部が、前記低圧側側板の半径方向に沿って前記ケーシングの位置まで形成されていることを特徴とする。
【0039】
請求項19記載の軸シール機構は、請求項18記載の軸シール機構において、前記高圧側側板に、該高圧側側板を前記回転軸の軸線方向に貫く導圧孔が形成されていることを特徴とする。
【0040】
請求項20記載の軸シール機構は、請求項12記載の軸シール機構において、前記隙間寸法調整手段が、前記低圧側側板に向かって突出するように前記薄板の側に設けられた第4の段形状部であることを特徴とする。
【0041】
上記請求項12〜20のいずれかに記載の軸シール機構によれば、隙間寸法調整手段を設けたことで、薄板の位置が低圧側側板の側に向かって接近しようとしても、この薄板が、隙間寸法調整手段によって支持されることで接近が阻止されるようになっているので、軸シール機構組立時における組立誤差や、運転時における高圧側から低圧側に向かう流体圧による薄板の変形等が発生しても、薄板と低圧側側板との間を所定の隙間寸法に維持することができる。
したがって、薄板と低圧側側板との隙間寸法を、薄板と高圧側側板との間の隙間寸法よりも確実に大きく保つことができる。これにより、請求項3,5,6のいずれかの作用を確実に得ることができるので、薄板の上下面における圧力差を生じせしめて、該薄板を回転軸周面より浮くように変形させ、起動時等の動圧効果の小さい時でも、非接触状態を確実に形成させることができる。
【0042】
さらに、上記請求項14記載の軸シール機構によれば、隙間寸法調整手段である第1の段形状部に通気孔を形成したことで、薄板と低圧側側板との間の隙間空間における、第1の段形状部を境とした、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れに対する抵抗が低減されるようになる。これにより、第1の段形状部による薄板の支持を確保しながらも、あたかも第1の段形状部が存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができる。
したがって、高圧側側板から低圧側側板に向かうガス圧が薄板に加わった場合に、該薄板の上下面に対して、回転軸に対向する先端側でかつ高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布の範囲をより広く形成させることができるようになるので、薄板の上下面における圧力差を確実に生じせしめて、該薄板を回転軸周面より浮かせるという薄板浮上のためのガス圧調整が的確にできるようになる。
【0043】
また、上記請求項15記載の軸シール機構によれば、隙間寸法調整手段である第2の段形状部を、互いに間隔を置いて環状配置された複数枚の環状分割板としたことで、薄板と低圧側側板との間の隙間空間における、第2の段形状部を境とした、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れに対する抵抗が低減されるようになる。これにより、第2の段形状部による薄板の支持を確保しながらも、あたかも第2の段形状部が存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができる。
したがって、高圧側側板から低圧側側板に向かうガス圧が薄板に加わった場合に、該薄板の上下面に対して、回転軸に対向する先端側でかつ高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布の範囲をより広く形成させることができるようになるので、薄板の上下面における圧力差を確実に生じせしめて、該薄板を回転軸周面より浮かせるという薄板浮上のためのガス圧調整が的確にできるようになる。
また、請求項16記載の軸シール機構においても、上記請求項15記載の軸シール機構と同様の作用を得ることができる。
【0044】
また、上記請求項17記載の軸シール機構によれば、隙間寸法調整手段である第3の段形状部を、互いに間隔を置いてスパイラル状に配置された複数枚のスパイラル板としたことで、薄板と低圧側側板との間の隙間空間における、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れに対する抵抗が低減されるようになる。これにより、第3の段形状部による薄板の支持を確保しながらも、あたかも第3の段形状部が存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができる。
したがって、高圧側側板から低圧側側板に向かうガス圧が薄板に加わった場合に、該薄板の上下面に対して、回転軸に対向する先端側でかつ高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布の範囲をより広く形成させることができるようになるので、薄板の上下面における圧力差を確実に生じせしめて、該薄板を回転軸周面より浮かせるという薄板浮上のためのガス圧調整が的確にできるようになる。
【0045】
また、上記請求項20記載の軸シール機構によれば、隙間寸法調整手段である第4の段形状部を、薄板側に設けられた突出部としたことで、薄板と低圧側側板との間の隙間空間における、第4の段形状部を境とした、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れが、薄板間の隙間を通って流通可能となるので、このガス流れに対する抵抗が低減されるようになる。これにより、第4の段形状部による薄板の支持を確保しながらも、あたかも第4の段形状部が存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができる。
したがって、高圧側側板から低圧側側板に向かうガス圧が薄板に加わった場合に、該薄板の上下面に対して、回転軸に対向する先端側でかつ高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布の範囲をより広く形成させることができるようになるので、薄板の上下面における圧力差を確実に生じせしめて、該薄板を回転軸周面より浮かせるという薄板浮上のためのガス圧調整が的確にできるようになる。
【0046】
請求項21記載のガスタービンは、高温高圧のガスをケーシングに導き、該ケーシングの内部に回転可能に支持された回転軸の動翼に吹き付けることで前記ガスの熱エネルギーを機械的な回転エネルギーに変換して動力を発生するガスタービンにおいて、請求項1〜17のいずれかに記載の軸シール機構を備えたことを特徴とする。
上記請求項21記載のガスタービンによれば、上記請求項1〜20のいずれかに記載の軸シール機構と同様の作用を得ることができる。
【0047】
【発明の実施の形態】
本発明に係る軸シール機構及びこれを備えたガスタービンの各実施の形態についての説明を以下に行うが、本発明がこれらのみに限定解釈されるものでないことは、勿論である。
【0048】
まず、図1〜図3を参照しながら第1の実施の形態についての説明を行う。
図1に、ガスタービンの概略構成を示す。同図において、符号20は圧縮機、符号21は燃焼器、符号22はタービンである。圧縮機20は、多量の空気をその内部に取り入れて圧縮するものである。通常、ガスタービンでは、後述する回転軸23で得られる動力の一部が、圧縮機の動力として利用されている。燃焼器21は、圧縮機20で圧縮された空気に燃料を混合して燃焼させるものである。タービン22は、燃焼器21で発生させた燃焼ガスをその内部に導入して膨張させ、回転軸23に設けられた動翼23eに吹き付けることで燃焼ガスの熱エネルギーを機械的な回転エネルギーに変換して動力を発生させるものである。
【0049】
タービン22には、回転軸23側の複数の動翼23eの他に、ケーシング24側に複数の静翼24aが設けられており、これら動翼23eと静翼24aとが回転軸23の軸方向に交互に配列されている。動翼23eは回転軸23の軸方向に流れる燃焼ガスの圧力を受けて回転軸23を回転させ、回転軸23に与えられた回転エネルギーが軸端から取り出されて利用されるようになっている。静翼24aと回転軸23との間には、高圧側から低圧側に漏れる燃焼ガスの漏れ量を低減するための軸シール機構として、リーフシール25が設けられている。
【0050】
図2はこのリーフシール25の構成を示す斜視図である。同図に示すように、このリーフシール25は、回転軸23の軸方向に幅を有して先端が回転軸23の周面23aに摺動し、互いに隙間30を空けて外周側基端がケーシング24側に固定(ろう付け部28)された複数の可撓性を有する薄板29を、回転軸23の周方向に該回転軸23の外周をシール可能に多重に備え、薄板29と回転軸23の周面23aとが鋭角をなし、各薄板29の回転軸方向両側にそれぞれ低圧側側板26及び高圧側側板27が設けられた構成となっている。
【0051】
各薄板29は、回転軸23の軸方向に所定の幅を有する平板形状を有しており、回転軸23の周方向に多層に配置された構造になっている。そして、その外周側基端は、ケーシング24内にろう付け(ろう付け部28)されており、回転軸23の外周をシールすることによって回転軸23の周囲空間を高圧側領域と低圧側領域とに分けている。また、薄板29の幅方向両側において、高圧側領域には前記高圧側側板27が、低圧側領域には前記低圧側側板26がそれぞれ圧力作用方向のガイド板として装着されている。
【0052】
そして、このリーフシール25には、図3(a)に示すように高圧側領域から低圧側領域に向かう(高圧側側板27から低圧側側板26に向かう)ガス圧が各薄板29に加わった場合に、各薄板29の上面29a及び下面29bに対して、先端側でかつ高圧側側板27の側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布30aを形成するガス圧調整手段が設けられた構成となっている。
【0053】
換言すると、このガス圧調整手段は、図3(b)に示すように、各薄板29をその幅方向に垂直な仮想平面で断面視し、これら薄板29の回転軸23に面した面を下面29b、その裏側を上面29aとし、各薄板29に対して高圧側領域から低圧側領域に向かう(高圧側側板27から低圧側側板26に向かう)ガス圧が加わった場合に、各薄板29の前記断面に沿った任意位置における上面29aに加わるガス圧よりも、下面29bに加わるガス圧の方を高くするようにガス圧を調整することが可能となっている(このメカニズムについては、後で詳説する。)。
【0054】
本実施の形態では、各薄板29と低圧側側板26との間の低圧側隙間31を、各薄板29と高圧側側板27との間の高圧側隙間32よりも大きくする隙間寸法調節を前記ガス圧調整手段としている。
このように隙間寸法調節を行って低圧側側板側に比較的広い空間を空けておくことで、高圧側から加圧された際に、各薄板29を通過して高圧側領域から低圧側領域へ流れるガスgは、各薄板29の上面29a及び下面29bに沿って対角に向かって広く流れると同時に,外周部基端には低圧の領域が広がる。これにより、前述したように、薄板29の幅方向に垂直な断面に沿った任意位置で、該薄板29の上面29a及び下面29bのそれぞれに加わるガス圧分布を、薄板29の先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。
【0055】
これについて詳しく説明すると、高圧側領域から低圧側領域に向かって流れるガスgは、回転軸23の周面23aと薄板29の先端との間,ならびに、各薄板29の上面29a及び下面29bに沿って流れる。このとき、各薄板29の上面29a及び下面29bに沿って流れるガスgは、図3(a)に示すように、高圧側側板27と回転軸23の周面23aとの間から流入し,r1からr2の方向へ放射状に流れ,外周側基端には低圧の領域が広がる。これにより、各薄板29の上面29a及び下面29bに垂直に加わるガス圧分布30b,30cは、図3(b)に示すように前記先端部分に近いほど大きく、かつ外周側基端に向かうほど小さくなる三角分布形状となる。
【0056】
この上面29a及び下面29bそれぞれにおけるガス圧力分布30b,30cの形状は互いに略同じものとなるが、各薄板29が回転軸23の周面23aに対して鋭角をなすように斜めに配置されているので、これら上面29a及び下面29bにおける各ガス圧分布30b,30cの相対位置が寸法s1だけずれており、薄板29の外周基端側から先端側に向かう任意点Pにおける上面29a及び下面29bのガス圧を比較した場合、両者で差が生じることとなる。
【0057】
つまり、前述したように、下面29bに加わるガス圧(これをFbとする)の方が上面29aに加わるガス圧(これをFaとする)よりも高くなるので、薄板29を回転軸23より浮かせるように変形させる方向に作用する。このとき、薄板29の先端近傍部分では逆となり、上面29aにのみガス圧のみが加わる(薄板29の最先端部分は、周面23aに対して面接触するように斜めに切り取られて切断面29cが設けられているので、下面29bに相当する部分がなくなる。)が、この力は、周面23aと薄板29の先端との間を流れるガスのガス圧が、薄板29の先端を周面23aから浮かせる方向に作用(これをFcとする)して打ち消すので、薄板29の先端を回転軸23に対して押さえ込もうとする力を生じさせない。したがって、各薄板29に加わるガス圧による圧力荷重は、(Fb+Fc)>Faとなるので、各薄板29を周面23aより浮かせるように変形させることが可能となる。
したがって、各薄板29の上面29a及び下面29b間に圧力差を生じせしめて、これら薄板29が周面23aより浮くように変形させて非接触状態を形成することができる。
【0058】
以上の説明では、高圧側から加圧された際の差圧を利用して,各薄板29を回転軸23に対して非接触状態にするメカニズムについて説明したが、以下に説明するように、回転軸23の回転によっても各薄板29を回転軸23に対して非接触状態とすることが可能となっている。
すなわち、各薄板29は、板厚で決まる所定の剛性を回転軸23の軸方向に持つように設計されている。また、各薄板29は、前述したように回転軸23の回転方向に対して回転軸23の周面23aとなす角が鋭角となるようにケーシング24に取付けられており、回転軸23の停止時には、各薄板29の先端が所定の予圧で回転軸23に接触しているが、回転軸23の回転時には回転軸23が回転することで生じる動圧効果によって各薄板29の先端が浮上するため、薄板29と回転軸23とが非接触状態となる。
【0059】
なお、多層に配置した平板状の各薄板29の間には僅かに隙間30(図2参照)が設けられている。この隙間30は、シール径が十分に大きいため、換言すれば回転軸23の径が十分に大きいために、外周側基端から内周側先端まで実質的にほぼ一定とみなすことができる。
【0060】
以上説明の本実施の形態のリーフシール25(軸シール機構)及びこれを備えたガスタービンによれば、各薄板29と回転軸23の周面23aとの間の角度を鋭角にし、かつ各薄板29に浮力を与える圧力調整手段として前記隙間寸法調節を設けたことで、動圧効果の小さい起動時等においても薄板29の上面29a及び下面29bの間に圧力荷重差((Fb+Fc)>Fa)を生じさせ、薄板29の先端を回転軸23の周面23aから浮上させて回転軸23との接触を回避できる。したがって、各薄板29と回転軸23との接触による過大な発熱及び摩耗を防止することができる。さらに、各薄板29と回転軸23との接触による発熱が防止されることにより、回転軸23でのサーマルバランスによる振動の発生を回避することも可能となる。
【0061】
また、共振点通過時などの回転軸23の振動が大きいときには、鋭角に取付けられた薄板29が変形して回転軸23との接触が緩和されることに加え、回転軸23の回転によって生じる動圧効果によって各薄板29の先端を回転軸23の周面23aから浮上させて回転軸23との接触を回避することが可能となっている。
【0062】
また、シール部材として薄板29を使用することにより、従来のワイヤと比較してケーシング24に対する固定部分の大きさが拡大されるので、各薄板29がケーシング24に対して強固に固定される。これにより、従来のブラシシールにおけるワイヤ脱落のようなケーシング24からの薄板29の脱落を防止することができる。
また、各薄板29の先端は回転軸23の軸方向に高い剛性を有し回転軸の周方向には柔らかいので、従来のブラシシールに比べて差圧方向への変形を起こし難くなり、シール差圧の許容値を向上させることが可能となっている。
【0063】
また、各薄板29間の隙間30を外周側と内周側とで等しくすることで、各薄板29をより密に配置することが可能となり、各薄板29の先端と回転軸23との隙間を、非接触型のラビリンスシールなどと比べて飛躍的に小さくすることができる。これにより、ラビリンスシールの1/10程度まで漏れ量を低減することが可能となり、結果的にガスタービンの性能を10%程度向上させることができる。
したがって、以上説明のリーフシール25及びこれを備えたガスタービンによれば、高圧側領域から低圧側領域へのガスの漏れ量を低減するとともに耐摩耗性の向上を得ることが可能となる。
【0064】
ところで、上記第1の実施の形態では、前記圧力調整手段として、低圧側側板26及び高圧側側板27を、低圧側隙間31が高圧側隙間32より大きくなるよう配置することで、高圧側から加圧された際に薄板29に前記圧力荷重差を生じせしめて、各薄板29の先端部を浮上させるものとしているが、この他にも、例えば変形例として以下に説明する各実施の形態も採用可能である。
【0065】
以下、本発明の第2の実施の形態についての説明を図4を参照しながら行うが、その特徴部分を中心に説明するものとし、その他の、上記第1の実施の形態と同一部分については説明を省略する。
図4は、高圧側領域から加圧された際に各薄板29の薄板上面29a及び薄板下面29b間に圧力荷重差を生じさせ、各薄板29の先端部を浮上させるための他の圧力調整手段を備えたリーフシール25を示すものである。
そして、本実施の形態では、低圧側側板26の回転軸23の半径方向の長さ寸法(低圧側側板長さ33)を、高圧側側板27の回転軸23の半径方向の長さ寸法(高圧側側板長さ34)よりも短くする側板寸法調節を前記ガス圧調整手段としている。
【0066】
このように側板寸法調節を行って低圧側側板26側に比較的広い空間を空けておくことで、高圧側から加圧された際、各薄板29を通過してガスgが高圧側領域から低圧側領域へ流れようとするが、このガスgが、各薄板29の上面29a及び下面29bに沿ってr1からr2の方向へ放射状に流れることとなる。これにより、前述したように、薄板29の幅方向に垂直な断面に沿った任意位置で、該薄板29の上面29a及び下面29bのそれぞれに加わるガス圧分布を、薄板29の先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。
したがって、上記第1の実施の形態と同様の理由により、薄板29の上面29a及び下面29b間における圧力分布の相対位置に差を生じせしめて、各薄板29を回転軸23の周面23aより浮くように変形させて非接触状態を形成することができる。
【0067】
すなわち、前記隙間30を通るガスgによって薄板29の上面29a及び下面29bに垂直に加わるガス圧分布30aは、上記第1の実施の形態と同様に、薄板29の先端側でかつ高圧側側板27側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布30aとなる。
【0068】
このとき、薄板29の軸方向幅の任意の断面の半径方向圧力分布は、上記第1の実施の形態の図3(b)で説明したガス圧分布30b,30cのようになり、薄板上面29aと、薄板下面29b及び薄板先端面29cとの間に圧力荷重差((Fb+Fc)>Fa)を生じさせるので、この圧力荷重差が薄板29に対してその先端部を浮上させる方向の力として作用する。
したがって、薄板29に生じた前記圧力荷重差により、その先端部を浮上させる方向の力が作用する。本実施の形態を上記第1の実施の形態と比較した場合、第1の実施の形態のように低圧側隙間31と高圧側隙間32の寸法をコントロールをするよりも、本実施の形態のように低圧側側板長さ33及び高圧側側板長さ34をコントロールするほうが寸法精度も要求されず容易である上に、組立性も良く製造が容易となり、製作コストも安く済むのでより好ましいと言える。
【0069】
なお、本実施の形態では、低圧側側板26の回転軸23の半径方向の長さ寸法(低圧側側板長さ33)を、高圧側側板27の回転軸23の半径方向の長さ(高圧側側板長さ34)よりも短くする側板寸法調節を前記ガス圧調整手段としたが、これに限らず、薄板29の、回転軸23の軸方向低圧側に、高圧側領域から低圧側領域に向かうガスgの通過を許可するガス通過空間形成する(例えば、低圧側側板26を省いた構成とするなど。)ことでも、同様の効果を得ることが可能である。
【0070】
以下、本発明の第3の実施の形態についての説明を図5(a),(b)を参照しながら行うが、その特徴部分を中心に説明するものとし、その他の、上記第1の実施の形態と同一部分については説明を省略する。なお、本実施の形態では、薄板29の高圧領域側に配されてかつ回転軸23方向に可撓性を有する可撓板を前記ガス圧調整手段とする構成を採用している。
図5(a),(b)は、高圧側領域から加圧された際に各薄板29の薄板上面29a及び薄板下面29b間に圧力荷重差を生じさせ、各薄板29の先端部を浮上させるための他の圧力調整手段を備えたリーフシール25を示すもので、図5(a)は高圧側側板27を回転軸23の軸方向に可撓性を有する薄肉板にした場合であり、図5(b)は高圧側側板27と薄板29との間の隙間に回転軸23の軸方向に可撓性を有する高圧側隙間微調整用薄板35を配置したものである。
【0071】
このような可撓性を有する高圧側側板27或いは高圧側隙間微調整用薄板35を設けることで、高圧側から加圧された際に,高圧側のガス圧により,高圧側側板27或いは高圧側隙間微調整用薄板35は回転軸23の軸方向に撓み,高圧側側板23と薄板29との間の隙間は小さく保持できる。このとき、各薄板29の上面29a及び下面29bに沿って流れるガスgは、図5に示すように、高圧側側板27と回転軸23の周面23aとの間から流入し,r1からr2の方向へ放射状に流れ,外周側基端には低圧の領域が広がる。これにより、薄板29の幅方向に垂直な断面に沿った任意位置で、該薄板29の上下面に加わるガス圧を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。
したがって、上記第1の実施の形態と同様の理由により、薄板29の上面29a及び下面29b間における圧力分布の相対位置に差を生じせしめて、各薄板29を回転軸23の周面23aより浮くように変形させて非接触状態を形成することができる。
【0072】
すなわち、前記隙間30を通るガスgによって薄板29の上面29a及び下面29bに垂直に加わるガス圧分布30aは、上記第1の実施の形態と同様に、薄板29の先端側でかつ高圧側側板27側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布形状となる。このとき、薄板29の軸方向幅の任意位置の断面の半径方向圧力分布は、上記第1の実施の形態の図3(b)で説明したガス圧分布30b,30cのようになり、薄板上面29aと、薄板下面29b及び薄板先端面29cとの間に圧力荷重差((Fb+Fc)>Fa)を生じさせるので、この圧力荷重差が薄板29に対してその先端部を浮上させる方向の力として作用する。
【0073】
したがって、薄板29に生じた前記圧力荷重差により、その先端部を浮上させる方向の力が作用する。本実施の形態を上記第1の実施の形態と比較した場合、上記第2の実施の形態で説明したのと同様の理由により、組立性と製作コストが安い上、シール差圧により隙間(薄板29と、高圧側側板27或いは高圧側隙間微調整用薄板35との間の隙間)を自動的に高精度に形成できるメリットがある。
【0074】
以下、本発明の第4の実施の形態についての説明を図6(a),(b)を参照しながら行うが、その特徴部分を中心に説明するものとし、その他の、上記第1の実施の形態と同一部分については説明を省略する。なお、本実施の形態では、薄板29の高圧側に配されて回転軸23方向に可撓性を有し、かつその全周で2ヶ所以上のスリットが形成されているスリット付き可撓板を前記ガス圧調整手段とする構成を採用している。
図6(a)は、高圧側側板に対して全周で2ヶ所以上のスリット41aが形成されるとともに回転軸23の軸方向に可撓性持たせたものを、前記スリット付き可撓板41とした場合であり、図6(b)は、高圧側側板27と薄板29との間の隙間に回転軸23の軸方向に可撓性を有し全周で2ヶ所以上のスリット42aが形成された薄肉板を、前記スリット付き可撓板42とした場合を示している。
【0075】
このようなスリット付き可撓板41,42を設けることで、高圧側から加圧された際に,高圧側のガス圧により,高圧側側板27或いは高圧側隙間微調整用薄板40は回転軸23の軸方向に撓み,高圧側側板23と薄板29との間の隙間は小さく保持できる。このとき、各薄板29の上面29a及び下面29bに沿って流れるガスgは、図6に示すように、高圧側側板27と回転軸23の周面23aとの間から流入し,r1からr2の方向へ放射状に流れ,外周側基端には低圧の領域が広がる。これにより、薄板29の幅方向に垂直な断面に沿った任意位置で、該薄板29の上下面に加わるガス圧を、薄板先端側から外周側基端に向かって徐々に小さくなる三角形状とすることができる。
したがって、上記第1の実施の形態と同様の理由により、薄板29の上面29a及び下面29b間における圧力分布の相対位置に差を生じせしめて、各薄板29を回転軸23の周面23aより浮くように変形させて非接触状態を形成することができる。
【0076】
すなわち、前記隙間30を通るガスgによって薄板29の上面29a及び下面29bに垂直に加わるガス圧分布30aは、上記第1の実施の形態と同様に、薄板29の先端側でかつ高圧側側板27側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布形状となる。このとき、薄板29の軸方向幅の任意の断面の半径方向圧力分布は、上記第1の実施の形態の図3(b)で説明したガス圧分布30b,30cのようになり、薄板上面29aと、薄板下面29b及び薄板先端面29cとの間に圧力荷重差((Fb+Fc)>Fa)を生じさせるので、この圧力荷重差が薄板29に対してその先端部を浮上させる方向の力として作用する。
【0077】
したがって、薄板29に生じた前記圧力荷重差により、その先端部を浮上させる方向の力が作用する。本実施の形態を上記第1の実施の形態と比較した場合、上記第2の実施の形態で説明したのと同様の理由により、組立性と製作コストが安い上、シール差圧により隙間(薄板29と、スリット付き可撓板41,42との間の隙間)を自動的に高精度に形成できるメリットがある。また本実施の形態では、上記第1の実施の形態と比較して組立性と製作コストの点で優れるのに加え、第3の実施の形態と比較してもスリット41a,42aの形状により隙間(薄板29と、スリット付き可撓板41,42との間の隙間)の微調整が可能というメリットがある。
【0078】
以下、本発明の第5の実施の形態についての説明を図7を参照しながら行うが、その特徴部分を中心に説明するものとし、その他の、上記第1の実施の形態と同一部分については説明を省略する。なお、本実施の形態では、回転軸23の軸線方向に低圧側側板26を貫く複数の通風孔を前記ガス圧調整手段とする構成を採用している。
図7は、リーフシール25を回転軸23の軸線を通る断面より見た断面図であり、符号26aが前記通風孔を示している。この他にも、低圧側側板26として多孔質の材料を用いる構成も採用可能である。
【0079】
このような通風孔26aを備えた低圧側側板26を採用すると、高圧側からガスで加圧された際に前記隙間30を通るガスによって薄板29の上面29a及び下面29bに垂直に加わるガス圧の圧力分布は、上記第1の実施の形態と同様に、圧力分布30aに示す等圧線分布形状となる。すなわち、薄板29において、その先端側でかつ高圧側側板27側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布形状となる。
【0080】
このとき、薄板29の軸方向幅の任意の断面の半径方向圧力分布は、上記第1の実施の形態の図3(b)で説明したガス圧分布30b,30cのようになり、薄板上面29aと、薄板下面29b及び薄板先端面29cとの間に圧力荷重差((Fb+Fc)>Fa)を生じさせるので、この圧力荷重差が薄板29に対してその先端部を浮上させる方向の力として作用する。
【0081】
したがって、薄板29に生じた前記圧力荷重差により、その先端部を浮上させる方向の力が作用する。しかも、本実施の形態では、通風孔26aの孔形状を形成するだけなので製作しやすくて組立性も良く、製作コストを低くできる。更に、孔形状の配置や大きさにより複雑な圧力分布も形成可能となる。また、薄板の露出部が上記第2の実施の形態と比較して小さく、組立時の接触などによる薄板の変形が小さいというメリットがある。
【0082】
以下、本発明の第6の実施の形態についての説明を図8を参照しながら行うが、その特徴部分を中心に説明するものとし、その他の、上記第1の実施の形態と同一部分については説明を省略する。なお、本実施の形態では、前記低圧側隙間31の方が必ず高圧側隙間32よりも大きくなるように維持するための隙間寸法調整手段を更に備えている点が特に特徴的となっている。
図8の(a)は、リーフシール25を回転軸23の軸線を通る断面より見た断面図であり、(b)は(a)をC−C線より見た断面図である。
【0083】
同図に示すように、低圧側側板26と各薄板29との間には、低圧側側板26に向かって各薄板29が接近しようとした場合に、該薄板29を支持して、これら低圧側側板26及び各薄板29間の低圧側隙間31の隙間寸法を維持するための前記隙間寸法調整手段として、段形状部50(第1の段形状部)が設けられている。
この段形状部50は、図8(a)に示すように、回転軸23の軸線を通る断面で見た場合には、各薄板29側に向かって突出するように低圧側側板26の側に設けられており、また図8(b)に示すように、回転軸23の軸線に垂直をなす断面より見た場合には、環状の低圧側側板26に沿って回転軸23周りの全周に渡って連続した環状をなすリング形状の部品である。なお、この段形状部50は、低圧側側板26と別部品としても良いし、低圧側側板26と一体の部品としても良い。
【0084】
各薄板29を支持するためには、段形状部50を各薄板29側に極力接近させておく必要がある。しかしながら、あまり近づけすぎて各薄板29の側縁を段形状部50が圧迫して変形させることのないようにする必要があるので、段形状部50の厚み寸法をt1(回転軸23の軸心方向の厚み寸法)とし、低圧側隙間31の隙間寸法をt2とした場合には、t2≧t1(厚み寸法t1は、低圧側隙間31の隙間寸法t2と等しいか、もしくはそれよりも狭い)とする必要がある。この段形状部50によれば、各薄板29のずれあるいは変形を拘束することで、低圧側隙間31の隙間寸法t2以下になることを防ぐことができ、容易に所定の隙間寸法に維持することが可能となる。
【0085】
以上説明の本実施の形態のリーフシール25(軸シール機構)及びこれを備えたガスタービンによれば、段形状部50を設けたことで、各薄板29の位置が低圧側側板26の側に向かって接近しようとしても、これら薄板29が、段形状部50によって支持されることで接近が阻止されるようになっているので、軸シール機構組立時における組立誤差や、運転時における高圧側から低圧側に向かう流体圧による各薄板29の変形等が発生しても、各薄板29と低圧側側板26との間を所定の隙間寸法t2に維持することができる。
【0086】
これにより、各薄板29と低圧側側板26との間の低圧側隙間31を、各薄板29と高圧側側板27との間の高圧側隙間32よりも大きくするという、上記第1の実施の形態で説明した前記隙間寸法調節を確実に行わせることが可能となっている。よって、起動時等の動圧効果の小さい時でも、確実に各薄板29の先端を浮かせて回転軸23の周面23aとの間を非接触状態にできる。したがって、各薄板29と回転軸23との接触による過大な発熱及び摩耗を防止することができる。さらに、各薄板29と回転軸23との接触による発熱が防止されることにより、回転軸23でのサーマルバランスによる振動の発生を回避することも可能となる。なお、この他にも、上記第1の実施の形態で説明した効果と同様の効果が得られることは勿論である。
【0087】
次に、本発明の第7の実施の形態についての説明を図9を参照しながら行う。なお、本実施の形態は、上記第6の実施の形態の変形例に相当するものであるので、上記第6の実施の形態との相違点を中心に説明するものとし、その他の、上記第6の実施の形態と同一部分については説明を省略する。
図9の(a)は、リーフシール25を回転軸23の軸線を通る断面より見た断面図であり、(b)は(a)をD−D線より見た断面図である。
【0088】
同図に示すように、本実施の形態では、上記第6の実施の形態で説明した環状の前記段形状部50に、この環状の内周側及び外周側の空間を連通させる通気孔51を形成した点が特徴的となっている。この通気孔51は、図9(b)に示すように、複数個が互いに等間隔をおいて形成されたものとなっている。
このように、段形状部50に複数の通気孔51を形成したことで、各薄板29と低圧側側板26との間の隙間空間における、段形状部50を境とした、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れに対する抵抗が低減されるようになる。これにより、段形状部50による各薄板29の支持を確保しながらも、あたかも段形状部50が存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができるようになる。
【0089】
これにより、高圧側側板27から低圧側側板26に向かうガス圧が各薄板29に加わった場合に、これら薄板29の上下面に対して、回転軸23に対向する先端側でかつ高圧側側板27の側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布を広い範囲(図9(a)の実線矢印R1で示す範囲)に形成させることができ、例えば図9(a)の二点鎖線の矢印R2で示す狭い範囲のガス圧分布とならないようにすることができる。
したがって、広いガス圧分布を各薄板29に与えることができるので、各薄板29の広い範囲に渡ってその上下面に圧力差を確実に生じせしめて、これら薄板29を回転軸23の周面23aより浮かせるという薄板浮上のためのガス圧調整が的確に行えるようになる。
【0090】
次に、本発明の第8の実施の形態についての説明を図10を参照しながら行う。なお、本実施の形態は、上記第6の実施の形態の変形例に相当するものであるので、上記第6の実施の形態との相違点を中心に説明するものとし、その他の、上記第6の実施の形態と同一部分については説明を省略する。
図10の(a)は、リーフシール25を回転軸23の軸線を通る断面より見た断面図であり、(b),(c)は(a)をE−E線より見た断面図である。
【0091】
図10(b)に示すように、本実施の形態では、上記第6の実施の形態で説明した全周に渡って環状に連続した前記段形状部50の代わりに、互いに等しい間隔Gを置いた状態で、低圧側側板26に沿って回転軸23周りの環状をなすように間欠配置された複数枚の環状分割板50aから構成される段形状部50A(第2の段形状部)を、1周(1段)、低圧側側板26に固定した点が特に特徴的となっている。この段形状部50Aは、図10(a)に示すように、回転軸23の軸線を通る断面で見た場合には、各薄板29側に向かって突出するように低圧側側板26の側に設けられている。
なお、この段形状部50A(環状分割板50a)は、低圧側側板26と別部品としても良いし、低圧側側板26と一体の部品としても良い。
【0092】
本実施の形態では、上記第7の実施の形態の前記各通気孔51の代わりの役目を前記各間隔Gが行うので、各薄板29と低圧側側板26との間の隙間空間における、段形状部50Aを境とした、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れに対する抵抗が低減されるようになっている。これにより、段形状部50Aによる各薄板29の支持を確保しながらも、あたかも段形状部50Aが存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができるようになる。
【0093】
これにより、高圧側側板27から低圧側側板26に向かうガス圧が各薄板29に加わった場合に、これら薄板29の上下面に対して、回転軸23に対向する先端側でかつ高圧側側板27の側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布を広い範囲(図10(a)の実線矢印R1で示す範囲)に形成させることができ、例えば図10(a)の二点鎖線の矢印R2で示す狭い範囲のガス圧分布とならないようにすることができる。
したがって、広いガス圧分布を各薄板29に与えることができるので、各薄板29の広い範囲に渡ってその上下面に圧力差を確実に生じせしめて、これら薄板29を回転軸23の周面23aより浮かせるという薄板浮上のためのガス圧調整が的確に行えるようになる。
【0094】
なお、本実施の形態の変形例として、例えば図10(c)に示すように回転軸23を軸心とする同心円状に段形状部50Aを2周(2段)に配置したり、もしくは3周以上(3段以上)に配置する構成(図示せず)も勿論可能である。
【0095】
次に、本発明の第9の実施の形態についての説明を図11を参照しながら行う。なお、本実施の形態は、上記第6の実施の形態の変形例に相当するものであるので、上記第6の実施の形態との相違点を中心に説明するものとし、その他の、上記第6の実施の形態と同一部分については説明を省略する。
図11の(a)は、リーフシール25を回転軸23の軸線を通る断面より見た断面図であり、(b),(c)は(a)をF−F線より見た断面図である。
【0096】
図11(b)に示すように、本実施の形態では、上記第6の実施の形態で説明した全周に渡って環状に連続した前記段形状部50の代わりに、各薄板29側から低圧側側板26を見た場合に、該低圧側側板26の内周側から外周側に向かってスパイラル状に配置され、互いの間に間隔Gが設けられた複数枚のスパイラル板50bから構成される段形状部50B(第3の段形状部)を、低圧側側板26に固定した点が特に特徴的となっている。この段形状部50Bは、図11(a)に示すように、回転軸23の軸線を通る断面で見た場合には、各薄板29側に向かって突出するように低圧側側板26の側に設けられている。
そして、各スパイラル板50bは、各薄板29側から低圧側側板26を見た場合(すなわち図11(b)の視線で見た場合)に、各薄板29と交差するクロス方向に傾斜した状態で、低圧側側板26に固定されている。
なお、この段形状部50B(スパイラル板50b)は、低圧側側板26と別部品としても良いし、低圧側側板26と一体の部品としても良い。
【0097】
なお、本実施の形態の変形例として、例えば図11(c)に示すように、各スパイラル板50bを、各薄板29側から低圧側側板26を見た場合に、各薄板29と同方向かつ異なる傾斜角度(回転軸23の周面23aに対する傾斜角度)に傾斜した状態で、低圧側側板26に固定する構成も勿論採用可能である。しかしながら、図11(b)で示したクロス方向に傾斜させた方が、一枚あたりのスパイラル板50bにより多くの枚数の薄板29を支持させることができるのでより好ましいと言える。
【0098】
本実施の形態では、上記第7の実施の形態の前記各通気孔51の代わりの役目を前記各間隔Gが行うので、各薄板29と低圧側側板26との間の隙間空間における、段形状部50Bを境とした、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れに対する抵抗が低減されるようになっている。これにより、段形状部50Bによる各薄板29の支持を確保しながらも、あたかも段形状部50Bが存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができるようになる。
【0099】
これにより、高圧側側板27から低圧側側板26に向かうガス圧が各薄板29に加わった場合に、これら薄板29の上下面に対して、回転軸23に対向する先端側でかつ高圧側側板の側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布を広い範囲(図11(a)の実線矢印R1で示す範囲)に形成させることができ、狭い範囲のガス圧分布とならないようにすることができる。
したがって、広いガス圧分布を各薄板29に与えることができるので、各薄板29の広い範囲に渡ってその上下面に圧力差を確実に生じせしめて、これら薄板29を回転軸23の周面23aより浮かせるという薄板浮上のためのガス圧調整が的確に行えるようになる。
【0100】
次に、本発明の第10の実施の形態についての説明を図12を参照しながら行う。なお、本実施の形態は、上記第6の実施の形態の変形例に相当するものであるので、上記第6の実施の形態との相違点を中心に説明するものとし、その他の、上記第6の実施の形態と同一部分については説明を省略する。
図12は、リーフシール25を回転軸23の軸線を通る断面より見た断面図である。
【0101】
図12に示すように、本実施の形態では、上記第6の実施の形態で説明した低圧側薄板26側に設けられた前記段形状部50の代わりに、低圧側側板26に向かって突出するように各薄板29の側にそれぞれ設けられた段形状部50C(第4の段形状部)を設けた点が特に特徴的となっている。
各段形状部50Cは、それぞれの薄板29に一体に形成された突出部であり、互いの間に、各薄板29間に形成される隙間と同じ寸法の隙間が生じるようになっている。
【0102】
本実施の形態では、上記第7の実施の形態の前記各通気孔51の代わりの役目を、各段形状部50C間の隙間が行うので、各薄板29と低圧側側板26との間の隙間空間における、段形状部50Cを境とした、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間でのガス流れに対する抵抗が低減されるようになっている。これにより、段形状部50Cによる各薄板29の支持を確保しながらも、あたかも段形状部50Cが存在しないかのように、前記隙間空間における回転軸半径方向の圧力分布を形成させることができるようになる。
【0103】
これにより、高圧側側板27から低圧側側板26に向かうガス圧が各薄板29に加わった場合に、これら薄板29の上下面に対して、回転軸23に対向する先端側でかつ高圧側側板27の側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布を広い範囲(図12の実線矢印R1で示す範囲)に形成させることができ、例えば図12の二点鎖線の矢印R2で示す狭い範囲のガス圧分布とならないようにすることができる。
したがって、広いガス圧分布を各薄板29に与えることができるので、各薄板29の広い範囲に渡ってその上下面に圧力差を確実に生じせしめて、これら薄板29を回転軸23の周面23aより浮かせるという薄板浮上のためのガス圧調整が的確に行えるようになる。
また、本実施の形態では、各薄板29の形状を変えるだけで、低圧側側板26に加工あるいは取付けする必要がないので、製作コスト面でメリットが大きいという効果も有している。
【0104】
次に、本発明の第11の実施の形態についての説明を図13を参照しながら行う。なお、本実施の形態は、上記第6の実施の形態の変形例に相当するものであるので、上記第6の実施の形態との相違点を中心に説明するものとし、その他の、上記第6の実施の形態と同一部分については説明を省略する。
図13は、リーフシール25を回転軸23の軸線を通る断面より見た断面図である。
【0105】
図13に示すように、本実施の形態では、上記第6の実施の形態で説明した環状の前記段形状部50(第1の段形状部)が、低圧側側板26の半径方向に沿ってケーシング24の位置まで連続して形成されている点が特に特徴的となっている。すなわち、本実施の形態の段形状部50は、同図の断面で見た場合に、ケーシング24と低圧側側板26との接続部分である、低圧側側板26の付け根位置(基部)まで連続して幅広に形成されたものとなっている。なお、この段形状部50は、通常運転状態では、その各薄板29に対向する面が各薄板29に対して直接接触しておらず、両者の間には微少な隙間が形成された状態となっている。この段形状部50によれば、各薄板29のずれあるいは変形を拘束することで、低圧側隙間31の隙間寸法t2以下になることを防ぐことができ、容易に所定の隙間寸法に維持することが可能となる。
【0106】
以上説明の本実施の形態のリーフシール25(軸シール機構)及びこれを備えたガスタービンによれば、段形状部50を設けたことで、各薄板29の位置が低圧側側板26の側に向かって接近しようとしても、これら薄板29が、段形状部50によって支持されることで接近が阻止されるようになっているので、軸シール機構組立時における組立誤差や、運転時における高圧側から低圧側に向かう流体圧による各薄板29の変形等が発生しても、各薄板29と低圧側側板26との間を所定の隙間寸法t2に維持することができる。
【0107】
すなわち、各薄板29と、高圧側側板27及び低圧側側板26との間を、それぞれ所定の隙間寸法に形成させることができるので、高圧側と低圧側との間での圧力変動が生じても各隙間寸法が変化しにくくなるので、適用するシール差圧範囲を拡大することが可能となる。また、上述のように段形状部50と各薄板29との間には微少な隙間が形成されているので、高圧側側板27及び低圧側側板26と各薄板29との間の隙間公差をゆるめに設計でき、加工コストを低減させることができる。
なお、この他にも、上記第6の実施の形態で説明した効果と同様の効果が得られることは勿論である。
【0108】
次に、本発明の第12の実施の形態についての説明を、図14を参照しながら行う。なお、本実施の形態は、上記第11の実施の形態の変形例に相当するものであるので、上記第11の実施の形態との相違点を中心に説明するものとし、その他の、上記第11の実施の形態と同一部分については説明を省略する。
図14は、リーフシール25を回転軸23の軸線を通る断面より見た断面図である。
【0109】
図14に示すように、本実施の形態では、上記第11の実施の形態で説明した前記段形状部50に加えて、上記第3の実施の形態で図5(b)を参照して説明した前記高圧側隙間微調整用薄板35を、高圧側側板27と薄板29との間の隙間に配置した点が特に特徴的となっている。
この構成によれば、高圧側側板27から低圧側側板26に向かうガス圧が各薄板29に加わった場合に、これら薄板29の上下面に対して、回転軸23に対向する先端側でかつ高圧側側板27の側に位置する角部r1で最もガス圧が高く、かつ対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布を形成させることができる。
以上説明の本実施の形態のリーフシール25(軸シール機構)及びこれを備えたガスタービンによれば、上記第11の実施の形態及び上記第3の実施の形態と同様の作用効果を得ることが可能となる。
【0110】
次に、本発明の第13の実施の形態についての説明を、図15を参照しながら行う。なお、本実施の形態は、上記第12の実施の形態の変形例に相当するものであるので、上記第12の実施の形態との相違点を中心に説明するものとし、その他の、上記第12の実施の形態と同一部分については説明を省略する。
図15は、リーフシール25を回転軸23の軸線を通る断面より見た断面図である。
【0111】
図15に示すように、本実施の形態では、上記第12の実施の形態の高圧側側板27に、該高圧側側板27を回転軸23の軸線方向に貫く導圧孔100が、円周方向に複数設けられている点が特に特徴的となっている。
この構成によれば、高圧側領域のガスの一部を、各導圧孔100を介して高圧側側板27を通過させるように前記高圧側隙間微調整用薄板35に加えることができるので、高圧側隙間微調整用薄板35をより効果的に撓ませることが可能となる。したがって、上記第12の実施の形態の作用をより確実に得ることが可能となる。
以上説明の本実施の形態のリーフシール25(軸シール機構)及びこれを備えたガスタービンによれば、上記第12の実施の形態の効果をより確実に得ることが可能となる。
【0112】
以上に本発明の軸シール機構及びこれを備えたガスタービンの第1〜第13の実施の形態をそれぞれ説明してきたが、このガスタービンとしては、燃焼ガスを利用してタービン軸を回転させて動力を得る一般的なガスタービンに加え、航空機用ガスタービンエンジン等も含んでいる。また、本発明に係るガスタービンとしては、水蒸気を利用する蒸気タービン等の流体機械にも転用可能である。
また、本発明に係る軸シール機構としては、ガスタービン、ガスタービンエンジン、蒸気タービンなどの各種流体機械にも適用可能である。
また、上記第3,第4の各実施の形態の軸シール機構(リーフシール25)及びこれを備えたガスタービンに対して、上記説明の隙間寸法調整手段50,50A,50B,50Cを組み合わせる構成も採用可能である。この場合においても、隙間寸法調整手段50,50A,50B,50Cの採用による同様の作用効果が得られることは、勿論である。
【0113】
【発明の効果】
本発明の請求項1〜20のいずれかに記載の軸シール機構、または請求項21記載のガスタービンによれば、薄板と回転軸周面との間の角度を鋭角にし、かつ薄板に浮力が付与されるように圧力調整手段を設けたことで、共振点通過時などの回転軸の振動が大きいときには鋭角に取付けられた薄板が変形して回転軸との接触が緩和されることに加え、定格条件では回転軸の回転によって生じる動圧効果により、そして動圧効果の小さい起動時等にも薄板に生じる圧力荷重差により薄板の先端が回転軸の表面から浮上して回転軸との接触が回避される。したがって、薄板と回転軸との接触による過大な発熱及び摩耗を防止することができる。さらに、薄板と回転軸との接触による発熱が防止されることにより、回転軸におけるサーマルバランスによる振動の発生を回避することが可能となる。
【0114】
また、シール部材に薄板を使用することにより、従来のワイヤと比較してケーシングに対する固定部分が拡大されるので、薄板がケーシングに対して強固に固定される。これにより、従来のブラシシールにおけるワイヤ脱落のようなケーシングからの脱落を防止することができる。
また、薄板先端は回転軸の軸方向に高い剛性を有し回転軸の周方向には柔らかいので、従来のブラシシールに比べて差圧方向への変形を起こし難くなり、シール差圧の許容値を向上させることができる。
【0115】
また、薄板間の隙間を外周側と内周側とで等しくすることで薄板をより密に配置することが可能となり、薄板の先端と回転軸との隙間を非接触型のラビリンスシールなどと比べて飛躍的に小さくすることができる。これにより、ガスの漏れ量を低減することが可能となり、これをガスタービンに用いた場合には、その性能を向上させることができる。
したがって、以上説明の請求項1〜20のいずれかに記載の軸シール機構、または請求項21記載のガスタービンによれば、高圧側から低圧側へのガスの漏れ量を低減させるとともに耐摩耗性の向上を得ることが可能となる。
【0116】
さらに、上記請求項14〜17のいずれかもしくは上記請求項20に記載の軸シール機構、またはこの軸シール機構を備えた請求項21記載のガスタービンによれば、回転軸半径方向内周側と回転軸半径方向外周側との両空間の間を流れるガス流に対する抵抗が低減されるようになる。これにより、薄板の支持を確保しながらも、薄板と低圧側側板との間の隙間空間における回転軸半径方向の圧力分布を形成させることができる。
したがって、高圧側側板から低圧側側板に向かうガス圧が薄板に加わった場合に、該薄板の上下面に対して、回転軸に対向する先端側でかつ高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布の範囲をより広く形成させることができるようになるので、薄板の上下面における圧力差を確実に生じせしめて、該薄板を回転軸周面より浮かせるという薄板浮上のためのガス圧調整が的確にできるようになる。
【図面の簡単な説明】
【図1】本発明に係る軸シール機構を備えたガスタービンの第1の実施の形態を示す概略構成断面図である。
【図2】同実施の形態のリーフシール(軸シール機構)の斜視図である。
【図3】同実施の形態のリーフシールを示す図であって、(a)は回転軸の軸線を通る断面より見た断面図であり、(b)は(a)をB−B線より見た断面図である。
【図4】本発明に係る軸シール機構(リーフシール)の第2の実施の形態を示す図であって、回転軸の軸線を通る断面より見た断面図である。
【図5】本発明に係る軸シール機構(リーフシール)の第3の実施の形態を示す図であって、(a),(b)は回転軸の軸線を通る断面より見た断面図である。
【図6】本発明に係る軸シール機構(リーフシール)の第4の実施の形態を示す図であって、(a)はその斜視図であり、(b)はその変形例を示す斜視図である。
【図7】本発明に係る軸シール機構(リーフシール)の第5の実施の形態を示す図であって、回転軸の軸線を通る断面より見た断面図である。
【図8】本発明に係る軸シール機構(リーフシール)の第6の実施の形態を示す図であって、(a)は回転軸の軸線を通る断面より見た断面図であり、(b)は(a)をC−C線より見た断面図である。
【図9】本発明に係る軸シール機構(リーフシール)の第7の実施の形態を示す図であって、(a)は回転軸の軸線を通る断面より見た断面図であり、(b)は(a)をD−D線より見た断面図である。
【図10】本発明に係る軸シール機構(リーフシール)の第8の実施の形態を示す図であって、(a)は回転軸の軸線を通る断面より見た断面図であり、(b),(c)は(a)をE−E線より見た断面図である。
【図11】本発明に係る軸シール機構(リーフシール)の第9の実施の形態を示す図であって、(a)は回転軸の軸線を通る断面より見た断面図であり、(b),(c)は(a)をF−F線より見た断面図である。
【図12】本発明に係る軸シール機構(リーフシール)の第10の実施の形態を示す図であって、回転軸の軸線を通る断面より見た断面図である。
【図13】本発明に係る軸シール機構(リーフシール)の第11の実施の形態を示す図であって、回転軸の軸線を通る断面より見た断面図である。
【図14】本発明に係る軸シール機構(リーフシール)の第12の実施の形態を示す図であって、回転軸の軸線を通る断面より見た断面図である。
【図15】本発明に係る軸シール機構(リーフシール)の第13の実施の形態を示す図であって、回転軸の軸線を通る断面より見た断面図である。
【図16】従来の軸シール機構の一例を示す図であって、(a)は回転軸の軸線を通る断面より見た断面図であり、(b)は(a)のA−A線より見た断面図である。
【図17】従来の軸シール機構の他の例を示す斜視図である。
【符号の説明】
23・・・回転軸
23a・・・周面
23e・・・動翼
24・・・ケーシング
25・・・リーフシール(軸シール機構)
26・・・低圧側側板
26a・・・通風孔
27,35・・・高圧側側板,高圧側隙間微調整用薄板(可撓板)
29・・・薄板
29a・・・上面
29b・・・下面
30・・・隙間
30a・・・ガス圧分布
31・・・低圧側隙間(薄板と低圧側側板との間の隙間)
32・・・高圧側隙間(薄板と高圧側側板との間の隙間)
33・・・低圧側側板長さ(低圧側側板の回転軸半径方向の長さ寸法)
34・・・高圧側側板長さ(高圧側側板の回転軸半径方向の長さ寸法)
41,42・・・スリット付き可撓板
41a,42a・・・スリット
50・・・隙間寸法調整手段,第1の段形状部
50A・・・隙間寸法調整手段,第2の段形状部
50B・・・隙間寸法調整手段,第3の段形状部
50C・・・隙間寸法調整手段,第4の段形状部
50a・・・環状分割板
50b・・・スパイラル板
51・・・通気孔
100・・・導圧孔
G・・・間隔
g・・・ガス
r1・・・角部
r2・・・角部(対角)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shaft seal mechanism suitable for use in a rotating shaft of a large fluid machine such as a gas turbine, a steam turbine, a compressor, a water turbine, a refrigerator, and a pump.
The present invention also relates to a gas turbine that generates power by converting high-temperature and high-pressure gas into a turbine to expand the gas and converting the heat energy of the gas into mechanical rotational energy, and more particularly, a shaft seal mechanism applied to the rotating shaft thereof. About.
[0002]
[Prior art]
In the gas turbine, a shaft seal mechanism is provided between the stationary blade and the rotary shaft to reduce the amount of combustion gas leaking from the high pressure side to the low pressure side. As this shaft seal mechanism, a non-contact type labyrinth seal has been widely used. By the way, this labyrinth seal has a large amount of gas leakage because the gap at the tip of the fin has to be increased to some extent so that the gap at the tip of the fin does not come into contact even during shaft vibration during transient rotation or transient thermal deformation. . In place of such a labyrinth seal, there is a brush seal as a seal material developed with the aim of reducing the amount of leakage.
[0003]
16A and 16B are schematic configuration diagrams of this type of brush seal. In the figure, reference numeral 1 is a rotating shaft, reference numeral 2 is a casing, reference numeral 3 is a low-pressure side plate, reference numeral 4 is a high-pressure side plate, reference numeral 5 is a brazing portion, and reference numeral 6 is a wire. The wire 6 is composed of a filament having a suitable diameter so as to absorb vibration of the rotating shaft 1 or eccentricity due to thermal deformation, and a width of 3 to 5 mm so that there is no gap between the wires 6. It is a dense bunch of. Further, the wire 6 is attached to be inclined with respect to the rotational direction so as to form an acute angle with the outer periphery of the rotary shaft 1. The tip of the wire 6 is in contact with the outer periphery of the rotating shaft 1 with a predetermined preload, and this contact has a structure that reduces the amount of leakage in the axial direction.
[0004]
Since the wire 6 slides in contact with the rotating shaft 1 and generates heat in accordance with the atmospheric conditions or the peripheral speed and becomes in a red hot state, a heat resistant material such as Inconel or Hastelloy is used depending on the use conditions. In addition, since the sliding surface on the outer periphery of the rotating shaft 1 is worn together with the wire 6, the sliding surface of the rotating shaft 1 is coated with an abrasion resistant material. Furthermore, since the wire 6 has a small axial rigidity of the rotating shaft 1, the inner diameter of the low-pressure side plate 3 is made substantially equal to the outer periphery of the rotating shaft 1 to prevent the wire 6 from being damaged.
[0005]
In addition, for example, a leaf seal 10 as shown in FIG. 17 has been developed. As shown in the figure, the leaf seal 10 has a structure in which flat plate-like thin plates 18 having a predetermined width dimension in the axial direction of the rotary shaft 11 are arranged in multiple layers in the circumferential direction of the rotary shaft 11.
These thin plates 18 are brazed (brazed portion 15) only in the outer peripheral side base end in the casing 12, and by sealing the outer periphery of the rotating shaft 11, the space around the rotating shaft 11 is separated from the high pressure side region and the low pressure. It is divided into side areas. Further, on both sides of the thin plate 18, a high-pressure side plate 14 is attached to the high-pressure side region, and a low-pressure side plate 13 is attached to the low-pressure side region as guide plates in the pressure acting direction.
[0006]
The thin plate 18 is designed to have a predetermined rigidity determined by the plate thickness in the axial direction of the rotary shaft 11. The thin plate 18 is attached to the casing 12 so that the angle formed with the peripheral surface of the rotary shaft 11 with respect to the rotation direction of the rotary shaft 11 is an acute angle. Although the rotary shaft 11 is in contact with the preload, the tip of the thin plate 18 is lifted by the dynamic pressure effect caused by the rotation of the rotary shaft 11 when the rotary shaft 11 rotates, so the thin plate 18 and the rotary shaft 11 are not in contact with each other. It becomes a state.
A slight gap 19 is provided between the flat thin plates 18 arranged in multiple layers. Since the gap 19 has a sufficiently large seal diameter, in other words, the diameter of the rotating shaft 11 is sufficiently large, it can be regarded as substantially constant from the outer peripheral side proximal end to the inner peripheral side distal end.
[0007]
In the shaft sealing mechanism configured as described above, the thin plates 18 having a width in the axial direction of the rotating shaft 11 are arranged in multiple layers in the circumferential direction of the rotating shaft 11, and these thin plates 18 are arranged around the rotating shaft 11. It has a soft flexibility in the direction and a highly rigid seal mechanism in the axial direction.
According to this sealing mechanism, the thin plates 18 that are sealing members are arranged in parallel in the axial direction of the rotary shaft 11, so that brazing on the outer peripheral side fixed to the casing 12 is strong in the axial direction of the rotary shaft 11. It will be something. As a result, the thin plate 18 can be prevented from falling off the casing 12 like the wire dropping from the casing found in the conventional brush seal.
[0008]
[Problems to be solved by the invention]
However, the brush seal described above has the following problems.
That is, in this brush seal, leakage from between the wires 6 and leakage from the sliding surface where the tip of the wire 6 is in contact with the outer periphery of the rotary shaft 1 are problematic, but the seal differential pressure is the wire diameter of the wire 6, If the allowable value determined by the arrangement or the like of the low-pressure side plate 3 is exceeded, the entire wire 6 may be deformed and fall down on the low-pressure side, and the gap between the wire 6 and the rotating shaft 1 may be blown out and the sealing function may be lost. It is a problem that there is.
[0009]
The rigidity of the wire 6 constituting the brush seal is determined by the followability of the rotating shaft 1 with respect to the shaft runout and the appropriate preload with the rotating shaft 1, but the rigidity is increased by increasing the wire diameter of the wire 6 or the like. There are also limitations. Therefore, the seal differential pressure in one axial direction of the rotating shaft governed by the rigidity of the wire 6 is limited to about 0.5 MPa, and a large differential pressure cannot be sealed. Further, the wire diameter of the wire 6 is usually very thin, about 50 to 100 μm, and there is a danger that the wire 6 will break and fall off when it comes into contact with the peripheral surface of the rotating shaft 1 and slides. There was a problem to use over time.
[0010]
Further, the amount of gas leakage from the tip of the wire 6 is remarkably smaller than that of a labyrinth seal or the like because the wire 6 contacts and slides on the peripheral surface of the rotating shaft 1, but the amount of leakage from the tip of the wire 6 There is also a problem that it is difficult to keep the small and stable.
Further, since the wire 6 and the peripheral surface of the rotating shaft 1 are in contact with each other and slide, the surface of the rotating shaft 1 needs to be coated with a wear resistant material. However, a technique for forming a coating of a wear-resistant material that can withstand long-term use on the peripheral surface of the large-diameter rotating shaft 1 has not been established, and the wear of the wire 6 and the rotating shaft 1 is large. Life is short and replacement frequency is high.
[0011]
The above-described leaf seal 10 also has the following problems.
The leaf seal 10 has a structure in which the tip of the thin plate 18 is lifted from the surface of the rotating shaft 11 by a dynamic pressure effect generated by the rotation of the rotating shaft 11 to avoid contact with the rotating shaft 11 and to prevent excessive heat generation and wear. It has become. However, when the low-pressure side plate 13 and the high-pressure side plate 14 are provided so that the gap between the low-pressure side plate 13 and the thin plate 18 and the gap between the high-pressure side plate 14 and the thin plate 18 are equal, the pressure is applied from the high-pressure side. It is confirmed that a pressure load is applied to the thin plate 18 so as to deform it toward the radial center of the rotary shaft 11, and a non-contact state is brought about at the time of start-up with a small dynamic pressure effect. It was difficult to make.
[0012]
Therefore, in both the brush seal and the leaf seal described above, further improvement is required to achieve both the reduction of gas leakage and the improvement of wear resistance.
[0013]
The present invention has been made in view of the above circumstances, and provides a shaft seal mechanism that reduces the amount of gas leakage from the high-pressure side to the low-pressure side and is excellent in wear resistance, and a gas turbine including the shaft seal mechanism. It is aimed.
[0014]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
That is, the shaft seal mechanism according to claim 1 of the present invention has a width in the axial direction of the rotating shaft, the tip slides on the peripheral surface of the rotating shaft, and a gap is formed between the outer peripheral base ends. A plurality of flexible thin plates fixed to the side are provided in multiples so that the outer periphery of the rotary shaft can be sealed in the circumferential direction of the rotary shaft, and the thin plate and the peripheral surface of the rotary shaft form an acute angle, A shaft sealing mechanism in which a low-pressure side plate and a high-pressure side plate are provided on both sides of the thin plate in the rotational axis direction, respectively, and the thin plate is viewed in a cross section in a virtual plane perpendicular to the width direction. When the gas pressure from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, the upper surface at an arbitrary position along the cross section of the thin plate is applied to the thin plate. The gas pressure applied to the lower surface is higher than the gas pressure applied Gas pressure regulating means is provided thatThe gas pressure adjusting means adjusts the gap size so that the gap between the thin plate and the low-pressure side plate is larger than the gap between the thin plate and the high-pressure side plate.It is characterized by that.
[0015]
According to a second aspect of the present invention, the shaft seal mechanism has a width in the axial direction of the rotary shaft, the tip slides on the peripheral surface of the rotary shaft, and the outer peripheral base end is fixed to the casing side with a gap therebetween. A plurality of thin plates having flexibility are provided in multiple numbers so that the outer periphery of the rotary shaft can be sealed in the circumferential direction of the rotary shaft, and the thin plate and the peripheral surface of the rotary shaft form an acute angle, and the rotation of the thin plate A shaft seal mechanism in which a low-pressure side plate and a high-pressure side plate are provided on both sides in the axial direction. When gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, On the other hand, there is provided a gas pressure adjusting means for forming a gas pressure distribution in which the gas pressure is highest at the corner located on the tip side and on the side of the high-pressure side plate and the gas pressure gradually decreases toward the diagonal. IsThe gas pressure adjusting means adjusts the gap size so that the gap between the thin plate and the low-pressure side plate is larger than the gap between the thin plate and the high-pressure side plate.It is characterized by that.
[0016]
According to the shaft seal mechanism of the first or second aspect, by providing the gas pressure adjusting means, a cross section of the thin plate is taken along a virtual plane perpendicular to the width direction, and a surface facing the rotation axis of the thin plate is provided. When the gas pressure applied from the high pressure side plate to the low pressure side plate is applied to the thin plate, the lower surface and the back side thereof are the upper surface, than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate. Since the gas pressure applied to the lower surface is higher, the tip of the thin plate is lifted and is not in contact with the rotating shaft.
[0017]
This will be described in detail. The gas flowing from the high pressure side toward the low pressure side flows between the rotating shaft peripheral surface and the thin plate tip, and along the upper and lower surfaces of each thin plate. At this time, the gas flowing along the upper and lower surfaces of each thin plate flows from between the high-pressure side plate and the rotating shaft peripheral surface, flows in a diagonal direction, and simultaneously applies vertically to the upper and lower surfaces of the thin plate. The pressure has a triangular distribution shape that is larger as it is closer to the distal end portion and is smaller toward the outer peripheral side proximal end. The pressure distribution shapes on the upper and lower surfaces are substantially the same as each other. However, since the thin plates are arranged obliquely so as to form an acute angle with respect to the circumferential surface of the rotating shaft, When the gas pressures at the upper and lower surfaces at arbitrary points from the outer peripheral proximal end side to the distal end side of the thin plate are compared, a difference occurs between the two.
[0018]
That is, since the gas pressure applied to the lower surface (referred to as Fb) is higher than the gas pressure applied to the upper surface (referred to as Fa), it acts in a direction to deform the thin plate so as to float from the rotating shaft. At this time, the portion near the tip of the thin plate is reversed, and gas pressure is applied only to the upper surface (if the cutting edge of the thin plate is cut obliquely so as to make surface contact with the circumferential surface of the rotating shaft, the portion corresponding to the lower surface However, this force acts in the direction that the gas pressure flowing between the rotating shaft peripheral surface and the thin plate tip floats from the rotating shaft peripheral surface (this is referred to as Fc). Since it cancels out, the force which tries to hold down the thin-plate front-end | tip to a rotating shaft is not produced. Therefore, since the pressure load due to the gas pressure applied to the thin plate becomes (Fb + Fc)> Fa, it is possible to deform the thin plate so that it floats from the circumferential surface of the rotating shaft.
[0019]
In addition, since the size of the fixing portion relative to the casing can be made relatively large as compared with the wire of the conventional brush seal, the thin plate can be firmly fixed to the casing.
The tip of the thin plate has high rigidity in the axial direction of the rotating shaft and is soft in the circumferential direction of the rotating shaft, so that deformation in the differential pressure direction (axial direction) is difficult to occur, and the seal differential pressure is allowed. In addition to increasing the value, the contact between the thin plate and the rotating shaft is relaxed when the rotating shaft vibrates.
[0021]
Further, in claim 1 or 2 aboveAccording to the described shaft seal mechanism, when pressurized from the high pressure side, the gas tries to flow from the high pressure side to the low pressure side through the thin plate. By making the gap larger than the gap between the thin plate and the high-pressure side plate and leaving a wide space, the gas that flows from between the high-pressure side plate and the rotating shaft circumferential surface flows along the upper and lower surfaces of the thin plate. At the same time as it flows widely toward the diagonal, a low-pressure region spreads at the outer peripheral base end. As a result, the gas pressure distribution applied to the upper and lower surfaces of the thin plate at an arbitrary position along the cross-section perpendicular to the width direction of the thin plate is a triangular shape that gradually decreases from the thin plate front end to the outer peripheral base end. Can do. Therefore, for the reason described above, a non-contact state can be formed by generating a pressure difference between the upper and lower surfaces of the thin plate and deforming the thin plate so as to float from the circumferential surface of the rotating shaft.
[0022]
Claim3The shaft seal mechanism described isA plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples so that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, and a low-pressure side plate and a high-pressure plate on both sides of the thin plate in the rotating shaft direction, respectively. A shaft seal mechanism provided with a side plate, wherein the thin plate is viewed in cross-section in a virtual plane perpendicular to the width direction of the thin plate, the surface facing the rotation axis of the thin plate is the lower surface, and the back side is the upper surface. On the other hand, when a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied, the gas pressure applied to the lower surface is higher than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate. Gas pressure adjusting means is provided,The gas pressure adjusting means is a side plate size adjustment in which the length dimension of the low pressure side plate in the radial direction of the rotation axis is shorter than the length dimension of the high pressure side plate in the radial direction of the rotation axis. .
According to a fourth aspect of the present invention, the shaft seal mechanism has a width in the axial direction of the rotary shaft, the tip slides on the peripheral surface of the rotary shaft, and the outer peripheral base end is fixed to the casing side with a gap therebetween. A plurality of thin plates having flexibility are provided in multiple numbers so that the outer periphery of the rotary shaft can be sealed in the circumferential direction of the rotary shaft, and the thin plate and the peripheral surface of the rotary shaft form an acute angle, and the rotation of the thin plate A shaft seal mechanism in which a low-pressure side plate and a high-pressure side plate are provided on both sides in the axial direction, and when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, On the other hand, there is provided a gas pressure adjusting means that forms a gas pressure distribution in which the gas pressure is highest at the corner located on the tip side and on the high-pressure side plate and the gas pressure gradually decreases toward the diagonal. And the gas pressure adjusting means is configured such that the rotary shaft half of the low-pressure side plate is Characterized in that it is a plate dimensioning to the direction of the length shorter than the length of the rotary shaft radial direction of the high-pressure side plate.
[0023]
Claims above3 orAccording to the shaft seal mechanism described in No. 4, when pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate. Gas flowing from between the high pressure side plate and the rotating shaft peripheral surface by making the length dimension in the direction shorter than the length dimension in the radial direction of the rotation axis of the high pressure side plate and leaving a wide space on the low pressure side Flows widely diagonally along the upper and lower surfaces of the thin plate, and at the same time, a low pressure region spreads at the outer peripheral base end. As a result, the gas pressure distribution applied to the upper and lower surfaces of the thin plate at an arbitrary position along the cross-section perpendicular to the width direction of the thin plate is a triangular shape that gradually decreases from the thin plate front end to the outer peripheral base end. Can do. Therefore, for the reason described above, a non-contact state can be formed by generating a pressure difference between the upper and lower surfaces of the thin plate and deforming the thin plate so as to float from the circumferential surface of the rotating shaft.
[0024]
The shaft seal mechanism according to claim 5 is:A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples so that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, and a low-pressure side plate and a high-pressure plate on both sides of the thin plate in the rotating shaft direction, respectively. A shaft seal mechanism provided with a side plate, wherein the thin plate is viewed in cross-section in a virtual plane perpendicular to the width direction of the thin plate, the surface facing the rotation axis of the thin plate is the lower surface, and the back side is the upper surface. On the other hand, when a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied, the gas pressure applied to the lower surface is higher than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate. Gas pressure adjusting means is provided,The gas pressure adjusting means is a flexible plate that is arranged on the high-pressure side of the thin plate and has flexibility in the direction of the rotation axis.
According to a sixth aspect of the present invention, the shaft seal mechanism has a width in the axial direction of the rotary shaft, the tip slides on the peripheral surface of the rotary shaft, and the outer peripheral base end is fixed to the casing side with a gap therebetween. A plurality of thin plates having flexibility are provided in multiple numbers so that the outer periphery of the rotary shaft can be sealed in the circumferential direction of the rotary shaft, and the thin plate and the peripheral surface of the rotary shaft form an acute angle, and the rotation of the thin plate A shaft seal mechanism in which a low-pressure side plate and a high-pressure side plate are provided on both sides in the axial direction, and when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, On the other hand, there is provided a gas pressure adjusting means that forms a gas pressure distribution in which the gas pressure is highest at the corner located on the tip side and on the high-pressure side plate and the gas pressure gradually decreases toward the diagonal. The gas pressure adjusting means is disposed on the high pressure side of the thin plate. Characterized in that it is a flexible plate having flexibility in the rotation axis direction.
[0025]
Claim 5 aboveOr 6According to the described shaft seal mechanism, when pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate, but at this time, it has flexibility in the rotation axis direction. A flexible plate is provided on the high-pressure side of the thin plate (for example, the high-pressure side plate is formed into a thin plate having flexibility in the rotation axis direction, or the gap between the high-pressure side plate and the thin plate is arranged in the rotation axis direction. Etc.) and the flexure of the flexible plate due to the gas pressure on the high pressure side narrows the gap between the thin plate and the high pressure side plate, and the gap between the thin plate and the low pressure side plate. Smaller. Therefore, the gas flowing in between the high-pressure side plate and the peripheral surface of the rotary shaft flows widely diagonally along the upper and lower surfaces of the thin plate, and at the same time, a low-pressure region spreads at the outer peripheral base end. As a result, the gas pressure distribution applied to the upper and lower surfaces of the thin plate at an arbitrary position along the cross-section perpendicular to the width direction of the thin plate is a triangular shape that gradually decreases from the thin plate front end to the outer peripheral base end. Can do. Therefore, for the reason described above, a non-contact state can be formed by generating a pressure difference between the upper and lower surfaces of the thin plate and deforming the thin plate so as to float from the circumferential surface of the rotating shaft.
[0026]
Claim7The shaft seal mechanism described isA plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples so that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, and a low-pressure side plate and a high-pressure plate on both sides of the thin plate in the rotating shaft direction, respectively. A shaft seal mechanism provided with a side plate, wherein the thin plate is viewed in cross-section in a virtual plane perpendicular to the width direction of the thin plate, the surface facing the rotation axis of the thin plate is the lower surface, and the back side is the upper surface. On the other hand, when a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied, the gas pressure applied to the lower surface is higher than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate. Gas pressure adjusting means is provided,The gas pressure adjusting means is a flexible plate with slits that is arranged on the high pressure side of the thin plate, has flexibility in the direction of the rotation axis, and has two or more slits formed on the entire circumference thereof. It is characterized by that.
The shaft seal mechanism according to claim 8 has a width in the axial direction of the rotating shaft, the tip slides on the peripheral surface of the rotating shaft, and the outer peripheral base end is fixed to the casing side with a gap therebetween. A plurality of thin plates having flexibility are provided in multiple numbers so that the outer periphery of the rotary shaft can be sealed in the circumferential direction of the rotary shaft, and the thin plate and the peripheral surface of the rotary shaft form an acute angle, and the rotation of the thin plate A shaft seal mechanism in which a low-pressure side plate and a high-pressure side plate are provided on both sides in the axial direction, and when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, On the other hand, there is provided a gas pressure adjusting means that forms a gas pressure distribution in which the gas pressure is highest at the corner located on the tip side and on the high-pressure side plate and the gas pressure gradually decreases toward the diagonal. The gas pressure adjusting means is disposed on the high pressure side of the thin plate and Flexible in the rotational axis direction, and characterized in that it is a slotted flexible plate, the entire circumference at two points or more slits are formed.
[0027]
Claims above7 or 8According to the described shaft seal mechanism, when pressurized from the high pressure side, gas tends to flow from the high pressure side to the low pressure side through the thin plate. In addition, a flexible plate with slits in which two or more slits are formed on the entire circumference is provided on the high pressure side of the thin plate (for example, two or more slit shapes are formed on the entire circumference of the high voltage side plate). A thin plate having flexibility in the direction of the rotation axis, or a thin wall having flexibility in the direction of the rotation axis and having two or more slits around the entire circumference between the high-pressure side plate and the thin plate. And the flexure of the flexible plate due to the gas pressure on the high pressure side narrows the gap between the thin plate and the high pressure side plate, and becomes smaller than the gap between the thin plate and the low pressure side plate. Therefore, the gas flowing in between the high-pressure side plate and the peripheral surface of the rotary shaft flows widely diagonally along the upper and lower surfaces of the thin plate, and at the same time, a low-pressure region spreads at the outer peripheral base end. As a result, the gas pressure distribution applied to the upper and lower surfaces of the thin plate at an arbitrary position along the cross-section perpendicular to the width direction of the thin plate is a triangular shape that gradually decreases from the thin plate front end to the outer peripheral base end. Can do. Therefore, for the reason described above, a non-contact state can be formed by generating a pressure difference between the upper and lower surfaces of the thin plate and deforming the thin plate so as to float from the circumferential surface of the rotating shaft.
[0028]
Claim9The shaft seal mechanism described isA plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples so that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, and a low-pressure side plate and a high-pressure plate on both sides of the thin plate in the rotating shaft direction, respectively. A shaft seal mechanism provided with a side plate, wherein the thin plate is viewed in cross-section in a virtual plane perpendicular to the width direction of the thin plate, the surface facing the rotation axis of the thin plate is the lower surface, and the back side is the upper surface. On the other hand, when a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied, the gas pressure applied to the lower surface is higher than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate. Gas pressure adjusting means is provided,The gas pressure adjusting means is a plurality of ventilation holes penetrating the low-pressure side plate in the axial direction of the rotating shaft.
The shaft seal mechanism according to claim 10 has a width in the axial direction of the rotating shaft, the tip slides on the peripheral surface of the rotating shaft, and the outer peripheral side proximal end is fixed to the casing side with a gap therebetween. A plurality of thin plates having flexibility are provided in multiple numbers so that the outer periphery of the rotary shaft can be sealed in the circumferential direction of the rotary shaft, and the thin plate and the peripheral surface of the rotary shaft form an acute angle, and the rotation of the thin plate A shaft seal mechanism in which a low-pressure side plate and a high-pressure side plate are provided on both sides in the axial direction, and when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, On the other hand, there is provided a gas pressure adjusting means that forms a gas pressure distribution in which the gas pressure is highest at the corner located on the tip side and on the high-pressure side plate and the gas pressure gradually decreases toward the diagonal. And the gas pressure adjusting means is arranged in the axial direction of the rotating shaft. It is a plurality of ventilation holes through the pressure side side plate.
[0029]
Claims above9 or 10According to the described shaft seal mechanism, when pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate. At this time, the low pressure side plate in the axial direction of the rotating shaft A plurality of ventilation holes are provided in the low-pressure side plate (for example, a plurality of pressure guide holes formed in the direction of the rotation axis with respect to the low-pressure side plate are provided, or the material of the low-pressure side plate is provided. As a result, the gas flowing in between the high-pressure side plate and the rotary shaft peripheral surface flows widely diagonally along the top and bottom surfaces of the thin plate, and at the same time, A low pressure area spreads at the end. As a result, the gas pressure distribution applied to the upper and lower surfaces of the thin plate at an arbitrary position along the cross-section perpendicular to the width direction of the thin plate is a triangular shape that gradually decreases from the thin plate front end to the outer peripheral base end. Can do. Therefore, for the reason described above, a non-contact state can be formed by generating a pressure difference between the upper and lower surfaces of the thin plate and deforming the thin plate so as to float from the circumferential surface of the rotating shaft.
[0030]
Claim11The shaft seal mechanism described has a plurality of possible shafts having a width in the axial direction of the rotary shaft, the tip sliding on the peripheral surface of the rotary shaft, and a gap between each other and a base end on the outer peripheral side fixed to the casing side. A thin plate having flexibility is provided in multiple directions so that the outer periphery of the rotary shaft can be sealed in the circumferential direction of the rotary shaft, and the thin plate and the peripheral surface of the rotary shaft are an axis seal mechanism, and the thin plateAnd the low-pressure side plate,A gas passage space that allows passage of gas from the high pressure side to the low pressure side is formed.
[0031]
Claims above11According to the described shaft seal mechanism, when pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate, but at this time, on the low pressure side in the axial direction of the thin plate, By forming a gas passage space that allows gas to pass from the high-pressure side to the low-pressure side, the gas flowing from between the high-pressure side plate and the rotating shaft peripheral surface is diagonally formed along the upper and lower surfaces of the thin plate. At the same time, a low pressure region spreads at the outer peripheral base end. As a result, the gas pressure distribution applied to the upper and lower surfaces of the thin plate at an arbitrary position along the cross-section perpendicular to the width direction of the thin plate is a triangular shape that gradually decreases from the thin plate front end to the outer peripheral base end. Can do. Therefore, for the reasons described above, a pressure difference between the upper and lower surfaces of the thin plate can be generated, and the thin plate can be deformed so as to float from the peripheral surface of the rotating shaft to form a non-contact state.
[0032]
Claim12The shaft seal mechanism described isAny one of Claims 1, 2, 5-8.In the shaft seal mechanism described in the above, when the thin plate is about to approach the low pressure side plate between the low pressure side plate and the thin plate, the thin plate is supported, and the low pressure side plate and A gap dimension adjusting means for maintaining a gap dimension between the thin plates is provided.
[0033]
Claim13The shaft seal mechanism described in the claims12In the shaft seal mechanism described above, the gap size adjusting means is a first step-shaped portion provided on the low-pressure side plate so as to protrude toward the thin plate, and the first step-shaped portion Is characterized by having an annular shape around the rotation axis along the low-pressure side plate.
[0034]
Claim14The shaft seal mechanism described in the claims13In the shaft seal mechanism described above, the first step-shaped portionIn addition,A vent hole is formed to communicate the annular inner and outer peripheral spaces.
[0035]
Claim15The shaft seal mechanism described in the claims12In the shaft seal mechanism described above, the gap dimension adjusting meansButA second step-shaped portion provided on the low-pressure side plate so as to protrude toward the thin plate, and the second step-shaped portion is spaced apart from the low-pressure side. It is characterized by comprising a plurality of annular dividing plates arranged intermittently so as to form an annular shape around the rotation axis along the side plate.
[0036]
Claim16The shaft seal mechanism described in the claimsAny one of 13-15In the shaft sealing mechanism described in (1), the first or second step-shaped portion is provided with a plurality of steps concentrically with the rotating shaft as an axis.
[0037]
Claim17The shaft seal mechanism described in the claims12In the shaft seal mechanism described above, the gap dimension adjusting means is a third step shape portion provided on the low pressure side plate side so as to protrude toward the thin plate side, and the third step shape portion However, when the low-pressure side plate is viewed from the thin plate side, the low-pressure side plate is composed of a plurality of spiral plates arranged in a spiral shape from the inner peripheral side to the outer peripheral side. , Are spaced apart from each other.
[0038]
Claim18The shaft seal mechanism described in the claims13The shaft seal mechanism described above is characterized in that the first step-shaped portion is formed to a position of the casing along a radial direction of the low-pressure side plate.
[0039]
Claim19The shaft seal mechanism described in the claims18The shaft seal mechanism described above is characterized in that a pressure guide hole is formed in the high-pressure side plate so as to penetrate the high-pressure side plate in the axial direction of the rotary shaft.
[0040]
Claim20The shaft seal mechanism described in the claims12The shaft seal mechanism described above is characterized in that the gap dimension adjusting means is a fourth step-shaped portion provided on the thin plate side so as to protrude toward the low-pressure side plate.
[0041]
Claims above12-20According to any of the shaft seal mechanisms described above, by providing the gap dimension adjusting means, even if the position of the thin plate approaches the low-pressure side plate side, the thin plate is supported by the gap dimension adjusting means. Therefore, even if there is an assembly error during assembly of the shaft seal mechanism or deformation of the thin plate due to fluid pressure from the high pressure side to the low pressure side during operation, the thin plate And the low-pressure side plate can be maintained at a predetermined gap size.
Therefore, the gap dimension between the thin plate and the low-pressure side plate can be reliably kept larger than the gap dimension between the thin plate and the high-pressure side plate. Thereby, since the effect | action of any of Claim 3, 5, 6 can be obtained reliably, the pressure difference in the upper and lower surfaces of a thin plate is produced, this thin plate is deformed so that it floats from the rotating shaft peripheral surface, A non-contact state can be reliably formed even when the dynamic pressure effect is small, such as during startup.
[0042]
Furthermore, the claim14According to the described shaft seal mechanism, the first step-shaped portion in the gap space between the thin plate and the low-pressure side plate is formed by forming the air holes in the first step-shaped portion which is the gap dimension adjusting means. The resistance to the gas flow between the space on the inner peripheral side in the radial direction of the rotating shaft and the outer peripheral side in the radial direction of the rotating shaft at the boundary is reduced. Thereby, while ensuring the support of the thin plate by the first step shape portion, it is possible to form a pressure distribution in the radial direction of the rotation axis in the gap space as if the first step shape portion does not exist. it can.
Therefore, when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, the corner portion located on the tip side facing the rotation axis and on the high-pressure side plate side with respect to the upper and lower surfaces of the thin plate. Since the gas pressure distribution range in which the gas pressure is highest and the gas pressure gradually decreases toward the diagonal can be made wider, it is possible to reliably generate a pressure difference between the upper and lower surfaces of the thin plate, It is possible to accurately adjust the gas pressure for ascending the thin plate so that the thin plate is floated from the circumferential surface of the rotating shaft.
[0043]
In addition, the above claims15According to the described shaft seal mechanism, the second step-shaped portion that is the gap dimension adjusting means is a plurality of annular divided plates that are annularly arranged at intervals from each other, so that the thin plate and the low-pressure side plate The resistance to the gas flow between the space on the inner peripheral side in the radial direction of the rotation axis and the outer peripheral side in the radial direction of the rotation axis with the second step shape portion as a boundary in the gap space between them is reduced. . Thereby, while ensuring the support of the thin plate by the second step shape portion, it is possible to form a pressure distribution in the radial direction of the rotation axis in the gap space as if the second step shape portion does not exist. it can.
Therefore, when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, the corner portion located on the tip side facing the rotation axis and on the high-pressure side plate side with respect to the upper and lower surfaces of the thin plate. Since the gas pressure distribution range in which the gas pressure is highest and the gas pressure gradually decreases toward the diagonal can be made wider, it is possible to reliably generate a pressure difference between the upper and lower surfaces of the thin plate, It is possible to accurately adjust the gas pressure for ascending the thin plate so that the thin plate is floated from the circumferential surface of the rotating shaft.
Claims16Also in the shaft seal mechanism described above,15The same operation as the shaft seal mechanism described can be obtained.
[0044]
In addition, the above claims17According to the described shaft seal mechanism, the third step-shaped portion that is the gap dimension adjusting means is a plurality of spiral plates arranged in a spiral shape with a space between each other, so that the thin plate and the low-pressure side plate The resistance against the gas flow between the space between the inner peripheral side in the rotational axis radial direction and the outer peripheral side in the radial direction of the rotational axis in the gap space is reduced. Thereby, while ensuring the support of the thin plate by the third step shape portion, it is possible to form the pressure distribution in the radial direction of the rotation axis in the gap space as if the third step shape portion does not exist. it can.
Therefore, when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, the corner portion located on the tip side facing the rotation axis and on the high-pressure side plate side with respect to the upper and lower surfaces of the thin plate. Since the gas pressure distribution range in which the gas pressure is highest and the gas pressure gradually decreases toward the diagonal can be made wider, it is possible to reliably generate a pressure difference between the upper and lower surfaces of the thin plate, It is possible to accurately adjust the gas pressure for ascending the thin plate so that the thin plate is floated from the circumferential surface of the rotating shaft.
[0045]
In addition, the above claims20According to the described shaft seal mechanism, the fourth step-shaped portion that is the gap dimension adjusting means is the protruding portion provided on the thin plate side, so that the gap space between the thin plate and the low-pressure side plate is Since the gas flow between both the space on the radially inner periphery side of the rotating shaft and the radially outer periphery side of the rotating shaft with the stepped shape part 4 as a boundary can flow through the gap between the thin plates, Resistance to gas flow is reduced. Thereby, while ensuring the support of the thin plate by the fourth step shape portion, it is possible to form the pressure distribution in the rotation axis radial direction in the gap space as if the fourth step shape portion does not exist. it can.
Therefore, when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, the corner portion located on the tip side facing the rotation axis and on the high-pressure side plate side with respect to the upper and lower surfaces of the thin plate. Since the gas pressure distribution range in which the gas pressure is highest and the gas pressure gradually decreases toward the diagonal can be made wider, it is possible to reliably generate a pressure difference between the upper and lower surfaces of the thin plate, It is possible to accurately adjust the gas pressure for ascending the thin plate so that the thin plate is floated from the circumferential surface of the rotating shaft.
[0046]
Claim21The gas turbine according to the present invention converts high-temperature and high-pressure gas into mechanical rotation energy by guiding high-temperature and high-pressure gas to a casing and spraying it on a rotor blade of a rotating shaft that is rotatably supported inside the casing. A gas turbine for generating power is provided with the shaft seal mechanism according to any one of claims 1 to 17.
Claims above21According to the gas turbine described above,20The same action as the shaft seal mechanism described in any of the above can be obtained.
[0047]
DETAILED DESCRIPTION OF THE INVENTION
The embodiments of the shaft seal mechanism and the gas turbine equipped with the shaft seal mechanism according to the present invention will be described below, but it is needless to say that the present invention is not limited to these.
[0048]
First, the first embodiment will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of the gas turbine. In the figure, reference numeral 20 denotes a compressor, reference numeral 21 denotes a combustor, and reference numeral 22 denotes a turbine. The compressor 20 takes in a large amount of air and compresses it. Usually, in a gas turbine, a part of the power obtained by a rotary shaft 23 described later is used as power for the compressor. The combustor 21 mixes fuel with the air compressed by the compressor 20 and burns it. The turbine 22 introduces and expands the combustion gas generated in the combustor 21 and blows it to the rotor blades 23e provided on the rotating shaft 23 to convert the thermal energy of the combustion gas into mechanical rotational energy. Thus, power is generated.
[0049]
In addition to the plurality of moving blades 23e on the rotating shaft 23 side, the turbine 22 is provided with a plurality of stationary blades 24a on the casing 24 side. The moving blades 23e and the stationary blades 24a are arranged in the axial direction of the rotating shaft 23. Are arranged alternately. The moving blade 23e receives the pressure of the combustion gas flowing in the axial direction of the rotating shaft 23, rotates the rotating shaft 23, and the rotational energy given to the rotating shaft 23 is extracted from the shaft end and used. . A leaf seal 25 is provided between the stationary blade 24a and the rotary shaft 23 as a shaft seal mechanism for reducing the amount of combustion gas leaking from the high pressure side to the low pressure side.
[0050]
FIG. 2 is a perspective view showing the configuration of the leaf seal 25. As shown in the figure, the leaf seal 25 has a width in the axial direction of the rotating shaft 23, the tip slides on the peripheral surface 23a of the rotating shaft 23, and a gap 30 is formed between each other so that the base end on the outer peripheral side is A plurality of flexible thin plates 29 fixed to the casing 24 side (brazing portion 28) are provided in a multiplex manner so that the outer periphery of the rotating shaft 23 can be sealed in the circumferential direction of the rotating shaft 23, and the thin plate 29 and the rotating shaft are provided. 23 is formed with an acute angle, and a low-pressure side plate 26 and a high-pressure side plate 27 are provided on both sides of each thin plate 29 in the rotation axis direction.
[0051]
Each thin plate 29 has a flat plate shape having a predetermined width in the axial direction of the rotating shaft 23, and has a structure in which multiple layers are arranged in the circumferential direction of the rotating shaft 23. And the outer peripheral side base end is brazed (brazing part 28) in the casing 24, and the outer periphery of the rotating shaft 23 is sealed, so that the space around the rotating shaft 23 is divided into a high pressure side region and a low pressure side region. It is divided into. Further, on both sides in the width direction of the thin plate 29, the high-pressure side plate 27 is mounted on the high-pressure side region, and the low-pressure side plate 26 is mounted on the low-pressure side region as a guide plate in the pressure acting direction.
[0052]
When the gas pressure from the high pressure side region to the low pressure side region (from the high pressure side plate 27 toward the low pressure side plate 26) is applied to each thin plate 29, as shown in FIG. Furthermore, with respect to the upper surface 29a and the lower surface 29b of each thin plate 29, the gas pressure is highest at the corner portion r1 located on the tip side and on the high pressure side plate 27 side, and gradually toward the diagonal corner portion r2. A gas pressure adjusting means for forming a gas pressure distribution 30a in which the gas pressure is weakened is provided.
[0053]
In other words, as shown in FIG. 3B, the gas pressure adjusting means is a cross-sectional view of each thin plate 29 in a virtual plane perpendicular to the width direction, and the surface of the thin plate 29 facing the rotation shaft 23 is the bottom surface. 29b, when the gas pressure from the high-pressure side region to the low-pressure side region (from the high-pressure side plate 27 to the low-pressure side plate 26) is applied to each thin plate 29, with the back side as the upper surface 29a. It is possible to adjust the gas pressure so that the gas pressure applied to the lower surface 29b is higher than the gas pressure applied to the upper surface 29a at an arbitrary position along the cross section (this mechanism will be described in detail later). To do.)
[0054]
In the present embodiment, the gas gap adjustment is performed so that the low-pressure side gap 31 between each thin plate 29 and the low-pressure side plate 26 is larger than the high-pressure side gap 32 between each thin plate 29 and the high-pressure side plate 27. The pressure adjustment means.
By adjusting the gap size in this way and leaving a relatively wide space on the low-pressure side plate side, when pressurized from the high-pressure side, it passes through each thin plate 29 and from the high-pressure side region to the low-pressure side region. The flowing gas g flows widely diagonally along the upper surface 29a and the lower surface 29b of each thin plate 29, and at the same time, a low pressure region spreads at the outer peripheral portion base end. Thereby, as described above, the gas pressure distribution applied to each of the upper surface 29a and the lower surface 29b of the thin plate 29 at any position along the cross section perpendicular to the width direction of the thin plate 29 is changed from the front end side to the outer peripheral side of the thin plate 29. A triangular shape that gradually decreases toward the base end can be formed.
[0055]
More specifically, the gas g flowing from the high pressure side region toward the low pressure side region is between the peripheral surface 23a of the rotating shaft 23 and the tip of the thin plate 29 and along the upper surface 29a and the lower surface 29b of each thin plate 29. Flowing. At this time, the gas g flowing along the upper surface 29a and the lower surface 29b of each thin plate 29 flows in between the high-pressure side plate 27 and the peripheral surface 23a of the rotating shaft 23, as shown in FIG. Flows radially in the direction of r2, and a low pressure region spreads at the outer peripheral base end. As a result, the gas pressure distributions 30b and 30c applied perpendicularly to the upper surface 29a and the lower surface 29b of each thin plate 29 are larger toward the distal end portion as shown in FIG. 3B and smaller toward the outer peripheral base end. A triangular distribution shape is obtained.
[0056]
The shapes of the gas pressure distributions 30b and 30c on the upper surface 29a and the lower surface 29b are substantially the same, but the thin plates 29 are arranged obliquely so as to form an acute angle with respect to the peripheral surface 23a of the rotating shaft 23. Therefore, the relative positions of the gas pressure distributions 30b and 30c on the upper surface 29a and the lower surface 29b are shifted by the dimension s1, and the gas on the upper surface 29a and the lower surface 29b at an arbitrary point P from the outer peripheral proximal end side to the distal end side of the thin plate 29. When the pressures are compared, there will be a difference between the two.
[0057]
That is, as described above, the gas pressure applied to the lower surface 29b (referred to as Fb) is higher than the gas pressure applied to the upper surface 29a (referred to as Fa), so that the thin plate 29 is floated from the rotating shaft 23. Acting in the direction of deformation. At this time, the portion near the tip of the thin plate 29 is reversed, and only the gas pressure is applied only to the upper surface 29a (the most distal portion of the thin plate 29 is obliquely cut so as to come into surface contact with the peripheral surface 23a and cut surface 29c. However, there is no portion corresponding to the lower surface 29b.) However, this force is caused by the gas pressure of the gas flowing between the peripheral surface 23a and the tip of the thin plate 29, and the tip of the thin plate 29 is set to the peripheral surface 23a. Therefore, the force that tries to press the tip of the thin plate 29 against the rotating shaft 23 is not generated. Therefore, since the pressure load due to the gas pressure applied to each thin plate 29 satisfies (Fb + Fc)> Fa, each thin plate 29 can be deformed so as to float from the peripheral surface 23a.
Therefore, a pressure difference is generated between the upper surface 29a and the lower surface 29b of each thin plate 29, and these thin plates 29 can be deformed so as to float from the peripheral surface 23a to form a non-contact state.
[0058]
In the above description, the mechanism for bringing each thin plate 29 into a non-contact state with respect to the rotating shaft 23 using the differential pressure when pressurized from the high pressure side has been described. Each thin plate 29 can be brought into a non-contact state with respect to the rotating shaft 23 by the rotation of the shaft 23.
That is, each thin plate 29 is designed to have a predetermined rigidity determined by the plate thickness in the axial direction of the rotary shaft 23. Further, as described above, each thin plate 29 is attached to the casing 24 so that the angle formed with the peripheral surface 23a of the rotation shaft 23 with respect to the rotation direction of the rotation shaft 23 is an acute angle. The tips of the thin plates 29 are in contact with the rotary shaft 23 with a predetermined preload, but the tips of the thin plates 29 float due to the dynamic pressure effect generated by the rotation of the rotary shaft 23 when the rotary shaft 23 rotates. The thin plate 29 and the rotating shaft 23 are in a non-contact state.
[0059]
Note that a slight gap 30 (see FIG. 2) is provided between the thin plate plates 29 arranged in multiple layers. Since the gap 30 has a sufficiently large seal diameter, in other words, the diameter of the rotating shaft 23 is sufficiently large, the gap 30 can be regarded as substantially constant from the outer peripheral base end to the inner peripheral front end.
[0060]
According to the leaf seal 25 (shaft seal mechanism) and the gas turbine equipped with the leaf seal 25 of the present embodiment described above, the angle between each thin plate 29 and the peripheral surface 23a of the rotating shaft 23 is set to an acute angle, and each thin plate. By providing the gap size adjustment as a pressure adjusting means for giving buoyancy to 29, the pressure load difference ((Fb + Fc)> Fa) between the upper surface 29a and the lower surface 29b of the thin plate 29 even at the start-up when the dynamic pressure effect is small. And the tip of the thin plate 29 can be lifted from the peripheral surface 23a of the rotating shaft 23 to avoid contact with the rotating shaft 23. Therefore, excessive heat generation and wear due to contact between each thin plate 29 and the rotating shaft 23 can be prevented. Further, since heat generation due to contact between each thin plate 29 and the rotating shaft 23 is prevented, it is possible to avoid the occurrence of vibration due to thermal balance in the rotating shaft 23.
[0061]
Further, when the vibration of the rotating shaft 23 is large, such as when passing through the resonance point, the thin plate 29 attached at an acute angle is deformed and the contact with the rotating shaft 23 is relaxed, and the movement caused by the rotation of the rotating shaft 23 is also reduced. The tip of each thin plate 29 can be lifted from the peripheral surface 23a of the rotating shaft 23 by the pressure effect to avoid contact with the rotating shaft 23.
[0062]
Further, by using the thin plate 29 as the sealing member, the size of the fixing portion with respect to the casing 24 is increased as compared with the conventional wire, so that each thin plate 29 is firmly fixed to the casing 24. Thereby, it is possible to prevent the thin plate 29 from dropping off from the casing 24 like the wire dropping in the conventional brush seal.
Further, since the tip of each thin plate 29 has high rigidity in the axial direction of the rotating shaft 23 and is soft in the circumferential direction of the rotating shaft, it is less likely to cause deformation in the differential pressure direction than the conventional brush seal, and the difference in seal It is possible to improve the allowable pressure value.
[0063]
Further, by making the gaps 30 between the thin plates 29 equal on the outer peripheral side and the inner peripheral side, it becomes possible to arrange the thin plates 29 more densely, and the gap between the tip of each thin plate 29 and the rotary shaft 23 is reduced. Compared with a non-contact type labyrinth seal, it can be drastically reduced. As a result, the amount of leakage can be reduced to about 1/10 of the labyrinth seal, and as a result, the performance of the gas turbine can be improved by about 10%.
Therefore, according to the leaf seal 25 described above and the gas turbine including the leaf seal 25, it is possible to reduce the amount of gas leakage from the high-pressure side region to the low-pressure side region and improve wear resistance.
[0064]
By the way, in the first embodiment, as the pressure adjusting means, the low pressure side plate 26 and the high pressure side plate 27 are arranged so that the low pressure side gap 31 is larger than the high pressure side gap 32, so that the pressure adjustment means can be applied from the high pressure side. When the pressure is applied, the pressure difference is generated in the thin plate 29 so that the tip of each thin plate 29 floats. In addition to this, for example, the following embodiments are also adopted as modifications. Is possible.
[0065]
Hereinafter, the second embodiment of the present invention will be described with reference to FIG. 4. However, the description will focus on the characteristic portion, and the other parts that are the same as those of the first embodiment will be described. Description is omitted.
FIG. 4 shows another pressure adjusting means for causing a pressure load difference between the thin plate upper surface 29a and the thin plate lower surface 29b of each thin plate 29 when the pressure is applied from the high pressure side region, and for floating the tip of each thin plate 29. The leaf seal 25 provided with is shown.
In this embodiment, the radial length dimension of the rotary shaft 23 of the low-pressure side plate 26 (low-pressure side plate length 33) is the radial length dimension of the rotary shaft 23 of the high-pressure side plate 27 (high-pressure side). The side plate dimension adjustment that is shorter than the side plate length 34) is used as the gas pressure adjusting means.
[0066]
By adjusting the side plate dimensions in this way and leaving a relatively wide space on the low pressure side plate 26 side, when pressurized from the high pressure side, the gas g passes through each thin plate 29 and is low pressure from the high pressure side region. Although the gas g tends to flow to the side region, the gas g flows in a radial direction from r1 to r2 along the upper surface 29a and the lower surface 29b of each thin plate 29. Thereby, as described above, the gas pressure distribution applied to each of the upper surface 29a and the lower surface 29b of the thin plate 29 at any position along the cross section perpendicular to the width direction of the thin plate 29 is changed from the front end side to the outer peripheral side of the thin plate 29. A triangular shape that gradually decreases toward the base end can be formed.
Therefore, for the same reason as in the first embodiment, a difference is caused in the relative position of the pressure distribution between the upper surface 29a and the lower surface 29b of the thin plate 29, and each thin plate 29 floats from the peripheral surface 23a of the rotating shaft 23. In this way, the non-contact state can be formed.
[0067]
That is, the gas pressure distribution 30a applied perpendicularly to the upper surface 29a and the lower surface 29b of the thin plate 29 by the gas g passing through the gap 30 is the tip side of the thin plate 29 and the high pressure side plate 27 as in the first embodiment. The gas pressure distribution 30a is such that the gas pressure is highest at the corner r1 located on the side and gradually decreases toward the diagonal corner r2.
[0068]
At this time, the radial pressure distribution in an arbitrary cross section of the axial width of the thin plate 29 becomes the gas pressure distributions 30b and 30c described in FIG. 3B of the first embodiment, and the thin plate upper surface 29a. And a thin plate lower surface 29b and a thin plate front end surface 29c, a pressure load difference ((Fb + Fc)> Fa) is generated, and this pressure load difference acts as a force in the direction of floating the tip of the thin plate 29. To do.
Therefore, due to the pressure load difference generated in the thin plate 29, a force in the direction of floating the tip portion acts. When this embodiment is compared with the first embodiment, it is more like the present embodiment than when the dimensions of the low-pressure side gap 31 and the high-pressure side gap 32 are controlled as in the first embodiment. Furthermore, it can be said that it is more preferable to control the low-pressure side plate length 33 and the high-pressure side plate length 34 because dimensional accuracy is not required and easy, as well as easy assembly and easy manufacturing, and low manufacturing costs.
[0069]
In the present embodiment, the radial dimension (low pressure side plate length 33) of the rotary shaft 23 of the low pressure side plate 26 is set to the radial length (high pressure side) of the rotary shaft 23 of the high pressure side plate 27. Although the gas pressure adjusting means is used to adjust the side plate dimension shorter than the side plate length 34), the present invention is not limited to this, and the thin plate 29 is directed from the high pressure side region toward the low pressure side region toward the low pressure side in the axial direction of the rotating shaft 23. A similar effect can be obtained by forming a gas passage space that permits the passage of the gas g (for example, a configuration in which the low-pressure side plate 26 is omitted).
[0070]
Hereinafter, the third embodiment of the present invention will be described with reference to FIGS. 5 (a) and 5 (b). The features of the third embodiment will be mainly described, and the other first embodiments will be described. A description of the same parts as those in FIG. In the present embodiment, a configuration is adopted in which a flexible plate arranged on the high pressure region side of the thin plate 29 and having flexibility in the direction of the rotating shaft 23 is used as the gas pressure adjusting means.
FIGS. 5A and 5B show a difference in pressure load between the thin plate upper surface 29a and the thin plate lower surface 29b of each thin plate 29 when pressurized from the high pressure side region, and the tip of each thin plate 29 is levitated. FIG. 5 (a) shows a case where the high-pressure side plate 27 is a thin plate having flexibility in the axial direction of the rotary shaft 23. FIG. In FIG. 5B, a high pressure side clearance fine adjustment thin plate 35 having flexibility in the axial direction of the rotary shaft 23 is disposed in the clearance between the high pressure side plate 27 and the thin plate 29.
[0071]
By providing such a flexible high-pressure side plate 27 or high-pressure side clearance fine adjustment thin plate 35, the high-pressure side plate 27 or the high-pressure side is caused by the gas pressure on the high-pressure side when pressurized from the high-pressure side. The gap fine adjustment thin plate 35 bends in the axial direction of the rotary shaft 23, and the gap between the high-pressure side plate 23 and the thin plate 29 can be kept small. At this time, the gas g flowing along the upper surface 29a and the lower surface 29b of each thin plate 29 flows in between the high-pressure side plate 27 and the peripheral surface 23a of the rotating shaft 23 as shown in FIG. Flows radially in the direction, and a low-pressure region spreads at the outer peripheral base end. As a result, the gas pressure applied to the upper and lower surfaces of the thin plate 29 at an arbitrary position along the cross section perpendicular to the width direction of the thin plate 29 has a triangular shape that gradually decreases from the front end side of the thin plate toward the base end on the outer peripheral side. be able to.
Therefore, for the same reason as in the first embodiment, a difference is caused in the relative position of the pressure distribution between the upper surface 29a and the lower surface 29b of the thin plate 29, and each thin plate 29 floats from the peripheral surface 23a of the rotating shaft 23. In this way, the non-contact state can be formed.
[0072]
That is, the gas pressure distribution 30a applied perpendicularly to the upper surface 29a and the lower surface 29b of the thin plate 29 by the gas g passing through the gap 30 is the tip side of the thin plate 29 and the high pressure side plate 27 as in the first embodiment. The gas pressure distribution shape is such that the gas pressure is highest at the corner portion r1 located on the side and gradually decreases toward the diagonal corner portion r2. At this time, the radial pressure distribution of the cross section at an arbitrary position of the axial width of the thin plate 29 becomes the gas pressure distribution 30b, 30c described in FIG. 3B of the first embodiment, and the upper surface of the thin plate Since a pressure load difference ((Fb + Fc)> Fa) is generated between the thin plate lower surface 29b and the thin plate front end surface 29c, this pressure load difference is a force in the direction in which the front end portion of the thin plate 29 is levitated. Works.
[0073]
Therefore, due to the pressure load difference generated in the thin plate 29, a force in the direction of floating the tip portion acts. When this embodiment is compared with the first embodiment, for the same reason as described in the second embodiment, the assemblability and the manufacturing cost are low, and the gap (thin plate) is caused by the seal differential pressure. 29 and the high-pressure side plate 27 or the high-pressure side gap fine adjustment thin plate 35) can be automatically formed with high accuracy.
[0074]
Hereinafter, the fourth embodiment of the present invention will be described with reference to FIGS. 6 (a) and 6 (b). The features will be mainly described, and the other first embodiments will be described. A description of the same parts as those in FIG. In the present embodiment, a flexible plate with slits arranged on the high-pressure side of the thin plate 29 and having flexibility in the direction of the rotary shaft 23 and having two or more slits formed on the entire circumference thereof. A configuration as the gas pressure adjusting means is adopted.
FIG. 6A shows a slit-formed flexible plate 41 in which two or more slits 41a are formed on the entire circumference of the high-pressure side plate and are flexible in the axial direction of the rotary shaft 23. FIG. 6B shows a case in which two or more slits 42 a are formed in the gap between the high-pressure side plate 27 and the thin plate 29 in the axial direction of the rotary shaft 23 and at the entire circumference. The case where the thin plate made into the said flexible plate 42 with a slit is shown.
[0075]
By providing such flexible plates 41 and 42 with slits, when pressurized from the high pressure side, the high pressure side plate 27 or the high pressure side clearance fine adjustment thin plate 40 is rotated by the rotating shaft 23 due to the gas pressure on the high pressure side. The gap between the high-pressure side plate 23 and the thin plate 29 can be kept small. At this time, the gas g flowing along the upper surface 29a and the lower surface 29b of each thin plate 29 flows in between the high-pressure side plate 27 and the peripheral surface 23a of the rotating shaft 23 as shown in FIG. Flows radially in the direction, and a low-pressure region spreads at the outer peripheral base end. As a result, the gas pressure applied to the upper and lower surfaces of the thin plate 29 at an arbitrary position along the cross section perpendicular to the width direction of the thin plate 29 has a triangular shape that gradually decreases from the front end side of the thin plate toward the base end on the outer peripheral side. be able to.
Therefore, for the same reason as in the first embodiment, a difference is caused in the relative position of the pressure distribution between the upper surface 29a and the lower surface 29b of the thin plate 29, and each thin plate 29 floats from the peripheral surface 23a of the rotating shaft 23. In this way, the non-contact state can be formed.
[0076]
That is, the gas pressure distribution 30a applied perpendicularly to the upper surface 29a and the lower surface 29b of the thin plate 29 by the gas g passing through the gap 30 is the tip side of the thin plate 29 and the high pressure side plate 27 as in the first embodiment. The gas pressure distribution shape is such that the gas pressure is highest at the corner portion r1 located on the side and gradually decreases toward the diagonal corner portion r2. At this time, the radial pressure distribution in an arbitrary cross section of the axial width of the thin plate 29 becomes the gas pressure distributions 30b and 30c described in FIG. 3B of the first embodiment, and the thin plate upper surface 29a. And a thin plate lower surface 29b and a thin plate front end surface 29c, a pressure load difference ((Fb + Fc)> Fa) is generated, and this pressure load difference acts as a force in the direction of floating the tip of the thin plate 29. To do.
[0077]
Therefore, due to the pressure load difference generated in the thin plate 29, a force in the direction of floating the tip portion acts. When this embodiment is compared with the first embodiment, for the same reason as described in the second embodiment, the assemblability and the manufacturing cost are low, and the gap (thin plate) is caused by the seal differential pressure. 29 and the slits (flexible plates 41 and 42) can be automatically formed with high accuracy. Further, in the present embodiment, in addition to being excellent in assemblability and manufacturing cost as compared with the first embodiment, a gap is also formed by the shape of the slits 41a and 42a as compared with the third embodiment. There is an advantage that fine adjustment of (the gap between the thin plate 29 and the flexible plates 41 and 42 with slits) is possible.
[0078]
In the following, the fifth embodiment of the present invention will be described with reference to FIG. 7, but the description will focus on the characteristic parts, and the other parts that are the same as in the first embodiment will be described. Description is omitted. In the present embodiment, a configuration is adopted in which a plurality of ventilation holes penetrating the low-pressure side plate 26 in the axial direction of the rotating shaft 23 are used as the gas pressure adjusting means.
FIG. 7 is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotary shaft 23, and the reference numeral 26a indicates the vent hole. In addition, a configuration using a porous material as the low-pressure side plate 26 can be employed.
[0079]
When the low pressure side plate 26 having such a ventilation hole 26a is employed, the gas pressure applied perpendicularly to the upper surface 29a and the lower surface 29b of the thin plate 29 by the gas passing through the gap 30 when pressurized with gas from the high pressure side. Similar to the first embodiment, the pressure distribution has the isobar distribution shape shown in the pressure distribution 30a. That is, in the thin plate 29, the gas pressure distribution shape in which the gas pressure is highest at the corner portion r1 located on the tip side and on the high pressure side plate 27 side, and the gas pressure gradually decreases toward the diagonal corner portion r2. Become.
[0080]
At this time, the radial pressure distribution in an arbitrary cross section of the axial width of the thin plate 29 becomes the gas pressure distributions 30b and 30c described in FIG. 3B of the first embodiment, and the thin plate upper surface 29a. And a thin plate lower surface 29b and a thin plate front end surface 29c, a pressure load difference ((Fb + Fc)> Fa) is generated, and this pressure load difference acts as a force in the direction of floating the tip of the thin plate 29. To do.
[0081]
Therefore, due to the pressure load difference generated in the thin plate 29, a force in the direction of floating the tip portion acts. In addition, in the present embodiment, since only the hole shape of the ventilation hole 26a is formed, the manufacturing is easy, the assemblability is good, and the manufacturing cost can be reduced. Furthermore, a complicated pressure distribution can be formed by the arrangement and size of the hole shape. In addition, the exposed portion of the thin plate is smaller than that of the second embodiment, and there is an advantage that the deformation of the thin plate due to contact during assembly is small.
[0082]
In the following, the sixth embodiment of the present invention will be described with reference to FIG. 8, but its characteristic part will be mainly described, and other parts that are the same as those of the first embodiment will be described. Description is omitted. The present embodiment is particularly characterized in that it further includes gap size adjusting means for maintaining the low-pressure side gap 31 to be always larger than the high-pressure side gap 32.
8A is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotary shaft 23, and FIG. 8B is a cross-sectional view of the leaf seal 25 as viewed from line CC.
[0083]
As shown in the figure, when each thin plate 29 is about to approach the low-pressure side plate 26 between the low-pressure side plate 26 and each thin plate 29, the thin plate 29 is supported and these low-pressure side plates 26 are supported. A step shape portion 50 (first step shape portion) is provided as the gap size adjusting means for maintaining the gap size of the low pressure side gap 31 between the side plate 26 and each thin plate 29.
As shown in FIG. 8A, the stepped portion 50 is formed on the low pressure side plate 26 side so as to protrude toward the thin plate 29 side when viewed in a cross section passing through the axis of the rotary shaft 23. As shown in FIG. 8B, when viewed from a cross section perpendicular to the axis of the rotating shaft 23, the entire circumference around the rotating shaft 23 is formed along the annular low-pressure side plate 26. It is a ring-shaped part that forms a continuous ring. The step-shaped portion 50 may be a separate component from the low-pressure side plate 26, or may be a component integrated with the low-pressure side plate 26.
[0084]
In order to support each thin plate 29, the stepped portion 50 needs to be as close as possible to each thin plate 29 side. However, since it is necessary to prevent the stepped portion 50 from being deformed by being too close to the side edges of the thin plates 29, the thickness dimension of the stepped portion 50 is set to t1 (the axis of the rotating shaft 23). (Thickness dimension in the direction) and t2 is the clearance dimension of the low-pressure side gap 31 (the thickness dimension t1 is equal to or smaller than the clearance dimension t2 of the low-pressure side gap 31). There is a need to. According to this step-shaped portion 50, by restraining the displacement or deformation of each thin plate 29, it is possible to prevent the low-pressure side gap 31 from becoming smaller than the gap dimension t2, and easily maintain the predetermined gap dimension. Is possible.
[0085]
According to the leaf seal 25 (shaft seal mechanism) and the gas turbine equipped with the leaf seal 25 of the present embodiment described above, the position of each thin plate 29 is on the low pressure side plate 26 side by providing the step-shaped portion 50. The thin plate 29 is supported by the step-shaped portion 50 even if it approaches, so that the approach is prevented. Therefore, from the assembly error during assembly of the shaft seal mechanism and the high pressure side during operation. Even if the thin plates 29 are deformed by the fluid pressure toward the low pressure side, the gaps between the thin plates 29 and the low pressure side plates 26 can be maintained at a predetermined gap dimension t2.
[0086]
Thereby, the low pressure side gap 31 between each thin plate 29 and the low pressure side plate 26 is made larger than the high pressure side gap 32 between each thin plate 29 and the high pressure side plate 27. It is possible to reliably perform the gap dimension adjustment described in the above. Therefore, even when the dynamic pressure effect is small, such as at the time of activation, the tip of each thin plate 29 can be reliably lifted so as not to be in contact with the peripheral surface 23a of the rotating shaft 23. Therefore, excessive heat generation and wear due to contact between each thin plate 29 and the rotating shaft 23 can be prevented. Further, since heat generation due to contact between each thin plate 29 and the rotating shaft 23 is prevented, it is possible to avoid the occurrence of vibration due to thermal balance in the rotating shaft 23. In addition to this, it goes without saying that the same effects as those described in the first embodiment can be obtained.
[0087]
Next, a seventh embodiment of the present invention will be described with reference to FIG. The present embodiment corresponds to a modification of the sixth embodiment, and therefore, the description will focus on the differences from the sixth embodiment. The description of the same parts as those in the sixth embodiment will be omitted.
(A) of FIG. 9 is sectional drawing which looked at the leaf seal 25 from the cross section which passes along the axis line of the rotating shaft 23, (b) is sectional drawing which looked at (a) from DD line.
[0088]
As shown in the figure, in the present embodiment, the annular stepped portion 50 described in the sixth embodiment is provided with a vent hole 51 for communicating the space on the inner peripheral side and the outer peripheral side of the ring. The points formed are characteristic. As shown in FIG. 9B, a plurality of the vent holes 51 are formed at equal intervals.
In this way, by forming the plurality of vent holes 51 in the stepped portion 50, in the radial direction of the rotation axis with the stepped portion 50 as a boundary in the gap space between each thin plate 29 and the low-pressure side plate 26. Resistance to gas flow between both the space on the peripheral side and the outer peripheral side in the radial direction of the rotation axis is reduced. Thereby, while ensuring the support of each thin plate 29 by the step-shaped portion 50, it is possible to form a pressure distribution in the rotation axis radial direction in the gap space as if the step-shaped portion 50 does not exist. become.
[0089]
As a result, when a gas pressure from the high-pressure side plate 27 toward the low-pressure side plate 26 is applied to each thin plate 29, the top and bottom surfaces of the thin plates 29 facing the rotating shaft 23 and the high-pressure side plate 27. The gas pressure distribution at which the gas pressure is highest at the corner r1 located on the side and gradually decreases toward the diagonal corner r2 is a wide range (range indicated by the solid arrow R1 in FIG. 9A). For example, the gas pressure distribution in a narrow range indicated by a two-dot chain line arrow R2 in FIG. 9A can be prevented.
Therefore, since a wide gas pressure distribution can be given to each thin plate 29, a pressure difference is surely generated in the upper and lower surfaces of each thin plate 29, and these thin plates 29 are made to have a peripheral surface 23 a of the rotating shaft 23. This makes it possible to accurately adjust the gas pressure for floating the thin plate.
[0090]
Next, an eighth embodiment of the present invention will be described with reference to FIG. The present embodiment corresponds to a modification of the sixth embodiment, and therefore, the description will focus on the differences from the sixth embodiment. The description of the same parts as those in the sixth embodiment will be omitted.
10A is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotary shaft 23. FIGS. 10B and 10C are cross-sectional views of the leaf seal 25 as viewed from line EE. is there.
[0091]
As shown in FIG. 10 (b), in the present embodiment, an equal interval G is provided instead of the stepped portion 50 that is annularly continuous over the entire circumference described in the sixth embodiment. In this state, a stepped portion 50A (second stepped portion) composed of a plurality of annular divided plates 50a that are intermittently arranged so as to form a ring around the rotation shaft 23 along the low-pressure side plate 26. One feature (one stage) is that it is fixed to the low-pressure side plate 26. As shown in FIG. 10A, the step-shaped portion 50A is formed on the side of the low-pressure side plate 26 so as to protrude toward the thin plate 29 when viewed in a cross section passing through the axis of the rotary shaft 23. Is provided.
The step-shaped portion 50A (annular divided plate 50a) may be a separate component from the low-pressure side plate 26, or may be a component integrated with the low-pressure side plate 26.
[0092]
In the present embodiment, since the gaps G serve as substitutes for the vent holes 51 of the seventh embodiment, the step shape in the gap space between the thin plates 29 and the low-pressure side plate 26 is used. The resistance to the gas flow between both the space on the inner periphery side in the rotation axis radial direction and the outer periphery side in the rotation shaft radial direction with the portion 50A as a boundary is reduced. Thereby, while ensuring the support of each thin plate 29 by the step-shaped portion 50A, it is possible to form a pressure distribution in the radial direction of the rotation axis in the gap space as if the step-shaped portion 50A does not exist. become.
[0093]
As a result, when a gas pressure from the high-pressure side plate 27 toward the low-pressure side plate 26 is applied to each thin plate 29, the top and bottom surfaces of the thin plates 29 facing the rotating shaft 23 and the high-pressure side plate 27. The gas pressure distribution in which the gas pressure is highest at the corner r1 located on the side of the gas and the gas pressure gradually decreases toward the diagonal corner r2 is a wide range (range indicated by the solid arrow R1 in FIG. 10A). For example, the gas pressure distribution in a narrow range indicated by a two-dot chain line arrow R2 in FIG.
Therefore, since a wide gas pressure distribution can be given to each thin plate 29, a pressure difference is surely generated in the upper and lower surfaces of each thin plate 29, and these thin plates 29 are made to have a peripheral surface 23 a of the rotating shaft 23. This makes it possible to accurately adjust the gas pressure for floating the thin plate.
[0094]
As a modification of the present embodiment, for example, as shown in FIG. 10 (c), the stepped portions 50A are arranged in two rounds (two steps) in a concentric manner with the rotation shaft 23 as an axis, or 3 Of course, a configuration (not shown) arranged in a circumference or more (three or more stages) is also possible.
[0095]
Next, a ninth embodiment of the present invention will be described with reference to FIG. The present embodiment corresponds to a modification of the sixth embodiment, and therefore, the description will focus on the differences from the sixth embodiment. The description of the same parts as those in the sixth embodiment will be omitted.
11A is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotary shaft 23, and FIGS. 11B and 11C are cross-sectional views of FIG. is there.
[0096]
As shown in FIG. 11 (b), in this embodiment, instead of the stepped portion 50 that is annularly continuous over the entire circumference described in the sixth embodiment, a low pressure is applied from each thin plate 29 side. When the side plate 26 is viewed, the low pressure side plate 26 is arranged in a spiral shape from the inner peripheral side toward the outer peripheral side, and includes a plurality of spiral plates 50b having a gap G therebetween. A feature is that the stepped portion 50B (third stepped portion) is fixed to the low-pressure side plate 26. As shown in FIG. 11A, the step-shaped portion 50B is formed on the side of the low-pressure side plate 26 so as to protrude toward the thin plate 29 when viewed in a cross section passing through the axis of the rotary shaft 23. Is provided.
Each spiral plate 50b is inclined in the cross direction intersecting with each thin plate 29 when the low-pressure side plate 26 is viewed from each thin plate 29 side (that is, when viewed from the line of sight of FIG. 11B). The low-pressure side plate 26 is fixed.
The step-shaped portion 50B (spiral plate 50b) may be a separate component from the low-pressure side plate 26, or may be a component integrated with the low-pressure side plate 26.
[0097]
As a modification of the present embodiment, for example, as shown in FIG. 11C, each spiral plate 50b has the same direction as each thin plate 29 when the low-pressure side plate 26 is viewed from the thin plate 29 side. Of course, it is also possible to employ a configuration in which it is fixed to the low-pressure side plate 26 in a state where it is inclined at different inclination angles (inclination angles with respect to the peripheral surface 23a of the rotating shaft 23). However, it is more preferable to incline in the cross direction shown in FIG. 11B because a large number of thin plates 29 can be supported by one spiral plate 50b.
[0098]
In the present embodiment, since the gaps G serve as substitutes for the vent holes 51 of the seventh embodiment, the step shape in the gap space between the thin plates 29 and the low-pressure side plate 26 is used. The resistance to the gas flow between the space on the inner peripheral side in the rotational axis radial direction and the outer peripheral side in the radial direction of the rotational axis with the portion 50B as a boundary is reduced. Thereby, while ensuring the support of each thin plate 29 by the step-shaped portion 50B, it is possible to form a pressure distribution in the radial direction of the rotation axis in the gap space as if the step-shaped portion 50B does not exist. become.
[0099]
Thereby, when the gas pressure which goes to the low voltage | pressure side plate 26 from the high voltage | pressure side plate 27 is added to each thin plate 29, it is the front end side which opposes the rotating shaft 23 with respect to the upper and lower surfaces of these thin plates 29, and a high pressure side plate. The gas pressure distribution in which the gas pressure is highest at the corner r1 positioned on the side and the gas pressure gradually decreases toward the diagonal corner r2 is wide (range indicated by the solid arrow R1 in FIG. 11A). The gas pressure distribution in a narrow range can be prevented.
Therefore, since a wide gas pressure distribution can be given to each thin plate 29, a pressure difference is surely generated in the upper and lower surfaces of each thin plate 29, and these thin plates 29 are made to have a peripheral surface 23 a of the rotating shaft 23. This makes it possible to accurately adjust the gas pressure for floating the thin plate.
[0100]
Next, a tenth embodiment of the present invention will be described with reference to FIG. The present embodiment corresponds to a modification of the sixth embodiment, and therefore, the description will focus on the differences from the sixth embodiment. The description of the same parts as those in the sixth embodiment will be omitted.
FIG. 12 is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotary shaft 23.
[0101]
As shown in FIG. 12, in the present embodiment, instead of the step-shaped portion 50 provided on the low-pressure side thin plate 26 side described in the sixth embodiment, it protrudes toward the low-pressure side plate 26. As described above, the step-shaped portion 50C (fourth step-shaped portion) provided on each thin plate 29 side is particularly characteristic.
Each step-shaped portion 50C is a protruding portion formed integrally with each thin plate 29, and a gap having the same size as the gap formed between the thin plates 29 is formed between them.
[0102]
In the present embodiment, since the gaps between the step-shaped portions 50C serve as substitutes for the vent holes 51 of the seventh embodiment, the gaps between the thin plates 29 and the low-pressure side plates 26. In the space, the resistance to the gas flow between the space on the inner peripheral side in the rotation axis radial direction and the outer peripheral side in the rotation shaft radial direction with the stepped portion 50C as a boundary is reduced. Thereby, while ensuring the support of each thin plate 29 by the step-shaped portion 50C, it is possible to form a pressure distribution in the radial direction of the rotation axis in the gap space as if the step-shaped portion 50C does not exist. become.
[0103]
As a result, when a gas pressure from the high-pressure side plate 27 toward the low-pressure side plate 26 is applied to each thin plate 29, the top and bottom surfaces of the thin plates 29 facing the rotating shaft 23 and the high-pressure side plate 27. A gas pressure distribution in which the gas pressure is highest at the corner r1 located on the side and gradually decreases toward the diagonal corner r2 is formed in a wide range (range indicated by the solid arrow R1 in FIG. 12). For example, the gas pressure distribution in a narrow range indicated by the two-dot chain line arrow R2 in FIG. 12 can be prevented.
Therefore, since a wide gas pressure distribution can be given to each thin plate 29, a pressure difference is surely generated in the upper and lower surfaces of each thin plate 29, and these thin plates 29 are made to have a peripheral surface 23 a of the rotating shaft 23. This makes it possible to accurately adjust the gas pressure for floating the thin plate.
Further, in the present embodiment, it is not necessary to process or attach to the low-pressure side plate 26 only by changing the shape of each thin plate 29, so that there is an effect that the merit is great in terms of manufacturing cost.
[0104]
Next, an eleventh embodiment of the present invention will be described with reference to FIG. The present embodiment corresponds to a modification of the sixth embodiment, and therefore, the description will focus on the differences from the sixth embodiment. The description of the same parts as those in the sixth embodiment will be omitted.
FIG. 13 is a cross-sectional view of the leaf seal 25 as seen from a cross section passing through the axis of the rotary shaft 23.
[0105]
As shown in FIG. 13, in the present embodiment, the annular stepped portion 50 (first stepped portion) described in the sixth embodiment extends along the radial direction of the low-pressure side plate 26. It is particularly characteristic that it is continuously formed up to the position of the casing 24. That is, the step-shaped portion 50 of the present embodiment is continuous to the base position (base) of the low-pressure side plate 26, which is a connection portion between the casing 24 and the low-pressure side plate 26, when viewed in the cross section of FIG. Wide. In the normal operation state, the step-shaped portion 50 has a state in which a surface facing each thin plate 29 is not in direct contact with each thin plate 29 and a minute gap is formed between the two. It has become. According to this step-shaped portion 50, by restraining the displacement or deformation of each thin plate 29, it is possible to prevent the low-pressure side gap 31 from becoming smaller than the gap dimension t2, and easily maintain the predetermined gap dimension. Is possible.
[0106]
According to the leaf seal 25 (shaft seal mechanism) and the gas turbine equipped with the leaf seal 25 of the present embodiment described above, the position of each thin plate 29 is on the low pressure side plate 26 side by providing the step-shaped portion 50. The thin plate 29 is supported by the step-shaped portion 50 even if it approaches, so that the approach is prevented. Therefore, from the assembly error during assembly of the shaft seal mechanism and the high pressure side during operation. Even if the thin plates 29 are deformed by the fluid pressure toward the low pressure side, the gaps between the thin plates 29 and the low pressure side plates 26 can be maintained at a predetermined gap dimension t2.
[0107]
That is, since each thin plate 29 and the high-pressure side plate 27 and the low-pressure side plate 26 can be formed with predetermined gap sizes, even if pressure fluctuations occur between the high-pressure side and the low-pressure side. Since each gap dimension is less likely to change, the applied seal differential pressure range can be expanded. Further, as described above, since a minute gap is formed between the stepped portion 50 and each thin plate 29, the clearance tolerance between the high pressure side plate 27 and the low pressure side plate 26 and each thin plate 29 is loosened. Can be designed and the processing cost can be reduced.
In addition to this, it goes without saying that the same effects as those described in the sixth embodiment can be obtained.
[0108]
Next, a twelfth embodiment of the present invention will be described with reference to FIG. The present embodiment corresponds to a modification of the eleventh embodiment, and therefore, differences from the eleventh embodiment will be mainly described. The description of the same parts as those of the eleventh embodiment is omitted.
FIG. 14 is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotary shaft 23.
[0109]
As shown in FIG. 14, in the present embodiment, in addition to the step-shaped portion 50 described in the eleventh embodiment, the third embodiment will be described with reference to FIG. The high pressure side clearance fine adjustment thin plate 35 is particularly characterized in that it is disposed in the clearance between the high pressure side plate 27 and the thin plate 29.
According to this configuration, when a gas pressure from the high-pressure side plate 27 toward the low-pressure side plate 26 is applied to each thin plate 29, the top and bottom surfaces of the thin plates 29 are on the tip side facing the rotary shaft 23 and are high pressure. It is possible to form a gas pressure distribution in which the gas pressure is highest at the corner portion r1 located on the side plate 27 side and gradually decreases toward the diagonal corner portion r2.
According to the leaf seal 25 (shaft seal mechanism) of the present embodiment described above and the gas turbine equipped with the same, the same operational effects as those of the eleventh embodiment and the third embodiment can be obtained. Is possible.
[0110]
Next, a thirteenth embodiment of the present invention will be described with reference to FIG. Since this embodiment corresponds to a modification of the twelfth embodiment, the description will focus on the differences from the twelfth embodiment. The description of the same parts as those in the twelfth embodiment is omitted.
FIG. 15 is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotary shaft 23.
[0111]
As shown in FIG. 15, in the present embodiment, the high pressure side plate 27 of the twelfth embodiment has a pressure guide hole 100 penetrating the high pressure side plate 27 in the axial direction of the rotary shaft 23 in the circumferential direction. This is particularly characteristic in that a plurality are provided.
According to this configuration, a part of the gas in the high-pressure side region can be added to the high-pressure side clearance fine adjustment thin plate 35 so as to pass through the high-pressure side plate 27 through the pressure guide holes 100. The side clearance fine adjustment thin plate 35 can be bent more effectively. Therefore, the operation of the twelfth embodiment can be obtained more reliably.
According to the leaf seal 25 (shaft seal mechanism) and the gas turbine provided with the leaf seal 25 of the present embodiment described above, the effects of the twelfth embodiment can be obtained more reliably.
[0112]
The shaft sealing mechanism of the present invention and the first to thirteenth embodiments of the gas turbine provided with the shaft sealing mechanism have been described above. As this gas turbine, the turbine shaft is rotated using combustion gas. In addition to a general gas turbine that obtains power, an aircraft gas turbine engine and the like are also included. In addition, the gas turbine according to the present invention can be diverted to a fluid machine such as a steam turbine using steam.
Further, the shaft seal mechanism according to the present invention can be applied to various fluid machines such as a gas turbine, a gas turbine engine, and a steam turbine.
Further, the above-described gap dimension adjusting means 50, 50A, 50B, 50C are combined with the shaft seal mechanism (leaf seal 25) of the third and fourth embodiments and the gas turbine provided with the shaft seal mechanism. Can also be adopted. In this case as well, it is needless to say that the same effect can be obtained by adopting the gap size adjusting means 50, 50A, 50B, 50C.
[0113]
【The invention's effect】
Claims 1 to 1 of the present invention20A shaft seal mechanism according to any one of claims 1 to 3, or a claim21According to the described gas turbine, the angle between the thin plate and the rotating shaft peripheral surface is made acute, and the pressure adjusting means is provided so that buoyancy is applied to the thin plate, so that the rotating shaft when passing through the resonance point, etc. When the vibration is large, the thin plate attached at an acute angle is deformed and the contact with the rotating shaft is relaxed. In addition, the rated pressure is due to the dynamic pressure effect caused by the rotation of the rotating shaft. Further, due to the pressure load difference generated in the thin plate, the tip of the thin plate is lifted from the surface of the rotating shaft, and contact with the rotating shaft is avoided. Therefore, excessive heat generation and wear due to contact between the thin plate and the rotating shaft can be prevented. Furthermore, since heat generation due to contact between the thin plate and the rotating shaft is prevented, occurrence of vibration due to thermal balance in the rotating shaft can be avoided.
[0114]
Further, by using a thin plate for the seal member, the fixing portion for the casing is enlarged as compared with the conventional wire, so that the thin plate is firmly fixed to the casing. Thereby, the drop-off from the casing such as the drop-out of the wire in the conventional brush seal can be prevented.
In addition, the tip of the thin plate has high rigidity in the axial direction of the rotating shaft and is soft in the circumferential direction of the rotating shaft, making it difficult to cause deformation in the differential pressure direction compared to conventional brush seals. Can be improved.
[0115]
In addition, it is possible to arrange the thin plates more closely by making the gap between the thin plates equal on the outer peripheral side and inner peripheral side, and the gap between the thin plate tip and the rotating shaft is compared with non-contact type labyrinth seals etc. Can be dramatically reduced. Thereby, it becomes possible to reduce the amount of gas leakage, and when this is used for a gas turbine, the performance can be improved.
Accordingly, claims 1 to 1 described above.20A shaft seal mechanism according to any one of claims 1 to 3, or a claim21According to the described gas turbine, it is possible to reduce the amount of gas leakage from the high-pressure side to the low-pressure side and to improve wear resistance.
[0116]
Furthermore, the claim14-17Or any of the above claims20The shaft seal mechanism according to claim 1, or the shaft seal mechanism.21According to the described gas turbine, the resistance to the gas flow flowing between both spaces on the inner peripheral side in the radial direction of the rotating shaft and the outer peripheral side in the radial direction of the rotating shaft is reduced. Thereby, it is possible to form a pressure distribution in the radial direction of the rotation axis in the gap space between the thin plate and the low-pressure side plate while ensuring the support of the thin plate.
Therefore, when gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, the corner portion located on the tip side facing the rotation axis and on the high-pressure side plate side with respect to the upper and lower surfaces of the thin plate. Since the gas pressure distribution range in which the gas pressure is highest and the gas pressure gradually decreases toward the diagonal can be made wider, it is possible to reliably generate a pressure difference between the upper and lower surfaces of the thin plate, It is possible to accurately adjust the gas pressure for ascending the thin plate so that the thin plate is floated from the circumferential surface of the rotating shaft.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a first embodiment of a gas turbine provided with a shaft seal mechanism according to the present invention.
FIG. 2 is a perspective view of a leaf seal (shaft seal mechanism) according to the embodiment.
FIG. 3 is a view showing a leaf seal of the same embodiment, wherein (a) is a cross-sectional view seen from a cross-section passing through the axis of the rotary shaft, and (b) is a cross-sectional view taken along line BB. FIG.
FIG. 4 is a diagram showing a second embodiment of a shaft seal mechanism (leaf seal) according to the present invention, and is a cross-sectional view seen from a cross section passing through the axis of a rotation shaft.
FIGS. 5A and 5B are diagrams showing a third embodiment of a shaft seal mechanism (leaf seal) according to the present invention, wherein FIGS. 5A and 5B are cross-sectional views as seen from a cross section passing through an axis of a rotary shaft; FIGS. is there.
6A and 6B are diagrams showing a fourth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, in which FIG. 6A is a perspective view thereof, and FIG. 6B is a perspective view showing a modified example thereof. It is.
FIG. 7 is a view showing a fifth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, and is a cross-sectional view seen from a cross section passing through the axis of a rotation shaft.
FIG. 8 is a view showing a sixth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, in which (a) is a cross-sectional view as seen from a cross section passing through the axis of the rotary shaft; ) Is a cross-sectional view of FIG.
FIG. 9 is a view showing a seventh embodiment of a shaft seal mechanism (leaf seal) according to the present invention, in which (a) is a cross-sectional view as seen from a cross section passing through the axis of the rotary shaft; ) Is a cross-sectional view of (a) as seen from line DD.
FIG. 10 is a view showing an eighth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, in which (a) is a cross-sectional view as seen from a cross section passing through the axis of the rotary shaft; ), (C) are cross-sectional views of (a) as seen from line EE.
FIG. 11 is a diagram showing a ninth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, in which (a) is a cross-sectional view as seen from a cross section passing through the axis of the rotary shaft; ), (C) are cross-sectional views of (a) taken along line FF.
FIG. 12 is a view showing a tenth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, and is a cross-sectional view as seen from a cross section passing through an axis of a rotary shaft.
FIG. 13 is a diagram showing an eleventh embodiment of a shaft seal mechanism (leaf seal) according to the present invention, and is a cross-sectional view as seen from a cross section passing through the axis of a rotary shaft.
FIG. 14 is a diagram showing a twelfth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, and is a cross-sectional view seen from a cross section passing through the axis of a rotary shaft.
FIG. 15 is a diagram showing a thirteenth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, and is a cross-sectional view seen from a cross section passing through the axis of a rotary shaft.
FIGS. 16A and 16B are diagrams showing an example of a conventional shaft seal mechanism, in which FIG. 16A is a cross-sectional view as seen from a cross section passing through the axis of a rotary shaft, and FIG. 16B is from a line AA in FIG. FIG.
FIG. 17 is a perspective view showing another example of a conventional shaft seal mechanism.
[Explanation of symbols]
23 ... Rotating shaft
23a ... peripheral surface
23e ... Rotor blade
24 ... Casing
25 ... Leaf seal (shaft seal mechanism)
26 ... Low pressure side plate
26a ... Ventilation hole
27, 35 ... high-pressure side plate, high-pressure side clearance fine adjustment thin plate (flexible plate)
29 ... Thin plate
29a ... upper surface
29b ... lower surface
30 ... Gap
30a ... Gas pressure distribution
31 ... Low pressure side gap (gap between thin plate and low pressure side plate)
32 ... High-pressure side gap (gap between thin plate and high-pressure side plate)
33 ... Length of the low-pressure side plate (length of the low-pressure side plate in the rotational axis radial direction)
34 ... Length of the high-pressure side plate (length of the high-pressure side plate in the radial direction of the rotation axis)
41, 42 ... Flexible plate with slit
41a, 42a ... slit
50... Clearance dimension adjusting means, first step shape portion
50A: Clearance dimension adjusting means, second step shape portion
50B: Clearance dimension adjusting means, third step shape portion
50C: Clearance dimension adjusting means, fourth step shape portion
50a ... annular dividing plate
50b ... spiral board
51 ... Ventilation hole
100 ... Induction hole
G ... Interval
g ・ ・ ・ Gas
r1 ... Corner
r2 ... Corner (diagonal)

Claims (21)

回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、
前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ
前記ガス圧調整手段が、前記薄板と前記低圧側側板との間の隙間を、前記薄板と前記高圧側側板との間の隙間よりも大きくする隙間寸法調節であることを特徴とする軸シール機構。
A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
A cross-sectional view of the thin plate in a virtual plane perpendicular to the width direction thereof, a surface facing the rotation axis of the thin plate as a lower surface, and a back side thereof as an upper surface, from the high-pressure side plate to the low-pressure side plate with respect to the thin plate Gas pressure adjusting means is provided to increase the gas pressure applied to the lower surface rather than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate when a gas pressure is applied .
The shaft seal mechanism is characterized in that the gas pressure adjusting means is a gap size adjustment that makes a gap between the thin plate and the low-pressure side plate larger than a gap between the thin plate and the high-pressure side plate. .
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、
前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ
前記ガス圧調整手段が、前記薄板と前記低圧側側板との間の隙間を、前記薄板と前記高圧側側板との間の隙間よりも大きくする隙間寸法調節であることを特徴とする軸シール機構。
A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
When a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the gas is most gas at the corner located on the tip side and on the high-pressure side plate with respect to the upper and lower surfaces of the thin plate. pressure is high and the gas pressure adjusting means for forming a gas pressure distribution gradually weakens the gas pressure toward a diagonally disposed,
The shaft seal mechanism is characterized in that the gas pressure adjusting means is a gap size adjustment that makes a gap between the thin plate and the low-pressure side plate larger than a gap between the thin plate and the high-pressure side plate. .
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、  A cross-sectional view of the thin plate in a virtual plane perpendicular to the width direction thereof, a surface facing the rotation axis of the thin plate as a lower surface, and a back side thereof as an upper surface, and from the high-pressure side plate to the low-pressure side plate with respect to the thin plate Gas pressure adjusting means is provided to increase the gas pressure applied to the lower surface rather than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate when a gas pressure is applied.
前記ガス圧調整手段が、前記低圧側側板の前記回転軸半径方向の長さ寸法を前記高圧側側板の前記回転軸半径方向の長さ寸法よりも短くする側板寸法調節であることを特徴とする軸シール機構。  The gas pressure adjusting means is a side plate size adjustment in which the length dimension of the low pressure side plate in the radial direction of the rotation axis is shorter than the length dimension of the high pressure side plate in the radial direction of the rotation axis. Shaft seal mechanism.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、
前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、
前記ガス圧調整手段、前記低圧側側板の前記回転軸半径方向の長さ寸法を前記高圧側側板の前記回転軸半径方向の長さ寸法よりも短くする側板寸法調節であることを特徴とする軸シール機構。
A plurality of flexible thin plates having a width in the axial direction of the rotary shaft, the tip sliding on the peripheral surface of the rotary shaft, and having a gap between them and the outer peripheral side proximal end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, A shaft seal mechanism provided with a side plate,
When a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the gas is most gas at the corner located on the tip side and on the high-pressure side plate with respect to the upper and lower surfaces of the thin plate. A gas pressure adjusting means for forming a gas pressure distribution in which the pressure is high and the gas pressure gradually decreases toward the diagonal is provided,
The gas pressure adjusting means is a side plate size adjustment in which the length dimension of the low-pressure side plate in the radial direction of the rotational axis is shorter than the length dimension of the high-pressure side plate in the radial direction of the rotary shaft. Shaft seal mechanism.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互い に隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、
前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、
前記ガス圧調整手段、前記薄板の高圧側に配されてかつ前記回転軸方向に可撓性を有する可撓板であることを特徴とする軸シール機構。
Having a width in the axial direction of the rotating shaft slides on the peripheral surface of the tip is the rotary shaft, a thin plate having a plurality of flexible outer peripheral side proximal end with a gap is fixed to the casing side each other The outer periphery of the rotating shaft is provided in multiples so that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with a high-pressure side plate,
A cross-sectional view of the thin plate in a virtual plane perpendicular to the width direction thereof, a surface facing the rotation axis of the thin plate as a lower surface, and a back side thereof as an upper surface, from the high-pressure side plate to the low-pressure side plate with respect to the thin plate Gas pressure adjusting means is provided for increasing the gas pressure applied to the lower surface than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate when a gas pressure is applied to the thin plate,
The shaft seal mechanism, wherein the gas pressure adjusting means is a flexible plate disposed on a high pressure side of the thin plate and having flexibility in the direction of the rotation axis.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、  When a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the gas is the most gas at the corner located on the tip side and on the high-pressure side plate with respect to the upper and lower surfaces of the thin plate. A gas pressure adjusting means for forming a gas pressure distribution in which the pressure is high and the gas pressure gradually decreases toward the diagonal is provided,
前記ガス圧調整手段が、前記薄板の高圧側に配されてかつ前記回転軸方向に可撓性を有する可撓板であることを特徴とする軸シール機構。  The shaft seal mechanism, wherein the gas pressure adjusting means is a flexible plate that is disposed on a high pressure side of the thin plate and has flexibility in the direction of the rotation axis.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、  A cross-sectional view of the thin plate in a virtual plane perpendicular to the width direction thereof, a surface facing the rotation axis of the thin plate is a lower surface, and a back side thereof is an upper surface, and from the high pressure side plate to the low pressure side plate with respect to the thin plate Gas pressure adjusting means is provided to increase the gas pressure applied to the lower surface rather than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate when a gas pressure is applied.
前記ガス圧調整手段が、前記薄板の高圧側に配されて前記回転軸方向に可撓性を有し、かつその全周で2ヶ所以上のスリットが形成されているスリット付き可撓板であることを特徴とする軸シール機構。  The gas pressure adjusting means is a flexible plate with slits that is arranged on the high pressure side of the thin plate, has flexibility in the direction of the rotation axis, and has two or more slits formed on the entire circumference thereof. A shaft seal mechanism characterized by that.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、  When a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the gas is the most gas at the corner located on the tip side and on the high-pressure side plate with respect to the upper and lower surfaces of the thin plate. A gas pressure adjusting means for forming a gas pressure distribution in which the pressure is high and the gas pressure gradually decreases toward the diagonal is provided,
前記ガス圧調整手段が、前記薄板の高圧側に配されて前記回転軸方向に可撓性を有し、かつその全周で2ヶ所以上のスリットが形成されているスリット付き可撓板であることを特徴とする軸シール機構。  The gas pressure adjusting means is a flexible plate with slits that is arranged on the high pressure side of the thin plate, has flexibility in the direction of the rotation axis, and has two or more slits formed on the entire circumference thereof. A shaft seal mechanism characterized by that.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
前記薄板をその幅方向に垂直な仮想平面で断面視し、該薄板の前記回転軸に面した面を下面、その裏側を上面とし、該薄板に対して前記高圧側側板から前記低圧側側板に向かうガス圧が加わった場合に、該薄板の前記断面に沿った任意位置における前記上面に加わるガス圧よりも前記下面に加わるガス圧の方を高くするガス圧調整手段が設けられ、  A cross-sectional view of the thin plate in a virtual plane perpendicular to the width direction thereof, a surface facing the rotation axis of the thin plate is a lower surface, and a back side thereof is an upper surface, and from the high pressure side plate to the low pressure side plate with respect to the thin plate Gas pressure adjusting means is provided to increase the gas pressure applied to the lower surface rather than the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate when a gas pressure is applied.
前記ガス圧調整手段が、前記回転軸の軸線方向に前記低圧側側板を貫く複数の通風孔であることを特徴とする軸シール機構。  The shaft seal mechanism, wherein the gas pressure adjusting means is a plurality of ventilation holes penetrating the low-pressure side plate in the axial direction of the rotating shaft.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設けられた軸シール機構であり、A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, The outer periphery of the rotating shaft is provided in multiples such that the outer periphery of the rotating shaft can be sealed in the circumferential direction of the rotating shaft, the thin plate and the peripheral surface of the rotating shaft form an acute angle, It is a shaft seal mechanism provided with side plates,
前記高圧側側板から前記低圧側側板に向かうガス圧が前記薄板に加わった場合に、該薄板の上下面に対して、前記先端側でかつ前記高圧側側板の側に位置する角部で最もガス圧が高く、かつ対角に向かって徐々にガス圧が弱まるガス圧分布を形成するガス圧調整手段が設けられ、  When a gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the gas is the most gas at the corner located on the tip side and on the high-pressure side plate with respect to the upper and lower surfaces of the thin plate. A gas pressure adjusting means for forming a gas pressure distribution in which the pressure is high and the gas pressure gradually decreases toward the diagonal is provided,
前記ガス圧調整手段が、前記回転軸の軸線方向に前記低圧側側板を貫く複数の通風孔であることを特徴とする軸シール機構。  The shaft seal mechanism, wherein the gas pressure adjusting means is a plurality of ventilation holes penetrating the low-pressure side plate in the axial direction of the rotating shaft.
回転軸の軸方向に幅を有して先端が前記回転軸の周面に摺動し、互いに隙間を空けて外周側基端がケーシング側に固定された複数の可撓性を有する薄板を、前記回転軸の周方向に該回転軸の外周をシール可能に多重に備え、前記薄板と前記回転軸の周面とが鋭角をなす軸シール機構であり、A plurality of flexible thin plates having a width in the axial direction of the rotating shaft, the tip sliding on the peripheral surface of the rotating shaft, and having a gap between them and the outer peripheral base end fixed to the casing side, A shaft sealing mechanism in which the outer periphery of the rotating shaft is provided in a multiplexable manner in the circumferential direction of the rotating shaft, and the thin plate and the peripheral surface of the rotating shaft form an acute angle;
前記薄板と、前記低圧側側板との間に、高圧側から低圧側に向かうガスの通過を許可するガス通過空間が形成されていることを特徴とする軸シール機構。  A shaft seal mechanism characterized in that a gas passage space is formed between the thin plate and the low-pressure side plate to allow gas to pass from the high-pressure side to the low-pressure side.
請求項1,2,5〜8のいずれか1項に記載の軸シール機構において、In the shaft seal mechanism according to any one of claims 1, 2, 5 to 8,
前記低圧側側板と前記薄板との間には、該低圧側側板に向かって前記薄板が接近しようとした場合に、該薄板を支持して、これら低圧側側板及び薄板間の隙間寸法を維持する隙間寸法調整手段が設けられていることを特徴とする軸シール機構。  Between the low-pressure side plate and the thin plate, when the thin plate tries to approach the low-pressure side plate, the thin plate is supported and the gap dimension between the low-pressure side plate and the thin plate is maintained. A shaft seal mechanism provided with a gap dimension adjusting means.
請求項12記載の軸シール機構において、The shaft seal mechanism according to claim 12,
前記隙間寸法調整手段は、前記薄板側に向かって突出するように前記低圧側側板の側に設けられた第1の段形状部であり、  The gap dimension adjusting means is a first step-shaped portion provided on the low-pressure side plate so as to protrude toward the thin plate,
該第1の段形状部は、前記低圧側側板に沿って前記回転軸周りの環状をなしていることを特徴とする軸シール機構。  The shaft sealing mechanism, wherein the first step-shaped portion has an annular shape around the rotation axis along the low-pressure side plate.
請求項13記載の軸シール機構において、The shaft seal mechanism according to claim 13,
前記第1の段形状部には、前記環状の内周側及び外周側の空間を連通させる通気孔が形成されていることを特徴とする軸シール機構。  The shaft seal mechanism according to claim 1, wherein the first step-shaped portion is formed with a vent hole communicating the annular inner and outer circumferential spaces.
請求項12記載の軸シール機構において、The shaft seal mechanism according to claim 12,
前記隙間寸法調整手段は、前記薄板側に向かって突出するように前記低圧側側板の側に設けられた第2の段形状部であり、  The gap dimension adjusting means is a second step-shaped portion provided on the low-pressure side plate so as to protrude toward the thin plate,
該第2の段形状部は、互いに間隔を置いた状態で、前記低圧側側板に沿って前記回転軸周りの環状をなすように間欠配置された複数枚の環状分割板からなることを特徴とする軸シール機構。  The second step-shaped portion is composed of a plurality of annular dividing plates arranged intermittently so as to form an annular shape around the rotation axis along the low-pressure side plate in a state of being spaced apart from each other. Shaft seal mechanism.
請求項13〜15のいずれか1項に記載の軸シール機構において、The shaft seal mechanism according to any one of claims 13 to 15,
前記第1または第2の段形状部は、前記回転軸を軸心とする同心円状に複数段が設けられていることを特徴とする軸シール機構。  The shaft sealing mechanism according to claim 1, wherein the first or second step-shaped portion is provided with a plurality of steps concentrically with the rotating shaft as an axis.
請求項12記載の軸シール機構において、The shaft seal mechanism according to claim 12,
前記隙間寸法調整手段は、前記薄板側に向かって突出するように前記低圧側側板の側に設けられた第3の段形状部であり、  The gap dimension adjusting means is a third step-shaped portion provided on the low-pressure side plate side so as to protrude toward the thin plate side,
該第3の段形状部は、前記薄板側から前記低圧側側板を見た場合に、該低圧側側板の内周側から外周側に向かってスパイラル状に配置された複数枚のスパイラル板からなり、こ  The third stepped portion comprises a plurality of spiral plates arranged in a spiral shape from the inner peripheral side to the outer peripheral side of the low pressure side plate when the low pressure side plate is viewed from the thin plate side. This れらスパイラル板間には、互いに間隔が設けられていることを特徴とする軸シール機構。A shaft seal mechanism characterized in that a space is provided between the spiral plates.
請求項13記載の軸シール機構において、The shaft seal mechanism according to claim 13,
前記第1の段形状部は、前記低圧側側板の半径方向に沿って前記ケーシングの位置まで形成されていることを特徴とする軸シール機構。  The shaft seal mechanism according to claim 1, wherein the first step-shaped portion is formed up to a position of the casing along a radial direction of the low-pressure side plate.
請求項18記載の軸シール機構において、The shaft seal mechanism according to claim 18,
前記高圧側側板には、該高圧側側板を前記回転軸の軸線方向に貫く導圧孔が形成されていることを特徴とする軸シール機構。  The shaft sealing mechanism, wherein the high-pressure side plate is formed with a pressure introduction hole penetrating the high-pressure side plate in the axial direction of the rotary shaft.
請求項12記載の軸シール機構において、The shaft seal mechanism according to claim 12,
前記隙間寸法調整手段は、前記低圧側側板に向かって突出するように前記薄板の側に設けられた第4の段形状部であることを特徴とする軸シール機構。  The shaft seal mechanism, wherein the gap dimension adjusting means is a fourth step-shaped portion provided on the thin plate side so as to protrude toward the low-pressure side plate.
高温高圧のガスをケーシングに導き、該ケーシングの内部に回転可能に支持された回転軸の動翼に吹き付けることで前記ガスの熱エネルギーを機械的な回転エネルギーに変換して動力を発生するガスタービンにおいて、A gas turbine that generates heat by converting the thermal energy of the gas into mechanical rotational energy by guiding high-temperature and high-pressure gas to the casing and spraying it on the rotor blades of a rotating shaft that is rotatably supported inside the casing. In
請求項1〜20のいずれかに記載の軸シール機構を備えたことを特徴とするガスタービン。  A gas turbine comprising the shaft seal mechanism according to any one of claims 1 to 20.
JP2001032132A 2000-04-28 2001-02-08 Shaft seal mechanism and gas turbine Expired - Lifetime JP3616016B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001032132A JP3616016B2 (en) 2000-04-28 2001-02-08 Shaft seal mechanism and gas turbine
CA002359933A CA2359933C (en) 2001-02-08 2001-10-25 Shaft seal and gas turbine
DE60121539T DE60121539T8 (en) 2001-02-08 2001-10-26 Shaft seal arrangement and gas turbine
EP01125628A EP1231416B1 (en) 2001-02-08 2001-10-26 Shaft seal and gas turbine
US09/983,881 US7066468B2 (en) 2001-02-08 2001-10-26 Shaft seal and gas turbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-131684 2000-04-28
JP2000131684 2000-04-28
JP2001032132A JP3616016B2 (en) 2000-04-28 2001-02-08 Shaft seal mechanism and gas turbine

Publications (2)

Publication Number Publication Date
JP2002013647A JP2002013647A (en) 2002-01-18
JP3616016B2 true JP3616016B2 (en) 2005-02-02

Family

ID=26591302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032132A Expired - Lifetime JP3616016B2 (en) 2000-04-28 2001-02-08 Shaft seal mechanism and gas turbine

Country Status (1)

Country Link
JP (1) JP3616016B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057204A1 (en) 2010-10-27 2012-05-03 三菱重工業株式会社 Shaft seal mechanism and rotary machine provided with same
WO2012090793A1 (en) 2010-12-27 2012-07-05 三菱重工業株式会社 Shaft sealing device, and rotary machine equipped therewith
JP2012177420A (en) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd Shaft sealing mechanism
WO2013062040A1 (en) 2011-10-26 2013-05-02 三菱重工業株式会社 Shaft sealing device and rotating machine comprising same
WO2013132936A1 (en) 2012-03-08 2013-09-12 三菱重工業株式会社 Shaft seal device
WO2014129371A1 (en) 2013-02-22 2014-08-28 三菱重工業株式会社 Shaft seal device and rotary machine
JP2015503045A (en) * 2011-10-28 2015-01-29 ゼネラル・エレクトリック・カンパニイ Heat resistant seal system
WO2015056343A1 (en) 2013-10-18 2015-04-23 三菱日立パワーシステムズ株式会社 Shaft sealing device and rotating machine provided therewith
US9091348B2 (en) 2012-01-13 2015-07-28 Mitsubishi Heavy Industries, Ltd. Shaft sealing apparatus and rotating machine equipped therewith

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396885C (en) 2003-05-21 2008-06-25 三菱重工业株式会社 Shaft seal mechanism, shaft seal mechanism assembling structure and large size fluid machine
JP3993536B2 (en) * 2003-06-20 2007-10-17 三菱重工業株式会社 Manufacturing method of shaft seal, shaft seal, shaft seal member, and rotary machine using shaft seal
GB2411931A (en) * 2004-03-08 2005-09-14 Alstom Technology Ltd A leaf seal arrangement
GB0417613D0 (en) * 2004-08-07 2004-09-08 Rolls Royce Plc A leaf seal arrangement
JP3917993B2 (en) 2004-08-10 2007-05-23 三菱重工業株式会社 A shaft seal mechanism, a structure for attaching the shaft seal mechanism to a stator, and a turbine including these.
GB0613630D0 (en) * 2006-07-10 2006-08-16 Rolls Royce Plc A seal arrangement
GB0705671D0 (en) * 2007-03-24 2007-05-02 Cross Mfg Co 1938 Ltd A seal
US7744092B2 (en) * 2007-04-30 2010-06-29 General Electric Company Methods and apparatus to facilitate sealing in rotary machines
EP2105640B1 (en) * 2008-03-28 2011-04-27 Alstom Technology Ltd Leaf seal for turbomachine
JP5118552B2 (en) * 2008-05-20 2013-01-16 三菱重工業株式会社 Shaft seal device for rotating machinery
GB201202104D0 (en) * 2012-02-08 2012-03-21 Rolls Royce Plc Leaf seal
JP6276209B2 (en) 2015-02-20 2018-02-07 三菱日立パワーシステムズ株式会社 Turbine sealing device and turbine, and thin plate for sealing device
JP6358976B2 (en) 2015-02-20 2018-07-18 三菱日立パワーシステムズ株式会社 Turbine sealing device and turbine, and thin plate for sealing device
JP7456073B2 (en) 2021-07-30 2024-03-26 三菱重工業株式会社 Shaft seal device and rotating machinery
CN117836544A (en) * 2022-03-04 2024-04-05 三菱重工业株式会社 Shaft seal device and rotary machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9841109B2 (en) 2010-10-27 2017-12-12 Mitsubishi Heavy Industries, Ltd. Shaft seal mechanism and rotary machine provided with same
WO2012057204A1 (en) 2010-10-27 2012-05-03 三菱重工業株式会社 Shaft seal mechanism and rotary machine provided with same
WO2012090793A1 (en) 2010-12-27 2012-07-05 三菱重工業株式会社 Shaft sealing device, and rotary machine equipped therewith
US9677410B2 (en) 2010-12-27 2017-06-13 Mitsubishi Heavy Industries, Ltd. Shaft sealing device, and rotary machine equipped therewith
JP2012177420A (en) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd Shaft sealing mechanism
US9593588B2 (en) 2011-02-25 2017-03-14 Mitsubishi Heavy Industries, Ltd. Shaft seal mechanism
US9103223B2 (en) 2011-10-26 2015-08-11 Mitsubishi Hitachi Power Systems, Ltd. Shaft sealing device and rotating machine comprising same
WO2013062040A1 (en) 2011-10-26 2013-05-02 三菱重工業株式会社 Shaft sealing device and rotating machine comprising same
JP2015503045A (en) * 2011-10-28 2015-01-29 ゼネラル・エレクトリック・カンパニイ Heat resistant seal system
US9091348B2 (en) 2012-01-13 2015-07-28 Mitsubishi Heavy Industries, Ltd. Shaft sealing apparatus and rotating machine equipped therewith
KR20160089537A (en) 2012-03-08 2016-07-27 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Shaft seal device
US9841104B2 (en) 2012-03-08 2017-12-12 Mitsubishi Heavy Industries, Ltd. Shaft sealing apparatus
WO2013132936A1 (en) 2012-03-08 2013-09-12 三菱重工業株式会社 Shaft seal device
KR20150090182A (en) 2013-02-22 2015-08-05 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Shaft seal device and rotary machine
US9677669B2 (en) 2013-02-22 2017-06-13 Mitsubishi Hitachi Power Systems, Ltd. Shaft seal device and rotary machine
WO2014129371A1 (en) 2013-02-22 2014-08-28 三菱重工業株式会社 Shaft seal device and rotary machine
WO2015056343A1 (en) 2013-10-18 2015-04-23 三菱日立パワーシステムズ株式会社 Shaft sealing device and rotating machine provided therewith
US9644744B2 (en) 2013-10-18 2017-05-09 Mitsubishi Heavy Industries, Ltd. Shaft sealing device and rotating machine provided therewith

Also Published As

Publication number Publication date
JP2002013647A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
JP3616016B2 (en) Shaft seal mechanism and gas turbine
EP2580498B1 (en) Film riding pressure actuated leaf seal assembly
US7066468B2 (en) Shaft seal and gas turbine
JP6047236B2 (en) Film riding seal for rotating machine
EP2670954B1 (en) Axial brush seal
US7631879B2 (en) “L” butt gap seal between segments in seal assemblies
JP5174241B2 (en) Shaft seal and rotating machine equipped with the same
EP3018298A1 (en) Flexible film-riding seal
JP6012505B2 (en) Shaft seal device and rotary machine
JP2016502618A (en) Film floating aerodynamic seal for rotating machinery
JP2004500526A (en) Rotor seal with folding band
JPH11182684A (en) Flexible cloth seal assembly
WO2011162330A1 (en) Axial seal structure and rotation mechanism provided with same
JP2003106105A (en) Shaft sealing mechanism and turbine
JP2003113945A (en) Shaft sealing mechanism and turbine
US6742782B2 (en) Seal of non-hermetic design
EP1510655B1 (en) Brush seal support
EP2604894A1 (en) Improved leaf seal
WO2008140451A1 (en) Non-contacting seal for rotating surfaces
JP4031699B2 (en) Shaft seal mechanism and turbine
JP7114520B2 (en) Thrust foil bearings, foil bearing units, turbomachinery and foils
JP4677179B2 (en) Brush seal support
JP2006132635A (en) Shaft seal
JP4079417B2 (en) Annular seal
JP2016153676A (en) Turbine seal device, turbine and thin plate for seal device

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R151 Written notification of patent or utility model registration

Ref document number: 3616016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term