JP2009073683A - Apparatus for producing polycrystalline silicon - Google Patents

Apparatus for producing polycrystalline silicon Download PDF

Info

Publication number
JP2009073683A
JP2009073683A JP2007242922A JP2007242922A JP2009073683A JP 2009073683 A JP2009073683 A JP 2009073683A JP 2007242922 A JP2007242922 A JP 2007242922A JP 2007242922 A JP2007242922 A JP 2007242922A JP 2009073683 A JP2009073683 A JP 2009073683A
Authority
JP
Japan
Prior art keywords
silicon core
silicon
heating device
electrodes
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007242922A
Other languages
Japanese (ja)
Other versions
JP5205892B2 (en
Inventor
Toshihide Endo
俊秀 遠藤
Toshiyuki Ishii
敏由記 石井
Masaaki Sakaguchi
昌晃 坂口
Naoki Hatakeyama
直紀 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007242922A priority Critical patent/JP5205892B2/en
Publication of JP2009073683A publication Critical patent/JP2009073683A/en
Application granted granted Critical
Publication of JP5205892B2 publication Critical patent/JP5205892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for producing polycrystalline silicon which can rapidly raise the temperature of a silicon core rod in a reaction furnace and bring the silicon core rod into an energized and heat generation state when operation is started. <P>SOLUTION: The apparatus for producing polycrystalline silicon is provided in which upper end parts of a plurality of silicon core rods 4, arranged at the inner bottom part of a reaction furnace 1 in a standing state, are connected in a pair by a connecting member 12 and at the same time, each of the paired silicon core rods 4 is connected in series between each of a plurality of electrode 5 pairs provided at the inner bottom part of the reaction furnace 1, and then an electric current is caused to flow in the silicon core rods 4 from these electrodes 5 to allow the silicon core rods 4 to generate heat and to deposit polycrystalline silicon on the surface of each core rod 4, wherein a heating device 21 for emitting radiation heat is provided inside the reaction furnace 1 and the silicon core rods 4 are set so that the electric resistance through silicon core rods 4 between electrodes 5 arranged at the positions close to the heating device 21 is lower than the electric resistance through silicon core rods 4 between electrodes 5 arranged at the positions farther from the heating device 21 than the above positions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は加熱したシリコン芯棒の表面に多結晶シリコンを析出させて多結晶シリコンのロッドを製造する多結晶シリコンの製造装置に関する。   The present invention relates to a polycrystalline silicon manufacturing apparatus for manufacturing polycrystalline silicon rods by depositing polycrystalline silicon on the surface of a heated silicon core rod.

従来、この種の多結晶シリコン製造装置としては、シーメンス法による製造装置が知られており、例えば特許文献1〜3に示されるものがある。これら特許文献に示される多結晶シリコンの製造装置では、密閉された反応炉内にシリコン芯棒からなるシードを多数配設して加熱しておき、この反応炉にクロロシランガスと水素ガスとの混合ガスからなる原料ガスを供給して、加熱したシリコン芯棒に接触させ、その表面に原料ガスの加熱分解によって生じた多結晶シリコンを析出させる構成である。   Conventionally, as this type of polycrystalline silicon manufacturing apparatus, a manufacturing apparatus based on the Siemens method has been known. In the polycrystalline silicon production apparatus shown in these patent documents, a large number of seeds made of silicon core rods are placed in a sealed reaction furnace and heated, and the reaction furnace is mixed with chlorosilane gas and hydrogen gas. This is a configuration in which a source gas composed of a gas is supplied, brought into contact with a heated silicon core rod, and polycrystalline silicon generated by thermal decomposition of the source gas is deposited on the surface thereof.

このような多結晶シリコン製造装置において、シードとなるシリコン芯棒は、反応炉の内底部に配設した電極に立設状態に固定され、その上端部が、短尺の連結部材によって一対ずつ連結されることにより、全体として鳥居形状となるように固定されている。このように組み立てられたシード組み立て体は、運転時には電極から通電することでシリコン芯棒の抵抗熱によって発熱を起こし、シリコン芯棒全体を原料ガスの分解温度である例えば1050度までに加熱することにより、表面に多結晶シリコンを析出させるようになっている。   In such a polycrystalline silicon manufacturing apparatus, the silicon core rod as a seed is fixed upright on an electrode disposed on the inner bottom portion of the reactor, and the upper end portions thereof are connected one by one by a short connecting member. Therefore, it is fixed so as to have a torii shape as a whole. The seed assembly assembled in this manner generates heat due to the resistance heat of the silicon core rod when energized from the electrode during operation, and heats the entire silicon core rod to, for example, 1050 degrees which is the decomposition temperature of the raw material gas. Thus, polycrystalline silicon is deposited on the surface.

この場合、シリコンは常温下では電気抵抗が格段に大きく、概ね1000Ω・cm程度の比抵抗を示すので、この常温状態では通電できない。これを400℃前後に加熱すると比抵抗は大幅に低下して1〜10Ω・cm程度になり、通電できるようになる。そこで、多結晶シリコンの製造装置では、反応炉の中央または内周面に加熱用のカーボンロッド(加熱装置)を設け、操業開始時には、まずこのカーボンロッドに通電して発熱させ、この輻射熱によってカーボンロッド周辺のシリコン芯棒を加熱して通電できる状態にまで昇温させることが行われている。
特開2006−206387号公報 特開2001−278611号公報 特開2002−338226号公報
In this case, silicon has a remarkably large electrical resistance at room temperature, and shows a specific resistance of about 1000 Ω · cm. When this is heated to around 400 ° C., the specific resistance is drastically reduced to about 1 to 10 Ω · cm and can be energized. Therefore, in the polycrystalline silicon manufacturing apparatus, a heating carbon rod (heating device) is provided at the center or inner peripheral surface of the reaction furnace. Heating the silicon core rod around the rod to a state where it can be energized is performed.
JP 2006-206387 A JP 2001-278611 A JP 2002-338226 A

ところで、上述した多結晶シリコン製造装置では、操業開始時において、カーボンロッド周辺のシリコン芯棒をカーボンロッドからの輻射熱によって加熱して昇温させるのであるが、冷えているシリコン芯棒を所定の温度になるまで昇温させるには多くの時間を要するという問題があり、生産性向上のために、可能な限り加熱時間を短縮して、速やかに原料ガスの分解温度である1000℃以上にまでに加熱する必要がある。また、通電発熱状態となるまでは一般的には原料ガスの供給を止めて通電するため、通電発熱状態となるまでの間に排ガスが反応炉内に逆流してシリコン芯棒の表面に付着して汚染するだけでなく、シリコン芯棒と成長層との間の付着が悪くなって、例えばリチャージロッド生産時に割れの原因になったりする。   By the way, in the polycrystalline silicon manufacturing apparatus described above, at the start of operation, the silicon core rod around the carbon rod is heated by radiant heat from the carbon rod to raise the temperature. There is a problem that it takes a lot of time to raise the temperature until it reaches a temperature, and in order to improve productivity, the heating time is shortened as much as possible, and quickly reaches the decomposition temperature of the raw material gas of 1000 ° C. or higher. It needs to be heated. In addition, since the supply of the raw material gas is generally stopped until the energized heat generation state is reached, the exhaust gas flows back into the reactor and adheres to the surface of the silicon core rod until the energized heat generation state occurs. In addition to contamination, the adhesion between the silicon core rod and the growth layer is deteriorated, for example, causing cracks during production of the recharge rod.

本発明は、前記事情に鑑みてなされたもので、操業開始時に反応炉内のシリコン芯棒を速やかに温度上昇させて通電発熱状態とし、生産性を向上させるとともに、シリコンの品質を向上させることができる多結晶シリコン製造装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and at the start of operation, the temperature of the silicon core rod in the reaction furnace is quickly raised to an energized heat generation state, improving productivity and improving the quality of silicon. An object of the present invention is to provide a polycrystalline silicon manufacturing apparatus capable of performing

そして、上記目的を達成するために本発明の多結晶シリコン製造装置は、反応炉の内底部に立設された複数本のシリコン芯棒の上端部が連結部材によって一対ずつ連結されるとともに、これら対をなすシリコン芯棒が反応炉の内底部の複数組の電極間に直列状態に複数本ずつ接続され、これら電極からシリコン芯棒に通電することにより該シリコン芯棒を発熱させて、その表面に多結晶シリコンを析出させる多結晶シリコン製造装置において、前記反応炉の内部に輻射熱を放出する加熱装置が設けられ、前記シリコン芯棒は、前記加熱装置に近い位置の電極間のシリコン芯棒を経由する電気抵抗値がこれより遠い位置の電極間のシリコン芯棒を経由する電気抵抗値よりも小さく設定されていることを特徴とする。   In order to achieve the above object, the polycrystalline silicon production apparatus of the present invention is configured such that the upper ends of a plurality of silicon core rods erected on the inner bottom of the reaction furnace are coupled one by one by a coupling member, A plurality of pairs of silicon core rods are connected in series between a plurality of pairs of electrodes at the inner bottom of the reactor, and the silicon core rods are heated by energizing the silicon core rods from these electrodes, and the surface In the polycrystalline silicon manufacturing apparatus for depositing polycrystalline silicon, a heating device that emits radiant heat is provided inside the reaction furnace, and the silicon core rod is a silicon core rod between electrodes at a position close to the heating device. The electrical resistance value that passes is set smaller than the electrical resistance value that passes through the silicon core rod between the electrodes farther away.

すなわち、加熱装置に近い位置の電極間のシリコン芯棒を経由する電気抵抗値を小さく設定しておくことにより、この電極間のシリコン芯棒を他のシリコン芯棒に比べて昇温し易い状態とし、これを加熱装置によって速やかに温度上昇させて通電発熱状態とし、このシリコン芯棒の発熱でもって周囲のシリコン芯棒を連鎖的に順次昇温させていくものである。
この電気抵抗値を小さく設定しておく場合、シリコン芯棒の高さを小さくする方法、太さを大きくする方法、電極間に配置されるシリコン芯棒の本数を少なくする方法があり、そのいずれでもよいし、これらを組み合わせてもよい。
That is, by setting a small electrical resistance value via the silicon core rod between the electrodes near the heating device, it is easier to raise the temperature of the silicon core rod between the electrodes than other silicon core rods Then, the temperature is rapidly raised by a heating device to obtain an energized heat generation state, and the surrounding silicon core rods are sequentially heated in sequence by the heat generated by the silicon core rods.
When this electrical resistance value is set small, there are a method of reducing the height of the silicon core rod, a method of increasing the thickness, and a method of reducing the number of silicon core rods arranged between the electrodes. However, these may be combined.

また、本発明の多結晶シリコン装置において、前記加熱装置は、反応炉の中心位置、又は内周面付近に設けるとよい。
反応炉の中心位置に加熱装置が設けられる場合は、反応炉の中心付近のシリコン芯棒から順次温度上昇することになり、また、反応炉の内周面付近に加熱装置が設けられる場合は、複数立設されているシリコン芯棒の外周位置のものから温度上昇することになる。
反応炉の内周面付近に加熱装置を設ける場合、反応炉の内周面の周方向の特定箇所の一箇所に配置してもよいし、反応炉の内周面に例えば等間隔で複数配置してもよい。複数の加熱装置を設ける場合は、各加熱装置の近くの電極間のシリコン芯棒の電池抵抗値を他のものより小さくするとよいが、必ずしも、全ての加熱装置の近くのシリコン芯棒の全てを小さいものとしなければならないわけではない。
In the polycrystalline silicon device of the present invention, the heating device may be provided at the center position of the reaction furnace or near the inner peripheral surface.
When a heating device is provided at the center position of the reaction furnace, the temperature will increase sequentially from the silicon core rod near the center of the reaction furnace, and when a heating device is provided near the inner peripheral surface of the reaction furnace, The temperature rises from the outer peripheral position of the plurality of standing silicon core bars.
When providing a heating device in the vicinity of the inner peripheral surface of the reaction furnace, it may be arranged at one specific location in the circumferential direction of the inner peripheral surface of the reaction furnace, or a plurality of such devices are arranged at regular intervals on the inner peripheral surface of the reaction furnace. May be. When providing a plurality of heating devices, the battery resistance value of the silicon core rod between the electrodes near each heating device may be smaller than the others, but not necessarily all the silicon core rods near all the heating devices. It doesn't have to be small.

本発明の多結晶シリコン製造装置によれば、加熱装置に近い位置の電極間のシリコン芯棒を経由する電気抵抗値を他のものより小さく設定したので、このシリコン芯棒を加熱装置によって温度上昇させ易くして、速やかに通電発熱状態とすることができる。そして、この通電発熱によってその周辺のシリコン芯棒が順次加熱され、その連鎖により反応炉内の全てのシリコン芯棒が順に通電発熱状態となる。したがって、操業開始時において短時間に反応炉内のシリコン芯棒を温度上昇させて通電発熱状態に移行させることができ、早い段階で多結晶シリコンの析出作業を行わせることができ、生産性を向上させることができる。また、通電発熱状態になるまでの時間が短くなるため、シリコン芯棒の汚染の問題も解消され、シリコンの品質向上を図ることができる。    According to the polycrystalline silicon manufacturing apparatus of the present invention, since the electrical resistance value passing through the silicon core rod between the electrodes close to the heating device is set smaller than the others, the temperature of the silicon core rod is increased by the heating device. It can be made easy, and it can be set to an energized heat generation state quickly. Then, the silicon core rods in the vicinity thereof are sequentially heated by the energization heat generation, and all the silicon core rods in the reaction furnace are sequentially brought into the energization heat generation state by the chain. Therefore, at the start of operation, the silicon core rod in the reactor can be raised in temperature in a short time to shift to an energized heat generation state, and the polycrystalline silicon can be precipitated at an early stage, thereby improving productivity. Can be improved. Further, since the time until the energized heat generation state is shortened, the problem of contamination of the silicon core rod is solved, and the quality of silicon can be improved.

以下、本発明の多結晶シリコン製造装置の実施形態について、図面に基づいて説明する。
図1は本発明が適用される多結晶シリコン製造装置の反応炉1の全体図であって、炉底を構成する基台2と、この基台2上に脱着自在に取り付けられた釣鐘形状のベルジャ3とを具備している。
Hereinafter, embodiments of a polycrystalline silicon manufacturing apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view of a reaction furnace 1 of a polycrystalline silicon manufacturing apparatus to which the present invention is applied. A base 2 constituting a furnace bottom and a bell-shaped removably attached to the base 2 are shown. A bell jar 3 is provided.

基台2上には、図1に示すように、生成される多結晶シリコンの種棒となるシリコン芯棒4が取り付けられる複数対の電極5と、クロロシランガスと水素ガスとを混合してなる原料ガスを炉内に噴出するための噴出ノズル6と、反応後のガスを炉外に排出するための排気口7とがそれぞれ複数設けられている。これら電極5は基台2上に一定の間隔をおいてほぼ同心円状に配置されている。また、原料ガスの噴出ノズル6は、各シリコン芯棒4に対して均一に原料ガスを供給することができるように、適宜の間隔をあけながら複数設置されている。これら噴出ノズル6は、反応炉1の外部の原料ガス供給源8に接続されている。また、排気口7も、基台2上に適宜の間隔をあけながら複数設置され、排ガス処理系9に接続されている。
各電極5は、カーボンからなるほぼ円柱状に形成され、基台2に垂直に立設されており、その軸心に沿って孔が形成され、その孔内に、シリコン芯棒4の下端部が挿入状態に取り付けられている。
On the base 2, as shown in FIG. 1, a plurality of pairs of electrodes 5 to which a silicon core rod 4 as a seed rod for the generated polycrystalline silicon is attached, and chlorosilane gas and hydrogen gas are mixed. A plurality of jet nozzles 6 for jetting the raw material gas into the furnace and a plurality of exhaust ports 7 for discharging the reacted gas outside the furnace are provided. These electrodes 5 are arranged substantially concentrically on the base 2 at a constant interval. Further, a plurality of source gas ejection nozzles 6 are provided with appropriate intervals so that the source gas can be uniformly supplied to each silicon core rod 4. These ejection nozzles 6 are connected to a source gas supply source 8 outside the reactor 1. A plurality of exhaust ports 7 are also installed on the base 2 with appropriate intervals and connected to the exhaust gas treatment system 9.
Each electrode 5 is formed in a substantially cylindrical shape made of carbon, and is erected vertically to the base 2. A hole is formed along the axis of the electrode 5, and a lower end portion of the silicon core rod 4 is formed in the hole. Is installed in the inserted state.

これらシリコン芯棒4は、下端部が電極5内に差し込まれた状態に固定されることにより、図1及び図2に示すように上方に延びて立設されており、そのうちの二本ずつを対として連結するように、上端部に1本の短尺の連結部材12が取り付けられている。この連結部材12もシリコン芯棒4と同じシリコンによって形成される。これら二本のシリコン芯棒4とこれらを連結する連結部材12とによって、全体として逆U字の鳥居形状となるようにシード組み立て体13が組み立てられている。
これらシード組み立て体13は、図2に示すように、電極5が反応炉1の中心から同心円状に配置されていることにより、全体としてほぼ同心円状に配置されているが、必ずしも全てが同心状でなくてもよく、一部のシリコン芯棒が半径方向等に並んだものを含む構成としてもよい。
These silicon core rods 4 are vertically extended as shown in FIGS. 1 and 2 by being fixed in a state where the lower end portions are inserted into the electrodes 5. One short connecting member 12 is attached to the upper end so as to be connected as a pair. This connecting member 12 is also formed of the same silicon as the silicon core rod 4. The seed assembly 13 is assembled by the two silicon core rods 4 and the connecting member 12 that connects these two so as to form an inverted U-shaped torii shape as a whole.
As shown in FIG. 2, these seed assemblies 13 are arranged almost concentrically as a whole because the electrodes 5 are arranged concentrically from the center of the reaction furnace 1, but are not necessarily all concentric. The configuration may be such that a part of the silicon core rods are arranged in the radial direction or the like.

また、反応炉1の中心部には加熱装置21が設けられている。この実施形態の加熱装置21は、カーボンヒータ22によって構成されており、基台2上の電極23に逆U字状のカーボンヒータ22が立設された構成である。
そして、この加熱装置21に最も近いシード組み立て体13のシリコン芯棒4、言い換えれば、各シリコン芯棒4のうち、図2及び図3にAで示す最も内周位置のシード組み立て体13におけるシリコン芯棒4は、それより外側に配置されている他のシード組み立て体13におけるシリコン芯棒4よりも高さが小さく設定されている。例えば、最内周位置のシリコン芯棒4の高さが200cmで、他のシリコン芯棒4の高さが220cmとされる。
なお、前記加熱装置21は、最内周位置のシリコン芯棒4の全長に輻射熱を照射できるように、シリコン芯棒4の全長に見合う高さに設定されている。
A heating device 21 is provided at the center of the reaction furnace 1. The heating device 21 of this embodiment is configured by a carbon heater 22, and is configured such that an inverted U-shaped carbon heater 22 is erected on an electrode 23 on the base 2.
Then, the silicon core rod 4 of the seed assembly 13 closest to the heating device 21, in other words, silicon in the seed assembly 13 at the innermost peripheral position shown by A in FIGS. 2 and 3 among the silicon core rods 4. The core rod 4 is set to have a height smaller than that of the silicon core rod 4 in the other seed assembly 13 disposed outside the core rod 4. For example, the silicon core rod 4 at the innermost peripheral position has a height of 200 cm, and the other silicon core rods 4 have a height of 220 cm.
In addition, the said heating apparatus 21 is set to the height corresponding to the full length of the silicon | silicone core rod 4, so that radiant heat can be irradiated to the full length of the silicon | silicone core rod 4 of an innermost periphery position.

このように構成した多結晶シリコン製造装置において、反応炉1の中心に配置されている加熱装置21及び各シリコン芯棒4に接続されている電極23,5にそれぞれ通電して、これら加熱装置21及びシリコン芯棒4を発熱させるのであるが、このとき、加熱装置21はカーボンヒータ22であるためシリコン芯棒4よりも先に発熱して温度上昇し、このカーボンヒータ22の輻射熱が近傍位置のシリコン芯棒4に伝えられ、これを外面から加熱する。
このとき、図2及び図3にAで示す加熱装置21に近い位置のシード組み立て体13におけるシリコン芯棒4は、他のシリコン芯棒4に比べて高さが小さいので、輻射熱によって速やかに温度上昇させられる。そして、このシリコン芯棒4が通電可能となる状態までに温度上昇すると、自身の電極5からの通電によって抵抗発熱状態となり、その熱が隣接する周囲のシリコン芯棒4に伝わって、これらシリコン芯棒4を加熱し、その伝熱現象が反応炉1の半径方向等に次々に伝播して、最終的に反応炉1内の全てのシリコン芯棒4が通電して発熱状態となる。これらシリコン芯棒4が原料ガスの分解温度にまで上昇することにより、噴出ノズル6から噴出した原料ガスがシリコン芯棒4の表面上に多結晶シリコンを析出するのである。
In the polycrystalline silicon manufacturing apparatus configured as described above, the heating device 21 disposed at the center of the reaction furnace 1 and the electrodes 23 and 5 connected to the silicon core rods 4 are energized, respectively. At this time, since the heating device 21 is the carbon heater 22, the heating device 21 generates heat before the silicon core rod 4 and the temperature rises. It is transmitted to the silicon core rod 4 and heated from the outer surface.
At this time, since the silicon core rod 4 in the seed assembly 13 at a position close to the heating device 21 shown by A in FIGS. 2 and 3 is smaller than the other silicon core rods 4, the temperature is quickly increased by radiant heat. Raised. When the temperature of the silicon core rod 4 rises to a state where it can be energized, a resistance heat is generated by energization from its own electrode 5, and the heat is transmitted to the adjacent silicon core rods 4 adjacent to the silicon core rod 4. The rod 4 is heated, and the heat transfer phenomenon is propagated one after another in the radial direction of the reaction furnace 1 and finally all the silicon core rods 4 in the reaction furnace 1 are energized to be in a heat generation state. When the silicon core rod 4 rises to the decomposition temperature of the source gas, the source gas ejected from the ejection nozzle 6 deposits polycrystalline silicon on the surface of the silicon core rod 4.

すなわち、この構成の多結晶シリコン製造装置においては、加熱装置21に最も近い位置のシード組み立て体13におけるシリコン芯棒4を加熱装置21からの輻射熱によってまず加熱して、通電可能な状態にまで温度上昇させた後、これを通電発熱させて、その熱により周囲のシリコン芯棒4を加熱し、順次半径方向等に伝播させて全体を通電発熱状態とするのであり、その場合に、最初に発熱状態とするシリコン芯棒4の高さを小さくして加熱により温度上昇し易い状態としておき、そのシリコン芯棒4を速やかに温度上昇させることにより、短時間で全体を通電発熱状態とすることができるものである。   That is, in the polycrystalline silicon manufacturing apparatus having this configuration, the silicon core rod 4 in the seed assembly 13 closest to the heating apparatus 21 is first heated by the radiant heat from the heating apparatus 21 to a state where it can be energized. After being raised, this is energized and heated, and the surrounding silicon core rod 4 is heated by the heat and propagated in the radial direction, etc., so that the whole is energized and heated. In that case, the heat is generated first. By reducing the height of the silicon core rod 4 to be in a state so that the temperature easily rises due to heating, the temperature of the silicon core rod 4 can be quickly raised to bring the entire energized heat generation state in a short time. It can be done.

なお、本実施形態では、最内周位置におけるシード組み立て体13のシリコン芯棒4の全て(図2のAで示す3組のシード組み立て体)の高さを他のシード組み立て体13のシリコン芯棒4の高さよりも低く設定したが、これに限定されず、図2に示す3組のシード組み立て体13のうちの一組のみの高さを他のシード組み立て体13よりも低くし、この一組のシード組み立て体13のみを先行して速やかに通電発熱状態とした後、周辺の他の組のシード組み立て体13を順次加熱するように構成しても良い。
また、本実施形態では、最内周位置のシード組み立て体13以外の他のシード組み立て体13のシリコン芯棒4の高さをすべて同一の高さとしたが、これに限定されず、図4に示すように、加熱装置21から離れるに従ってシード組み立て体13のシリコン芯棒4の高さを段階的に高くするようにしても良い。この図4に示す多結晶シリコン製造装置においては、図2に示す例と同様に加熱装置21を中心として同心状に配置されている各シード組み立て体13において、一つの円上に並ぶシード組み立て体13毎にシリコン芯棒4の高さを変え、これを加熱装置21から半径方向の外側に向けて図4のA,B,Cで示す順に徐々に高くした構成である。
In the present embodiment, the height of all the silicon core rods 4 (three sets of seed assemblies shown by A in FIG. 2) of the seed assembly 13 at the innermost peripheral position is set to the height of the silicon cores of the other seed assemblies 13. The height of the rod 4 is set lower than that of the rod 4, but the present invention is not limited to this. The height of only one set of the three sets of seed assemblies 13 shown in FIG. It may be configured such that only one set of seed assemblies 13 is immediately brought into an energized heat generation state, and then the other sets of seed assemblies 13 in the vicinity are sequentially heated.
Further, in the present embodiment, the heights of the silicon core rods 4 of the seed assembly 13 other than the innermost seed assembly 13 are all the same height, but the present invention is not limited to this. As shown, the height of the silicon core 4 of the seed assembly 13 may be increased stepwise as the distance from the heating device 21 increases. In the polycrystalline silicon manufacturing apparatus shown in FIG. 4, each seed assembly 13 arranged concentrically around the heating device 21 as in the example shown in FIG. The height of the silicon core rod 4 is changed every 13 and the height is gradually increased from the heating device 21 toward the outside in the radial direction in the order indicated by A, B, and C in FIG.

また、以上の各実施形態では、反応炉1の中央位置に加熱装置21を設け、この近傍に位置する最内周位置のシード組み立て体13の高さを他のシード組み立て体13より低くしたが、これに限定されず、図5に示すように、熱源である加熱装置31を反応炉1の内周面付近に配置するようにしてもよく、その場合には、この加熱装置31の近傍に位置するシード組み立て体13のシリコン芯棒4を最初に通電発熱状態に移行させるように、図5にDで示す最外周位置で加熱装置31の近傍に位置するシード組み立て体13のシリコン芯棒4を他のシリコン芯棒4よりも低くするように設定するとよい。この場合も、図5では加熱装置31に最も近いシード組み立て体13のシリコン芯棒4の高さのみを小さく設定したが、加熱装置31から離れるに従ってシリコン芯棒4の高さを段階的に高く設定するようにしてもよい。   Further, in each of the above embodiments, the heating device 21 is provided at the central position of the reaction furnace 1, and the height of the seed assembly 13 at the innermost peripheral position located in the vicinity thereof is set lower than the other seed assemblies 13. However, the present invention is not limited to this, and as shown in FIG. 5, the heating device 31 that is a heat source may be arranged near the inner peripheral surface of the reaction furnace 1, and in that case, near the heating device 31. The silicon core rod 4 of the seed assembly 13 located in the vicinity of the heating device 31 at the outermost peripheral position indicated by D in FIG. 5 so that the silicon core rod 4 of the seed assembly 13 positioned first shifts to the energized heat generation state. May be set lower than the other silicon core rods 4. In this case as well, only the height of the silicon core rod 4 of the seed assembly 13 closest to the heating device 31 is set small in FIG. 5, but the height of the silicon core rod 4 is increased stepwise as the distance from the heating device 31 increases. You may make it set.

また、この反応炉1の内周面付近に加熱装置31を設ける場合は、周方向の特定の一箇所に加熱装置を設ける構成でもよいし、周方向の複数個所に加熱装置を設け、各加熱装置の近傍のシード組み立て体のシリコン芯棒の高さを低く設定するようにしてもよい。
さらに、加熱装置としては、カーボンヒータ以外にも、赤外線照射型のフィラメントを有する加熱装置も適用できる。
また、いずれの実施形態においても、加熱装置の近傍位置のシリコン芯棒の高さを他のシリコン芯棒に比べて小さく設定したが、高さは他のシリコン芯棒と変えずに、太さを大きくする構成としてもよく、高さを小さくして太さを大きくした設定としてもよい。さらに、前記実施形態では、2本のシリコン芯棒を対にして電極間に設置したが、これらを複数対(例えば4本)で一組として電極間に直列接続状態に設置してもよく、その場合、加熱装置の近傍位置の電極間では一対(2本)のシリコン芯棒とし、他の電極間では二対(4本)のシリコン芯棒とすることにより、加熱装置近傍のシリコン芯棒を発熱し易い状態としてもよい。すなわち、加熱装置の近傍位置の電極間のシリコン芯棒を経由する電気抵抗値を他の電極間のシリコン芯棒を経由する電気抵抗値より小さく設定すればよい。例えば、加熱装置の近傍位置の電気抵抗値を他のものの電気抵抗値の0.7〜0.95倍程度にするとよい。
Further, when the heating device 31 is provided in the vicinity of the inner peripheral surface of the reaction furnace 1, a configuration in which a heating device is provided at one specific location in the circumferential direction may be employed, or a heating device may be provided at a plurality of locations in the circumferential direction, The height of the silicon core rod of the seed assembly in the vicinity of the apparatus may be set low.
Furthermore, as a heating device, a heating device having an infrared irradiation type filament can be applied besides the carbon heater.
In any of the embodiments, the height of the silicon core rod in the vicinity of the heating device is set to be smaller than that of other silicon core rods, but the height is not changed from that of other silicon core rods. It is good also as a structure which enlarges, and it is good also as the setting which made height small and enlarged thickness. Furthermore, in the said embodiment, although two silicon core rods were installed between the electrodes as a pair, these may be installed in a series connection state between the electrodes as a set of a plurality of pairs (for example, four), In this case, a pair of (2) silicon core rods are provided between the electrodes in the vicinity of the heating device, and two pairs (4) silicon core rods are provided between the other electrodes. It is good also as a state which is easy to generate heat. That is, the electrical resistance value passing through the silicon core rod between the electrodes in the vicinity of the heating device may be set smaller than the electrical resistance value passing through the silicon core rod between the other electrodes. For example, the electrical resistance value in the vicinity of the heating device may be about 0.7 to 0.95 times the electrical resistance value of other devices.

反応炉のベルジャを一部切欠いた斜視図である。It is the perspective view which notched the bell jar of the reaction furnace partially. 図1に示す反応炉の横断面図である。It is a cross-sectional view of the reactor shown in FIG. 図1の反応炉におけるシリコン芯棒の高さを示すための縦断面図である。It is a longitudinal cross-sectional view for showing the height of the silicon | silicone core rod in the reaction furnace of FIG. シリコン芯棒を半径方向に段階的に高くした例を示す図3同様の縦断面図である。FIG. 4 is a vertical cross-sectional view similar to FIG. 加熱装置を反応炉の外周部付近に設置した場合のシリコン芯棒の高さを示す図3同様の縦断面図である。FIG. 4 is a longitudinal sectional view similar to FIG. 3 showing the height of the silicon core rod when the heating device is installed near the outer periphery of the reaction furnace.

符号の説明Explanation of symbols

1 反応炉
2 基台
3 ベルジャ
4 シリコン芯棒
5 電極
6 噴出ノズル
7 排気口
8 原料ガス供給源
9 排ガス処理系
12 連結部材
13 シード組み立て体
21 加熱装置
22 カーボンヒータ
23 電極
31 加熱装置
DESCRIPTION OF SYMBOLS 1 Reactor 2 Base 3 Belger 4 Silicon core rod 5 Electrode 6 Injection nozzle 7 Exhaust port 8 Raw material gas supply source 9 Exhaust gas treatment system 12 Connecting member 13 Seed assembly 21 Heating device 22 Carbon heater 23 Electrode 31 Heating device

Claims (6)

反応炉の内底部に立設された複数本のシリコン芯棒の上端部が連結部材によって一対ずつ連結されるとともに、これら対をなすシリコン芯棒が反応炉の内底部の複数組の電極間に直列状態に複数本ずつ接続され、これら電極からシリコン芯棒に通電することにより該シリコン芯棒を発熱させて、その表面に多結晶シリコンを析出させる多結晶シリコン製造装置において、
前記反応炉の内部に輻射熱を放出する加熱装置が設けられ、
前記シリコン芯棒は、前記加熱装置に近い位置の電極間のシリコン芯棒を経由する電気抵抗値がこれより遠い位置の電極間のシリコン芯棒を経由する電気抵抗値よりも小さく設定されていることを特徴とする多結晶シリコン製造装置。
The upper ends of a plurality of silicon core rods erected on the inner bottom portion of the reaction furnace are connected to each other by a connecting member, and the silicon core rods forming a pair are connected between a plurality of sets of electrodes on the inner bottom portion of the reaction furnace. In a polycrystalline silicon manufacturing apparatus in which a plurality of pieces are connected in series, and the silicon core rod is heated by energizing the silicon core rod from these electrodes to deposit polycrystalline silicon on the surface thereof.
A heating device for releasing radiant heat is provided inside the reaction furnace,
The silicon core rod is set such that the electrical resistance value passing through the silicon core rod between the electrodes near the heating device is smaller than the electrical resistance value passing through the silicon core rod between the electrodes farther than this. A polycrystalline silicon manufacturing apparatus characterized by that.
前記加熱装置に近い位置の電極間に配置されているシリコン芯棒の高さがこれより遠い位置の電極間に配置されているシリコン芯棒の高さよりも小さく設定されていることを特徴とする請求項1記載の多結晶シリコン製造装置。   The height of the silicon core disposed between the electrodes near the heating device is set to be smaller than the height of the silicon core disposed between the electrodes farther than this. The polycrystalline silicon manufacturing apparatus according to claim 1. 前記加熱装置に近い位置の電極間に配置されているシリコン芯棒の太さがこれより遠い位置の電極間に配置されているシリコン芯棒の太さよりも大きく設定されていることを特徴とする請求項1又は請求項2記載の多結晶シリコン製造装置。   The thickness of the silicon core rod disposed between the electrodes close to the heating device is set larger than the thickness of the silicon core rod disposed between the electrodes farther than this. The polycrystalline silicon manufacturing apparatus according to claim 1 or 2. 前記加熱装置に近い位置の電極間に配置されているシリコン芯棒の本数がこれより遠い位置の電極間に配置されているシリコン芯棒の本数よりも少なく設定されていることを特徴とする請求項1から請求項3のいずれか一項に記載の多結晶シリコン製造装置。   The number of silicon core rods disposed between the electrodes at positions close to the heating device is set to be smaller than the number of silicon core rods disposed between the electrodes at positions farther from this. The polycrystalline silicon manufacturing apparatus according to any one of claims 1 to 3. 前記加熱装置は、反応炉の中心位置に設けられていることを特徴とする請求項1から請求項4のいずれか一項に記載の多結晶シリコン製造装置。   The polycrystalline silicon manufacturing apparatus according to any one of claims 1 to 4, wherein the heating device is provided at a central position of a reaction furnace. 前記加熱装置は、反応炉の内周面付近に設けられていることを特徴とする請求項1から請求項4のいずれか一項に記載の多結晶シリコン製造装置。   The polycrystalline silicon manufacturing apparatus according to any one of claims 1 to 4, wherein the heating device is provided in the vicinity of an inner peripheral surface of a reaction furnace.
JP2007242922A 2007-09-19 2007-09-19 Polycrystalline silicon production equipment Active JP5205892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242922A JP5205892B2 (en) 2007-09-19 2007-09-19 Polycrystalline silicon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242922A JP5205892B2 (en) 2007-09-19 2007-09-19 Polycrystalline silicon production equipment

Publications (2)

Publication Number Publication Date
JP2009073683A true JP2009073683A (en) 2009-04-09
JP5205892B2 JP5205892B2 (en) 2013-06-05

Family

ID=40609051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242922A Active JP5205892B2 (en) 2007-09-19 2007-09-19 Polycrystalline silicon production equipment

Country Status (1)

Country Link
JP (1) JP5205892B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077252A3 (en) * 2007-11-28 2011-03-02 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
KR20120073658A (en) * 2010-12-27 2012-07-05 (주)세미머티리얼즈 Device for manufacturing polysilicon
JP2013071856A (en) * 2011-09-27 2013-04-22 Shin-Etsu Chemical Co Ltd Apparatus and method for producing polycrystalline silicon
WO2014103939A1 (en) * 2012-12-27 2014-07-03 株式会社トクヤマ Polycrystalline silicon rod and method for producing same
CN108993985A (en) * 2018-06-05 2018-12-14 江苏润生光伏科技有限公司 A kind of degumming device
CN114455588A (en) * 2022-02-25 2022-05-10 洛阳市自动化研究所有限公司 Method for growing polycrystalline silicon rods by combining multiple silicon core assemblies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146499A (en) * 1999-11-15 2001-05-29 Sumitomo Sitix Of Amagasaki Inc Method for estimating diameter and temperature of silicon in production process of polycrystalline silicon and method of operation control using the same
JP2001278611A (en) * 2000-03-31 2001-10-10 Mitsubishi Materials Polycrystalline Silicon Corp Method of producing polycrystalline silicon and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146499A (en) * 1999-11-15 2001-05-29 Sumitomo Sitix Of Amagasaki Inc Method for estimating diameter and temperature of silicon in production process of polycrystalline silicon and method of operation control using the same
JP2001278611A (en) * 2000-03-31 2001-10-10 Mitsubishi Materials Polycrystalline Silicon Corp Method of producing polycrystalline silicon and apparatus therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077252A3 (en) * 2007-11-28 2011-03-02 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
US8329132B2 (en) 2007-11-28 2012-12-11 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
KR20120073658A (en) * 2010-12-27 2012-07-05 (주)세미머티리얼즈 Device for manufacturing polysilicon
JP2013071856A (en) * 2011-09-27 2013-04-22 Shin-Etsu Chemical Co Ltd Apparatus and method for producing polycrystalline silicon
WO2014103939A1 (en) * 2012-12-27 2014-07-03 株式会社トクヤマ Polycrystalline silicon rod and method for producing same
JPWO2014103939A1 (en) * 2012-12-27 2017-01-12 株式会社トクヤマ Polycrystalline silicon rod and manufacturing method thereof
CN108993985A (en) * 2018-06-05 2018-12-14 江苏润生光伏科技有限公司 A kind of degumming device
CN108993985B (en) * 2018-06-05 2023-09-05 江苏润生光伏科技有限公司 Degumming device
CN114455588A (en) * 2022-02-25 2022-05-10 洛阳市自动化研究所有限公司 Method for growing polycrystalline silicon rods by combining multiple silicon core assemblies

Also Published As

Publication number Publication date
JP5205892B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5205892B2 (en) Polycrystalline silicon production equipment
US8329132B2 (en) Polycrystalline silicon manufacturing apparatus and manufacturing method
JP5428303B2 (en) Polycrystalline silicon manufacturing method
TWI401728B (en) Heat treatment furnace and vertical heat treatment device
KR100892123B1 (en) Poly silicon deposition device
JP5481886B2 (en) Polycrystalline silicon production equipment
ES2636966T3 (en) Mandrel and bridge connection points for tube filaments in a chemical vapor deposition reactor
JP5544667B2 (en) Substrate support unit and substrate processing apparatus including the same
JP5721219B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and heating apparatus
JP5872586B2 (en) Chuck for chemical vapor deposition system and related method
KR100921210B1 (en) Poly silicon deposition device
KR20130019182A (en) Poly silicon deposition device
JP5130882B2 (en) Polycrystalline silicon manufacturing method and manufacturing apparatus
EP1945831B1 (en) Partition-type heating apparatus
US8878107B2 (en) Multi-level and vertical assembling type PTFE heater and methods of manufacture thereof
JP5206479B2 (en) Polycrystalline silicon production equipment
JP2002175868A (en) Far-infrared thin heater and substrate-heating furnace
JP5262086B2 (en) Polycrystalline silicon production equipment
JP2009062251A (en) Apparatus and method for producing polycrystalline silicon
KR20080114316A (en) Apparatus for depositing thin film
JP5542031B2 (en) Polycrystalline silicon manufacturing method and polycrystalline silicon manufacturing system
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
CN206146208U (en) Bionics core heat -generating body structure
JP2012248675A (en) Gas preheating cylinder, substrate processing apparatus, and substrate processing method
JP5637013B2 (en) Trichlorosilane production apparatus and production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250