JP2009074657A - Cryogenic fluid transfer tube - Google Patents

Cryogenic fluid transfer tube Download PDF

Info

Publication number
JP2009074657A
JP2009074657A JP2007246185A JP2007246185A JP2009074657A JP 2009074657 A JP2009074657 A JP 2009074657A JP 2007246185 A JP2007246185 A JP 2007246185A JP 2007246185 A JP2007246185 A JP 2007246185A JP 2009074657 A JP2009074657 A JP 2009074657A
Authority
JP
Japan
Prior art keywords
cryogenic fluid
tube
pipe
fluid transfer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246185A
Other languages
Japanese (ja)
Other versions
JP5188769B2 (en
Inventor
Satoshi Tanda
聡 丹田
Shigeru Takayanagi
滋 高柳
Kazuhiko Yamatani
和彦 山谷
Koichi Ichimura
晃一 市村
Katsuhiko Inagaki
克彦 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2007246185A priority Critical patent/JP5188769B2/en
Publication of JP2009074657A publication Critical patent/JP2009074657A/en
Application granted granted Critical
Publication of JP5188769B2 publication Critical patent/JP5188769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cryogenic fluid transfer tube capable of being handled easily and safely even by one person because the tube is very lightweight and flexible irrespective of improvement in conductance, and being produced at low cost. <P>SOLUTION: The flexible cryogenic fluid transfer tube 1 performs heat insulation by forming a vacuum space 4 between an inner tube 2 and an outer tube 3. The cryogenic fluid transfer tube 1 comprises the inner tube 2 made of metal and the outer tube 3 made of predetermined low-volatile resin. The vacuum space 4 is formed between the inner tube 2 and the outer tube 3 by passing a cryogenic fluid through the inner tube 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、極低温流体を移送する二重管に関し、より詳細には、真空断熱を利用して極低温流体の温度上昇を抑制しながら移送する極低温流体移送管に関するものである。   The present invention relates to a double pipe for transferring a cryogenic fluid, and more particularly to a cryogenic fluid transfer pipe for transferring a cryogenic fluid while suppressing a temperature rise of the cryogenic fluid using vacuum insulation.

従来、真空断熱を利用した極低温流体移送管としては、内管および外管を金属とし、その間に真空空間を形成して外気温が極低温流体へ伝わるのを防止する真空断熱金属二重管がある。金属は耐圧性に富むため、真空空間を維持するという点には優れているが、極低温下での内管の収縮に対し、常に外気温下にある外管が追従できず、金属ベローズ等のいわゆる逃げ構造を備えなければ、金属疲労によりヘアクラックのような亀裂等を生じ、真空を維持できないという問題がある。   Conventionally, as a cryogenic fluid transfer pipe using vacuum insulation, a vacuum insulated metal double pipe that uses an inner pipe and an outer pipe as a metal and forms a vacuum space between them to prevent the outside air temperature from being transmitted to the cryogenic fluid. There is. Metal is excellent in maintaining a vacuum space because of its high pressure resistance, but the outer tube cannot always follow the shrinkage of the inner tube at extremely low temperatures, such as metal bellows. If the so-called relief structure is not provided, there is a problem that a crack such as a hair crack occurs due to metal fatigue, and the vacuum cannot be maintained.

一方、流量速度を増すためには、内管の内径を大きくすればよいが、移送管の単位長さあたりの重量はこの内径の大きさに比例するため、内管の内径の大きい移送管では大人一人が持ち運ぶことも操作することもできないという問題がある。また、移送管全体の曲げ抵抗も内管の内径に比例するため、内管の内径が大きい移送管を構成する場合には、例えば図6(a)のような水平方向に自由度を持たない固定式のものや、図6(b)のような重量のある金属フレキシブル管等を配設することにより可撓性を具備させたもの等とする必要がある。さらに、金属フレキシブル管等を採用せずに可撓性を持たせるためには、例えば曲率型の移送管のように(図示しない)内管の内径を小さくする必要もある。   On the other hand, in order to increase the flow rate, the inner diameter of the inner tube may be increased. However, since the weight per unit length of the transfer tube is proportional to the size of the inner diameter, There is a problem that one adult cannot carry or operate. Further, since the bending resistance of the entire transfer pipe is also proportional to the inner diameter of the inner pipe, when configuring a transfer pipe having a large inner pipe inner diameter, for example, there is no degree of freedom in the horizontal direction as shown in FIG. It is necessary to provide a fixed type or a flexible type by arranging a heavy metal flexible tube or the like as shown in FIG. Furthermore, in order to provide flexibility without using a metal flexible tube or the like, it is necessary to reduce the inner diameter of an inner tube (not shown) such as a curved transfer tube.

以上のような課題を解決すべく、例えば、特開平6−281088号公報において、複数の円形小片状スペーサーブロックを所定間隔で配設することで可撓性を持たせた真空断熱フレキシブルホースが提案されている(特許文献1)。また、特開平2−154884号公報においては、金属から形成される内管と可塑性樹脂や耐候性ゴム等から形成される外管により構成されるフレキシブルホースが提案されている(特許文献2)。   In order to solve the above problems, for example, in Japanese Patent Laid-Open No. 6-281888, there is provided a vacuum heat insulating flexible hose which is made flexible by arranging a plurality of small circular piece spacer blocks at predetermined intervals. It has been proposed (Patent Document 1). Japanese Patent Application Laid-Open No. 2-154484 proposes a flexible hose composed of an inner tube made of metal and an outer tube made of a plastic resin, weather resistant rubber or the like (Patent Document 2).

特開平6−281088号公報Japanese Patent Laid-Open No. 6-281888 特開平2−154884号公報Japanese Patent Laid-Open No. 2-154884

しかしながら、特許文献1に記載された発明は、ロケット発射台からロケットに液体水素や液体酸素等の極低温液体を供給する際に用いる移送管であり、ステンレスからなる内管にメタルブレードとスーパーインシュレーションを巻回したうえ、円柱小片状スペーサーブロックを連結ワイヤで複数列配設するという、大掛かりで複雑な構成を要し、かつ重量が大きいものである。そのため、例えば、液体ヘリウムの入ったコンテナーからクライオスタットに移送する等の場合に用いる移送管のようなスケールにおいて、この構成を採用することは困難であるという問題がある。   However, the invention described in Patent Document 1 is a transfer pipe used when a cryogenic liquid such as liquid hydrogen or liquid oxygen is supplied from a rocket launch pad to a rocket, and a metal blade and a superinsulation are provided on an inner pipe made of stainless steel. This requires a large and complicated structure and a large weight, in which a plurality of cylindrical spacer blocks are arranged with connecting wires. For this reason, there is a problem that it is difficult to employ this configuration in a scale such as a transfer tube used when transferring from a container containing liquid helium to a cryostat.

一方、特許文献2に記載された発明は、外管を可塑性樹脂や耐候性ゴム等で形成し、内管と外管との間にヘリウムガス層を形成しているが、この場合、外気温から極低温液体へ熱伝導が起こり、真空断熱と比較すると断熱効果は格段に劣るという問題がある。それ故、低温破壊を避けるために、外管を形成する可塑性樹脂や耐候性ゴムには低温可撓性が要求されている。さらに、ヘリウムガス層を維持するためには移送管内にヘリウムガスを充填する構造と充填作業が不可欠であるため、手間が掛かり、特に移送距離の長い現場では不便である。   On the other hand, in the invention described in Patent Document 2, the outer tube is formed of a plastic resin, weather resistant rubber or the like, and a helium gas layer is formed between the inner tube and the outer tube. There is a problem that heat conduction occurs from the cryogenic liquid to the cryogenic liquid, and the heat insulation effect is significantly inferior to the vacuum heat insulation. Therefore, low temperature flexibility is required for the plastic resin and weather resistant rubber forming the outer tube in order to avoid low temperature fracture. Furthermore, in order to maintain the helium gas layer, a structure for filling the transfer tube with helium gas and a filling operation are indispensable, which takes time and is inconvenient especially at a site with a long transfer distance.

本発明は、このような問題点を解決するためになされたものであって、コンダクタンスが極めて向上したにもかかわらず、非常に軽量でかつフレキシブルであるため、取り扱いも簡単であって一人でも安全に取り扱うことができ、しかも安価に製造することができる極低温流体移送管を提供することを目的としている。   The present invention was made to solve such problems, and despite being extremely improved in conductance, it is very lightweight and flexible, so it is easy to handle and safe for one person. It is an object of the present invention to provide a cryogenic fluid transfer pipe that can be handled easily and inexpensively.

本発明に係る極低温流体移送管の特徴は、内管と外管との間に真空空間を形成して断熱を行う可撓性を有する極低温流体移送管であって、金属から形成される内管と所定の低揮発性樹脂から形成される外管とにより構成されており、内管に極低温流体を流通させることによって内管と外管との間に真空空間を形成する点にある。   A feature of the cryogenic fluid transfer pipe according to the present invention is a flexible cryogenic fluid transfer pipe that forms a vacuum space between an inner pipe and an outer pipe to perform heat insulation, and is formed of metal. It is composed of an inner tube and an outer tube made of a predetermined low-volatile resin, and a vacuum space is formed between the inner tube and the outer tube by circulating a cryogenic fluid through the inner tube. .

従来、極低温流体移送管の外管が弾性の富む樹脂材料を加工して形成される場合、低温破壊を防止するために耐低温性の樹脂が用いられるが、本発明に係る極低温流体移送管の外管は真空空間に接することで極低温から断熱されるため、常温でも使用可能な低揮発性樹脂を用いることができる。また、極低温流体移送管の内管を金属で形成する場合は、一般には熱伝導性の低い金属、特に合金を加工して形成されているが、本発明に係る極低温流体移送管の内管は真空空間に接することで熱伝導を防ぐため、熱伝導性の高い金属をも用いることができる。   Conventionally, when the outer pipe of the cryogenic fluid transfer pipe is formed by processing a resin material rich in elasticity, a low temperature resistant resin is used to prevent low temperature destruction, but the cryogenic fluid transfer according to the present invention is used. Since the outer tube of the tube is insulated from the cryogenic temperature by being in contact with the vacuum space, a low-volatile resin that can be used at room temperature can be used. In addition, when the inner pipe of the cryogenic fluid transfer pipe is made of metal, it is generally formed by processing a metal having a low thermal conductivity, particularly an alloy. Since the tube is in contact with the vacuum space to prevent heat conduction, a metal having high heat conductivity can also be used.

また、本発明において、内管の外周に所定の低揮発性樹脂からなる繊維が巻回され、かつこの内管の外周に巻回された繊維の列がこの内管の長手方向に複数列設けられていることが好ましい。極低温流体移送管では、例えば移送作業中に内管と外管が接してしまうような曲げが生じてしまうことも有り得るが、このような場合に、前記繊維が内管と外管との接点にスペーサーとして介することにより、内管と外管との接触による熱伝導を防止することができる。   Further, in the present invention, fibers made of a predetermined low-volatile resin are wound around the outer periphery of the inner tube, and a plurality of rows of fibers wound around the outer periphery of the inner tube are provided in the longitudinal direction of the inner tube. It is preferable that In a cryogenic fluid transfer pipe, for example, the inner pipe and the outer pipe may be bent during the transfer operation. In such a case, the fiber contacts the inner pipe and the outer pipe. As a spacer, heat conduction due to contact between the inner tube and the outer tube can be prevented.

さらに、本発明において、外管を形成する所定の低揮発性樹脂がポリアミド系樹脂、フッ素樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエチレン樹脂、またはポリエステルのいずれかであることが好ましい。ここで、本発明に係る「所定の低揮発性樹脂」とは、外管を形成するのに用いて内管に極低温流体を流通させた場合に、樹脂から揮発するガスの揮発量と、このガスを吸着する内管の吸着量の兼ね合いにより、内管と外管との間に真空空間が形成され、この真空度を維持することができるような樹脂をいう。一般に、樹脂は真空中におけるガスの放出量が多く、また、いかなる樹脂でもガスを放出することから、一般的には真空空間を形成するような環境下では用いられないが、本発明に係る極低温流体移送管においては、内管に極低温流体を流通させることによって内管と外管との間に真空空間が形成されればよいため、前記低揮発性樹脂が用いられている。   Furthermore, in the present invention, it is preferable that the predetermined low-volatile resin forming the outer tube is any one of a polyamide-based resin, a fluororesin, a urethane resin, a polyimide resin, a polyethylene resin, or a polyester. Here, the "predetermined low-volatile resin" according to the present invention is a volatilization amount of a gas that volatilizes from the resin when a cryogenic fluid is circulated through the inner tube using the outer tube, A resin in which a vacuum space is formed between the inner tube and the outer tube due to the amount of adsorption of the inner tube that adsorbs the gas, and this degree of vacuum can be maintained. In general, a resin releases a large amount of gas in a vacuum, and any resin releases gas. Therefore, the resin is generally not used in an environment where a vacuum space is formed. In the cryogenic fluid transfer pipe, the low-volatile resin is used because it is sufficient to form a vacuum space between the inner pipe and the outer pipe by circulating a cryogenic fluid through the inner pipe.

本発明によれば、極低温流体移送管のコンダクタンスを極めて向上することができ、流体の流量速度をも増すことができる。また、非常に軽量でかつフレキシブルに形成することができ、取り扱いも簡単になり、一人でも安全に取り扱うことが可能になる。さらに、複雑な構成を要しないため安価に製造することも可能になる。   According to the present invention, the conductance of the cryogenic fluid transfer pipe can be greatly improved, and the flow rate of the fluid can also be increased. Further, it can be formed to be very lightweight and flexible, handling becomes easy, and even one person can safely handle it. Furthermore, since a complicated configuration is not required, it can be manufactured at a low cost.

以下、本発明に係る極低温流体移送管の実施形態について図面を用いて説明する。図1は、本実施形態における極低温流体移送管1の長手方向の断面図であり、図2は極低温流体移送管1の長手方向に対する垂直方向の断面図であり、図3は、本実施形態における真空空間4の圧力測定の方法を示した図である。また、図4は本実施形態における極低温流体移送管1の使用状態図である。図1または図2に示すとおり、本実施形態における極低温流体移送管1は、内管2、外管3、および内管2と外管3との間の真空空間4に配設されたスペーサー5から構成されている。   Hereinafter, embodiments of a cryogenic fluid transfer pipe according to the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a cryogenic fluid transfer pipe 1 in the present embodiment, FIG. 2 is a sectional view perpendicular to the longitudinal direction of the cryogenic fluid transfer pipe 1, and FIG. It is the figure which showed the method of the pressure measurement of the vacuum space 4 in a form. Moreover, FIG. 4 is a use state figure of the cryogenic fluid transfer pipe 1 in this embodiment. As shown in FIG. 1 or FIG. 2, the cryogenic fluid transfer pipe 1 in this embodiment includes an inner pipe 2, an outer pipe 3, and a spacer disposed in a vacuum space 4 between the inner pipe 2 and the outer pipe 3. It is composed of five.

本実施形態における内管2は、オーステナイト系ステンレス鋼であるSUS304から形成されている。SUS304は、耐食性、靭性、延性、加工性、溶接性に優れており、しかも廉価であるため好ましいが、本発明に係る極低温流体移送管の内管を形成する金属はこれに限定されず、重金属や軽金属等の純金属の他、鋼や非鉄合金等の合金であってもよい。   The inner tube 2 in this embodiment is formed from SUS304 which is an austenitic stainless steel. SUS304 is preferable because it is excellent in corrosion resistance, toughness, ductility, workability, and weldability, and is inexpensive, but the metal forming the inner pipe of the cryogenic fluid transfer pipe according to the present invention is not limited thereto, In addition to pure metals such as heavy metals and light metals, alloys such as steel and non-ferrous alloys may be used.

従来、極低温流体移送管を構成する内管は、熱伝導性が低く耐食性のある金属を加工して形成されている。しかし、本発明に係る極低温流体移送管を構成する内管の場合、外管との間に真空空間が形成されて断熱効果が高いため、熱伝導性の程度は特に問わないが、本実施形態に係る極低温流体移送管1のように真空空間4の厚みが小さい等の場合は、熱伝導性の低い金属を加工して形成されることがより好ましい。また、本発明に係る極低温流体移送管は、複雑な構成ではないために内管や外管の取り替えが容易であることから、内管の耐食性についても特に問わないが、本実施形態に係る極低温流体移送管1のように頻繁に使用される等の場合は、耐食性に優れた金属を加工して形成されることが好ましいといえる。なお「極低温」とは、絶対温度に近い、極めて低い温度をいい、一般にはヘリウムの沸点である4K(零下約268℃)をいうが、本発明においては真空空間に残存するガスないし外管を形成する樹脂から揮発するガスを凝固させて内管に吸着させる温度をいい、例えば、真空空間に残存するガスと外管を形成する樹脂から揮発するガスとが窒素の場合は、窒素を凝固させて内管に吸着させる温度をいう。また、本発明に係る極低温流体移送管を用いて移送される極低温流体には、液体ヘリウムや液体水素、液体窒素、液体酸素等の極低温の液体のみならず、極低温の気体や、極低温下で移送される粒状固体または粉状固体等の固体、電気等も含まれる。   Conventionally, the inner pipe constituting the cryogenic fluid transfer pipe is formed by processing a metal having low thermal conductivity and corrosion resistance. However, in the case of the inner pipe constituting the cryogenic fluid transfer pipe according to the present invention, since the vacuum space is formed between the outer pipe and the heat insulation effect is high, the degree of thermal conductivity is not particularly limited. When the thickness of the vacuum space 4 is small as in the cryogenic fluid transfer pipe 1 according to the embodiment, it is more preferable that the metal is formed by processing a metal having low thermal conductivity. In addition, since the cryogenic fluid transfer pipe according to the present invention is not a complicated configuration, the inner pipe and the outer pipe can be easily replaced. Therefore, the corrosion resistance of the inner pipe is not particularly limited. When used frequently, such as the cryogenic fluid transfer pipe 1, it can be said that it is preferably formed by processing a metal having excellent corrosion resistance. “Extremely low temperature” means an extremely low temperature that is close to the absolute temperature, and generally refers to 4K (approximately 268 ° C. below zero), which is the boiling point of helium. In the present invention, the gas remaining in the vacuum space or the outer tube This is the temperature at which the gas that volatilizes from the resin that forms the solidified gas is adsorbed to the inner tube. For example, if the gas remaining in the vacuum space and the gas that vaporizes from the resin that forms the outer tube are nitrogen, solidify the nitrogen. This is the temperature that is absorbed by the inner tube. The cryogenic fluid transferred using the cryogenic fluid transfer pipe according to the present invention includes not only cryogenic liquids such as liquid helium, liquid hydrogen, liquid nitrogen, and liquid oxygen, but also cryogenic gases, Also included are solids such as granular solids or powdered solids that are transported at cryogenic temperatures, electricity and the like.

一方、本実施形態における外管3は、ナイロン6,6から形成されている。ただし、本発明に係る極低温流体移送管の外管を形成する樹脂は、内管に極低温流体を流通させた場合に、樹脂から揮発するガスの揮発量とこのガスを吸着する内管の吸着量の兼ね合いにより、内管と外管との間に真空空間が形成され、この真空度を維持することができるような低揮発性樹脂であれば特に限定されず、好ましくは、ポリアミド系樹脂、フッ素樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエチレン樹脂、またはポリエステルのいずれかであり、より好ましくは、ポリアミド系樹脂である。また、ポリアミド系樹脂のうちさらに好ましくはナイロンであり、ナイロン6,6であることが最も好ましい。   On the other hand, the outer tube 3 in this embodiment is formed of nylon 6 and 6. However, the resin that forms the outer pipe of the cryogenic fluid transfer pipe according to the present invention is the amount of gas volatilized from the resin and the inner pipe that adsorbs this gas when the cryogenic fluid is circulated through the inner pipe. A vacuum space is formed between the inner tube and the outer tube due to the balance of the amount of adsorption, and it is not particularly limited as long as it is a low-volatile resin that can maintain this degree of vacuum, preferably a polyamide-based resin , A fluororesin, a urethane resin, a polyimide resin, a polyethylene resin, or a polyester, and more preferably a polyamide resin. Of the polyamide-based resins, nylon is more preferable, and nylon 6 and 6 are most preferable.

外管が樹脂により形成されることにより、極低温流体移送管全体の重量が軽量となり、かつ移送管全体の曲げ抵抗も小さくなって可撓性が増すため、従来よりも内管の内径を大きくすることが可能となり、その結果、従来の極低温流体移送管に比べ、流量を増大することが可能となる。   Since the outer tube is made of resin, the weight of the entire cryogenic fluid transfer pipe is reduced, and the bending resistance of the entire transfer pipe is reduced and the flexibility is increased. Therefore, the inner diameter of the inner pipe is made larger than before. As a result, the flow rate can be increased as compared with the conventional cryogenic fluid transfer pipe.

また、樹脂により形成された管は、一般に、常温下では内部圧力が外部圧力すなわち大気圧より高くなることが想定されており、耐圧性樹脂管という場合は、高圧である内部圧力に耐え得る樹脂管を指す。これに対し、本発明に係る極低温流体移送管を構成する外管は、内部圧力が大気圧より低い、すなわち負圧に耐え得る低揮発性樹脂を加工して形成されていなければならないが、一般の耐圧樹脂管であって、高圧である内部圧力のみならず負圧である内部圧力に耐え得るものであれば、これを用いることもできる。また、外管を、低揮発性樹脂を単体で成形してもよいが、外管のうち真空空間に接する内周面に低揮発性樹脂を適当な厚さに塗布することによって高真空度を保持しうる樹脂層を備えた外管を構成してもよい。さらに、外管のうち真空空間に接する内周面に金属蒸着薄膜や多層反射膜ラミネート構造等を形成してもよい。   In general, it is assumed that the pipe formed of resin has an internal pressure higher than the external pressure, that is, atmospheric pressure at room temperature. In the case of a pressure-resistant resin pipe, a resin that can withstand a high internal pressure is used. Refers to the tube. On the other hand, the outer tube constituting the cryogenic fluid transfer tube according to the present invention must be formed by processing a low volatile resin whose internal pressure is lower than atmospheric pressure, that is, capable of withstanding negative pressure, Any general pressure-resistant resin pipe can be used as long as it can withstand not only a high internal pressure but also a negative internal pressure. In addition, the outer tube may be formed of a low volatile resin alone, but a high degree of vacuum can be achieved by applying the low volatile resin to an appropriate thickness on the inner peripheral surface of the outer tube that is in contact with the vacuum space. You may comprise the outer tube | pipe provided with the resin layer which can be hold | maintained. Furthermore, a metal vapor-deposited thin film, a multilayer reflective film laminate structure, or the like may be formed on the inner peripheral surface in contact with the vacuum space in the outer tube.

また、例えば、ロケット発射時に発射台からロケットに極低温液体を供給する際に用いられるといった、極低温流体移送管が屋外で用いられる等の場合は、極低温流体移送管を構成する外管は、耐候性や耐腐食性等に優れた樹脂材料を加工して形成されている必要があるが、本発明に係る極低温流体移送管は必ずしもこのような条件下での使用に限定されないため、本発明に係る極低温流体移送管を構成する外管の耐候性や耐腐食性は問わない。しかしながら、本実施形態に係る極低温流体移送管1のように様々な薬品が使用されている研究室で使用される場合や、超伝導送電ケーブルの冷却用チューブに適用する等の場合は、耐候性や耐腐食性、耐薬品性等に優れた低揮発性樹脂を加工して形成されることや、外管の外周に耐候性や耐腐食性、耐薬品性を有する物理的又は化学的被覆層を備えることが好ましいといえる。   Also, for example, when the cryogenic fluid transfer pipe is used outdoors, such as when the cryogenic liquid is supplied from the launch pad to the rocket at the time of launching the rocket, the outer pipe constituting the cryogenic fluid transfer pipe is It is necessary to be formed by processing a resin material excellent in weather resistance, corrosion resistance, etc., but the cryogenic fluid transfer pipe according to the present invention is not necessarily limited to use under such conditions, The weather resistance and corrosion resistance of the outer pipe constituting the cryogenic fluid transfer pipe according to the present invention are not limited. However, when used in a laboratory where various chemicals are used, such as the cryogenic fluid transfer pipe 1 according to this embodiment, or when applied to a cooling tube of a superconducting power transmission cable, the weather resistance A physical or chemical coating that is formed by processing a low-volatile resin that excels in heat resistance, corrosion resistance, chemical resistance, etc., and that has weather resistance, corrosion resistance, and chemical resistance on the outer periphery of the outer tube It may be preferable to provide a layer.

ここで、「真空空間」とは、日本工業規格Z8126−1において定義されている、番号2.1.1の真空である空間、すなわち通常の大気圧より低い圧力の気体で満たされた空間の状態をいうが、番号2.1.1.1の低真空または前記低真空より圧力が低い真空空間、すなわち圧力10Pa以下の真空空間であることが好ましく、番号2.1.1.2の中真空または前記中真空より圧力が低い真空空間、すなわち圧力10Pa以下の真空空間であることがより好ましく、番号2.1.1.3の高真空または前記高真空より圧力が低いである真空空間、すなわち圧力10−1Pa以下の真空空間であることがさらに好ましい。本発明者等は、鋭意研究の結果、本発明に係る極低温流体移送管の内管に極低温流体を流通させることにより、内管がいわゆるソープションポンプの役目を果たすため、内管と外管との空間の真空空間となることを見出した。 Here, the “vacuum space” is a space defined by Japanese Industrial Standard Z8126-1, which is a vacuum of number 2.1.1, that is, a space filled with a gas having a pressure lower than normal atmospheric pressure. The state is preferably a low vacuum of the number 2.1.1.1 or a vacuum space whose pressure is lower than the low vacuum, that is, a vacuum space of a pressure of 10 5 Pa or less, and the number 2.1.1.2. Or a vacuum space having a pressure lower than that of the medium vacuum, that is, a vacuum space having a pressure of 10 2 Pa or less, and a high vacuum of number 2.1.1.3 or a pressure lower than that of the high vacuum. More preferably, it is a certain vacuum space, that is, a vacuum space having a pressure of 10 −1 Pa or less. As a result of diligent research, the inventors have circulated cryogenic fluid through the inner pipe of the cryogenic fluid transfer pipe according to the present invention, so that the inner pipe serves as a so-called sorption pump. It has been found that it becomes a vacuum space of the space with the tube.

つまり、内管に極低温流体を流通することによって内管の温度が極低温に達すると、内管と外管との間に残存する空気が急速に冷却される。すると、空気を構成する窒素や酸素等が固体となって内管に吸着され、真空空間が速やかに形成されるのである。この時、外管を形成する低揮発性樹脂からガスが発生し、同様に急速に冷却されて固体となって内管に吸着されるという現象が連続的に起こるが、外管からのガス発生量よりも内管への固体吸着量の方が多くなることで、真空空間が形成・保持されるのである。   That is, when the temperature of the inner pipe reaches a cryogenic temperature by circulating the cryogenic fluid through the inner pipe, the air remaining between the inner pipe and the outer pipe is rapidly cooled. Then, nitrogen, oxygen, etc. constituting the air become solid and are adsorbed by the inner tube, and the vacuum space is quickly formed. At this time, gas is generated from the low-volatility resin forming the outer tube, and the phenomenon that it is rapidly cooled and solidified and adsorbed to the inner tube occurs continuously. The amount of solid adsorbed on the inner tube is larger than the amount, so that a vacuum space is formed and maintained.

なお、本実施形態においては、図3(a)に示すとおり、配設した真空ポンプによりあらかじめ真空空間4が真空になるよう、圧力を調整しているが、本発明に係る極低温流体移送管の真空空間は、前述した理由により内管に極低温流体を流通させることによって速やかに真空となるため、内管と外管との間の空間の圧力が外部圧力である大気圧と同じ状態から極低温流体の移送を開始してもよい。   In the present embodiment, as shown in FIG. 3A, the pressure is adjusted in advance so that the vacuum space 4 is evacuated by the arranged vacuum pump. However, the cryogenic fluid transfer pipe according to the present invention is used. Since the vacuum space is quickly evacuated by circulating a cryogenic fluid through the inner tube for the reasons described above, the pressure in the space between the inner tube and the outer tube is the same as the atmospheric pressure that is the external pressure. The cryogenic fluid transfer may be initiated.

次に、本実施形態におけるスペーサー5は、ナイロン6,6繊維を紡糸して形成されたいわゆるナイロン糸から構成されている。図1または2に示すとおり、本発明に係る極低温流体移送管の内管の外周に巻回された繊維は、スペーサーとして、内管と外管との接点に介することにより内管と外管との接触を防止することができるものであれば、材質や直径は特に限定されないが、内管から外管へのスペーサーを介した熱伝導の問題や、真空空間に接するためこれを損なわない観点から、材質は前記低揮発性樹脂であり、かつ真空空間の厚みより小さい直径であるものが好ましく、点レベルで内管と外管との接触を防止することができる直径であるものがさらに好ましいといえる。なお、本発明における「内管の外周に巻回された繊維」には、外管の内周に巻回された繊維が含まれる。   Next, the spacer 5 in this embodiment is composed of a so-called nylon thread formed by spinning nylon 6,6 fibers. As shown in FIG. 1 or 2, the fiber wound around the outer circumference of the inner pipe of the cryogenic fluid transfer pipe according to the present invention is used as a spacer through the contact between the inner pipe and the outer pipe, thereby causing the inner pipe and the outer pipe to pass through. The material and the diameter are not particularly limited as long as they can prevent contact with the tube, but there is a problem of heat conduction through the spacer from the inner tube to the outer tube and a viewpoint that does not impair this because it contacts the vacuum space. Therefore, the material is preferably the low-volatile resin and having a diameter smaller than the thickness of the vacuum space, and more preferably a diameter capable of preventing contact between the inner tube and the outer tube at a point level. It can be said. The “fiber wound around the outer periphery of the inner tube” in the present invention includes a fiber wound around the inner periphery of the outer tube.

また、本実施形態におけるスペーサー5は、図1に示すとおり、1本のナイロン糸が内管2の外周に螺旋状に巻回され、この巻回されたナイロン糸の列が内管2の長手方向に複数列となるように形成されているが、本発明に係る極低温流体移送管においては、複数の繊維が内管の外周に各々螺旋状に巻回されて形成されてもよく、あるいは複数の繊維がリング状に巻回されて形成されてもよい。なお、リング状に巻回されて形成された場合、真空空間4において、極低温流体移送管1の長手方向に対する垂直方向に仕切りが形成されるが、螺旋状に巻回されて形成された場合は、このような仕切りが形成されることなく真空空間4が一体となり、速やかに真空が形成されることから、螺旋状に巻回されて形成されることが好ましい。さらに、本発明に係る極低温流体移送管においては、巻回された繊維の列が極低温流体移送管全体に配設されてもよく、曲げの多い部分等の一部に配設されてもよい。   In addition, as shown in FIG. 1, the spacer 5 in the present embodiment has one nylon thread spirally wound around the outer circumference of the inner tube 2, and the row of the wound nylon threads is the length of the inner tube 2. In the cryogenic fluid transfer pipe according to the present invention, a plurality of fibers may be formed by being spirally wound around the outer circumference of the inner pipe, or A plurality of fibers may be formed in a ring shape. When formed in a ring shape, the partition is formed in the vacuum space 4 in a direction perpendicular to the longitudinal direction of the cryogenic fluid transfer tube 1, but formed in a spiral shape. Since the vacuum space 4 is united without forming such a partition and a vacuum is quickly formed, it is preferably formed by being spirally wound. Furthermore, in the cryogenic fluid transfer pipe according to the present invention, the wound fiber array may be arranged in the entire cryogenic fluid transfer pipe, or may be arranged in a part such as a portion where there is much bending. Good.

また、本実施形態における極低温流体移送管1には、図1に示すとおり、可撓性を有さない真空断熱金属二重管6が継手7によってその両端に接続され、全体として1本の複合管11が構成されている。また、接続されていない真空断熱金属二重管6の両端において真空断熱金属二重管6の真空空間が端子8により閉じられている。さらに、内管2に極低温流体を流通させる前に、内管2と外管3との間に圧力が10Pa以下の真空空間4があらかじめ形成されるよう、真空断熱金属二重管6には真空バルブ9を経て真空ポンプ10が接続されている。このように、極低温流体移送管全体として可撓性を有する必要がない場合は、本発明に係る極低温流体移送管に可撓性を有さない真空断熱金属二重管を接続する等して本発明に係る極低温流体移送管を使用してもよく、必要に応じて真空ポンプ等の装置を配設して使用してもよい。 Moreover, as shown in FIG. 1, the cryogenic fluid transfer pipe 1 in this embodiment is connected to both ends of the vacuum heat insulating metal double pipe 6 having no flexibility by joints 7 as shown in FIG. A composite tube 11 is configured. Further, the vacuum space of the vacuum heat insulating metal double tube 6 is closed by the terminals 8 at both ends of the vacuum heat insulating metal double tube 6 that is not connected. Furthermore, before circulating the cryogenic fluid through the inner tube 2, the vacuum heat insulating metal double tube 6 is formed so that a vacuum space 4 having a pressure of 10 5 Pa or less is formed in advance between the inner tube 2 and the outer tube 3. A vacuum pump 10 is connected through a vacuum valve 9. Thus, when it is not necessary to have flexibility as a whole cryogenic fluid transfer pipe, a vacuum insulating metal double pipe having no flexibility is connected to the cryogenic fluid transfer pipe according to the present invention. The cryogenic fluid transfer pipe according to the present invention may be used, and a device such as a vacuum pump may be provided and used as necessary.

次に、本発明に係る極低温流体移送管の実施例について説明する。なお、本発明の範囲は、これらの実施例によって示される特徴に限定されない。   Next, examples of the cryogenic fluid transfer pipe according to the present invention will be described. Note that the scope of the present invention is not limited to the features shown by these examples.

<極低温流体移送管の作製>
本実施形態における極低温流体移送管1は、次のように作製することができる。
1)スペーサー3の形成
内管2として、内径が5mmまたは5.4mm、外径が6mmで長さが4mのSUS304管を用い、その一端から約15cmの所にて、直径が0.7mm〜0.9mmのナイロン糸の一端を熱収縮チューブで固定し、内管2全体にこのナイロン糸を所望の間隔で巻回した後、シアノアクリレート接着剤で固定することにより形成した。
<Production of cryogenic fluid transfer pipe>
The cryogenic fluid transfer pipe 1 in the present embodiment can be manufactured as follows.
1) Formation of spacer 3 As the inner tube 2, an SUS304 tube having an inner diameter of 5 mm or 5.4 mm, an outer diameter of 6 mm, and a length of 4 m is used. One end of a 0.9 mm nylon thread was fixed with a heat-shrink tube, and the nylon thread was wound around the entire inner tube 2 at a desired interval, and then fixed with a cyanoacrylate adhesive.

2)端子8の作製
棒の中心に内径6.0mmの穴をドリルで形成し、外径10.0mmのSUS管が嵌合するように旋盤で外径9.0mm、長さ10.0mm程度になるように仕上げ、同様にして外径9.0mmのSUS管に嵌るように外径8.0mm,長さ10.0mm程度に仕上げることにより作製した。
2) Preparation of terminal 8 A hole with an inner diameter of 6.0 mm is formed in the center of the rod by a drill, and an outer diameter of about 9.0 mm and a length of about 10.0 mm with a lathe so that a SUS pipe with an outer diameter of 10.0 mm is fitted In the same manner, it was produced by finishing to an outer diameter of 8.0 mm and a length of about 10.0 mm so as to fit into a SUS tube having an outer diameter of 9.0 mm.

3)極低温流体移送管1の組み立て
外管3として、内径が9.56mm、外径が12.7mmで長さが1.0mのシンフレックス(登録商標)チューブ(ハギテック社製、品番N5−1−1/2)を用い、外管3に内管2を挿通して内管2の長さを調整した後、真ちゅう製のシンフレックス(登録商標)管用継手とユニオンコネクター(型番UC4N12X9)とから形成した継手7を用いて真空断熱金属二重管6を接続した。真空空間の、極低温流体移送管1の長手方向に対する垂直方向の幅は約1.0mmであった。また、内径が9.0mm、外径が12.0mmで長さが50mmの真ちゅう管に真空バルブ9を接続することにより、真空ポンプ10を配設した。完成した本実施形態における極低温流体移送管1を図1に示す。
3) Assembly of cryogenic fluid transfer pipe 1 As the outer pipe 3, a Shinflex (registered trademark) tube (product number N5-, manufactured by Hagitec Corporation) having an inner diameter of 9.56 mm, an outer diameter of 12.7 mm, and a length of 1.0 m. 1-1 / 2), the inner tube 2 is inserted into the outer tube 3 and the length of the inner tube 2 is adjusted. Then, a brass joint made of Shinflex (registered trademark) and a union connector (model number UC4N12X9) A vacuum insulated metal double pipe 6 was connected using a joint 7 formed from The width of the vacuum space in the direction perpendicular to the longitudinal direction of the cryogenic fluid transfer tube 1 was about 1.0 mm. The vacuum pump 10 was disposed by connecting the vacuum valve 9 to a brass tube having an inner diameter of 9.0 mm, an outer diameter of 12.0 mm, and a length of 50 mm. The completed cryogenic fluid transfer pipe 1 in this embodiment is shown in FIG.

<液体ヘリウムの移送>
本実施形態における極低温流体移送管1は、例えば液体ヘリウムの移送において次のように使用することができる。
1)予冷
予冷は、定法に従って行われる。すなわち、クライオスタット・デュワー内に液体窒素を挿入し、デュワー内が液体窒素温度である77Kに到達させた後、30〜60分間保持する。液体窒素温度である77Kに安定させた後、窒素ガスで加圧して液体窒素をデュワー外に排出後、窒素気体を真空ポンプで排気し、ヘリウムガスで置換することにより行われる。
<Transfer of liquid helium>
The cryogenic fluid transfer pipe 1 in this embodiment can be used as follows, for example, in the transfer of liquid helium.
1) Pre-cooling Pre-cooling is performed according to a standard method. That is, liquid nitrogen is inserted into the cryostat dewar, and the interior of the dewar reaches 77K, which is the temperature of liquid nitrogen, and then held for 30 to 60 minutes. After the liquid nitrogen temperature is stabilized at 77 K, pressurization with nitrogen gas is performed to discharge liquid nitrogen outside the dewar, and then the nitrogen gas is exhausted with a vacuum pump and replaced with helium gas.

2)移送
あらかじめ、真空空間4の圧力を10−1Pa以下に調整した後、ヘリウムコンテナー内とクライオスタット内との気圧差が0.1barになるように調整することにより、クライオスタット内に液体ヘリウムを移送する。なお、気圧差の調整は定法に従って行われる。すなわち、あらかじめ液体ヘリウムコンテナーに備え付けのゴム風船のバルブを開口し、ゴム風船を膨張させた後、このゴム風船を両手で押さえることにより加圧し、0.1barになり次第加圧をやめる。その後、圧力値が低下した場合は、再度前記の手法にて加圧し、0.1barになり次第加圧をやめる。以下これを繰り返して所望の量の液体ヘリウムを移送させることができる。
2) Transfer After adjusting the pressure of the vacuum space 4 to 10 −1 Pa or less in advance, the liquid helium is introduced into the cryostat by adjusting the pressure difference between the helium container and the cryostat to be 0.1 bar. Transport. The adjustment of the atmospheric pressure difference is performed according to a standard method. That is, the valve of the rubber balloon attached to the liquid helium container is opened in advance, and the rubber balloon is inflated. Then, the rubber balloon is pressurized with both hands, and the pressure is stopped as soon as 0.1 bar is reached. Thereafter, when the pressure value decreases, pressurization is again performed by the above-described method, and the pressurization is stopped as soon as 0.1 bar is reached. This can be repeated to transfer a desired amount of liquid helium.

本実施形態における極低温流体移送管1による液体ヘリウムの移送の様子を図4に示す。液体ヘリウムの移送が始まると、前記のとおり、低揮発性樹脂から形成される外管3からは連続して少量のガスが発生するが、内管2がソープションポンプの役目を果たし、約10−5Pa以下の真空空間が形成される。この時、内管2は極低温下で収縮するが、低揮発性樹脂から形成される外管3は弾性に富むため、この外管3が内管2の収縮に追従して収縮する。さらに、図4に示すとおり、極低温流体移送管1は可撓性に優れていることが分かる。 FIG. 4 shows how liquid helium is transferred by the cryogenic fluid transfer pipe 1 in this embodiment. When the transfer of liquid helium starts, as described above, a small amount of gas is continuously generated from the outer tube 3 formed of the low-volatile resin, but the inner tube 2 serves as a sorption pump, and about 10 A vacuum space of −5 Pa or less is formed. At this time, the inner tube 2 contracts at an extremely low temperature, but the outer tube 3 formed of a low-volatile resin is rich in elasticity, so that the outer tube 3 contracts following the contraction of the inner tube 2. Furthermore, as shown in FIG. 4, it can be seen that the cryogenic fluid transfer tube 1 is excellent in flexibility.

<従来の真空断熱金属二重移送管との流量の比較>
本実施形態における極低温流体移送管1の外管3を樹脂で形成することにより、極低温流体移送管1全体の重量が軽量となり、かつ移送管全体の曲げ抵抗も小さくなって可撓性が増したため、内管2の内径を従来の極低温流体移送管よりも大きくすることができた。本実施形態における極低温流体移送管1と、図6に示す従来の真空断熱金属二重移送管(Oxford社製TTNシリーズ)との流量値を図5に示す。流量値は、ヘリウムコンテナー内とクライオスタット内との気圧差を0.1barとした場合の1分間に流れた液体ヘリウムの量(リットル)で表す。図5に示すとおり、本実施形態における極低温流体移送管1の流量値は、従来の真空断熱金属二重移送管の流量値と比較して4倍以上であり、従来と比較して極めてコンダクタンスが向上することが示された。約1.0mmの真空空間であるにもかかわらず低温流体移送管1の特性が優れているのは、内管2への熱伝導、すなわち室温から極低温への熱伝導が熱輻射より対流が中心であることを示している。また、従来の真空断熱金属二重移送管に関するOxford社のカタログに掲載されている流量値は1リットル/分・0.1barとなっているところ、この実用化されている流量値と比較しても3倍強であることが確認でき、本実施形態の極低温流体移送管1の特性が如何に優れているかが理解できる。
<Comparison of flow rate with conventional vacuum insulated metal double transfer pipe>
By forming the outer tube 3 of the cryogenic fluid transfer tube 1 in the present embodiment with resin, the weight of the entire cryogenic fluid transfer tube 1 is reduced, and the bending resistance of the entire transfer tube is reduced, so that flexibility is achieved. As a result, the inner diameter of the inner tube 2 could be made larger than that of the conventional cryogenic fluid transfer tube. The flow rate values of the cryogenic fluid transfer pipe 1 in this embodiment and the conventional vacuum heat insulating metal double transfer pipe (TTN series manufactured by Oxford) shown in FIG. 6 are shown in FIG. The flow rate value is expressed as the amount (liter) of liquid helium that has flowed in one minute when the pressure difference between the helium container and the cryostat is 0.1 bar. As shown in FIG. 5, the flow rate value of the cryogenic fluid transfer pipe 1 in this embodiment is four times or more compared with the flow rate value of the conventional vacuum insulated metal double transfer pipe, which is much higher than the conventional conductance. Has been shown to improve. The characteristics of the cryogenic fluid transfer tube 1 are excellent despite the fact that it is a vacuum space of about 1.0 mm. The heat conduction to the inner tube 2, that is, the heat conduction from room temperature to cryogenic temperature is more convection than heat radiation. It shows that it is the center. In addition, the flow rate value published in the Oxford catalog relating to the conventional vacuum insulated metal double transfer pipe is 1 liter / min · 0.1 bar. Compared with this practical flow rate value. It can be confirmed that the characteristics of the cryogenic fluid transfer pipe 1 of this embodiment are excellent.

以上のような本実施例によれば、
1.コンダクタンスを極めて向上することができ、流体の流量速度をも増大することができる。
2.非常に軽量でかつフレキシブルに形成することができ、取り扱いも簡単になり、一人でも安全に取り扱うことが可能となる。
3.付属機構等の複雑な構成を要しないため安価に製造することが可能となる。
According to the present embodiment as described above,
1. The conductance can be greatly improved and the fluid flow rate can also be increased.
2. It is very light and flexible, can be handled easily, and can be handled safely by one person.
3. Since a complicated structure such as an attached mechanism is not required, it can be manufactured at low cost.

なお、本発明に係る極低温流体移送管は、前述した実施例に限定されるものではなく、適宜変更することができる。例えば、継手7により真空断熱金属二重管を接続しないで極低温流体移送管1を使用してもよく、極低温流体移送管1に直接、真空ポンプ10を接続した真空バルブ9を配設する等としてもよい。   The cryogenic fluid transfer pipe according to the present invention is not limited to the above-described embodiments, and can be changed as appropriate. For example, the cryogenic fluid transfer pipe 1 may be used without connecting the vacuum heat insulating metal double pipe by the joint 7, and the vacuum valve 9 having the vacuum pump 10 connected directly to the cryogenic fluid transfer pipe 1 is provided. Etc.

本実施形態における極低温流体移送管1の長手方向の断面図である。It is sectional drawing of the longitudinal direction of the cryogenic fluid transfer pipe | tube 1 in this embodiment. 本実施形態における極低温流体移送管1の内管2から外管3方向の断面図である。FIG. 3 is a cross-sectional view from the inner tube 2 to the outer tube 3 of the cryogenic fluid transfer tube 1 in the present embodiment. 本実施形態における移送前の真空空間の圧力測定の方法を示す図である。It is a figure which shows the method of the pressure measurement of the vacuum space before the transfer in this embodiment. 本実施形態における移送中の真空空間の圧力測定の方法を示す図である。It is a figure which shows the method of the pressure measurement of the vacuum space in transfer in this embodiment. 本実施形態における極低温流体移送管1の使用状態図である。It is a use condition figure of the cryogenic fluid transfer pipe 1 in this embodiment. 本実施形態における極低温流体移送管1と従来の真空断熱金属二重移送管との流量値を示す表である。It is a table | surface which shows the flow value of the cryogenic fluid transfer pipe | tube 1 in this embodiment, and the conventional vacuum heat insulation metal double transfer pipe | tube. 固定式を採用した従来の真空断熱金属二重移送管を示す図である。It is a figure which shows the conventional vacuum heat insulation metal double transfer pipe | tube which employ | adopted the fixed type. 金属フレキシブル管を用いた従来の真空断熱金属二重移送管を示す図である。It is a figure which shows the conventional vacuum heat insulation metal double transfer pipe | tube using a metal flexible pipe | tube.

符号の説明Explanation of symbols

1 極低温流体移送管
2 内管
3 外管
4 真空空間
5 スペーサー
6 真空断熱金属二重管
7 継手
8 端子
9 真空バルブ
10 真空ポンプ
11 複合管
101 圧力ゲージ
DESCRIPTION OF SYMBOLS 1 Cryogenic fluid transfer pipe 2 Inner pipe 3 Outer pipe 4 Vacuum space 5 Spacer 6 Vacuum heat insulation metal double pipe 7 Joint 8 Terminal 9 Vacuum valve 10 Vacuum pump 11 Composite pipe 101 Pressure gauge

Claims (3)

内管と外管との間に真空空間を形成して断熱を行う可撓性を有する極低温流体移送管であって、
金属から形成される前記内管と所定の低揮発性樹脂から形成される前記外管とにより構成されており、
前記内管に極低温流体を流通させることによって前記内管と前記外管との間に前記真空空間を形成することを特徴とする極低温流体移送管。
A cryogenic fluid transfer pipe having flexibility to form a vacuum space between an inner pipe and an outer pipe for heat insulation,
It is composed of the inner tube formed from metal and the outer tube formed from a predetermined low-volatile resin,
A cryogenic fluid transfer pipe characterized in that the vacuum space is formed between the inner pipe and the outer pipe by circulating a cryogenic fluid through the inner pipe.
請求項1において、前記内管の外周に所定の低揮発性樹脂からなる繊維が巻回され、かつこの内管の外周に巻回された繊維の列がこの内管の長手方向に複数列設けられていることを特徴とする極低温流体移送管。   2. The fiber according to claim 1, wherein fibers made of a predetermined low-volatile resin are wound around the outer periphery of the inner tube, and a plurality of rows of fibers wound around the outer periphery of the inner tube are provided in the longitudinal direction of the inner tube. A cryogenic fluid transfer pipe, characterized in that 請求項1または請求項2において、前記外管を形成する所定の低揮発性樹脂がポリアミド系樹脂、フッ素樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエチレン樹脂、またはポリエステルのいずれかであることを特徴とする極低温流体移送管。   3. The predetermined low-volatile resin forming the outer tube according to claim 1 or 2, wherein the predetermined low-volatile resin is any one of a polyamide-based resin, a fluorine resin, a urethane resin, a polyimide resin, a polyethylene resin, or a polyester. Cryogenic fluid transfer pipe.
JP2007246185A 2007-09-21 2007-09-21 Cryogenic fluid transfer pipe Expired - Fee Related JP5188769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246185A JP5188769B2 (en) 2007-09-21 2007-09-21 Cryogenic fluid transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246185A JP5188769B2 (en) 2007-09-21 2007-09-21 Cryogenic fluid transfer pipe

Publications (2)

Publication Number Publication Date
JP2009074657A true JP2009074657A (en) 2009-04-09
JP5188769B2 JP5188769B2 (en) 2013-04-24

Family

ID=40609823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246185A Expired - Fee Related JP5188769B2 (en) 2007-09-21 2007-09-21 Cryogenic fluid transfer pipe

Country Status (1)

Country Link
JP (1) JP5188769B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228060A (en) * 2012-04-26 2013-11-07 Mitsubishi Heavy Ind Ltd Double pipe
JP2016070373A (en) * 2014-09-30 2016-05-09 川崎重工業株式会社 Double structure pipe for cryogenic fluid and double structure storage tank for cryogenic fluid
WO2016129799A1 (en) * 2015-02-13 2016-08-18 한국과학기술원 Cryogenic liquid transfer tube
JP7372819B2 (en) 2019-11-20 2023-11-01 大陽日酸エンジニアリング株式会社 gas piping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200896A (en) * 1983-04-25 1984-11-14 カ−ベルメタル・エレクトロ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Conduit for transporting medium cooled at low temperature
JPH02154884A (en) * 1988-12-05 1990-06-14 Natl Space Dev Agency Japan<Nasda> Flexible hose
JPH117844A (en) * 1997-06-12 1999-01-12 Sumitomo Electric Ind Ltd Heat insulating tube and spacer for heat insulating tube
WO2006132532A2 (en) * 2005-06-08 2006-12-14 Single Buoy Moorings Inc. Cryogenic transfer hose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200896A (en) * 1983-04-25 1984-11-14 カ−ベルメタル・エレクトロ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Conduit for transporting medium cooled at low temperature
JPH02154884A (en) * 1988-12-05 1990-06-14 Natl Space Dev Agency Japan<Nasda> Flexible hose
JPH117844A (en) * 1997-06-12 1999-01-12 Sumitomo Electric Ind Ltd Heat insulating tube and spacer for heat insulating tube
WO2006132532A2 (en) * 2005-06-08 2006-12-14 Single Buoy Moorings Inc. Cryogenic transfer hose
JP2008544166A (en) * 2005-06-08 2008-12-04 シングル・ブイ・ムーリングス・インコーポレイテッド Cryogenic transfer hose

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228060A (en) * 2012-04-26 2013-11-07 Mitsubishi Heavy Ind Ltd Double pipe
JP2016070373A (en) * 2014-09-30 2016-05-09 川崎重工業株式会社 Double structure pipe for cryogenic fluid and double structure storage tank for cryogenic fluid
WO2016129799A1 (en) * 2015-02-13 2016-08-18 한국과학기술원 Cryogenic liquid transfer tube
JP7372819B2 (en) 2019-11-20 2023-11-01 大陽日酸エンジニアリング株式会社 gas piping

Also Published As

Publication number Publication date
JP5188769B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
KR100615499B1 (en) Flexible line pipe
CN100538151C (en) Cryogenic piping system
ES2424368T3 (en) Flexible tube
US4036617A (en) Support system for an elongated cryogenic envelope
US4924679A (en) Apparatus and method for evacuating an insulated cryogenic hose
US3369826A (en) Cryogenic fluid transfer conduit
JP5188769B2 (en) Cryogenic fluid transfer pipe
US3137143A (en) Condensing vacuum insulation
US8807382B1 (en) Storage system having flexible vacuum jacket
JPH0474599B2 (en)
US11047517B2 (en) Modular vacuum insulated piping
US9279540B2 (en) Web insulation system, valve for a web insulation system, and a storage container using the web insulation system
US20180283769A1 (en) Cryostat arrangement comprising a neck tube having a supporting structure and an outer tube surrounding the supporting structure to reduce the cryogen consumption
KR102030202B1 (en) Assembly comprising a connection piece and a flexible hose for transporting a cryogenic fluid
JP2703002B2 (en) Flexible hose
JP2016070375A (en) Joint structure of vacuum heat-insulating double pipe for low-temperature fluid
JP2016070456A (en) Duplex tube for liquefaction hydrogen
JP6313564B2 (en) Cryogenic fluid transfer pipe
JPH0326392Y2 (en)
Mustaffa et al. Flexible thermosetting pipe
US20170130891A1 (en) Flexible pipeline
KR20230123824A (en) Vacuum Insulation Pipe
BaldevBhai et al. Design and optimization of cryogenic storage vessel
Bloomfield Paper 3: The Use of Vacuum in the Insulation of Vessels and Equipment for Handling Liquefied Gases
RU2532476C2 (en) Cryogenic pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees