JP2009069982A - Propagation route calculation device, propagation route calculation method, and recording medium - Google Patents

Propagation route calculation device, propagation route calculation method, and recording medium Download PDF

Info

Publication number
JP2009069982A
JP2009069982A JP2007235627A JP2007235627A JP2009069982A JP 2009069982 A JP2009069982 A JP 2009069982A JP 2007235627 A JP2007235627 A JP 2007235627A JP 2007235627 A JP2007235627 A JP 2007235627A JP 2009069982 A JP2009069982 A JP 2009069982A
Authority
JP
Japan
Prior art keywords
calculation
refractive index
electron density
zenith angle
propagation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007235627A
Other languages
Japanese (ja)
Other versions
JP4869187B2 (en
Inventor
Shuichi Suga
秀一 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007235627A priority Critical patent/JP4869187B2/en
Publication of JP2009069982A publication Critical patent/JP2009069982A/en
Application granted granted Critical
Publication of JP4869187B2 publication Critical patent/JP4869187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propagation route calculation device for faithfully calculating a propagation route near the reflection point of an electric wave, and for shortening a calculation time. <P>SOLUTION: This propagation route calculation device is provided with an electron density calculation part 11 for calculating electron density in the current calculation point of the propagation route of an electric wave; a refractive index calculation part 12 for calculating a refractive index on the basis of the electron density calculated by the electron density calculation part; a zenithal angle calculation part 13 for calculating the zenithal angle of the propagation route of the electric wave in the current calculation point on the basis of the refractive index calculated by the refractive index calculation part; and a step calculation part 14 for calculating a step representing a distance or a propagation time from the current calculation point to the next calculation point, and changing so as to become smaller according as the zenithal angle calculated by the zenithal angle calculation part becomes larger, according to the zenithal angle calculated by the zenithal angle calculation part 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電離層中を伝搬する電波の伝搬経路を計算するための伝搬経路計算装置、伝搬経路計算方法およびその伝搬経路計算方法を実現するためのプログラムを記録した記録媒体に関する。   The present invention relates to a propagation path calculation device for calculating a propagation path of a radio wave propagating in an ionosphere, a propagation path calculation method, and a recording medium on which a program for realizing the propagation path calculation method is recorded.

従来、HF帯域(10〜30MHz)を用いた通信が行われている。このHF帯域を用いた通信においては、送信元で射出された電波は、地球の上空に存在する電離層で反射され、電離層反射波として見通し距離外の遠方に伝搬する。電波は、一般に、周波数が低いほど電離層で反射しやすくなり、また、電離層を通過または反射するときに減衰する。   Conventionally, communication using the HF band (10 to 30 MHz) is performed. In the communication using this HF band, the radio wave emitted from the transmission source is reflected by the ionosphere existing above the earth, and propagates far away from the line-of-sight distance as an ionospheric reflection wave. In general, the lower the frequency, the easier the radio wave is reflected by the ionosphere, and the radio wave is attenuated when passing or reflecting through the ionosphere.

ところで、HF帯域を用いた通信は電離層の状態に影響されるので、遠方の相手に電波が届くかどうかを確認するために、電波の出射角度、周波数、時間帯および自己の位置などを変数として、電波の伝搬経路を計算により求めることが行われている。この伝搬経路の計算においては、電波の伝搬経路を辿るための計算を行うポイント(以下、「計算ポイント」という)が順次設定される。ある計算ポイントから次の計算ポイントまでの距離または電波の伝搬時間を「ステップ」と呼ぶ。   By the way, since communication using the HF band is affected by the ionospheric state, in order to check whether the radio wave reaches a distant party, the radio wave emission angle, frequency, time zone, self position, etc. are used as variables. The propagation path of a radio wave is obtained by calculation. In the calculation of the propagation path, points (hereinafter referred to as “calculation points”) for performing the calculation for tracing the propagation path of the radio wave are sequentially set. The distance from one calculation point to the next calculation point or the radio wave propagation time is called “step”.

なお、関連する技術として、非特許文献1は、電離層における電波の伝搬について開示しており、また、非特許文献2は、電波の伝搬経路を計算する技術を開示している。
"International Reference Ionosphere 2000" Radio Science, Volume 36, Number 2, Page261-275, March/April 2001 "Effects of on Whistle-Mode Ray Tracing" RADIO SCIENCE, Vol 1(New Series), No. 3, Page269-283, March 1966
As a related technique, Non-Patent Document 1 discloses propagation of radio waves in the ionosphere, and Non-Patent Document 2 discloses a technique of calculating a propagation path of radio waves.
"International Reference Ionosphere 2000" Radio Science, Volume 36, Number 2, Page261-275, March / April 2001 "Effects of on Whistle-Mode Ray Tracing" RADIO SCIENCE, Vol 1 (New Series), No. 3, Page269-283, March 1966

しかしながら、上述した従来の電波の伝搬経路を計算する技術では、電波の伝搬経路のうちの電離層の部分、特に反射点近辺では、ステップを細かくしないと、電離層における反射状態を再現できなくなる。   However, in the conventional technique for calculating the propagation path of the radio wave described above, the reflected state in the ionosphere cannot be reproduced unless the steps are made fine in the ionosphere portion of the radio wave propagation path, particularly in the vicinity of the reflection point.

すなわち、ステップが荒いと、次の計算ポイントが、本来反射しなければならない場所より高い位置に到達してしまい、屈折率が複素数になるなど通常の状態ではなくなる。その一方、反射点近辺の経路を正確に再現するために、伝搬経路の全体にわたってステップを細かくすると、膨大な計算時間が必要になる。   That is, if the step is rough, the next calculation point reaches a position higher than the place where it should be reflected, and the refractive index becomes complex, which is not normal. On the other hand, if the steps are made fine throughout the propagation path in order to accurately reproduce the path near the reflection point, enormous calculation time is required.

本発明の課題は、電波の反射点近辺における伝搬経路を正確に計算することができ、しかも、計算時間を短くできる伝搬経路計算装置、伝搬経路計算方法およびその伝搬経路計算方法を実現するためのプログラムを記録した記録媒体を提供することにある。   An object of the present invention is to realize a propagation path calculation device, a propagation path calculation method, and a propagation path calculation method capable of accurately calculating a propagation path in the vicinity of a reflection point of radio waves and reducing the calculation time. It is to provide a recording medium on which a program is recorded.

上記課題を解決するために、請求項1記載の発明に係る伝搬経路計算装置は、電波の伝搬経路の現在の計算ポイントにおける電子密度を求める電子密度計算部と、電子密度計算部で求められた電子密度に基づき屈折率を求める屈折率計算部と、屈折率計算部で求められた屈折率に基づき現在の計算ポイントにおける電波の伝搬経路の天頂角を求める天頂角計算部と、天頂角計算部で求められた天頂角に応じて、前記現在の計算ポイントから次の計算ポイントまでの距離または伝搬時間を表し且つ天頂角が大きくなるに連れて小さくなるように変化するステップを求めるステップ計算部を備えたことを特徴とする。   In order to solve the above-described problem, a propagation path calculation device according to the invention described in claim 1 is obtained by an electron density calculation unit that calculates an electron density at a current calculation point of a radio wave propagation path, and an electron density calculation unit. Refractive index calculator for calculating refractive index based on electron density, zenith angle calculator for calculating zenith angle of radio wave propagation path at current calculation point based on refractive index determined by refractive index calculator, and zenith angle calculator A step calculation unit for obtaining a step representing a distance or a propagation time from the current calculation point to the next calculation point and changing so as to decrease as the zenith angle increases according to the zenith angle determined in It is characterized by having.

また、請求項2記載の発明に係る伝搬経路計算方法は、電波の伝搬経路の現在の計算ポイントにおける電子密度を求め、該求められた電子密度に基づき屈折率を求め、該求められた屈折率に基づき現在の計算ポイントにおける電波の伝搬経路の天頂角を求め、該求められた天頂角に応じて、前記現在の計算ポイントから次の計算ポイントまでの距離または伝搬時間を表し且つ天頂角が大きくなるに連れて小さくなるように変化するステップを求めることを特徴とする。   According to a second aspect of the present invention, there is provided a propagation path calculation method for obtaining an electron density at a current calculation point of a radio wave propagation path, obtaining a refractive index based on the obtained electron density, and obtaining the obtained refractive index. The zenith angle of the propagation path of the radio wave at the current calculation point is calculated based on the above, and the distance or propagation time from the current calculation point to the next calculation point is represented and the zenith angle is large according to the calculated zenith angle. It is characterized in that a step that changes so as to become smaller is obtained.

また、請求項3記載の発明に係るコンピュータ読み取り可能な記録媒体は、電波の伝搬経路の現在の計算ポイントにおける電子密度を求め、該求められた電子密度に基づき屈折率を求め、該求められた屈折率に基づき現在の計算ポイントにおける電波の伝搬経路の天頂角を求め、該求められた天頂角に応じて、前記現在の計算ポイントから次の計算ポイントまでの距離または伝搬時間を表し且つ天頂角が大きくなるに連れて小さくなるように変化するステップを求めるためのプログラムを記憶したことを特徴とする。   According to a third aspect of the present invention, there is provided a computer readable recording medium for obtaining an electron density at a current calculation point of a radio wave propagation path, obtaining a refractive index based on the obtained electron density, and obtaining the obtained refractive index. The zenith angle of the propagation path of the radio wave at the current calculation point is obtained based on the refractive index, and the distance or propagation time from the current calculation point to the next calculation point is represented according to the obtained zenith angle and the zenith angle. A program for determining a step that changes so as to become smaller as the value becomes larger is stored.

請求項1〜請求項3記載の発明によれば、電波の伝搬経路の現在の計算ポイントにおける電子密度を求め、電子密度に基づき屈折率を求め、屈折率に基づき現在の計算ポイントにおける電波の伝搬経路の天頂角を求め、さらに、求めた天頂角に応じて、次の計算ポイントまでの距離または伝搬時間を表し且つ天頂角が大きくなるに連れて小さくなるように変化するステップを求めるので、天頂角が大きくなる電離層の反射点近辺では、ステップが小さくなって細かい計算が可能になり、伝搬経路を正確に計算することができる。その一方、天頂角が小さくなる電離層の反射点近辺以外では、ステップが大きくなるので、計算時間を小さくすることができる。   According to the first to third aspects of the present invention, the electron density at the current calculation point of the propagation path of the radio wave is obtained, the refractive index is obtained based on the electron density, and the propagation of the radio wave at the current calculation point is obtained based on the refractive index. Since the zenith angle of the path is obtained, and the step representing the distance or propagation time to the next calculation point and changing as the zenith angle increases is obtained according to the obtained zenith angle. In the vicinity of the ionospheric reflection point where the angle increases, the step becomes smaller and fine calculation is possible, and the propagation path can be calculated accurately. On the other hand, since the step is large except in the vicinity of the reflection point of the ionosphere where the zenith angle is small, the calculation time can be shortened.

以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る伝搬経路計算装置の構成を示す図である。この伝搬経路計算装置は、例えばパーソナルコンピュータのソフトウェア処理によって実現された電子密度計算部11、屈折率計算部12、天頂角計算部13およびステップ計算部14を備えている。   FIG. 1 is a diagram illustrating a configuration of a propagation path calculation apparatus according to Embodiment 1 of the present invention. The propagation path calculation device includes an electron density calculation unit 11, a refractive index calculation unit 12, a zenith angle calculation unit 13, and a step calculation unit 14, which are realized by software processing of a personal computer, for example.

電子密度計算部11は、電波の伝搬経路として設定される各計算ポイントにおける電子密度を計算する。図2(a)は、電離層を形成するD層、E層、F1層およびF2層における電子密度の変化を示す図である。この電子密度計算部11は、電子密度アルゴリズムに従って計算により電子密度を求めるように構成することもできるし、図2(a)に示すような電子密度と高さHとの関係を示すデータをデータベースとして予め格納しておくことにより構成することもできる。   The electron density calculator 11 calculates the electron density at each calculation point set as a radio wave propagation path. FIG. 2A is a diagram showing changes in electron density in the D layer, E layer, F1 layer, and F2 layer forming the ionosphere. The electron density calculation unit 11 can be configured to obtain the electron density by calculation according to an electron density algorithm, and data indicating the relationship between the electron density and the height H as shown in FIG. It can also be configured by storing in advance.

図2(b)は、図2(a)に示すような電子密度を有する電離層を電波が伝搬する様子を示す図である。所定の仰角el及び周波数で射出された電波は、電離層の電子密度に応じた屈折率で経路を変更しながらF2層の下部で反射点に到達し、この反射点で反射された電波は、電離層の電子密度に応じた屈折率で経路を変更しながら伝播し、地表に到達する。この電子密度計算部11で計算された電子密度は、屈折率・伝播方向計算部12に送られる。   FIG. 2B is a diagram showing a state in which radio waves propagate through the ionosphere having the electron density as shown in FIG. The radio wave emitted at a predetermined elevation angle el and frequency reaches the reflection point at the lower part of the F2 layer while changing the path with a refractive index corresponding to the electron density of the ionosphere, and the radio wave reflected at this reflection point is It propagates while changing the path with a refractive index corresponding to the electron density of the to reach the earth's surface. The electron density calculated by the electron density calculator 11 is sent to the refractive index / propagation direction calculator 12.

屈折率・伝播方向計算部12は、電子密度計算部11から送られてくる電子密度に基づき各計算ポイントにおける屈折率を計算し、屈折率に応じた伝播方向ベクトルを計算する。この屈折率・伝播方向計算部12で計算された屈折率・伝播方向ベクトルは、天頂角計算部13に送られる。   The refractive index / propagation direction calculation unit 12 calculates a refractive index at each calculation point based on the electron density sent from the electron density calculation unit 11, and calculates a propagation direction vector corresponding to the refractive index. The refractive index / propagation direction vector calculated by the refractive index / propagation direction calculation unit 12 is sent to the zenith angle calculation unit 13.

天頂角計算部13は、屈折率・伝播方向計算部12から送られてくる伝播方向ベクトルに基づき、各計算ポイントにおける電波の伝搬経路の天頂角、つまりステップの伝搬方向ベクトルと鉛直方向との成す角を計算する。この天頂角計算部13で計算された天頂角は、ステップ計算部14に送られる。   The zenith angle calculation unit 13 is based on the propagation direction vector sent from the refractive index / propagation direction calculation unit 12 and forms the zenith angle of the propagation path of the radio wave at each calculation point, that is, the step propagation direction vector and the vertical direction. Calculate the corner. The zenith angle calculated by the zenith angle calculation unit 13 is sent to the step calculation unit 14.

ステップ計算部14は、天頂角計算部13から送られてくる天頂角に応じて、次の計算ポイントまでのステップ(距離または伝搬時間)を計算する。この際、天頂角が大きくなるに連れて小さくなるように変化するステップが求められる。   The step calculator 14 calculates a step (distance or propagation time) to the next calculation point according to the zenith angle sent from the zenith angle calculator 13. At this time, a step is required which changes so as to decrease as the zenith angle increases.

具体的には、ステップ計算部14は、(1)式に示すフェルミ分布関数を利用してステップstepを求める。この実施例1に係る伝搬経路計算装置は、フェルミ分布関数をステップの計算に利用したこと、および、フェルミ準位(α)、温度に相当する部分(β)の設定方法に特徴がある。

Figure 2009069982
Specifically, the step calculator 14 obtains a step step by using a Fermi distribution function shown in the equation (1). The propagation path calculation apparatus according to the first embodiment is characterized in that the Fermi distribution function is used for the step calculation and the setting method of the Fermi level (α) and the portion (β) corresponding to the temperature.
Figure 2009069982

ここで、
τ:初期ステップ値
z:ステップの伝搬方向ベクトルと鉛直方向との成す角(天頂角)
α:初期ステップ値を半分にする天頂角(0<α<π/2)
β:stepのα近辺における変化量を決める値
βは下記の(2)式によって求められる。

Figure 2009069982
here,
τ 0 : Initial step value z: Angle formed by the propagation direction vector of the step and the vertical direction (zenith angle)
α: Zenith angle halving the initial step value (0 <α <π / 2)
β: a value that determines the amount of change in the vicinity of α of step β is obtained by the following equation (2).
Figure 2009069982

ここで、
τmin:最小ステップ値
最小ステップ値τminは、送信(受信)仰角elおよび初期ステップ値τにより、下記の(3)式により決定される。

Figure 2009069982
here,
τ min : Minimum step value The minimum step value τ min is determined by the following equation (3) based on the transmission (reception) elevation angle el and the initial step value τ 0 .
Figure 2009069982

ここで、
el:送信(受信)仰角(0≦el≦π/2)
γ:定数(0<γ<π/2)
図3は、(1)式により求められるステップstepが天頂角zの大きさに応じて変化する様子を示す図である。天頂角zが大きくなるとステップstepが小さくなる様子が示されている。
here,
el: Transmission (reception) elevation angle (0 ≦ el ≦ π / 2)
γ: constant (0 <γ <π / 2)
FIG. 3 is a diagram illustrating a state in which the step step obtained by the equation (1) changes according to the magnitude of the zenith angle z. It is shown that the step step decreases as the zenith angle z increases.

図4は、各計算ポイントにおける伝播方向ベクトルと天頂角との関係を示す図であり、仰角elで射出された電波の高さが大きくなると屈折率が大きくなって天頂角zが大きくなる様子(z<z<z<z・・・)が示されている。 FIG. 4 is a diagram showing the relationship between the propagation direction vector and the zenith angle at each calculation point. When the height of the radio wave emitted at the elevation angle el increases, the refractive index increases and the zenith angle z increases ( z 1 <z 2 <z 3 <z 4 ...) is shown.

次に、上記のように構成される本発明の実施例1に係る伝搬経路計算装置の動作を、伝搬経路計算処理を中心に、図5に示すフローチャートを参照しながら説明する。なお、図5のフローチャートに示す伝搬経路計算処理は、計算ポイントが電離層に存在する場合の動作を中心に示している。   Next, the operation of the propagation path calculation apparatus according to the first embodiment of the present invention configured as described above will be described with reference to the flowchart shown in FIG. Note that the propagation path calculation process shown in the flowchart of FIG. 5 focuses on the operation when the calculation point exists in the ionosphere.

まず、初期ステップ値τが設定される(ステップS11)。この初期ステップ値τは、ステップ計算部14に予め格納しておくように構成することもできるし、図示しない入力装置からステップ計算部14に設定するように構成することもできる。 First, an initial step value τ 0 is set (step S11). The initial step value τ 0 can be configured to be stored in advance in the step calculation unit 14, or can be configured to be set in the step calculation unit 14 from an input device (not shown).

次いで、電子密度が求められる(ステップS13)。電子密度が基準値以上であるかどうかにより電離層に入ったかどうかが調べられる(ステップS12)。すなわち、順次にステップを計算した結果、計算ポイントの高さが電離層の高さに到達したかどうかが調べられる。ステップS12において、電離層内に計算ポイントがないことが判断されると、処理は終了する。この場合、図示は省略するが、電波の伝搬経路が電離層以外である場合の処理、つまり荒いステップでの伝搬経路の計算が行われる。   Next, the electron density is obtained (step S13). It is checked whether the ionosphere has entered the ionosphere depending on whether the electron density is equal to or higher than the reference value (step S12). That is, as a result of sequentially calculating the steps, it is checked whether the height of the calculation point has reached the height of the ionosphere. If it is determined in step S12 that there are no calculation points in the ionosphere, the process ends. In this case, although illustration is omitted, processing when the propagation path of the radio wave is other than the ionosphere, that is, calculation of the propagation path in a rough step is performed.

一方、ステップS12において、電離層内に計算ポイントがあることが判断されると、次いで、屈折率伝播方向ベクトルが求められる(ステップS14)。   On the other hand, if it is determined in step S12 that there is a calculation point in the ionosphere, then a refractive index propagation direction vector is obtained (step S14).

すなわち、屈折率・伝播方向計算部12は、電子密度計算部11から送られてくる電子密度に基づき、現在の計算ポイントにおける屈折率・伝播方向ベクトルを計算し、天頂角計算部13に送る。   That is, the refractive index / propagation direction calculation unit 12 calculates the refractive index / propagation direction vector at the current calculation point based on the electron density sent from the electron density calculation unit 11 and sends the vector to the zenith angle calculation unit 13.

次いで、伝播方向ベクトルから天頂角が求められる(ステップS15)。すなわち、天頂角計算部13は、屈折率・伝播方向計算部12から送られてくる屈折率および現在の計算ポイントに対する電波の伝播方向ベクトルに基づき、現在の計算ポイントにおける電波の伝搬経路の天頂角を計算し、ステップ計算部14に送る。   Next, the zenith angle is obtained from the propagation direction vector (step S15). That is, the zenith angle calculation unit 13 is based on the refractive index sent from the refractive index / propagation direction calculation unit 12 and the propagation direction vector of the radio wave for the current calculation point, and the zenith angle of the radio wave propagation path at the current calculation point. Is sent to the step calculator 14.

次いで、ステップ計算が行われる(ステップS16)。すなわち、ステップ計算部14は、天頂角計算部13から送られてくる天頂角に応じて、現在の計算ポイントから次の計算ポイントまでのステップ(距離または伝搬時間)を計算する。次いで、次の計算ポイントが設定される(ステップS17)。すなわち、ステップ計算部14は、ステップS16で計算されたステップに基づき、次の計算ポイントを設定する。   Next, step calculation is performed (step S16). That is, the step calculation unit 14 calculates a step (distance or propagation time) from the current calculation point to the next calculation point in accordance with the zenith angle sent from the zenith angle calculation unit 13. Next, the next calculation point is set (step S17). That is, the step calculation unit 14 sets the next calculation point based on the step calculated in step S16.

次いで、電子密度が求められ(ステップS13)、電離層から出たかどうかが調べられる(ステップS12)。ステップS12において、計算ポイントが電離層内にないことが判断されると、ステップS14に戻り、上述した処理が繰り返される。これにより、図4に示すように、ステップstepが順次に計算され、電波の伝搬経路が求められる。   Next, the electron density is obtained (step S13), and it is checked whether or not it has exited the ionosphere (step S12). If it is determined in step S12 that the calculation point is not in the ionosphere, the process returns to step S14 and the above-described processing is repeated. As a result, as shown in FIG. 4, step steps are sequentially calculated, and a radio wave propagation path is obtained.

一方、ステップS12において、計算ポイントが電離層にないと判断されると、処理は終了する。この場合、図示は省略するが、電波の伝搬経路が電離層以外である場合の処理が行われる。   On the other hand, if it is determined in step S12 that the calculation point is not in the ionosphere, the process ends. In this case, although illustration is omitted, processing is performed when the propagation path of radio waves is other than the ionosphere.

以上説明したように、本発明の実施例1に係る伝搬経路計算装置によれば、天頂角が大きくなる電離層の反射点近辺では、ステップが小さくなって細かい計算が可能になり、伝搬経路を正確に計算することができる。その一方、天頂角が小さくなる電離層の反射点近辺以外では、ステップが大きくなるので計算時間を小さくすることができる。   As described above, according to the propagation path calculation apparatus according to the first embodiment of the present invention, in the vicinity of the reflection point of the ionosphere where the zenith angle increases, the step becomes smaller and fine calculation is possible, and the propagation path is accurately determined. Can be calculated. On the other hand, the calculation time can be reduced because the step is large except in the vicinity of the reflection point of the ionosphere where the zenith angle is small.

なお、図5のフローチャートで示す手順は、これをコンピュータプログラムで実現してハードディスク等の記録媒体に格納しておき、必要に応じてコンピュータ上で実行するように構成することができる。   Note that the procedure shown in the flowchart of FIG. 5 can be realized by a computer program, stored in a recording medium such as a hard disk, and executed on a computer as necessary.

本発明は、例えばHF帯域で通信を行う通信装置に適用可能である。   The present invention is applicable to a communication device that performs communication in, for example, the HF band.

本発明の実施例1に係る伝搬経路計算装置の構成を示す図である。It is a figure which shows the structure of the propagation path calculation apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る伝搬経路計算装置が伝搬経路の計算に利用する電離層の電子密度の変化および電離層を電波が伝搬する様子を示す図である。It is a figure which shows a mode that the propagation path calculation apparatus which concerns on Example 1 of this invention uses the change of the electron density of the ionosphere utilized for calculation of a propagation path, and a mode that an electromagnetic wave propagates through an ionosphere. 本発明の実施例1に係る伝搬経路計算装置のステップ計算部で計算されるステップと天頂角との関係を示す図である。It is a figure which shows the relationship between the step calculated by the step calculation part of the propagation path calculation apparatus which concerns on Example 1 of this invention, and a zenith angle. 本発明の実施例1に係る伝搬経路計算装置において計算される伝搬経路の各計算ポイントにおける屈折率と天頂角との関係を示す図である。It is a figure which shows the relationship between the refractive index and the zenith angle in each calculation point of the propagation path calculated in the propagation path calculation apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る伝搬経路計算装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the propagation path calculation apparatus which concerns on Example 1 of this invention.

符号の説明Explanation of symbols

11 電子密度計算部
12 屈折率・伝播方向計算部
13 天頂角計算部
14 ステップ計算部
11 Electron density calculator 12 Refractive index / propagation direction calculator 13 Zenith angle calculator 14 Step calculator

Claims (3)

電波の伝搬経路の現在の計算ポイントにおける電子密度を求める電子密度計算部と、
前記電子密度計算部で求められた電子密度に基づき屈折率を求める屈折率計算部と、
前記屈折率計算部で求められた屈折率に基づき現在の計算ポイントにおける電波の伝搬経路の天頂角を求める天頂角計算部と、
前記天頂角計算部で求められた天頂角に応じて、前記現在の計算ポイントから次の計算ポイントまでの距離または伝搬時間を表し且つ天頂角が大きくなるに連れて小さくなるように変化するステップを求めるステップ計算部と、
を備えたことを特徴とする伝搬経路計算装置。
An electron density calculator that calculates the electron density at the current calculation point of the radio wave propagation path;
A refractive index calculation unit for obtaining a refractive index based on the electron density obtained by the electron density calculation unit;
A zenith angle calculation unit for determining the zenith angle of the propagation path of the radio wave at the current calculation point based on the refractive index obtained by the refractive index calculation unit;
According to the zenith angle obtained by the zenith angle calculation unit, the step represents the distance or propagation time from the current calculation point to the next calculation point, and changes so as to decrease as the zenith angle increases. A step calculation unit to be obtained;
A propagation path calculation device comprising:
電波の伝搬経路の現在の計算ポイントにおける電子密度を求め、
該求められた電子密度に基づき屈折率を求め、
該求められた屈折率に基づき現在の計算ポイントにおける電波の伝搬経路の天頂角を求め、
該求められた天頂角に応じて、前記現在の計算ポイントから次の計算ポイントまでの距離または伝搬時間を表し且つ天頂角が大きくなるに連れて小さくなるように変化するステップを求めることを特徴とする伝搬経路計算方法。
Find the electron density at the current calculation point of the radio wave propagation path,
A refractive index is obtained based on the obtained electron density,
Based on the obtained refractive index, find the zenith angle of the propagation path of the radio wave at the current calculation point,
According to the obtained zenith angle, a step representing a distance or a propagation time from the current calculation point to the next calculation point and changing so as to decrease as the zenith angle increases is obtained. Propagation path calculation method.
電波の伝搬経路の現在の計算ポイントにおける電子密度を求め、
該求められた電子密度に基づき屈折率を求め、
該求められた屈折率に基づき現在の計算ポイントにおける電波の伝搬経路の天頂角を求め、
該求められた天頂角に応じて、前記現在の計算ポイントから次の計算ポイントまでの距離または伝搬時間を表し且つ天頂角が大きくなるに連れて小さくなるように変化するステップを求めるためのプログラムを記憶したことを特徴とするコンピュータ読み取り可能な記録媒体。
Find the electron density at the current calculation point of the radio wave propagation path,
A refractive index is obtained based on the obtained electron density,
Based on the obtained refractive index, find the zenith angle of the propagation path of the radio wave at the current calculation point,
A program for obtaining a step representing a distance or propagation time from the current calculation point to the next calculation point and changing so as to decrease as the zenith angle increases in accordance with the calculated zenith angle. A computer-readable recording medium characterized by being stored.
JP2007235627A 2007-09-11 2007-09-11 Propagation path calculation device, propagation path calculation method, and recording medium Expired - Fee Related JP4869187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235627A JP4869187B2 (en) 2007-09-11 2007-09-11 Propagation path calculation device, propagation path calculation method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235627A JP4869187B2 (en) 2007-09-11 2007-09-11 Propagation path calculation device, propagation path calculation method, and recording medium

Publications (2)

Publication Number Publication Date
JP2009069982A true JP2009069982A (en) 2009-04-02
JP4869187B2 JP4869187B2 (en) 2012-02-08

Family

ID=40606196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235627A Expired - Fee Related JP4869187B2 (en) 2007-09-11 2007-09-11 Propagation path calculation device, propagation path calculation method, and recording medium

Country Status (1)

Country Link
JP (1) JP4869187B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194494A (en) * 2014-03-25 2015-11-05 三菱電機株式会社 Position-determination method and position-determination apparatus
WO2019070857A3 (en) * 2017-10-04 2019-07-18 Skywave Networks Llc Adjusting transmissions based on direct sensing of the ionosphere
JPWO2020003513A1 (en) * 2018-06-29 2020-12-17 三菱電機株式会社 Radar device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253282A (en) * 1991-01-29 1992-09-09 Fujitsu Ltd Mirage image generating method
JPH08220227A (en) * 1995-02-16 1996-08-30 Tech Res & Dev Inst Of Japan Def Agency Horizontal distance calculating system of target
JP2005141698A (en) * 2003-11-10 2005-06-02 Mitsubishi Heavy Ind Ltd Electromagnetic field distribution simulation method and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253282A (en) * 1991-01-29 1992-09-09 Fujitsu Ltd Mirage image generating method
JPH08220227A (en) * 1995-02-16 1996-08-30 Tech Res & Dev Inst Of Japan Def Agency Horizontal distance calculating system of target
JP2005141698A (en) * 2003-11-10 2005-06-02 Mitsubishi Heavy Ind Ltd Electromagnetic field distribution simulation method and its device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194494A (en) * 2014-03-25 2015-11-05 三菱電機株式会社 Position-determination method and position-determination apparatus
WO2019070857A3 (en) * 2017-10-04 2019-07-18 Skywave Networks Llc Adjusting transmissions based on direct sensing of the ionosphere
GB2581699A (en) * 2017-10-04 2020-08-26 Skywave Networks Llc Adjusting transmissions based on direct sensing of the ionosphere
JP2020537404A (en) * 2017-10-04 2020-12-17 スカイウェイブ・ネットワークス・エルエルシー Adjustment of transmission based on direct detection of the ionosphere
GB2581699B (en) * 2017-10-04 2022-08-31 Skywave Networks Llc Adjusting transmissions based on direct sensing of the ionosphere
JP7142687B2 (en) 2017-10-04 2022-09-27 スカイウェイブ・ネットワークス・エルエルシー Coordination of transmissions based on direct sensing of the ionosphere
US11496210B2 (en) 2017-10-04 2022-11-08 Skywave Networks Llc Adjusting transmissions based on direct sensing of the ionosphere
JPWO2020003513A1 (en) * 2018-06-29 2020-12-17 三菱電機株式会社 Radar device

Also Published As

Publication number Publication date
JP4869187B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
GB2532542A (en) Risk quantification for policy deployment
US20090144028A1 (en) Method and apparatus of combining mixed resolution databases and mixed radio frequency propagation techniques
JP2006287685A (en) Radio wave propagation estimation program, radio wave propagation estimation method and device for implementing the method
JP4869187B2 (en) Propagation path calculation device, propagation path calculation method, and recording medium
KR20090074874A (en) Apparatus and method for simplifing three dimensional mesh data
US8332196B2 (en) Method and apparatus for enhancing the accuracy and speed of a ray launching simulation tool
US20140257779A1 (en) Method and apparatus for tracing ray path by using three-dimensional modeling structure
US20170142601A1 (en) Access point placement optimization device and access point placement optimization method
CN111684541A (en) Information processing device, program, process execution device, and information processing system
JP2015162188A (en) Data analysis device and method
JP2011223486A (en) Electric field intensity estimation device, method and program
KR101492197B1 (en) Method and device for sequential approximate optimization design
Zhao Improvement on the numerical dispersion of 2-D ADI-FDTD with artificial anisotropy
JP2011191267A (en) Apparatus, program and method of specifying target speed
US20090167756A1 (en) Method and apparatus for computation of wireless signal diffraction in a three-dimensional space
KR100961875B1 (en) Method of creating vertical route of aircraft automatically
JP2016142595A (en) Mobile entity terminal, position specification method, position specification program, and position specification device
CN111582456B (en) Method, apparatus, device and medium for generating network model information
JP2005020500A (en) Radio wave propagation simulator and its radio wave field intensity calculating method
JP2009128025A (en) Measuring apparatus, method, and program
US10651890B2 (en) Device and method for wireless communication and communication terminal
JP2008311860A (en) Apparatus for analyzing radio propagation
KR102012796B1 (en) Calculation apparatus and method for wireless signal propagation
JP2010239453A (en) Design support device for station installation, and computer program
JP7474073B2 (en) Program and radiated interference measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees