JP2009074196A - Nonwoven fabric and method for producing the same - Google Patents

Nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JP2009074196A
JP2009074196A JP2007243572A JP2007243572A JP2009074196A JP 2009074196 A JP2009074196 A JP 2009074196A JP 2007243572 A JP2007243572 A JP 2007243572A JP 2007243572 A JP2007243572 A JP 2007243572A JP 2009074196 A JP2009074196 A JP 2009074196A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
compression
liquid crystal
aromatic polyester
wholly aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007243572A
Other languages
Japanese (ja)
Other versions
JP2009074196A5 (en
JP4916985B2 (en
Inventor
Yasuhiro Shirotani
泰弘 城谷
Yutaka Miyaguchi
裕 宮口
Kimihiko Norihashi
公彦 法橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007243572A priority Critical patent/JP4916985B2/en
Publication of JP2009074196A publication Critical patent/JP2009074196A/en
Publication of JP2009074196A5 publication Critical patent/JP2009074196A5/ja
Application granted granted Critical
Publication of JP4916985B2 publication Critical patent/JP4916985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bulky nonwoven fabric having excellent heat and chemical resistances and to provide a method for producing the bulky nonwoven fabric. <P>SOLUTION: The nonwoven fabric is formed from filaments having a melting liquid crystal-forming wholly aromatic polyester having a melt viscosity of 20 Pa s or less at 310°C or above as a main component and having an average fiber diameter of 1-15 μm, and the principal plane has a plurality of peak parts 1. The apparent density of the nonwoven fabric is 0.01-0.3 g/cm. The ratio (Sm)/(Ym) of the average interval (Sm) of the apexes of the adjacent peak parts to the average height (Ym) of the plurality of peak parts may be about 0.02-100. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐熱性、耐薬品性に優れるとともに、嵩高い不織布とその製造方法に関する。特に、本発明は、耐熱性、耐薬品性などに優れるだけでなく、クッション性や拭取り性、さらに滑り止め性に優れる不織布とその製造方法に関する。   The present invention relates to a bulky nonwoven fabric and a method for producing the same while being excellent in heat resistance and chemical resistance. In particular, the present invention relates to a nonwoven fabric not only having excellent heat resistance and chemical resistance, but also excellent cushioning properties, wiping properties, and slip resistance, and a method for producing the same.

不織布は、各種産業用資材や建設資材などとして、多種多様な分野において重用されている。しかし、一般に用いられている不織布原料は、綿、レーヨン、ポリエチレンテレフタレート、ポリプロピレン、ナイロンなどであり、これらの原料から製造される不織布は、満足な耐熱性や耐薬品性を示さないため、耐熱、耐薬品性等が要求されるワイパーやフィルター骨材など、高機能化が求められる用途に用いることができない。   Nonwoven fabrics are widely used in various fields as various industrial materials and construction materials. However, generally used nonwoven fabric raw materials are cotton, rayon, polyethylene terephthalate, polypropylene, nylon, etc., and the nonwoven fabric produced from these raw materials does not show satisfactory heat resistance and chemical resistance. It cannot be used for applications that require high functionality, such as wipers and filter aggregates that require chemical resistance.

例えば、耐熱性や耐アルカリ性に優れた不織布として、特許文献1(特開2005−232622)には、基布の片面もしくは両面にアラミド繊維と玄武岩繊維を含むウェブを配置し、ニードルパンチして両繊維を一体化したニードルフェルトが開示されている。このフェルトは、耐熱性および耐アルカリ性に優れるものの、吸湿性が高い。また、ニードルパンチ方式では、表面に凹凸を形成できないだけでなく、その製造工程も極めて複雑であり、まず繊維を製造し、その繊維を短繊維にカットした後に、短繊維からカードウェブを形成し、さらにそのカードウェブをニードルパンチでシート化するといった多工程を要する。   For example, as a nonwoven fabric excellent in heat resistance and alkali resistance, in Patent Document 1 (Japanese Patent Laid-Open No. 2005-232622), a web containing an aramid fiber and a basalt fiber is arranged on one side or both sides of a base fabric, and both needle punching is performed. A needle felt in which fibers are integrated is disclosed. This felt is excellent in heat resistance and alkali resistance, but has high hygroscopicity. In addition, the needle punch method not only cannot form irregularities on the surface, but also the manufacturing process is extremely complicated. First, fibers are manufactured, and the fibers are cut into short fibers, and then a card web is formed from the short fibers. Furthermore, a multi-step process is required in which the card web is formed into a sheet by a needle punch.

一方、耐熱、耐薬品性を有する溶融液晶形成性全芳香族ポリエステルを原料とした不織布として、特許文献2(特開2002−061064)に、平均繊維径が0.6〜20μmである溶融液晶性ポリエステル繊維から構成され、300℃1時間での面積収縮率が3%以下であることを特徴とする不織布が開示されている。この文献では、前記溶融液晶形成性全芳香族ポリエステルをメルトブローンして、耐熱性、寸法安定性、低吸水性、樹脂含浸性に優れる不織布を得ることが記載されている。しかし、この文献においても、嵩高く、低密度な不織布を得ることは、何ら記載されていない。   On the other hand, as a non-woven fabric using heat- and chemical-resistant molten liquid crystal-forming wholly aromatic polyester as a raw material, Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-061064) discloses a melt liquid crystal property having an average fiber diameter of 0.6 to 20 μm. A non-woven fabric is disclosed which is made of polyester fiber and has an area shrinkage rate of 3% or less at 300 ° C. for 1 hour. This document describes that the molten liquid crystal-forming wholly aromatic polyester is melt blown to obtain a nonwoven fabric excellent in heat resistance, dimensional stability, low water absorption, and resin impregnation. However, even in this document, there is no description of obtaining a bulky and low-density nonwoven fabric.

特開2005−232622号公報JP-A-2005-232622 特開2002−061064号公報JP 2002-061064 A

本発明の目的は、耐熱性および耐薬品性に優れるだけでなく、軽量であってもクッション性を向上できる不織布を提供することにある。
本発明の別の目的は、さらに拭取り性や滑り止め性を向上できる不織布を提供することにある。
本発明のさらに別の目的は、上述のような優れた特性を有する不織布を、効率よく製造するための方法を提供することにある。
An object of the present invention is to provide a nonwoven fabric that not only has excellent heat resistance and chemical resistance, but also can improve cushioning properties even if it is lightweight.
Another object of the present invention is to provide a nonwoven fabric that can further improve wiping properties and anti-slip properties.
Still another object of the present invention is to provide a method for efficiently producing a nonwoven fabric having excellent characteristics as described above.

本発明者らは、上記した従来技術の問題点を解決すべく、鋭意検討を重ねた結果、310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルポリマーを高温高速流体とした後、この高温高速流体を、所定の捕集距離で、表面凹凸を有し、且つ冷却された金属ロール上へ吹付けて冷却固化捕集することにより、取り扱い性の困難な溶融液晶形成性全芳香族ポリエステルポリマーであっても、簡便に加工することができ、その結果、表面凹凸を有して嵩高く、かつ耐熱性、耐薬品性に優れた不織布を得ることができることを見出し、本発明を完成させた。   As a result of intensive studies in order to solve the above-described problems of the prior art, the present inventors have developed a liquid crystal-forming fully aromatic polyester polymer having a melt viscosity at 310 ° C. of 20 Pa · s or less at a high temperature and high speed. After forming a fluid, this high-temperature high-speed fluid is sprayed onto a cooled metal roll at a predetermined collection distance and is cooled and solidified and collected to cool and collect liquid crystals that are difficult to handle. It has been found that even a formable wholly aromatic polyester polymer can be easily processed, and as a result, a nonwoven fabric having surface irregularities and being bulky and excellent in heat resistance and chemical resistance can be obtained. The present invention has been completed.

すなわち、上記の検討結果に基づいてなされた本発明は、310℃以上での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmであるフィラメントからなり、主面が複数の山部を有するとともに、見かけ密度が0.01〜0.3g/cmである不織布である。 That is, the present invention made on the basis of the above examination results is mainly composed of a molten liquid crystal-forming wholly aromatic polyester having a melt viscosity at 310 ° C. or higher of 20 Pa · s or less and an average fiber diameter of 1 to 15 μm. The nonwoven fabric is made of a certain filament, the main surface has a plurality of peaks, and the apparent density is 0.01 to 0.3 g / cm 3 .

例えば、前記複数の山部は、少なくとも第1の方向に沿って並んでおり、この第1の方向に沿った幅10cmの断面において存在する不織布の複数の山部について、山部の高さ(Yi)を平均した山部の平均高さ(Ym)が0.1〜5mm程度であってもよく、また、隣接する山部の頂点の間隔(Si)を平均した平均間隔(Sm)が0.05〜5mm程度であってもよい。さらに、山部の平均高さ(Ym)と、隣接する山部の頂点の平均間隔(Sm)との比は、(Sm)/(Ym)=0.02〜100程度であってもよい。   For example, the plurality of peak portions are arranged at least along the first direction, and the height of the peak portions (for the plurality of peak portions of the nonwoven fabric present in the cross section having a width of 10 cm along the first direction ( The average height (Ym) of the peaks obtained by averaging Yi) may be about 0.1 to 5 mm, and the average interval (Sm) obtained by averaging the intervals (Si) between the apexes of adjacent peaks is 0. It may be about 0.05 to 5 mm. Further, the ratio of the average height (Ym) of the peak portions to the average interval (Sm) of the apexes of the adjacent peak portions may be (Sm) / (Ym) = 0.about 0.02-100.

また、前記不織布は、山部が形成されているため、見かけ密度が低くとも、耐圧縮性に優れており、不織布において、圧縮レジリエンス(RC)が40〜70%程度、圧縮剛さ(LC)が0.4〜0.7程度、及び/または圧縮率(EMC)が5〜30%程度であってもよい。   Moreover, since the said nonwoven fabric is formed with the peak part, even if an apparent density is low, it is excellent in compression resistance, and in a nonwoven fabric, compression resilience (RC) is about 40 to 70%, compression rigidity (LC). May be about 0.4 to 0.7, and / or the compression ratio (EMC) may be about 5 to 30%.

このような不織布は、メルトブローン法により製造するのが好ましく、不織布は、310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを、紡糸温度310〜360℃、熱風温度310〜380℃、ノズル1m幅当りのエアー量10〜50Nmの高温高速流体として、捕集距離2〜20cm(好ましくは2.5〜13cm程度)で表面凹凸を有する冷却金属ロール上へ吹付け捕集することにより製造できる。 Such a non-woven fabric is preferably produced by a melt blown method, and the non-woven fabric is made of a molten liquid crystal-forming wholly aromatic polyester having a melt viscosity at 310 ° C. of 20 Pa · s or less, a spinning temperature of 310 to 360 ° C., and a hot air temperature. As a high-temperature high-speed fluid of 310 to 380 ° C. and an air amount of 10 to 50 Nm 3 per 1 m width of the nozzle, it is sprayed onto a cooling metal roll having surface irregularities at a collection distance of 2 to 20 cm (preferably about 2.5 to 13 cm). It can be manufactured by collecting.

さらに、前記製造方法では、吹付け捕集した不織布を、さらに固相重合させ、不織布の強度を向上させてもよい。   Furthermore, in the said manufacturing method, the nonwoven fabric sprayed and collected may be further solid-phase polymerized to improve the strength of the nonwoven fabric.

なお、明細書中において、「溶融液晶形成性全芳香族ポリエステル」とは、溶融相で光学的異方性(液晶性)を示す全芳香族ポリエステル樹脂を意味する。前記液晶性は、ホットステージ上の試料を窒素雰囲気下で昇温し、その透過光を観察することにより容易に認定することができる。   In the specification, “melted liquid crystal-forming wholly aromatic polyester” means a wholly aromatic polyester resin exhibiting optical anisotropy (liquid crystallinity) in the melt phase. The liquid crystallinity can be easily identified by heating the sample on the hot stage in a nitrogen atmosphere and observing the transmitted light.

また、不織布の山部の高さ(Yi)と、隣接する山部の頂点の間隔(Si)は、不織布において、第1の方向に沿って並んだ複数の山部を含むよう、第1の方向に沿って幅10cmのサンプル片の断面を光学顕微鏡により観察し、サンプル幅10cmの中に存在するすべての山部について測定するものとする。なお、サンプル幅の両端において、山形が頂点を迎えることなく途切れた場合、途切れた山形については、山部の高さ(Yi)および間隔(Si)には算入しないものとする。   Further, the height (Yi) of the ridges of the nonwoven fabric and the interval (Si) between the apexes of the adjacent ridges are such that the nonwoven fabric includes a plurality of ridges arranged along the first direction. A cross section of a sample piece having a width of 10 cm along the direction is observed with an optical microscope, and measurement is performed on all the crests present in the sample width of 10 cm. In addition, when the mountain shape breaks without reaching the apex at both ends of the sample width, the broken mountain shape is not included in the height (Yi) and the interval (Si) of the mountain portion.

本発明では、耐熱性および耐薬品性に優れる溶融液晶形成性全芳香族ポリエステルを、特定の製造方法で加工することにより、表面に複数の山部を形成した不織布を得ることができ、このような不織布では、耐熱性および耐薬品性に優れるだけでなく、軽量であっても、クッション性を向上することができる。   In the present invention, a nonwoven fabric having a plurality of crests formed on the surface can be obtained by processing a molten liquid crystal-forming wholly aromatic polyester excellent in heat resistance and chemical resistance by a specific production method. Such a non-woven fabric not only has excellent heat resistance and chemical resistance, but also can improve cushioning properties even if it is lightweight.

また、本発明の不織布は、耐熱、耐薬品性に優れ、かつ嵩高いため、工業用特殊ワイパー等において、拭取り性、薬品保持性を向上することができる。
さらに、本発明の不織布は、静電気の発生を有効に抑制することができ、発塵量を低減できるだけでなく、表面の凹凸形状により、不織布の拭取り性や滑り止め性を向上することができる。
Moreover, since the nonwoven fabric of this invention is excellent in heat resistance and chemical resistance, and is bulky, it can improve wiping property and chemical retention in industrial special wipers and the like.
Furthermore, the nonwoven fabric of the present invention can effectively suppress the generation of static electricity, reduce not only the amount of dust generation, but also improve the wiping property and anti-slip property of the nonwoven fabric due to the uneven shape of the surface. .

また、本発明の不織布の製造方法では、このように優れた特性を有する不織布を、効率よく大量生産することができる。   Moreover, in the manufacturing method of the nonwoven fabric of this invention, the nonwoven fabric which has such an outstanding characteristic can be mass-produced efficiently.

この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解される。図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。また、添付図面において、複数の図面における同一の部品番号は、同一部分を示す。   The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. The drawings are not necessarily drawn to scale, but are exaggerated in illustrating the principles of the invention. In the accompanying drawings, the same part number in the plurality of drawings indicates the same part.

[不織布]
本発明の不織布は、310℃以上での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmであるフィラメントで構成される。
図1に、本発明の不織布の一実施形態の断面の概略図を示す。図1に示すように、不織布は、一方の主面に複数の山部1を第1の方向に沿って連続して有し、各山部1は、山部1およびこの山に隣接する谷部2,2からなる山形をなしている。
[Nonwoven fabric]
The nonwoven fabric of the present invention is composed of a filament having a melt liquid crystal-forming wholly aromatic polyester having a melt viscosity at 310 ° C. or higher of 20 Pa · s or less and an average fiber diameter of 1 to 15 μm.
In FIG. 1, the schematic of the cross section of one Embodiment of the nonwoven fabric of this invention is shown. As shown in FIG. 1, the nonwoven fabric has a plurality of peak portions 1 on one main surface continuously along the first direction, and each peak portion 1 includes a peak portion 1 and a valley adjacent to the peak. It has a mountain shape consisting of parts 2 and 2.

各山部1は、山部を形成する山形の谷部2,2から山部の頂点3までの距離Y1,Y2,Y3,・・・Yiをその高さとして有し、また、各山部の頂点3は、S1、S2,S3,・・・Siの間隔で離れている。   Each peak 1 has, as its height, distances Y1, Y2, Y3,... Yi from the valleys 2 and 2 of the peaks forming the peaks to the apex 3 of the peaks. Are separated by intervals of S1, S2, S3,... Si.

不織布に求められる形状に応じて、各山部の高さは、同一でもよく異なっていてもよい。山部の高さ(Yi)は、拭取り性や滑り止め性を不織布に付与する観点から、例えば、0.01mm〜1cm程度が好ましく、より好ましくは0.05〜8mm程度、さらに好ましくは0.07〜6mm程度である。また、不織布から任意に採取したサンプルの幅方向の断面において、サンプル幅10cmの中に存在する山部の平均高さ(Ym)は、例えば、0.1〜5mm程度が好ましく、より好ましくは0.3〜4mm程度、さらに好ましくは0.5〜3.5mm程度である。   Depending on the shape required for the nonwoven fabric, the heights of the peaks may be the same or different. The height (Yi) of the ridge is, for example, preferably about 0.01 mm to 1 cm, more preferably about 0.05 to 8 mm, and still more preferably 0, from the viewpoint of imparting wiping properties and slip resistance to the nonwoven fabric. About 0.07 to 6 mm. In addition, in the cross section in the width direction of the sample arbitrarily collected from the nonwoven fabric, the average height (Ym) of the peak portion present in the sample width of 10 cm is preferably, for example, about 0.1 to 5 mm, more preferably 0. About 3 to 4 mm, more preferably about 0.5 to 3.5 mm.

また、山部間の各間隔も、同一でもよく異なっていてもよい。山部間の間隔(Si)は、クッション性や耐圧縮性を不織布に付与する観点から、例えば、0.01mm〜1cm程度が好ましく、より好ましくは0.05〜8mm程度、さらに好ましくは0.1〜6mm程度である。また、不織布から任意に採取したサンプルの幅方向の断面において、サンプル幅10cmの中に存在する山部間の平均間隔(Sm)は、例えば、0.05〜5mm程度が好ましく、より好ましくは0.1〜4mm程度、さらに好ましくは1〜3.5mm程度である。   Moreover, each space | interval between peak parts may be the same, and may differ. The distance between the peaks (Si) is preferably, for example, about 0.01 mm to 1 cm, more preferably about 0.05 to 8 mm, and still more preferably 0.00 from the viewpoint of imparting cushioning properties and compression resistance to the nonwoven fabric. It is about 1 to 6 mm. Moreover, in the cross section in the width direction of the sample arbitrarily collected from the nonwoven fabric, the average interval (Sm) between the crests existing in the sample width of 10 cm is preferably, for example, about 0.05 to 5 mm, more preferably 0. .About 1 to 4 mm, more preferably about 1 to 3.5 mm.

山部の平均高さ(Ym)と、隣接する山部の頂点の平均間隔(Sm)との比は、不織布に対して求められる性能に応じて幅広い範囲から選択することができ、(Sm)/(Ym)=0.02〜100程度が好ましく、より好ましくは0.1〜80程度である。   The ratio between the average height (Ym) of the ridges and the average interval (Sm) between the apexes of the adjacent ridges can be selected from a wide range according to the performance required for the nonwoven fabric (Sm) / (Ym) is preferably about 0.02 to 100, more preferably about 0.1 to 80.

図2に示すように、不織布の主面において、各山部は第1の方向に沿って、互いに平行に配列して、全体として波状に存在していてもよいし、または、図3に示すように、各山部は互いに入れ違いに配列し、カップ状の山部が全体に均一に点在していてもよい。また、それ以外にも、不織布に求められる形状に応じて、山部は、ランダムに不織布の主面に存在していてもよい。
なお、第1の方向は、通常、最も多くの山部が含まれるように選択され、図2のように波状に山部が形成されている場合、第1の方向は、山部の稜線と直交するよう、紙面X方向に設定される。
また、図3のようにカップ状の山部が全体に均一に点在している場合、山部は、第1の方向だけでなく、その他の方向にも並んでいるが、第1の方向は、山部を最も多く含むよう、紙面Y方向に設定される。
As shown in FIG. 2, in the main surface of the nonwoven fabric, the crests may be arranged in parallel with each other along the first direction and may exist in a wavy shape as a whole, or as shown in FIG. 3. As described above, the ridges may be arranged in a mutually reversed manner, and the cup-like ridges may be evenly scattered throughout. Moreover, according to the shape calculated | required by the nonwoven fabric, the peak part may exist in the main surface of a nonwoven fabric at random.
Note that the first direction is usually selected so as to include the largest number of peaks, and when the peaks are formed in a wavy shape as shown in FIG. 2, the first direction is the ridgeline of the peaks. It is set in the X direction on the paper surface so as to be orthogonal.
In addition, when the cup-shaped ridges are uniformly scattered as shown in FIG. 3, the ridges are arranged not only in the first direction but also in other directions, but the first direction Is set in the Y direction on the paper surface so as to include the most peaks.

また、不織布は、図4に示すように、通常、不織布の主面である上面および下面の双方において、山部を形成し、例えば、上面の山部1の頂点3と下面の谷部2’との位置が、不織布の幅方向に対して一致して形成されている。   Moreover, as shown in FIG. 4, the non-woven fabric usually forms peaks on both the upper surface and the lower surface, which are the main surfaces of the non-woven fabric. And the positions are aligned with the width direction of the nonwoven fabric.

本発明の不織布では、複数の山部により、嵩高くすることが可能であり、前記不織布は、見かけ密度が0.01〜0.3g/cm程度であり、好ましくは見かけ密度が0.015〜0.2g/cm程度、さらに好ましくは0.02〜0.1g/cm程度、特に好ましくは0.025〜0.05g/cm程度である。 The nonwoven fabric of the present invention can be made bulky by a plurality of peaks, and the nonwoven fabric has an apparent density of about 0.01 to 0.3 g / cm 3 , preferably an apparent density of 0.015. ~0.2g / cm 3 or so, more preferably 0.02~0.1g / cm 3 or so, particularly preferably 0.025~0.05g / cm 3 order.

本発明の不織布は、必要に応じてさまざまな厚みとすることができるが、不織布の厚みは、クッション性または拭取り性の観点から、好ましくは0.5mm〜1cm程度、より好ましくは1〜8mm程度である。   Although the nonwoven fabric of this invention can be made into various thickness as needed, the thickness of a nonwoven fabric is from the viewpoint of cushioning property or wiping property, Preferably it is about 0.5 mm-1 cm, More preferably, it is 1-8 mm. Degree.

また、不織布が有するクッション性は、不織布の耐圧縮性で代表することができ、例えば、KES圧縮試験機(カトーテック株式会社製)を用いて測定した場合、不織布の圧縮レジリエンス(RC)は40〜70%程度であることが好ましく、50〜60%程度であることがより好ましい。圧縮剛さ(LC)は、0.4〜0.7程度であることが好ましく、0.5〜0.6程度であることがより好ましい。圧縮率(EMC)は、5〜30%程度であることが好ましく、10〜20%程度であることがより好ましい。
なお、前記圧縮レジリエンス(RC)、圧縮剛さ(LC)および圧縮率(EMC)は、測定条件として、スピード:0.02cm/sec、圧縮面積:2cm、SENS:2×10(20g×10V)、圧縮荷重:50gf/cmの条件で圧縮を行った値を示している。
The cushioning property of the nonwoven fabric can be represented by the compression resistance of the nonwoven fabric. For example, when measured using a KES compression tester (manufactured by Kato Tech Co., Ltd.), the compression resilience (RC) of the nonwoven fabric is 40. About 70% is preferable, and about 50-60% is more preferable. The compression stiffness (LC) is preferably about 0.4 to 0.7, and more preferably about 0.5 to 0.6. The compression ratio (EMC) is preferably about 5 to 30%, and more preferably about 10 to 20%.
The compression resilience (RC), compression stiffness (LC) and compression rate (EMC) are as follows: speed: 0.02 cm / sec, compression area: 2 cm 2 , SENS: 2 × 10 (20 g × 10 V) ), Compression load: a value obtained by compressing under the condition of 50 gf / cm 2 .

(溶融液晶形成性全芳香族ポリエステル)
本発明の不織布で使用される溶融液晶形成性全芳香族ポリエステルは、310℃における熔融粘度が20Pa・s以下であれば特に限定されないが、例えば、p-ヒドロキシ安息香酸と1,6-ヒドロキシナフトエ酸の縮合体やその共重合体等、また、下記の化学式に示す如き構成単位を有するポリエステルを例示することができる。
(Molten liquid crystal forming wholly aromatic polyester)
The melted liquid crystal-forming wholly aromatic polyester used in the nonwoven fabric of the present invention is not particularly limited as long as the melt viscosity at 310 ° C. is 20 Pa · s or less. For example, p-hydroxybenzoic acid and 1,6-hydroxynaphthoic acid are used. Examples include acid condensates and copolymers thereof, and polyesters having structural units as shown in the following chemical formula.

Figure 2009074196
Figure 2009074196

310℃での溶融粘度が20Pa・sを超える全芳香族ポリエステルは、極細繊維化が困難であったり、重合時のオリゴマーの発生、重合時や造粒時のトラブル発生などの理由から好ましくない。一方、溶融粘度が低すぎる場合も繊維化が困難であり、好ましくは310℃において5Pa・s以上の溶融粘度を示すことが望ましい。また、本質粘度で表した場合、本発明で使用する全芳香族ポリエステルは6.0以下、好ましくは3.0〜6.0の本質粘度(ηinh)を有していることが望ましい。かかる溶融粘度を有する溶融液晶形成性全芳香族ポリエステルは、従来公知の全芳香族ポリエステルの重合技術によって製造することができ、また、ポリプラスッチクス社から「ベクトラ」(登録商標)A,Lタイプ等で提供されている。   A wholly aromatic polyester having a melt viscosity at 310 ° C. exceeding 20 Pa · s is not preferable because it is difficult to make ultrafine fibers, oligomers are generated during polymerization, and troubles occur during polymerization and granulation. On the other hand, if the melt viscosity is too low, fiberization is difficult, and it is desirable that the melt viscosity is preferably 5 Pa · s or more at 310 ° C. When expressed in terms of intrinsic viscosity, the wholly aromatic polyester used in the present invention desirably has an intrinsic viscosity (ηinh) of 6.0 or less, and preferably 3.0 to 6.0. A melt liquid crystal-forming wholly aromatic polyester having such a melt viscosity can be produced by a conventionally known polymerization technique of wholly aromatic polyester, and “Vectra” (registered trademark) A, L type from Polyplastics Co., Ltd. Etc. are provided.

なお、前記溶融液晶形成性全芳香族ポリエステルは、必要に応じて、その強力が実質的に低下しない範囲で、他のポリマーや添加剤等を加えて用いてもよい。例えば、添加剤としては、安定化剤(例えば、酸化防止剤、紫外線吸収剤、熱安定剤など)、滑剤、難燃剤、帯電防止剤、分散剤、流動化剤などが挙げられる。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。   The molten liquid crystal-forming wholly aromatic polyester may be used by adding other polymers, additives, and the like as long as the strength does not substantially decrease. For example, examples of additives include stabilizers (for example, antioxidants, ultraviolet absorbers, heat stabilizers, etc.), lubricants, flame retardants, antistatic agents, dispersants, fluidizing agents, and the like. These additives can be used alone or in combination of two or more.

[不織布の製造方法]
本発明の不織布は、前記溶融液晶形成性全芳香族ポリエステルを用いて、フラッシュ紡糸法、メルトブローン法等を利用して製造できる。極細繊維からなる不織布の製造が比較的容易にでき、紡糸時に溶剤を必要とせず環境への影響を最小限とすることができる点からメルトブローン法が好ましい。
[Method for producing nonwoven fabric]
The nonwoven fabric of the present invention can be produced by using the molten liquid crystal-forming wholly aromatic polyester and utilizing a flash spinning method, a melt blown method or the like. The melt blown method is preferable because it can relatively easily produce a nonwoven fabric made of ultrafine fibers, and can minimize the influence on the environment without requiring a solvent during spinning.

図5は、本発明の不織布のメルトブローン法による製造工程の概要を示す。まず、溶融液晶形成性全芳香族ポリエステルは、押出機により溶融され、溶融状態となりノズル5へと向かう。一方、ノズル5の両側に設けられた熱風噴射溝6,6からは加熱された熱風が噴射され、前記ポリエステルを高温高速流体7とする。この高温高速流体7は、表面凹凸を有する冷却金属ロール8上へ吹き付けられた後、引取ロール9により引き取られ、巻取ロール10により巻き取られる。   FIG. 5 shows an outline of the production process of the nonwoven fabric of the present invention by the melt blown method. First, the melted liquid crystal-forming wholly aromatic polyester is melted by an extruder and enters a molten state toward the nozzle 5. On the other hand, heated hot air is injected from the hot air injection grooves 6 and 6 provided on both sides of the nozzle 5, and the polyester is used as the high-temperature high-speed fluid 7. The high-temperature and high-speed fluid 7 is sprayed onto a cooling metal roll 8 having surface irregularities, then taken up by a take-up roll 9 and taken up by a take-up roll 10.

例えば、前記溶融液晶形成性全芳香族ポリエステルは、紡糸温度310℃〜360℃、熱風温度(一次エアー温度)310℃〜380℃、ノズル1m幅あたりのエアー量10〜50Nmの紡糸条件で高温高速流体7となり、捕集距離2〜20cm(好ましくは2.5〜13cm程度)でノズル5から表面凹凸を有する冷却金属ロール8上へ吹き付けられる。 For example, the molten liquid crystal-forming wholly aromatic polyester has a high temperature under spinning conditions of a spinning temperature of 310 ° C. to 360 ° C., a hot air temperature (primary air temperature) of 310 ° C. to 380 ° C., and an air amount of 10 to 50 Nm 3 per 1 m width of the nozzle. It becomes the high-speed fluid 7 and is sprayed from the nozzle 5 onto the cooling metal roll 8 having surface irregularities at a collection distance of 2 to 20 cm (preferably about 2.5 to 13 cm).

この金属ロールは、不織布の形状に対応した凹凸形状を有し、且つ公知または慣用の冷却手段により、その表面が冷却された状態となっている。前記凹凸形状は、この例では、図6に示すように、ロール8の軸方向に平行に延びる凸部11と凹部12が周方向に交互に並んで形成されている。金属ロールが冷却されているため、高温で加熱された溶融液晶形成性全芳香族ポリエステルであっても、速やかに冷却固化することができ、不織布に対して所望の形状を付与できる。   This metal roll has an uneven shape corresponding to the shape of the nonwoven fabric, and its surface is cooled by a known or conventional cooling means. In this example, the concavo-convex shape has convex portions 11 and concave portions 12 extending in parallel to the axial direction of the roll 8 and alternately formed in the circumferential direction, as shown in FIG. Since the metal roll is cooled, even a melted liquid crystal-forming wholly aromatic polyester heated at a high temperature can be quickly cooled and solidified, and a desired shape can be imparted to the nonwoven fabric.

このような製法で形成されるため、本発明の不織布は、実質的に連続したフィラメントから形成される。また、不織布のウェブ形成の観点から、平均繊維径は1〜15μm程度であることが必要であり、好ましくは3〜10μm程度である。なお、本発明において平均繊維径は、不織布を走査型電子顕微鏡で拡大撮影し、任意の100本の繊維の径を測定した値の平均値を指すものである。   Since it is formed by such a manufacturing method, the nonwoven fabric of the present invention is formed from substantially continuous filaments. Moreover, from a viewpoint of web formation of a nonwoven fabric, an average fiber diameter needs to be about 1-15 micrometers, Preferably it is about 3-10 micrometers. In addition, in this invention, an average fiber diameter refers to the average value of the value which magnified and imaged the nonwoven fabric with the scanning electron microscope, and measured the diameter of arbitrary 100 fibers.

さらに、本発明の製造方法では、不織布の強度を向上させるため、得られた不織布を、さらに熱処理し繊維状での固相重合を進めてもよい。本発明の不織布は、極細繊維で構成され比表面積が著しく増大しているため、重合の進捗に伴って生成する副生物が容易に離脱して、重合反応を極めて効率的に行うことができる。   Furthermore, in the production method of the present invention, in order to improve the strength of the nonwoven fabric, the obtained nonwoven fabric may be further heat-treated to proceed with solid phase polymerization in a fibrous form. Since the non-woven fabric of the present invention is composed of ultrafine fibers and the specific surface area is remarkably increased, by-products generated with the progress of polymerization can be easily detached, and the polymerization reaction can be carried out very efficiently.

固相重合に当たっては、用いる熔融液晶形成性ポリエステルの特性により、窒素などの不活性気体を用いたり、空気中での処理を行ったり、また最初は不活性気体中で固相重合を行い、更に空気中で固相重合を完結させるなど、適宜選択することが可能である。   In the solid phase polymerization, depending on the characteristics of the melt liquid crystal forming polyester to be used, an inert gas such as nitrogen is used, the treatment is performed in the air, or the solid phase polymerization is first performed in the inert gas. It is possible to select as appropriate, for example, to complete solid phase polymerization in air.

特に熔融液晶形成性ポリエステルは、空気中で固相重合を進めると、脱水素反応や酸素架橋などの架橋反応を生ずる場合が多く、不織布の耐薬品性、耐水性および耐熱性をより向上させることができる。これらの反応を期待する場合は、初期に不活性気体中で固相重合を進め、分子量を増大させた後、空気中で反応を進めるのが好ましい。   In particular, molten liquid crystal forming polyester often undergoes cross-linking reactions such as dehydrogenation and oxygen cross-linking when proceeding with solid-phase polymerization in the air, and further improves the chemical resistance, water resistance and heat resistance of the nonwoven fabric. Can do. When these reactions are expected, it is preferable to proceed with solid-state polymerization in an inert gas in the initial stage to increase the molecular weight and then proceed with the reaction in air.

必要に応じて、酸素濃度を管理し、例えば酸素濃度10%の空気中での反応を選択するなどの方法も選択肢の一つとして例示することができる。また、初期には窒素などの不活性気体中で固相重合反応を進め、重合度が上がった段階で有酸素雰囲気とし、更に反応を進め、架橋や炭化などの反応を進める事も可能である。   If necessary, a method of managing the oxygen concentration, for example, selecting a reaction in air having an oxygen concentration of 10% can be exemplified as one of the options. It is also possible to advance the solid-phase polymerization reaction in an inert gas such as nitrogen in the initial stage, to make an aerobic atmosphere at the stage when the degree of polymerization is increased, and further proceed the reaction such as crosslinking and carbonization. .

本発明の不織布は、特定の溶融液晶形成性全芳香族ポリエステルを主成分とするため、耐熱性、耐薬品性に優れる。さらに、平均繊維径が1〜15μmであるだけでなく、特定の凹凸形状を有しているため、不織布の比表面積を増加できる。さらに、特定の形状などにより、不織布に強度を付与してクッション性(または耐圧縮性)を向上できるだけでなく、その形状により拭取り性や滑り止め性を向上できる。   The nonwoven fabric of the present invention is excellent in heat resistance and chemical resistance because it contains a specific molten liquid crystal forming wholly aromatic polyester as a main component. Furthermore, since not only the average fiber diameter is 1 to 15 μm but also has a specific uneven shape, the specific surface area of the nonwoven fabric can be increased. Furthermore, not only the cushioning property (or compression resistance) can be improved by imparting strength to the nonwoven fabric by a specific shape, but the wiping property and anti-slip property can be improved by the shape.

このような不織布は、例えば、耐薬品性や拭取り性を生かして各種拭き取り材(例えば、工業用ワイパー、生活資材用ワイパーなど)などとして利用できるだけでなく、耐熱性、耐薬品性および比表面積の増加を生かして各種フィルター骨材などとしても有用である。   Such non-woven fabrics can be used as various wiping materials (for example, industrial wipers, daily use wipers, etc.) taking advantage of chemical resistance and wiping properties, as well as heat resistance, chemical resistance and specific surface area. It is also useful as various filter aggregates by taking advantage of this increase.

さらに、耐熱性や耐薬品性およびクッション性や滑り止め性を生かすことにより、各種養生シート(例えば、床用養生シート)としても有用である。
また、軽くてもクッション性に優れることにより、半導体などの電子部品を包装するための包装資材として、有用に利用することもできる。
さらに、耐薬品性や、表面の凹凸を利用した滑り止め性を生かすことにより、各種作業手袋(例えば、電子部品用作業手袋)としても有用である。
Furthermore, it is useful as various curing sheets (for example, a curing sheet for floors) by taking advantage of heat resistance, chemical resistance, cushioning properties and anti-slip properties.
Moreover, even if it is light, since it is excellent in cushioning properties, it can also be used effectively as a packaging material for packaging electronic components such as semiconductors.
Furthermore, it is useful as various work gloves (for example, work gloves for electronic parts) by taking advantage of chemical resistance and anti-slip properties utilizing surface irregularities.

以下に本発明を実施例にてさらに具体的に説明するが、本発明はこれらの実施例に限定
されるものではない。不織布の物性は以下の測定方法により測定した。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. The physical properties of the nonwoven fabric were measured by the following measuring methods.

(溶融粘度 Pa・s)
東洋精機キャピログラフ1B型を用いて、温度310℃、剪断速度r=1000−1の条件下で測定した。
(Melt viscosity Pa · s)
Measurement was performed under the conditions of a temperature of 310 ° C. and a shear rate of r = 1000 −1 using a Toyo Seiki Capillograph Type 1B.

(耐薬品性の評価)
o-クロロフェノールに30℃で24時間浸漬し、目視にて溶解の程度を確認した。さらに1規定の水酸化ナトリウム水溶液中で沸騰処理1時間を行い、重量減少率を確認した。なお、本発明において、実質的に溶剤に不溶であるとは、o-クロロフェノールに不溶であること、また1規定の水酸化ナトリウム水溶液中で沸騰処理1時間を行っても、重量減少率が10%以下であることをいう。
(Evaluation of chemical resistance)
It was immersed in o-chlorophenol at 30 ° C. for 24 hours, and the degree of dissolution was confirmed visually. Further, boiling treatment was performed for 1 hour in a 1N aqueous sodium hydroxide solution, and the weight reduction rate was confirmed. In the present invention, “substantially insoluble in a solvent” means that it is insoluble in o-chlorophenol, and even if the boiling treatment is carried out for 1 hour in a 1N aqueous sodium hydroxide solution, the weight reduction rate is reduced. It means 10% or less.

(耐熱性の評価)
100℃の熱風を不織布に通過させ、形状変化の有無を目視により確認した。形状変化しなかった場合、耐熱性が良好であると判断し、形状変化した場合、耐熱性が不良であると判断した。
(Evaluation of heat resistance)
A hot air of 100 ° C. was passed through the nonwoven fabric, and the presence or absence of a shape change was confirmed visually. When the shape did not change, it was determined that the heat resistance was good, and when the shape changed, it was determined that the heat resistance was poor.

(熱変形温度の測定)
島津製作所製TMA−50を用いて、試料長を20mmとし、被測定試料重量1g当たり1gを付与し、昇温速度5℃/minにて室温から昇温し、急激な伸びが発生する温度を熱変形温度とする。該温度は、温度−伸度カーブより接線の交点をもって定義した。
(Measurement of heat distortion temperature)
Using TMA-50 manufactured by Shimadzu Corporation, the sample length is set to 20 mm, 1 g per 1 g of the sample weight to be measured is given, and the temperature is raised from room temperature at a heating rate of 5 ° C./min. Let it be the heat distortion temperature. The temperature was defined by the intersection of tangent lines from the temperature-elongation curve.

(山部の高さおよび山部の間隔 mm)
試料長さ方向より、100×100mmの試験片を採取し、この試験片の幅方向の断面を光学顕微鏡により観察し、サンプル幅10cmの中に存在するすべての山部について、山部の高さ(Yi)と、隣接する山部の頂点の間隔(Si)を光学顕微鏡((株)キーエンス製、VHX−10)で測定した。そして、得られた山部の高さを平均したものを山部の平均高さ(Ym)とし、隣接する山部の頂点の間隔(Si)を平均したものを平均間隔(Sm)として算出した。
(Crest height and crest spacing mm)
A 100 × 100 mm test piece was taken from the sample length direction, and a cross section in the width direction of the test piece was observed with an optical microscope. The height of the peak portion was measured for all the peak portions existing in the sample width of 10 cm. (Yi) and the space | interval (Si) of the vertex of the adjacent peak part were measured with the optical microscope (the Keyence Corporation make, VHX-10). Then, the average height (Ym) of the peak portions was obtained by averaging the heights of the obtained peak portions, and the average interval (Sm) was calculated by averaging the intervals (Si) between the apexes of the adjacent peak portions. .

(厚み μm)
試料長さ方向より、100×100mmの試験片を採取し、ダイヤルシックネスゲージで測定した。
(Thickness μm)
A 100 × 100 mm test piece was taken from the sample length direction and measured with a dial thickness gauge.

(平均繊維径 μm)
試料長さ方向より、100×100mmの試験片を採取し、得られた試験片を走査型電子顕微鏡で拡大撮影し、任意の100本の繊維の径を測定した後、これらの平均値を算出した。
(Average fiber diameter μm)
A 100 × 100 mm test piece is taken from the sample length direction, and the obtained test piece is enlarged and photographed with a scanning electron microscope, and after measuring the diameter of an arbitrary 100 fibers, an average value thereof is calculated. did.

(目付 g/m
試料長さ方向より、100×100mmの試験片を採取し、水分平衡状態の質量を測定し、1m当りに換算して求めた。
(Weight per unit g / m 2 )
A test piece of 100 × 100 mm was taken from the sample length direction, the mass in a moisture equilibrium state was measured, and calculated per 1 m 2 .

(見かけ密度 g/cm
見かけ密度は、目付を厚みで除することにより算出した。
(Apparent density g / cm 3 )
The apparent density was calculated by dividing the basis weight by the thickness.

(圧縮レジリエンス(RC) %、圧縮剛さ(LC)、圧縮率(EMC) %)
KES圧縮試験機(カトーテック株式会社製)を用いて測定し、不織布の圧縮レジリエンス(RC)、圧縮剛さ(LC)および圧縮率(EMC)を測定した。なお、測定は、スピード:0.02cm/sec、圧縮面積:2cm、SENS:2×10(20g×10V)、圧縮荷重:50gf/cmの条件で圧縮を行った。
(Compression resilience (RC)%, compression stiffness (LC), compression rate (EMC)%)
Measurement was performed using a KES compression tester (manufactured by Kato Tech Co., Ltd.), and the compression resilience (RC), compression stiffness (LC) and compression rate (EMC) of the nonwoven fabric were measured. The measurement was performed under the conditions of speed: 0.02 cm / sec, compression area: 2 cm 2 , SENS: 2 × 10 (20 g × 10 V), and compression load: 50 gf / cm 2 .

(実施例1)
液晶形成性全芳香族ポリエステル(ポリプラスチックス社製 VECTRA−Aタイプ;310℃での溶融粘度10Pa・s、本質粘度5.8)を、低露点エアー式乾燥機にて十分に乾燥し、二軸押出機により押し出し、幅1m、ホール数1000のノズルを有するメルトブローン不織布製造装置に供給した。メルトブローン装置にて、単孔吐出量0.3g/min、樹脂温度320℃、熱風温度320℃、ノズル1m幅当りのエアー量30Nにて、水冷パイプで冷却した凹凸のある冷却金属ロール上へ捕集距離5cmで吹付け、冷却固化した後に巻き取って、メルトブローン不織布を得た。得られた不織布は、上下面の双方に山部を形成し、表1に示す特性を有していた。
Example 1
Liquid crystal-forming wholly aromatic polyester (VECTRA-A type manufactured by Polyplastics Co., Ltd .; melt viscosity at 310 ° C. 10 Pa · s, intrinsic viscosity 5.8) was sufficiently dried with a low dew point air dryer. The mixture was extruded by a shaft extruder and supplied to a melt blown nonwoven fabric manufacturing apparatus having a nozzle having a width of 1 m and a hole number of 1000. In a melt blown device, a single-hole discharge rate of 0.3 g / min, a resin temperature of 320 ° C., a hot air temperature of 320 ° C., and an air amount of 30 N per 1 m width of the nozzle is captured on an uneven cooling metal roll cooled by a water-cooled pipe. The melt blown nonwoven fabric was obtained by spraying at a gathering distance of 5 cm, winding after cooling and solidification. The obtained nonwoven fabric had peaks on both the upper and lower surfaces, and had the characteristics shown in Table 1.

(比較例1)
実施例1で行った捕集方法である水冷パイプで冷却した凹凸のある冷却金属ロール上へ吹付けて捕集するのに代えて、捕集距離15cmでネット上で吸引して捕集する方法を採用した以外は、実施例1と同様にして不織布を得た。得られた不織布は、上下面の双方が平坦であり、表1に示す特性を有していた。
(Comparative Example 1)
Instead of spraying and collecting on an uneven cooling metal roll cooled by a water-cooled pipe, which is the collecting method performed in Example 1, a method of collecting by suction on a net at a collection distance of 15 cm A nonwoven fabric was obtained in the same manner as in Example 1 except that was adopted. The obtained nonwoven fabric was flat on both the upper and lower surfaces and had the characteristics shown in Table 1.

Figure 2009074196
Figure 2009074196

表1に示すように、実施例1で得られた不織布は、目付けが70g/mであっても、凹凸があるため嵩高く、厚みを大きくできるとともに、見かけ密度を低減できた。また、圧縮レジリエンスおよび圧縮剛さが大きく、圧縮率が小さいため、クッション性が高く耐圧縮性に優れていた。さらに実施例1で得られた不織布は、耐薬品性、耐熱性にも優れていた。
一方、比較例1で得られた不織布は、目付けは同じであるものの、凹凸がなく平坦で、実施例1で得られた不織布より厚みが薄く、見かけ密度も高かった。また、耐薬品性、耐熱性は実施例1と同程度であったが、圧縮レジリエンスおよび圧縮剛さが小さく、圧縮率が大きいため、実施例1の不織布よりも耐圧縮性に劣っていた。
As shown in Table 1, even if the nonwoven fabric obtained in Example 1 had a basis weight of 70 g / m 2 , the nonwoven fabric was bulky because of unevenness, and the thickness could be increased, and the apparent density could be reduced. Further, since the compression resilience and compression stiffness were large and the compression rate was small, the cushioning property was high and the compression resistance was excellent. Furthermore, the nonwoven fabric obtained in Example 1 was excellent in chemical resistance and heat resistance.
On the other hand, the nonwoven fabric obtained in Comparative Example 1 had the same basis weight, but was flat with no irregularities, thinner than the nonwoven fabric obtained in Example 1, and higher in apparent density. Moreover, although chemical resistance and heat resistance were comparable to Example 1, since compression resilience and compression rigidity were small and a compression rate was large, it was inferior to compression resistance of the nonwoven fabric of Example 1.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings. However, various additions, modifications, or deletions can be made without departing from the spirit of the present invention, and these are also included in the present invention. It is included in the range.

本発明の不織布の一実施形態の断面を示す概略図である。It is the schematic which shows the cross section of one Embodiment of the nonwoven fabric of this invention. 本発明の不織布の一実施形態の概略斜視図である。It is a schematic perspective view of one Embodiment of the nonwoven fabric of this invention. 本発明の不織布の他の実施形態の概略斜視図である。It is a schematic perspective view of other embodiment of the nonwoven fabric of this invention. 本発明の不織布の異なる実施形態の断面を示す概略図である。It is the schematic which shows the cross section of different embodiment of the nonwoven fabric of this invention. 本発明の不織布をメルトブローン法での製造工程を示す概略図である。It is the schematic which shows the manufacturing process by the melt blown method of the nonwoven fabric of this invention. 図5に記載された冷却金属ロールの部分拡大概略図である。It is the elements on larger scale of the cooling metal roll described in FIG.

符号の説明Explanation of symbols

1,1’…山部
2,2’…谷部
3,3’…山部の頂点
Yi…山部の高さ
Si…山部間の間隔
4…溶融された溶融液晶形成性全芳香族ポリエステル
5…ノズル
6…熱風噴射溝
7…高温高速流体
8…表面凹凸を有する冷却金属ロール
9…引取ロール
10…巻取ロール
11…凸部
12…凹部
DESCRIPTION OF SYMBOLS 1,1 '... Mountain part 2, 2' ... Valley part 3, 3 '... Peak vertex Yi ... Height of mountain part Si ... Spacing between mountain parts 4 ... Molten molten liquid crystal forming wholly aromatic polyester DESCRIPTION OF SYMBOLS 5 ... Nozzle 6 ... Hot-air injection groove 7 ... High-temperature high-speed fluid 8 ... Cooling metal roll 9 with surface unevenness ... Take-up roll 10 ... Winding roll 11 ... Convex part 12 ... Concave part

Claims (7)

310℃以上での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmであるフィラメントからなり、主面が複数の山部を有するとともに、見かけ密度が0.01〜0.3g/cmである不織布。 It consists of a filament having a melted liquid crystal forming wholly aromatic polyester having a melt viscosity at 310 ° C. or higher of 20 Pa · s or less and an average fiber diameter of 1 to 15 μm, and the main surface has a plurality of peaks. The nonwoven fabric whose apparent density is 0.01-0.3 g / cm < 3 >. 請求項1において、前記複数の山部は、少なくとも第1の方向に沿って並んでおり、この第1の方向に沿った幅10cmの断面において存在する不織布の複数の山部について、山部の高さ(Yi)を平均した平均高さ(Ym)が0.1〜5mmであり、隣接する山部の頂点の間隔(Si)を平均した平均間隔(Sm)が0.05〜5mmである不織布。   The plurality of peak portions according to claim 1, wherein the plurality of peak portions are arranged along at least the first direction, and the plurality of peak portions of the nonwoven fabric existing in a cross section having a width of 10 cm along the first direction The average height (Ym) obtained by averaging the heights (Yi) is 0.1 to 5 mm, and the average interval (Sm) obtained by averaging the intervals (Si) between the apexes of the adjacent peaks is 0.05 to 5 mm. Non-woven fabric. 請求項2において、山部の平均高さ(Ym)と、隣接する山部の頂点の平均間隔(Sm)との比が、(Sm)/(Ym)=0.02〜100である不織布。   3. The nonwoven fabric according to claim 2, wherein the ratio of the average height (Ym) of the ridges to the average interval (Sm) between the apexes of adjacent ridges is (Sm) / (Ym) = 0.02-100. 請求項1〜3のいずれか一項において、前記不織布の圧縮レジリエンス(RC)が40〜70%、圧縮剛さ(LC)が0.4〜0.7、及び/または圧縮率(EMC)が5〜30%である不織布。   In any one of Claims 1-3, the compression resilience (RC) of the said nonwoven fabric is 40 to 70%, compression rigidity (LC) is 0.4 to 0.7, and / or compression rate (EMC). Nonwoven fabric that is 5-30%. 請求項1〜4のいずれか一項において、不織布がメルトブローン法により製造された不織布。   The non-woven fabric according to any one of claims 1 to 4, wherein the non-woven fabric is produced by a melt blown method. 310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを、紡糸温度310〜360℃、熱風温度310〜380℃、ノズル1m幅当りのエアー量10〜50Nmの高温高速流体として、捕集距離2〜20cmで表面凹凸を有する冷却金属ロール上へ吹付け捕集する請求項1〜5のいずれか一項に記載の不織布の製造方法。 A molten liquid crystal-forming wholly aromatic polyester having a melt viscosity at 310 ° C. of 20 Pa · s or less is heated at a spinning temperature of 310 to 360 ° C., a hot air temperature of 310 to 380 ° C., and an air amount of 10 to 50 Nm 3 per 1 m width of the nozzle. The manufacturing method of the nonwoven fabric as described in any one of Claims 1-5 which sprays and collects on the cooling metal roll which has a surface unevenness | corrugation with a collection distance of 2-20 cm as a high-speed fluid. 請求項6において、吹付け捕集された不織布をさらに固相重合させる製造方法。   The production method according to claim 6, wherein the sprayed and collected nonwoven fabric is further subjected to solid phase polymerization.
JP2007243572A 2007-09-20 2007-09-20 Non-woven Active JP4916985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243572A JP4916985B2 (en) 2007-09-20 2007-09-20 Non-woven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243572A JP4916985B2 (en) 2007-09-20 2007-09-20 Non-woven

Publications (3)

Publication Number Publication Date
JP2009074196A true JP2009074196A (en) 2009-04-09
JP2009074196A5 JP2009074196A5 (en) 2010-05-06
JP4916985B2 JP4916985B2 (en) 2012-04-18

Family

ID=40609443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243572A Active JP4916985B2 (en) 2007-09-20 2007-09-20 Non-woven

Country Status (1)

Country Link
JP (1) JP4916985B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248057A (en) * 1999-06-07 2001-09-14 Kuraray Co Ltd Porous sheet
JP2002061064A (en) * 2000-08-18 2002-02-28 Kuraray Co Ltd Thermotropic liquid crystal polyester nonwoven fabric and method for producing the same
JP2002061063A (en) * 2000-08-18 2002-02-28 Kuraray Co Ltd Heat-resistant nonwoven fabric
JP2005120535A (en) * 2003-10-20 2005-05-12 Tapyrus Co Ltd Liquid crystal polyester melt blow nonwoven fabric and method for producing the same
JP2006144141A (en) * 2004-11-17 2006-06-08 Kuraray Co Ltd Substrate material for heat-resistant adhesive tape
JP2006249119A (en) * 2005-03-08 2006-09-21 Kuraray Co Ltd Prepreg and carrier for polishing using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248057A (en) * 1999-06-07 2001-09-14 Kuraray Co Ltd Porous sheet
JP2002061064A (en) * 2000-08-18 2002-02-28 Kuraray Co Ltd Thermotropic liquid crystal polyester nonwoven fabric and method for producing the same
JP2002061063A (en) * 2000-08-18 2002-02-28 Kuraray Co Ltd Heat-resistant nonwoven fabric
JP2005120535A (en) * 2003-10-20 2005-05-12 Tapyrus Co Ltd Liquid crystal polyester melt blow nonwoven fabric and method for producing the same
JP2006144141A (en) * 2004-11-17 2006-06-08 Kuraray Co Ltd Substrate material for heat-resistant adhesive tape
JP2006249119A (en) * 2005-03-08 2006-09-21 Kuraray Co Ltd Prepreg and carrier for polishing using the same

Also Published As

Publication number Publication date
JP4916985B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2017110365A1 (en) Spunbond nonwoven fabric for filter and method for manufacturing said fabric
JP5867400B2 (en) Polyphenylene sulfide fiber and nonwoven fabric
WO2018221122A1 (en) Spunbonded nonwoven fabric for filter and method for producing same
JP6617148B2 (en) Nonwoven fabric and method for producing the same
JP4616658B2 (en) Non-woven
JP6669315B1 (en) Spunbonded nonwoven fabric for filter and method for producing the same
JP4916985B2 (en) Non-woven
JP4960908B2 (en) Polyethylene naphthalate fiber and short fiber nonwoven fabric comprising the same
JP2009256815A (en) Anti-static filament nonwoven fabric
JP5812786B2 (en) High strength nonwoven fabric
JP4916984B2 (en) Non-woven
JP4381576B2 (en) Heat resistant nonwoven fabric
JP7287385B2 (en) Long fiber nonwoven fabric and filter reinforcing material using the same
JP2001054709A (en) Filter material
JP2538602B2 (en) Fiber for spunbond nonwovens
JP2011246853A (en) Short-cut conjugate fiber comprising polylactic acid
JP2017155385A (en) Nonwoven fabric for air cleaner
JP5116984B2 (en) Nonwoven fabric and method for producing the same
WO2020116569A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
JP2007204888A (en) Molten liquid crystal-forming polyester conjugate fiber
JP2545889B2 (en) Melt blown nonwoven
JP4023042B2 (en) Filter base material and filter device
JP6102141B2 (en) Polyphenylene sulfide fiber nonwoven fabric
JP2009174098A (en) Polyester hollow filament spinning type nonwoven fabric and production method thereof
JP5689626B2 (en) Wet short fiber nonwoven fabric

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150