JP2009074393A - Engine - Google Patents

Engine Download PDF

Info

Publication number
JP2009074393A
JP2009074393A JP2007242590A JP2007242590A JP2009074393A JP 2009074393 A JP2009074393 A JP 2009074393A JP 2007242590 A JP2007242590 A JP 2007242590A JP 2007242590 A JP2007242590 A JP 2007242590A JP 2009074393 A JP2009074393 A JP 2009074393A
Authority
JP
Japan
Prior art keywords
valve
egr
passage
engine
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007242590A
Other languages
Japanese (ja)
Other versions
JP4814188B2 (en
Inventor
Masayasu Takami
雅保 高見
Hideya Miyazaki
秀也 宮崎
Tamon Tanaka
多聞 田中
Tomoyoshi Sakano
倫祥 坂野
Yuzo Umeda
裕三 梅田
Shogo Muroya
昇吾 室弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2007242590A priority Critical patent/JP4814188B2/en
Publication of JP2009074393A publication Critical patent/JP2009074393A/en
Application granted granted Critical
Publication of JP4814188B2 publication Critical patent/JP4814188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine in which the mal-function of an EGR valve is prevented from occurring. <P>SOLUTION: In this engine, the inside of an intake passage 3 is supercharged by a supercharger 30 driven with an exhaust gas energy, a pneumatic valve actuator 8 is used to drive the EGR valve 9, and the intake passage 3 communicated with the valve operation pressure chamber 34 of the valve actuator 8 through a supercharging pressure transmission passage 20 so that when the supercharged pressure in the intake passage 3 is increased, the valve operation pressure in the valve operation pressure chamber 34 of the valve actuator 8 is increased. When the valve operation pressure in the valve operation pressure chamber 34 is less than a predetermined value, the closed state of the EGR valve 9 is maintained by a valve closing biasing means 9b. When the valve operation pressure in the valve operation pressure chamber 34 is equal to or more than the predetermined value, the EGR valve 9 is opened by the valve operation pressure in the valve operation pressure chamber 34. The passage inlet 20a of the supercharging pressure transmission passage 20 is formed on the intake upstream side more than an EGR gas inlet part 5a to the inlet passage 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジンに関し、詳しくは、EGR弁の作動不良を防止することができるエンジンに関するものである。   The present invention relates to an engine, and more particularly to an engine that can prevent malfunction of an EGR valve.

従来のエンジンとして、本発明と同様、排気エネルギーで駆動される過給機で吸気通路内に過給を行い、EGR弁の駆動にニューマチック式の弁アクチュエータを用い、この弁アクチュエータの弁作動圧室に過給圧伝達通路を介して吸気通路を連通させ、この吸気通路内の過給圧が高くなるにつれて弁アクチュエータの弁作動圧室の弁作動圧が高くなるようにし、弁作動圧室の弁作動圧が所定値未満となる場合には、閉弁付勢手段でEGR弁の閉弁状態を維持し、弁作動圧室の弁作動圧が所定値以上となる場合には、弁作動圧室の弁作動圧でEGR弁を開弁するようにしたものがある(例えば、特許文献1、2参照)。   As in the present invention, as in the present invention, a turbocharger driven by exhaust energy is used to supercharge the intake passage, and a pneumatic valve actuator is used to drive the EGR valve. An intake passage is communicated with the chamber via a supercharging pressure transmission passage so that the valve operating pressure of the valve operating pressure chamber of the valve actuator increases as the supercharging pressure in the intake passage increases. When the valve operating pressure is less than the predetermined value, the valve closing urging means maintains the closed state of the EGR valve, and when the valve operating pressure in the valve operating pressure chamber exceeds the predetermined value, the valve operating pressure is maintained. There is one in which the EGR valve is opened by the valve operating pressure of the chamber (see, for example, Patent Documents 1 and 2).

この種のエンジンでは、負荷の増加による燃料増加で、排気エネルギーが増加し、過給圧が増加すると、弁作動圧が増加し、EGR弁が開弁し、EGRガスが吸気通路に供給され、最高燃焼温度が低下し、NOの発生が抑制される。また、負荷の減少による燃料減少で、排気エネルギーが低下し、過給圧が減少すると、弁作動圧が低下し、EGR弁が閉弁し、EGRガスの供給が停止される。
しかし、この従来のエンジンは、過給圧伝達通路の通路入口をEGR弁の弁口よりも吸気下流側に設けているため、問題がある。
In this type of engine, when the fuel increases due to an increase in load, the exhaust energy increases, and when the supercharging pressure increases, the valve operating pressure increases, the EGR valve opens, EGR gas is supplied to the intake passage, maximum combustion temperature is lowered, generation of the NO X is suppressed. Further, when the fuel energy is reduced due to the load reduction and the exhaust energy is reduced and the supercharging pressure is reduced, the valve operating pressure is lowered, the EGR valve is closed, and the supply of EGR gas is stopped.
However, this conventional engine has a problem because the inlet of the supercharging pressure transmission passage is provided on the intake downstream side of the valve opening of the EGR valve.

特開2007−85180号公報(図1〜図3参照)JP 2007-85180 A (see FIGS. 1 to 3)

特開2007−177698号公報(図1参照)Japanese Patent Laying-Open No. 2007-177698 (see FIG. 1)

上記従来技術では、次の問題がある。
《問題》 EGR弁が作動不良を起こすおそれがある。
過給圧伝達通路の通路入口をEGR弁の弁口よりも吸気下流側に設けているため、EGRガスが弁作動圧室に進入し、EGRガスで弁作動圧室内のダイヤフラム等が損傷し、EGR弁が作動不良を起こすおそれがある。
The above prior art has the following problems.
<< Problem >> The EGR valve may malfunction.
Since the passage inlet of the supercharging pressure transmission passage is provided on the intake downstream side from the valve opening of the EGR valve, EGR gas enters the valve operating pressure chamber, and the diaphragm and the like in the valve operating pressure chamber are damaged by EGR gas, There is a risk that the EGR valve will malfunction.

《問題》 エンジン回転のハンチングが起こりやすい。
エンジン回転のハンチングが起こりやすい。これは、過給圧伝達通路の通路入口をEGR弁の弁口よりも吸気下流側に設けているため、EGRガスのガス圧が外乱となって弁作動圧室の弁作動圧に乱れが生じるためではないかと推定される。
<Problem> Engine hunting tends to occur.
Engine hunting is likely to occur. This is because the passage inlet of the supercharging pressure transmission passage is provided on the intake downstream side of the valve opening of the EGR valve, so that the gas pressure of the EGR gas becomes a disturbance and the valve operating pressure of the valve operating pressure chamber is disturbed. This is presumed to be due to this.

本発明は、上記問題点を解決することができるエンジン、すなわち、EGR弁の作動不良を防止することができるエンジンを提供することを課題とする。   An object of the present invention is to provide an engine that can solve the above-described problems, that is, an engine that can prevent malfunction of an EGR valve.

請求項1に係る発明の発明特定事項は、次の通りである。
図1に例示するように、排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連通させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにした、エンジンにおいて、
過給圧伝達通路(20)の通路入口(20a)を吸気通路(3)へのEGRガス入口部(5a)よりも吸気上流側に設けた、ことを特徴とするエンジン。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 1, a supercharger (30) driven by exhaust energy supercharges the intake passage (3), and a pneumatic valve actuator (8) is used to drive the EGR valve (9). And the intake passage (3) is connected to the valve operating pressure chamber (34) of the valve actuator (8) via the supercharging pressure transmission passage (20), and the supercharging pressure in the intake passage (3) is reduced. The valve operating pressure of the valve operating pressure chamber (34) of the valve actuator (8) is increased as the valve operating pressure is increased. When the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value, the valve is closed. When the EGR valve (9) is kept closed by the biasing means (9b) and the valve operating pressure in the valve operating pressure chamber (34) exceeds a predetermined value, the valve operation of the valve operating pressure chamber (34) is performed. In an engine in which the EGR valve (9) is opened by pressure,
An engine characterized in that a passage inlet (20a) of a supercharging pressure transmission passage (20) is provided upstream of an EGR gas inlet (5a) to an intake passage (3).

(請求項1に係る発明)
《効果》 EGR弁の作動不良を防止することができる。
図1に例示するように、過給圧伝達通路(20)の通路入口(20a)を吸気通路(3)へのEGRガス入口部(5a)よりも吸気上流側に設けたので、EGRガスが弁作動圧室(34)に進入しにくく、EGRガスで弁作動圧室(34)のダイヤフラム(8a)等が損傷する不具合がなく、EGR弁(9)の作動不良を防止することができる。
(Invention according to Claim 1)
<Effect> It is possible to prevent malfunction of the EGR valve.
As illustrated in FIG. 1, the passage inlet (20a) of the supercharging pressure transmission passage (20) is provided on the intake upstream side of the EGR gas inlet (5a) to the intake passage (3). It is difficult to enter the valve operating pressure chamber (34), and there is no problem that the diaphragm (8a) or the like of the valve operating pressure chamber (34) is damaged by EGR gas, and the malfunction of the EGR valve (9) can be prevented.

《効果》 エンジン回転のハンチングが起こりにくい。
エンジン回転のハンチングが起こりにくい。これは、過給圧伝達通路(35)の通路入口(35a)を吸気通路(3)へのEGRガス入口部(5a)よりも吸気上流側に設けているため、EGRガスのガス圧が外乱となって弁作動圧室(34)の弁作動圧に乱れが生じる不具合が起こらないためと推定される。
<Effect> Hunting of engine rotation hardly occurs.
Hunting of engine rotation is unlikely to occur. This is because the gas inlet pressure (35a) of the supercharging pressure transmission passage (35) is provided upstream of the EGR gas inlet (5a) to the intake passage (3), so that the gas pressure of the EGR gas is disturbed. This is presumed to be because there is no problem that the valve operating pressure in the valve operating pressure chamber (34) is disturbed.

(請求項2に係る発明)
請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 エンジンの始動性が高まる。
図2に例示するように、エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持するので、冷間始動時には吸気にEGRガスが供給されず、エンジンの始動性が高まる。
(Invention according to Claim 2)
In addition to the effect of the invention according to claim 1, the following effect is achieved.
<Effect> Increases engine startability.
As illustrated in FIG. 2, at the time of cold start when the engine temperature is lower than a predetermined value, the supercharging pressure shut-off valve (36) is closed regardless of the supercharging pressure in the intake passage (3). Since the urging means (9b) maintains the closed state of the EGR valve (9), the EGR gas is not supplied to the intake air during the cold start, and the engine startability is improved.

(請求項3に係る発明)
請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 過給圧伝達通路を短くすることができる。
図4に例示するように、EGR弁ケース(7)に弁アクチュエータ(8)と過給圧遮断弁ケース(36c)とを取り付け、EGR弁ケース(7)に弁冷却水路(31)を設け、この弁冷却水路(31)に過給圧遮断弁ケース(36c)の入熱部(37)を臨ませたので、弁アクチュエータ(8)と過給圧遮断弁ケース(36c)との間の過給圧伝達通路(20)を短くすることができる。
(Invention according to claim 3)
In addition to the effect of the invention according to claim 2, the following effect is achieved.
<Effect> The supercharging pressure transmission passage can be shortened.
As illustrated in FIG. 4, a valve actuator (8) and a supercharging pressure cutoff valve case (36c) are attached to the EGR valve case (7), and a valve cooling water channel (31) is provided in the EGR valve case (7). Since the heat input part (37) of the supercharging pressure cutoff valve case (36c) is exposed to the valve cooling water passage (31), the supercharging pressure between the valve actuator (8) and the supercharging pressure cutoff valve case (36c) is exceeded. The supply pressure transmission passage (20) can be shortened.

(請求項4に係る発明)
請求項3に係る発明の効果に加え、次の効果を奏する。
《効果》 弁冷却水路の形成が容易になる。
図2(B)に例示するように、弁冷却水路(31)の一部をEGR弁ケース(7)に設けた貫通孔(55)で構成したので、弁冷却水路(31)の形成が容易になる。
(Invention of Claim 4)
In addition to the effect of the invention according to claim 3, the following effect is achieved.
<Effect> Formation of the valve cooling water channel becomes easy.
As illustrated in FIG. 2B, a part of the valve cooling water channel (31) is constituted by the through hole (55) provided in the EGR valve case (7), so that the valve cooling water channel (31) can be easily formed. become.

《効果》 専用の封止栓が不要になる。
図2(B)に例示するように、貫通孔(55)の一端部(55a)に過給圧遮断弁ケース(36a)の入熱部(37)を内嵌させることにより、この貫通孔(55)の一端部(55a)を封止したので、専用の封止栓が不要になる。
<Effect> No special sealing plug is required.
As illustrated in FIG. 2B, by inserting the heat input portion (37) of the supercharging pressure cutoff valve case (36a) into one end portion (55a) of the through hole (55), the through hole ( Since the one end portion (55a) of 55) is sealed, a dedicated sealing plug becomes unnecessary.

(請求項5に係る発明)
請求項4に係る発明の効果に加え、次の効果を奏する。
《効果》 EGR弁の作動不良を防止することができる。
図2(B)に例示するように、出口側水路(58)の中間水路(57)側の一端部(55a)に過給圧遮断弁ケース(36c)の入熱部(37)を内嵌させたので、過給圧遮断弁ケース(36c)の入熱部(37)に冷却水の水流が正面衝突せず、過給圧遮断弁(36)のチャタリングが防止される。このため、EGR弁(9)の作動不良を防止することができる。
(Invention according to claim 5)
In addition to the effect of the invention according to claim 4, the following effect is achieved.
<Effect> It is possible to prevent malfunction of the EGR valve.
As illustrated in FIG. 2 (B), the heat input portion (37) of the supercharging pressure shut-off valve case (36c) is fitted into one end portion (55a) of the outlet water passage (58) on the intermediate water passage (57) side. As a result, the cooling water flow does not collide with the heat input portion (37) of the supercharging pressure cutoff valve case (36c), and chattering of the supercharging pressure cutoff valve (36) is prevented. For this reason, the malfunction of the EGR valve (9) can be prevented.

(請求項6に係る発明)
請求項1から請求項5のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》オイルクーラ、EGRクーラ、EGR弁3者の冷却効率を高く維持することができる。
図1に例示するように、オイルクーラ(49)の水ジャケットとEGRクーラ(6)の水ジャケットと弁冷却水路(31)とを直列に接続したので、これらを並列に接続する場合と異なり、分流部や合流部での通路断面積の制約によって冷却水流量が制限されることがなく、オイルクーラ(49)、EGRクーラ(6)、EGR弁(9)3者の冷却効率を高く維持することができる。
(Invention of Claim 6)
In addition to the effects of the invention according to any one of claims 1 to 5, the following effects are provided.
<Effect> The cooling efficiency of the oil cooler, the EGR cooler, and the EGR valve 3 can be kept high.
As illustrated in FIG. 1, since the water jacket of the oil cooler (49), the water jacket of the EGR cooler (6), and the valve cooling water channel (31) are connected in series, unlike the case where they are connected in parallel, The flow rate of the cooling water is not limited by the restriction of the passage cross-sectional area at the diversion part or the merging part, and the oil cooler (49), the EGR cooler (6), and the EGR valve (9) maintain high cooling efficiency of the three members. be able to.

(請求項7に係る発明)
請求項6に係る発明に加え、次の効果を奏する。
《効果》 冷却水中継パイプを短くすることができる。
図1に例示するように、EGRクーラ(6)とEGR弁ケース(7)とを隣接して配置したので、これらを接続する冷却水中継パイプ(32)を短くすることができる。
(Invention of Claim 7)
In addition to the invention of claim 6, the following effect is achieved.
<Effect> The coolant relay pipe can be shortened.
As illustrated in FIG. 1, since the EGR cooler (6) and the EGR valve case (7) are disposed adjacent to each other, the coolant relay pipe (32) connecting them can be shortened.

(請求項8に係る発明)
請求項6または請求項7に係る発明の効果に加え、次の効果を奏する。
《効果》 エンジンオイルの冷却性能が高い。
図1に例示するように、冷却水がEGRクーラ(6)の前にオイルクーラ(49)を通過するので、オイルクーラ(49)を通過する冷却水温度を低くすることができ、エンジンオイルの冷却性能が高い。
(Invention of Claim 8)
In addition to the effect of the invention according to claim 6 or 7, the following effect is produced.
<Effect> Cooling performance of engine oil is high.
As illustrated in FIG. 1, since the coolant passes through the oil cooler (49) before the EGR cooler (6), the temperature of the coolant passing through the oil cooler (49) can be lowered, and the engine oil High cooling performance.

《効果》 EGR弁の耐久性を高めることができる。
図1に例示するように、冷却水がEGRクーラ(6)の後に弁冷却水路(31)を通過するので、弁冷却水路(31)を通過する冷却水温度をある程度高くすることができ、EGRガスに接触して高温になるEGR弁(9)の過冷却による損傷を抑制し、EGR弁(9)の耐久性を高めることができる。
<Effect> The durability of the EGR valve can be increased.
As illustrated in FIG. 1, since the cooling water passes through the valve cooling water channel (31) after the EGR cooler (6), the temperature of the cooling water passing through the valve cooling water channel (31) can be increased to some extent, and EGR It is possible to suppress damage due to overcooling of the EGR valve (9), which becomes high temperature in contact with the gas, and to improve the durability of the EGR valve (9).

(請求項9に係る発明)
請求項6から請求項8のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 EGRガスとEGR弁の冷却効率が高い。
図3に例示するように、EGRクーラ(6)とEGR弁ケース(7)とを吸気通路(3)の壁に沿って配置したので、EGRクーラ(6)とEGR弁ケース(7)の熱は、吸気通路(3)の壁にスムーズに放熱され、これらの過熱が抑制される。このため、EGRガスとEGR弁(9)の冷却効率が高い。
(Invention according to claim 9)
In addition to the effects of the invention according to any one of claims 6 to 8, the following effects are provided.
<Effect> Cooling efficiency of EGR gas and EGR valve is high.
As illustrated in FIG. 3, since the EGR cooler (6) and the EGR valve case (7) are arranged along the wall of the intake passage (3), the heat of the EGR cooler (6) and the EGR valve case (7) The heat is smoothly radiated to the wall of the intake passage (3), and these overheatings are suppressed. For this reason, the cooling efficiency of the EGR gas and the EGR valve (9) is high.

本発明の実施の形態を図面に基づいて説明する。図1から図8は本発明の実施形態に係るディーゼルエンジンを説明する図で、この実施形態では、立型水冷式の多気筒ディーゼルエンジンについて説明する。   Embodiments of the present invention will be described with reference to the drawings. 1 to 8 are diagrams for explaining a diesel engine according to an embodiment of the present invention. In this embodiment, a vertical water-cooled multi-cylinder diesel engine will be described.

本発明の実施形態の概要は、次の通りである。
図5に示すように、シリンダブロック(26)の上部にシリンダヘッド(2)を組み付け、シリンダブロック(26)の下部にオイルパン(27)を組み付け、シリンダブロック(26)の前部に水ポンプ(39)とギヤケース(28)を組み付け、シリンダブロック(26)の後部にフライホイルハウジング(29)を組み付けている。
The outline of the embodiment of the present invention is as follows.
As shown in FIG. 5, the cylinder head (2) is assembled to the upper part of the cylinder block (26), the oil pan (27) is assembled to the lower part of the cylinder block (26), and the water pump is attached to the front part of the cylinder block (26). (39) and the gear case (28) are assembled, and a flywheel housing (29) is assembled to the rear part of the cylinder block (26).

EGR装置の構成は、次の通りである。
図1に示すように、排気通路(4)をEGRクーラ(6)とEGR弁ケース(7)と逆止弁ケース(10)とを介して吸気通路(3)に連通させている。排気通路(4)は排気マニホルドであり、吸気通路(3)は吸気マニホルドである。
The configuration of the EGR device is as follows.
As shown in FIG. 1, the exhaust passage (4) communicates with the intake passage (3) through an EGR cooler (6), an EGR valve case (7), and a check valve case (10). The exhaust passage (4) is an exhaust manifold, and the intake passage (3) is an intake manifold.

冷却装置の構成は、次の通りである。
図1に示すように、オイルクーラ(49)とEGRクーラ(6)とEGR弁ケース(7)とを備え、EGR弁ケース(7)に弁冷却水路(31)を形成し、オイルクーラ(49)の水ジャケットとEGRクーラ(6)の水ジャケットと弁冷却水路(31)とを直列に接続している。
The configuration of the cooling device is as follows.
As shown in FIG. 1, an oil cooler (49), an EGR cooler (6), and an EGR valve case (7) are provided, a valve cooling water passage (31) is formed in the EGR valve case (7), and an oil cooler (49 ), A water jacket of the EGR cooler (6), and a valve cooling water channel (31) are connected in series.

図1に示すように、EGRクーラ(6)の水ジャケットと弁冷却水路(31)とを冷却水中継パイプ(32)で直列に接続するに当たり、EGRクーラ(6)とEGR弁ケース(7)とを隣接して配置している。
オイルクーラ(49)の水ジャケット、EGRクーラ(6)の水ジャケット、弁冷却水路(31)の順に冷却水を通過させるようにしている。
As shown in FIG. 1, when the water jacket of the EGR cooler (6) and the valve cooling water channel (31) are connected in series by the cooling water relay pipe (32), the EGR cooler (6) and the EGR valve case (7) Are arranged adjacent to each other.
The cooling water is allowed to pass through the water jacket of the oil cooler (49), the water jacket of the EGR cooler (6), and the valve cooling water channel (31) in this order.

冷却装置での冷却水の循環は、次の通りである。
図1に示すように、シリンダジャケット(59)内の冷却水は、オイルクーラ(49)の水ジャケット、EGRクーラ(6)の水ジャケット、弁冷却水路(31)、シリンダジャケット(59)内の吸引水路(60)、水ポンプ(39)を順に通過して、シリンダジャケット(59)に戻る。図5に示すように、シリンダジャケット(59)のシリンダジャケット出口(41)に冷却水出口パイプ(42)を介してオイルクーラ(59)の水ジャケットを連通させ、これに第1の冷却水中継パイプ(43)を介してEGRクーラ(6)の水ジャケットを連通させ、これに第2の冷却水中継パイプ(32)を弁冷却水路(31)に連通させ、これを冷却水入口パイプ(40)を介してシリンダジャケット(59)のシリンダジャケット入口(40a)に連通させ、これを吸引水路(60)を介して水ポンプ(39)に連通させている。
The circulation of the cooling water in the cooling device is as follows.
As shown in FIG. 1, the cooling water in the cylinder jacket (59) is divided into a water jacket for the oil cooler (49), a water jacket for the EGR cooler (6), a valve cooling water channel (31), and a cylinder jacket (59). It passes through the suction water channel (60) and the water pump (39) in this order, and returns to the cylinder jacket (59). As shown in FIG. 5, the water jacket of the oil cooler (59) is communicated with the cylinder jacket outlet (41) of the cylinder jacket (59) via the cooling water outlet pipe (42), and the first cooling water relay is connected thereto. The water jacket of the EGR cooler (6) is communicated with the pipe (43), the second cooling water relay pipe (32) is communicated with the valve cooling water channel (31), and this is connected to the cooling water inlet pipe (40 ) Is communicated with the cylinder jacket inlet (40a) of the cylinder jacket (59), and is communicated with the water pump (39) via the suction water channel (60).

EGR装置の構成は、次の通りである。
図1に示すように、排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連通させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにしている。過給圧伝達通路(20)の通路入口(20a)を吸気通路(3)へのEGRガス入口部(5a)よりも吸気上流側に設けている。なお、図1中の符号(45)はエアクリーナ、(46)は燃焼室、(47)は排気マフラである。
The configuration of the EGR device is as follows.
As shown in FIG. 1, a supercharger (30) driven by exhaust energy supercharges the intake passage (3), and a pneumatic valve actuator (8) is used to drive the EGR valve (9). The intake passage (3) is communicated with the valve operating pressure chamber (34) of the valve actuator (8) via the supercharging pressure transmission passage (20), and the supercharging pressure in the intake passage (3) is high. As the valve operating pressure is increased, the valve operating pressure of the valve operating pressure chamber (34) of the valve actuator (8) is increased, and when the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value, the valve closing bias is applied. When the means (9b) maintains the closed state of the EGR valve (9) and the valve operating pressure in the valve operating pressure chamber (34) exceeds a predetermined value, the valve operating pressure in the valve operating pressure chamber (34) Thus, the EGR valve (9) is opened. The passage inlet (20a) of the supercharging pressure transmission passage (20) is provided on the intake upstream side of the EGR gas inlet (5a) to the intake passage (3). In FIG. 1, reference numeral (45) is an air cleaner, (46) is a combustion chamber, and (47) is an exhaust muffler.

冷始動性を高める工夫は、次の通りである。
図1に示すように、過給圧伝達通路(20)に感温作動性の過給圧遮断弁(36)を設け、エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(36)の開弁により、吸気通路(3)内の過給圧に応じたEGR弁(9)の開閉を行なうようにしている。図2(A)に示すように、吸気圧遮断弁(36)は、吸気圧遮断弁ケース(36c)の内部にバイメタル製の感温性変形手段(36a)を備え、その温度による変形で弁体(36b)の開弁圧を変更する。
The ideas for improving the cold startability are as follows.
As shown in FIG. 1, a supercharging pressure shut-off valve (36) that is temperature-sensitive and operable is provided in the supercharging pressure transmission passage (20), and during cold start when the engine temperature is less than a predetermined value, Regardless of the supercharging pressure, the supercharging pressure shut-off valve (36) is closed and the EGR valve (9) is kept closed by the valve closing urging means (9b), so that the engine temperature exceeds a predetermined value. During warm start of the engine and during normal operation, the EGR valve (9) is opened and closed in accordance with the supercharging pressure in the intake passage (3) by opening the supercharging pressure cutoff valve (36). As shown in FIG. 2 (A), the intake pressure shut-off valve (36) is provided with bimetal temperature-sensitive deformation means (36a) inside the intake pressure shut-off valve case (36c), and the valve is deformed by its temperature. The valve opening pressure of the body (36b) is changed.

図2(A)(B)に示すように、EGR弁ケース(7)に弁アクチュエータ(8)と過給圧遮断弁ケース(36c)とを取り付け、EGR弁ケース(7)に弁冷却水路(31)を設け、この弁冷却水路(31)に過給圧遮断弁ケース(36c)の入熱部(37)を臨ませている。   2A and 2B, a valve actuator (8) and a supercharging pressure cutoff valve case (36c) are attached to the EGR valve case (7), and a valve cooling water channel ( 31), and the heat input portion (37) of the supercharging pressure cutoff valve case (36c) faces the valve cooling water passage (31).

弁冷却水路の工夫は、次の通りである。
図2(B)に示すように、弁冷却水路(31)の一部をEGR弁ケース(7)に設けた貫通孔(55)で構成し、この貫通孔(55)の一端部(55a)に過給圧遮断弁ケース(36c)の入熱部(37)を内嵌させることにより、この貫通孔(55)の一端部(55a)を封止している。
The idea of the valve cooling water channel is as follows.
As shown in FIG. 2 (B), a part of the valve cooling water channel (31) is constituted by a through hole (55) provided in the EGR valve case (7), and one end (55a) of the through hole (55). The heat input part (37) of the supercharging pressure cutoff valve case (36c) is fitted into the end part (55a) of the through hole (55) to be sealed.

図2(B)に示すように、弁冷却水路(31)をいずれも真っ直ぐな入口側水路(56)と中間水路(57)と出口側水路(58)とでコの字形に形成するに当たり、上記貫通孔(55)で出口側水路(58)を形成し、この出口側水路(58)の中間水路(57)側の一端部(55a)に過給圧遮断弁ケース(36c)の入熱部(37)を内嵌させている。入口側水路(56)は中間水路(57)側の奥が行き止まりの孔で形成した後、奥壁にキリ孔をあけ、ここにエア抜き管(61)を内嵌している。このエア抜き管(61)にはパイプを接続して、シリンダジャケットに接続する。中間水路(57)は出口側水路(58)側の奥が行き止まりの孔で形成し、入口側水路(56)側をプラグ(62)で封止している。   As shown in FIG. 2 (B), the valve cooling water channel (31) is formed into a U-shape with straight inlet side water channel (56), intermediate water channel (57) and outlet side water channel (58). An outlet side water channel (58) is formed by the through hole (55), and heat input to the supercharging pressure cutoff valve case (36c) is provided at one end (55a) of the outlet side water channel (58) on the intermediate water channel (57) side. The part (37) is fitted inside. The inlet side water channel (56) is formed with a dead end on the back side of the intermediate water channel (57), and then a drill hole is made in the rear wall, and an air vent pipe (61) is fitted therein. A pipe is connected to the air vent pipe (61) and connected to the cylinder jacket. The intermediate water channel (57) is formed with a hole having a dead end on the outlet side water channel (58) side, and the inlet side water channel (56) side is sealed with a plug (62).

各部品の配置は、次の通りである。
図3に示すように、EGRクーラ(6)とEGR弁ケース(7)とを吸気通路(3)の壁に沿って配置している。
図3、図4に示すように、クランク軸(1)の架設方向を前後方向、この前後方向と直交するシリンダヘッド(2)の幅方向を横方向として、シリンダヘッド(2)の横一側面に吸気通路(3)の通路壁を取り付け、シリンダヘッド(2)の横他側方に排気通路(4)の通路壁を取り付けるに当たり、吸気通路(3)の通路壁の上部に吸気入口管(5)を立設し、吸気通路(3)の通路壁の上方でEGRクーラ(6)を前後方向に架設し、吸気入口管(5)とEGRクーラ(6)とを前後に並べて配置している。EGRクーラ(6)は、吸気通路(3)の通路壁の真上、すなわち、図4に示すように、シリンダ中心軸線(25)と平行な向きに見た場合に、吸気通路(3)の通路壁の上方で、吸気通路(3)の通路壁と重なる位置に配置している。EGRクーラ(6)は、シリンダ中心軸線(25)と平行な向きに見た場合に、吸気通路(3)の通路壁よりも横外(シリンダヘッドから離れる側)にはみ出さないように配置している。EGRクーラ(6)には、シリンダブロック(26)内の水冷ジャケットから冷却水を導入し、冷却水ポンプ(図外)に冷却水を導出する。
The arrangement of each component is as follows.
As shown in FIG. 3, the EGR cooler (6) and the EGR valve case (7) are arranged along the wall of the intake passage (3).
As shown in FIGS. 3 and 4, the horizontal direction of the cylinder head (2) is defined with the installation direction of the crankshaft (1) as the front-rear direction and the width direction of the cylinder head (2) perpendicular to the front-rear direction as the horizontal direction When the passage wall of the intake passage (3) is attached and the passage wall of the exhaust passage (4) is attached to the other lateral side of the cylinder head (2), an intake inlet pipe ( 5) is erected, the EGR cooler (6) is installed in the front-rear direction above the passage wall of the intake passage (3), and the intake inlet pipe (5) and the EGR cooler (6) are arranged side by side. Yes. The EGR cooler (6) is located directly above the passage wall of the intake passage (3), that is, when viewed in a direction parallel to the cylinder center axis (25) as shown in FIG. Above the passage wall, it is arranged at a position overlapping the passage wall of the intake passage (3). The EGR cooler (6) is arranged so that it does not protrude laterally outside the passage wall of the intake passage (3) when viewed in a direction parallel to the cylinder center axis (25). ing. Cooling water is introduced into the EGR cooler (6) from a water cooling jacket in the cylinder block (26), and the cooling water is led out to a cooling water pump (not shown).

図3に示すように、吸気通路(3)の通路壁の上方にEGR弁ケース(7)を配置し、吸気入口管(5)とEGR弁ケース(7)とEGRクーラ(6)とを前後に並べて配置し、EGRクーラ(6)の下流にEGR弁ケース(7)を位置させ、EGR弁ケース(7)に弁アクチュエータ(8)を取り付けている。EGR弁ケース(7)は、吸気通路(3)の通路壁の真上、すなわち、図4に示すように、シリンダ中心軸線(25)と平行な向きに見た場合に、吸気通路(3)の通路壁の上方で、吸気通路(3)の通路壁と重なる位置に配置している。図3に示すように、ポペット弁製のEGR弁(9)の弁軸(9a)を垂直にしてEGR弁ケース(7)内の弁軸挿通孔(7c)内のガスシール(38)に摺動自在に内嵌させている。EGRガスは、図3に矢印で示すように、EGR弁ケース(7)内を通過し、ガスシール(38)はEGR弁(9)の弁口(44)よりも下流側にある。   As shown in FIG. 3, the EGR valve case (7) is arranged above the passage wall of the intake passage (3), and the intake inlet pipe (5), the EGR valve case (7), and the EGR cooler (6) are moved back and forth. The EGR valve case (7) is positioned downstream of the EGR cooler (6), and the valve actuator (8) is attached to the EGR valve case (7). When the EGR valve case (7) is viewed directly above the passage wall of the intake passage (3), that is, in a direction parallel to the cylinder center axis (25) as shown in FIG. 4, the intake passage (3) Above the passage wall and at a position overlapping the passage wall of the intake passage (3). As shown in FIG. 3, the valve shaft (9a) of the EGR valve (9) made by a poppet valve is made vertical, and is slid onto the gas seal (38) in the valve shaft insertion hole (7c) in the EGR valve case (7). It is fitted in freely. As indicated by arrows in FIG. 3, the EGR gas passes through the EGR valve case (7), and the gas seal (38) is located downstream of the valve port (44) of the EGR valve (9).

図3、図4に示すように、EGR弁ケース(7)と吸気入口管(5)との間に逆止弁ケース(10)を配置し、この逆止弁ケース(10)内の逆止弁(10c)で吸気入口管(5)からEGR弁ケース(7)への吸気の流入とEGRガスの逆流とを阻止することができるようにしている。シリンダヘッド(2)に水冷ジャケット内を通過するヘッド内EGR通路(11)を設け、このヘッド内EGR通路(11)の下流にEGRクーラ(6)を配置している。   As shown in FIGS. 3 and 4, a check valve case (10) is arranged between the EGR valve case (7) and the intake inlet pipe (5), and the check valve in the check valve case (10) is arranged. The valve (10c) can prevent the inflow of intake air from the intake inlet pipe (5) to the EGR valve case (7) and the backflow of EGR gas. An in-head EGR passage (11) passing through the water-cooling jacket is provided in the cylinder head (2), and an EGR cooler (6) is disposed downstream of the in-head EGR passage (11).

図5に示すように、前後方向のうち、エンジン冷却ファン(14)を配置した方を前、その反対側を後として、後から前に向かって順に、吸気入口管(5)とEGR弁ケース(7)とEGRクーラ(6)と接続管(12)とを配置している。図3、図4に示すように、吸気入口管(5)の周壁前部のEGRガス入口部(5a)にEGR弁ケース(7)の後部のEGR弁ケース出口部(7a)を連通させ、EGR弁ケース(7)の前部のEGR弁ケース入口部(7b)にEGRクーラ(6)の後端のクーラ出口部(6a)を取り付けてこれらを連通させ、EGRクーラ(6)の前端のクーラ入口部(6b)に接続管(12)の後面上部の接続管出口部(12a)を取り付けてこれらを連通させ、接続管(12)の横面下部の接続管入口部(12b)をシリンダヘッド(2)の横面前部のヘッド内EGR通路出口部(11a)に取り付けてこれらを連通させている。   As shown in FIG. 5, the intake inlet pipe (5) and the EGR valve case are arranged in order from the rear to the front, with the front side being the front side of the engine cooling fan (14) and the rear side being the rear side. (7), EGR cooler (6) and connecting pipe (12) are arranged. As shown in FIGS. 3 and 4, the EGR valve inlet (5a) at the front of the peripheral wall of the intake inlet pipe (5) communicates with the EGR valve case outlet (7a) at the rear of the EGR valve case (7). An EGR cooler outlet (6a) at the rear end of the EGR cooler (6) is attached to the EGR valve case inlet (7b) at the front of the EGR valve case (7) so that they communicate with each other. A connection pipe outlet part (12a) at the upper rear surface of the connection pipe (12) is attached to the cooler inlet part (6b) so as to communicate with each other. The connection pipe inlet part (12b) at the lower side of the connection pipe (12) They are attached to the in-head EGR passage outlet (11a) at the front part of the lateral surface of the head (2) and communicate with each other.

EGR弁ケース(7)とEGRクーラ(6)と接続管(12)とを剛性連結体の構成要素とし、これら構成要素で可撓性のない剛性連結体を構成している。また、逆止弁ケース(10)も剛性連結体の構成要素とし、EGR弁ケース(7)の後部のEGR弁ケース出口部(7a)に逆止弁ケース(10)の前部の逆止弁ケース入口部(10b)を取り付けてこれらを連通させ、逆止弁ケース(10)の後面の逆止弁ケース出口部(10a)を吸気入口管(5)の周壁前部のEGRガス入口部(5a)に取り付けてこれらを連通させ、逆止弁ケース(10)内の逆止弁(10c)で吸気入口管(5)からEGR弁ケース(7)への吸気の流入とEGRガスの逆流とを阻止することができるようにしている。   The EGR valve case (7), the EGR cooler (6), and the connecting pipe (12) are components of the rigid coupling body, and these components constitute a rigid coupling body that is not flexible. The check valve case (10) is also a component of the rigid connector, and the EGR valve case outlet (7a) at the rear of the EGR valve case (7) is connected to the check valve at the front of the check valve case (10). A case inlet part (10b) is attached to communicate these, and the check valve case outlet part (10a) on the rear surface of the check valve case (10) is connected to the EGR gas inlet part (front part of the peripheral wall of the intake inlet pipe (5)). 5a) are connected to each other, and the check valve (10c) in the check valve case (10) allows the intake air flow from the intake inlet pipe (5) to the EGR valve case (7) and the back flow of EGR gas. To be able to prevent.

図3、図4に示すように、吸気分配通路壁(3)内からシリンダヘッド(2)外を通過するヘッド外EGR通路(13)を導出し、このヘッド外EGR通路(13)の下流にEGRクーラ(6)を配置し、EGRクーラ(6)にヘッド内EGR通路(11)とヘッド外EGR通路(13)の両方からEGRガスを導入するようにしている。   As shown in FIGS. 3 and 4, an outside-head EGR passage (13) passing outside the cylinder head (2) is led out from the intake distribution passage wall (3), and downstream of the outside-head EGR passage (13). An EGR cooler (6) is arranged, and EGR gas is introduced into the EGR cooler (6) from both the in-head EGR passage (11) and the out-head EGR passage (13).

図5〜図7に示すように、エンジン冷却ファン(14)の後方にヘッド外EGR通路(13)を配置し、このヘッド外EGR通路(13)にエンジン冷却ファン(14)で起こしたエンジン冷却風が吹き当たるようにしている。図7に示すように、クランク軸(1)の架設方向と平行な向きに見た場合に、ヘッド外EGR通路(13)はエンジン冷却ファン(14)と重なる位置よりも僅かにずれているが、エンジン冷却風の吹き当たり領域は、エンジン冷却ファン(14)の外周の軌跡よりも拡がるため、エンジン冷却風はヘッド外EGR通路(13)に吹き当たる。   As shown in FIGS. 5 to 7, an outside-head EGR passage (13) is arranged behind the engine cooling fan (14), and the engine cooling caused by the engine cooling fan (14) in the outside-head EGR passage (13). The wind blows. As shown in FIG. 7, when viewed in a direction parallel to the installation direction of the crankshaft (1), the EGR passage outside the head (13) is slightly displaced from the position overlapping the engine cooling fan (14). Since the engine cooling air blowing area is larger than the locus of the outer periphery of the engine cooling fan (14), the engine cooling air blows against the head outside EGR passage (13).

図8に示すように、吸気入口管(5)の周壁前部に横長のEGRガス入口部(5a)を設け、このEGRガス入口部(5a)に左右一対のキリ孔のEGRガス入口(5b)(5c)をあけ、吸気入口管(5)の中心軸線(16)と平行な向きに見た場合に、吸気入口管(5)の中心軸線(16)を通過する前後方向仮想線(17)の左右に、各EGRガス入口(5b)(5c)の中心線(25b)(25c)を位置させ、シリンダヘッド(2)から遠い外寄りのEGRガス入口(5b)の中心線(25b)がシリンダヘッド(2)に近い内寄りのEGRガス入口(5c)の中心線(25c)よりも、前後方向仮想線(17)から遠ざかるようにし、吸気入口管(5)に接続する吸気供給パイプ(18)をシリンダヘッド(2)側から吸気入口管(5)に近づけている。図5〜図7に示すように、吸気供給パイプ(18)は、排気通路(4)の通路壁の上部に取り付けた過給機(30)から導出している。   As shown in FIG. 8, a horizontally long EGR gas inlet (5a) is provided at the front of the peripheral wall of the intake inlet pipe (5), and an EGR gas inlet (5b) of a pair of left and right drill holes is provided in the EGR gas inlet (5a). ) (5c), and when viewed in a direction parallel to the central axis (16) of the intake inlet pipe (5), the front-rear imaginary line (17) passes through the central axis (16) of the intake inlet pipe (5). The center lines (25b) and (25c) of the respective EGR gas inlets (5b) and (5c) are positioned on the left and right of the cylinder), and the center line (25b) of the outer EGR gas inlet (5b) far from the cylinder head (2). The intake supply pipe connected to the intake inlet pipe (5) so that the distance from the virtual line (17) in the front-rear direction is farther from the center line (25c) of the inward EGR gas inlet (5c) near the cylinder head (2) (18) is brought close to the intake inlet pipe (5) from the cylinder head (2) side. As shown in FIGS. 5 to 7, the intake air supply pipe (18) is led out from a supercharger (30) attached to the upper part of the passage wall of the exhaust passage (4).

本発明の実施形態に係るエンジンの吸排気と冷却水の流れを示す模式図である。It is a schematic diagram which shows the flow of the intake and exhaust of the engine which concerns on embodiment of this invention, and cooling water. 本発明の実施形態に係るエンジンのEGR弁ケースと過給圧遮断弁とを説明する図で、図2(A)はこれらの断面図、図2(B)は図2(A)のB−B線断面図である。FIG. 2A is a cross-sectional view of an engine EGR valve case and a boost pressure cutoff valve according to an embodiment of the present invention, and FIG. 2B is a cross-sectional view of FIG. It is B line sectional drawing. 本発明の実施形態に係るエンジンのEGR弁ケースの縦断面図とその周辺部分の側面図である。It is the longitudinal cross-sectional view of the engine EGR valve case which concerns on embodiment of this invention, and the side view of the peripheral part. 本発明の実施形態に係るエンジンのEGR弁ケースとその周辺部品の平面図である。It is a top view of the EGR valve case of an engine concerning the embodiment of the present invention, and its peripheral parts. 本発明の実施形態に係るエンジンの側面図である。1 is a side view of an engine according to an embodiment of the present invention. 本発明の実施形態に係るエンジンの平面図である。1 is a plan view of an engine according to an embodiment of the present invention. 本発明の実施形態に係るエンジンの正面図である。1 is a front view of an engine according to an embodiment of the present invention. 本発明の実施形態に係るエンジンで用いる吸気分配通路壁を説明する図で、図8(A)は後部の左側面図、図8(B)は図8(A)のB−B線断面図、図8(C)は後部の平面図である。8A and 8B are views for explaining an intake distribution passage wall used in the engine according to the embodiment of the present invention, in which FIG. 8A is a left side view of a rear portion, and FIG. 8B is a cross-sectional view taken along line BB in FIG. FIG. 8C is a plan view of the rear part.

符号の説明Explanation of symbols

(3) 吸気通路
(5a) EGRガス入口部
(6) EGRクーラ
(7) EGR弁ケース
(8) 弁アクチュエータ
(9) EGR弁
(9b) 閉弁付勢手段
(20) 過給圧伝達通路
(20a) 通路入口
(30) 過給機
(32) 冷却水中継パイプ
(34)弁作動圧室
(36)過給圧遮断弁
(36c) 過給圧遮断弁ケース
(37) 入熱部
(49)オイルクーラ
(55) 貫通孔
(55a) 一端部
(56) 入口側水路
(57) 中間水路
(58) 出口側水路
(3) Intake passage
(5a) EGR gas inlet
(6) EGR cooler
(7) EGR valve case
(8) Valve actuator
(9) EGR valve
(9b) Energizing means for closing the valve
(20) Supercharging pressure transmission passage
(20a) Passage entrance
(30) Turbocharger
(32) Cooling water relay pipe
(34) Valve operating pressure chamber
(36) Supercharging pressure cutoff valve
(36c) Boost pressure cutoff valve case
(37) Heat input section
(49) Oil cooler
(55) Through hole
(55a) One end
(56) Inlet waterway
(57) Intermediate waterway
(58) Exit waterway

Claims (9)

排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連通させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにした、エンジンにおいて、
過給圧伝達通路(20)の通路入口(20a)を吸気通路(3)へのEGRガス入口部(5a)よりも吸気上流側に設けた、ことを特徴とするエンジン。
A supercharger (30) driven by exhaust energy supercharges the intake passage (3), and a pneumatic valve actuator (8) is used to drive the EGR valve (9). ) Is connected to the valve operating pressure chamber (34) via the supercharging pressure transmission passage (20), and the valve actuator (8) is increased as the supercharging pressure in the intake passage (3) increases. When the valve operating pressure of the valve operating pressure chamber (34) becomes higher and the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value, the EGR valve is operated by the valve closing biasing means (9b). When the valve operating state of (9) is maintained and the valve operating pressure of the valve operating pressure chamber (34) is equal to or higher than a predetermined value, the EGR valve (9) is turned on by the valve operating pressure of the valve operating pressure chamber (34). In the engine that was opened,
An engine characterized in that a passage inlet (20a) of a supercharging pressure transmission passage (20) is provided upstream of an EGR gas inlet (5a) to an intake passage (3).
請求項1に記載したエンジンにおいて、
過給圧伝達通路(20)に感温作動性の過給圧遮断弁(36)を設け、
エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、
エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(36)の開弁により、吸気通路(3)内の過給圧に応じたEGR弁(9)の開閉を行なうようにした、ことを特徴とするエンジン。
The engine according to claim 1,
The supercharging pressure transmission passage (20) is provided with a temperature-sensitive actuated supercharging pressure cutoff valve (36)
During a cold start when the engine temperature is less than a predetermined value, the supercharging pressure shut-off valve (36) is closed regardless of the supercharging pressure in the intake passage (3), and the EGR is operated by the valve closing urging means (9b). Keep the valve (9) closed,
When the engine temperature is higher than a predetermined value or during normal operation, the EGR valve (9) is opened and closed according to the boost pressure in the intake passage (3) by opening the boost pressure shut-off valve (36). An engine characterized by the fact that it was made to do.
請求項2に記載したエンジンにおいて、
EGR弁ケース(7)に弁アクチュエータ(8)と過給圧遮断弁ケース(36c)とを取り付け、EGR弁ケース(7)に弁冷却水路(31)を設け、この弁冷却水路(31)に過給圧遮断弁ケース(36c)の入熱部(37)を臨ませた、ことを特徴とするエンジン。
The engine according to claim 2,
A valve actuator (8) and a supercharging pressure cutoff valve case (36c) are attached to the EGR valve case (7), a valve cooling water passage (31) is provided in the EGR valve case (7), and the valve cooling water passage (31) is provided. An engine characterized by facing a heat input portion (37) of a supercharging pressure cutoff valve case (36c).
請求項3に記載したエンジンにおいて、
弁冷却水路(31)の一部をEGR弁ケース(7)に設けた貫通孔(55)で構成し、この貫通孔(55)の一端部(55a)に過給圧遮断弁ケース(36c)の入熱部(37)を内嵌させることにより、この貫通孔(55)の一端部(55a)を封止した、ことを特徴とするエンジン。
The engine according to claim 3,
A part of the valve cooling water passage (31) is constituted by a through hole (55) provided in the EGR valve case (7), and a supercharging pressure cutoff valve case (36c) is provided at one end (55a) of the through hole (55). An engine characterized by sealing one end portion (55a) of the through hole (55) by internally fitting the heat input portion (37).
請求項4に記載したエンジンにおいて、
弁冷却水路(31)をいずれも真っ直ぐな入口側水路(56)と中間水路(57)と出口側水路(58)とでコの字形に形成するに当たり、上記貫通孔(55)で出口側水路(58)を形成し、この出口側水路(58)の中間水路(57)側の一端部(55a)に過給圧遮断弁ケース(36c)の入熱部(37)を内嵌させた、ことを特徴とするエンジン。
The engine according to claim 4,
When the valve cooling water channel (31) is formed into a U-shape by the straight inlet water channel (56), the intermediate water channel (57), and the outlet water channel (58), the outlet water channel is formed by the through hole (55). (58) was formed, and the heat input portion (37) of the supercharging pressure cutoff valve case (36c) was fitted into one end (55a) of the outlet side water passage (58) on the intermediate water passage (57) side. An engine characterized by that.
請求項1から請求項5のいずれかに記載したエンジンにおいて、
オイルクーラ(49)とEGRクーラ(6)とEGR弁ケース(7)とを備え、EGR弁ケース(7)に弁冷却水路(31)を形成し、
オイルクーラ(49)の水ジャケットとEGRクーラ(6)の水ジャケットと弁冷却水路(31)とを直列に接続した、ことを特徴とするエンジン。
The engine according to any one of claims 1 to 5,
An oil cooler (49), an EGR cooler (6), and an EGR valve case (7), and a valve cooling water passage (31) is formed in the EGR valve case (7);
An engine comprising a water jacket of an oil cooler (49), a water jacket of an EGR cooler (6), and a valve cooling water channel (31) connected in series.
請求項6に記載したエンジンにおいて、
EGRクーラ(6)の水ジャケットと弁冷却水路(31)とを冷却水中継パイプ(32)で直列に接続するに当たり、EGRクーラ(6)とEGR弁ケース(7)とを隣接して配置した、ことを特徴とするエンジン。
The engine according to claim 6,
When the water jacket of the EGR cooler (6) and the valve cooling water channel (31) are connected in series by the cooling water relay pipe (32), the EGR cooler (6) and the EGR valve case (7) are arranged adjacent to each other. , An engine characterized by that.
請求項6または請求項7に記載したエンジンにおいて、
オイルクーラ(49)の水ジャケット、EGRクーラ(6)の水ジャケット、弁冷却水路(31)の順に冷却水を通過させるようにした、ことを特徴とするエンジン。
The engine according to claim 6 or claim 7,
An engine characterized in that cooling water is passed in the order of a water jacket of an oil cooler (49), a water jacket of an EGR cooler (6), and a valve cooling water channel (31).
請求項6から請求項8のいずれかに記載したエンジンにおいて、
EGRクーラ(6)とEGR弁ケース(7)とを吸気通路(3)の壁に沿って配置した、ことを特徴とするエンジン。
The engine according to any one of claims 6 to 8,
An engine comprising an EGR cooler (6) and an EGR valve case (7) arranged along the wall of the intake passage (3).
JP2007242590A 2007-09-19 2007-09-19 engine Active JP4814188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242590A JP4814188B2 (en) 2007-09-19 2007-09-19 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242590A JP4814188B2 (en) 2007-09-19 2007-09-19 engine

Publications (2)

Publication Number Publication Date
JP2009074393A true JP2009074393A (en) 2009-04-09
JP4814188B2 JP4814188B2 (en) 2011-11-16

Family

ID=40609623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242590A Active JP4814188B2 (en) 2007-09-19 2007-09-19 engine

Country Status (1)

Country Link
JP (1) JP4814188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069252A (en) * 2009-09-24 2011-04-07 Daihatsu Motor Co Ltd Internal combustion engine
JP2013524069A (en) * 2010-03-31 2013-06-17 ヴァレオ システム テルミク Cooling device for engine exhaust gas recirculation circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162721A (en) * 1997-08-07 1999-03-05 Isuzu Motors Ltd Exhaust gas recirculation device
JP2001280130A (en) * 2000-03-30 2001-10-10 Mitsubishi Motors Corp Cooling structure for engine
WO2001098647A1 (en) * 2000-06-20 2001-12-27 Mitsubishi Denki Kabushiki Kaisha Water-cooled exhaust gas recirculating device
JP2007092597A (en) * 2005-09-28 2007-04-12 Kubota Corp Engine
JP2007177698A (en) * 2005-12-28 2007-07-12 Kubota Corp Engine with supercharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162721A (en) * 1997-08-07 1999-03-05 Isuzu Motors Ltd Exhaust gas recirculation device
JP2001280130A (en) * 2000-03-30 2001-10-10 Mitsubishi Motors Corp Cooling structure for engine
WO2001098647A1 (en) * 2000-06-20 2001-12-27 Mitsubishi Denki Kabushiki Kaisha Water-cooled exhaust gas recirculating device
JP2007092597A (en) * 2005-09-28 2007-04-12 Kubota Corp Engine
JP2007177698A (en) * 2005-12-28 2007-07-12 Kubota Corp Engine with supercharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069252A (en) * 2009-09-24 2011-04-07 Daihatsu Motor Co Ltd Internal combustion engine
JP2013524069A (en) * 2010-03-31 2013-06-17 ヴァレオ システム テルミク Cooling device for engine exhaust gas recirculation circuit

Also Published As

Publication number Publication date
JP4814188B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5440806B2 (en) Intake device
EP3290667B1 (en) Blowby gas treatment device for internal combustion engine with supercharger
JP5001752B2 (en) EGR cooler bypass switching system
JP2007040136A (en) Exhaust gas recirculation system of internal combustion engine with supercharger
JP2010059807A (en) Cooling structure of supercharger
JPWO2005010330A1 (en) Turbocharger
JP6066068B2 (en) Structure of internal combustion engine of vehicle
JP4654170B2 (en) Multi-cylinder engine
CN113494394B (en) EGR system of engine
JP4484800B2 (en) engine
JP4814188B2 (en) engine
JP2015218654A (en) Internal combustion engine
JP2008190337A (en) Engine
JP4729547B2 (en) engine
JP2009250174A (en) Exhaust gas reflux device in internal combustion engine
JP4858176B2 (en) Variable nozzle turbocharger and engine equipped with the same
JP4850790B2 (en) engine
JP4729548B2 (en) engine
JP5310437B2 (en) EGR diffusion unit
CN207526579U (en) A kind of novel water-cooled charge air cooler integrated intake manifold inner-cavity structure
JP5800606B2 (en) EGR valve cooling structure
JP2009019540A (en) Engine
JP2006307804A (en) Engine provided with supercharger
JP3861110B2 (en) EGR valve
CN211500827U (en) EGR valve and cooler assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4814188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3