JP2009069849A - Method for diminishing impurity - Google Patents

Method for diminishing impurity Download PDF

Info

Publication number
JP2009069849A
JP2009069849A JP2008305913A JP2008305913A JP2009069849A JP 2009069849 A JP2009069849 A JP 2009069849A JP 2008305913 A JP2008305913 A JP 2008305913A JP 2008305913 A JP2008305913 A JP 2008305913A JP 2009069849 A JP2009069849 A JP 2009069849A
Authority
JP
Japan
Prior art keywords
organic polymer
polymer resin
resin
impurity reduction
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008305913A
Other languages
Japanese (ja)
Other versions
JP4752902B2 (en
Inventor
Toshio Banba
敏夫 番場
Takashi Hirano
孝 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008305913A priority Critical patent/JP4752902B2/en
Publication of JP2009069849A publication Critical patent/JP2009069849A/en
Application granted granted Critical
Publication of JP4752902B2 publication Critical patent/JP4752902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for diminishing impurities contained in an organic polymer resin in a simple and easy way after the organic polymer resin is patterned and cured on a substrate and part of the organic polymer resin constituting the resulting pattern is evaporated by a chemical reaction. <P>SOLUTION: The method for diminishing impurities is characterized in that after part of the organic polymer resin patterned and cured on the substrate is evaporation by the chemical reaction, one of the following treatments (1)-(3) is carried out to diminish impurities contained in the organic polymer resin; (1) heat treatment at ≥100°C, (2) washing with a basic aqueous solution and (3) washing with an acidic aqueous solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、簡便な方法で有機ポリマー樹脂中に含まれる不純物を低減する方法に関するものである。   The present invention relates to a method for reducing impurities contained in an organic polymer resin by a simple method.

従来、絶縁膜や保護膜の用途に有機ポリマー樹脂が盛んに用いられている。有機ポリマー樹脂としては耐熱性が優れ、又卓越した電気特性、機械特性が要求されることからポリイミド樹脂やポリベンゾオキサゾール樹脂等の耐熱性樹脂が一般に用いられる。またそれらの耐熱樹脂はパターン加工が容易に作成できるポリイミド樹脂自身に感光性を付与した式(1)の様な感光性ポリイミド樹脂や特許文献1のようなポリベンゾオキサゾール前駆
体とジアゾキノン化合物より構成されるポジ型感光性樹脂が使用されている。
Conventionally, organic polymer resins are actively used for insulating films and protective films. As the organic polymer resin, heat resistance such as polyimide resin and polybenzoxazole resin is generally used because of excellent heat resistance and excellent electrical and mechanical properties. These heat-resistant resins are composed of a photosensitive polyimide resin such as formula (1) that imparts photosensitivity to the polyimide resin itself that can be easily patterned, and a polybenzoxazole precursor and a diazoquinone compound as disclosed in Patent Document 1. Positive type photosensitive resin is used.

Figure 2009069849
Figure 2009069849

この有機ポリマー樹脂を絶縁膜や保護膜に使用する場合、基板に有機ポリマー樹脂を塗布し、パターン加工を行った後、硬化し、熱的及び機械的に安定な有機膜を得る。その後、有機ポリマー樹脂でパターン加工された基板は次の工程へと進むが化学反応によって気化する工程があると、その工程中に有機ポリマー樹脂が分解、気化し汚染物となる。また化学反応によって気化する工程に用いられるガス自身が有機ポリマー樹脂に入り込み汚染物となる。それら汚染物は、例えば電子部品においては、導通部分を腐食させたり、変質させたりするという問題が発生する。   When this organic polymer resin is used for an insulating film or a protective film, the organic polymer resin is applied to the substrate, patterned, and then cured to obtain a thermally and mechanically stable organic film. Thereafter, the substrate patterned with the organic polymer resin proceeds to the next step, but if there is a step of vaporizing by a chemical reaction, the organic polymer resin is decomposed and vaporized during the step to become a contaminant. Further, the gas itself used in the process of vaporizing by chemical reaction enters the organic polymer resin and becomes a contaminant. For example, in an electronic component, such a contaminant causes a problem that the conductive portion is corroded or deteriorated.

特公平1−46862号公報Japanese Examined Patent Publication No. 1-46862

本発明は、有機ポリマー樹脂を基板上にパターン加工、硬化を行った後、得られたパターンを構成する有機ポリマー樹脂の一部を化学反応によって気化した後、簡便な方法で有機ポリマー中に含まれる不純物を低減する方法を提供するにある。   In the present invention, after patterning and curing an organic polymer resin on a substrate, a part of the organic polymer resin constituting the obtained pattern is vaporized by a chemical reaction, and then included in the organic polymer by a simple method. The present invention provides a method for reducing impurities.

すなわち本発明は、
[1] 基板上にパターン加工、硬化した有機ポリマー樹脂の一部を化学反応によって気化した後、100℃以上の温度で加熱処理を行って、有機ポリマー樹脂中に含まれる不純物を低減することを特徴とする不純物の低減方法、
[2] 加熱処理を行う温度が200℃以上420℃以下である[1]項記載の不純物低減方法、
[3] 基板上にパターン加工、硬化した有機ポリマー樹脂の一部を化学反応によって気化した後、塩基性水溶液で洗浄することによって、有機ポリマー樹脂中に含まれる不純物を低減することを特徴とする不純物の低減方法、
[4] 塩基性水溶液がテトラメチルアンモニウムハイドロオキシド水溶液である[3]項記載の不純物低減方法、
[5] 基板上にパターン加工、硬化した有機ポリマー樹脂の一部を化学反応によって気化した後、酸系水溶液で洗浄することによって、有機ポリマー樹脂中に含まれる不純物を低減することを特徴とする不純物の低減方法、
[6] 酸系水溶液が過酸化水素水を含む溶液である[5]項記載の不純物低減方法。
[7] 該有機ポリマー樹脂がフッ素を有する耐熱性樹脂である[1]〜[6]項のいずれか1項に記載の不純物低減方法、
[8] フッ素を有する耐熱性樹脂がポリイミド前駆体樹脂、エステル結合又はイオン結合で感光基を導入ポリアミド酸、ポリベンゾオキサゾール前駆体樹脂、ポリイミド前駆体−ポリベンゾオキサゾール前駆体共重合物、及び保護基を付けたポリイミド前駆体−ポリベンゾオキサゾール前駆体により構成される感光性樹脂組成物の群から選ばれた耐熱性樹脂である[7]項記載の不純物低減方法
である。
That is, the present invention
[1] After part of the organic polymer resin patterned and cured on the substrate is vaporized by a chemical reaction, heat treatment is performed at a temperature of 100 ° C. or higher to reduce impurities contained in the organic polymer resin. A method for reducing impurities,
[2] The impurity reduction method according to item [1], wherein the temperature for the heat treatment is 200 ° C. or higher and 420 ° C. or lower,
[3] It is characterized in that impurities contained in the organic polymer resin are reduced by vaporizing a part of the organic polymer resin patterned and cured on the substrate by chemical reaction and then washing with a basic aqueous solution. Impurity reduction method,
[4] The impurity reduction method according to item [3], wherein the basic aqueous solution is a tetramethylammonium hydroxide aqueous solution.
[5] It is characterized in that impurities contained in the organic polymer resin are reduced by vaporizing a part of the patterned and cured organic polymer resin on the substrate by chemical reaction and then washing with an acid aqueous solution. Impurity reduction method,
[6] The impurity reduction method according to [5], wherein the acid-based aqueous solution is a solution containing hydrogen peroxide.
[7] The impurity reduction method according to any one of [1] to [6], wherein the organic polymer resin is a heat-resistant resin having fluorine.
[8] Fluorine-containing heat-resistant resin introduces polyimide precursor resin, photosensitive group introduced by ester bond or ion bond, polyamic acid, polybenzoxazole precursor resin, polyimide precursor-polybenzoxazole precursor copolymer, and protection [7] The impurity reduction method according to item [7], which is a heat-resistant resin selected from the group of photosensitive resin compositions composed of a polyimide precursor with a group-polybenzoxazole precursor.

本発明は、有機ポリマー樹脂を基板上にパターン加工、硬化を行った後、得られたパターンに化学反応によって気化した後、簡便な方法で有機ポリマー中に含まれる不純物を低減する方法を提供するにある。
以下、実施の形態に基づいて本発明について詳細に説明する。
The present invention provides a method for reducing impurities contained in an organic polymer by a simple method after patterning and curing an organic polymer resin on a substrate and then vaporizing the obtained pattern by a chemical reaction. It is in.
Hereinafter, the present invention will be described in detail based on embodiments.

近年、有機ポリマー樹脂が電気部品の絶縁膜や保護膜に盛んに使用されている。しかし有機ポリマー樹脂は金属やハロゲンの不純物を含有することが多い。それら不純物はプロセス工程中の有機ポリマー樹脂が分解し汚染物となる。また電子部品を製造する工程で使用されるガス成分が有機ポリマー樹脂中に残存し、同様に電子部品を腐食させる問題がある。そこで本発明では種々検討の結果、有機ポリマー樹脂中に残存した不純物を以下に述べる簡便な方法を用いることで低減できることを見いだした。   In recent years, organic polymer resins have been actively used for insulating films and protective films of electrical parts. However, organic polymer resins often contain metal and halogen impurities. These impurities decompose organic polymer resins in the process and become contaminants. Moreover, the gas component used in the process of manufacturing an electronic component remains in the organic polymer resin, and there is a problem that the electronic component is similarly corroded. In the present invention, as a result of various studies, it has been found that impurities remaining in the organic polymer resin can be reduced by using a simple method described below.

本発明における第1の不純物を低減させる方法は、有機ポリマー樹脂を基板上にパターン加工、硬化を行った後、得られたパターンの加熱処理を行って、有機ポリマー樹脂中に含まれる不純物を低減する方法である。加熱処理を行う温度は100℃以上で行うことができるが、好ましくは200℃以上420℃以下の範囲である。また加熱は有機ポリマー樹脂の硬化工程をそのまま、もう一度繰り返してもかまわない。加熱処理については箱形オーブンやホットプレートを使用することができる。加熱雰囲気は大気中であっても、窒素を流しても良いが、基板の酸化を防ぐため窒素を流した方が好ましい。   The first method for reducing impurities in the present invention is to reduce the impurities contained in the organic polymer resin by subjecting the organic polymer resin to pattern processing and curing on the substrate and then subjecting the resulting pattern to heat treatment. It is a method to do. The temperature at which the heat treatment is performed can be performed at 100 ° C. or higher, but is preferably in the range of 200 ° C. or higher and 420 ° C. or lower. The heating may be repeated once again without changing the curing process of the organic polymer resin. A box oven or a hot plate can be used for the heat treatment. The heating atmosphere may be air or nitrogen may be flowed, but it is preferable to flow nitrogen in order to prevent oxidation of the substrate.

本発明における第2の不純物を低減させる方法は、有機ポリマー樹脂を基板上にパターン加工、硬化を行った後、得られたパターンを塩基性水溶液で洗浄することによって、有
機ポリマー樹脂中に含まれる不純物を低減する方法である。塩基性の水溶液として水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第1アミン類、ジエチルアミン、ジ−n−プロピルアミン等の第2アミン類、トリエチルアミン、メチルジエチルアミン等の第3アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第4級アンモニウム塩等のアルカリ類の水溶液などを用いることができる。これらの中で好ましくはテトラメチルアンモニウムヒドロキシドの水溶液である。
The method for reducing the second impurity in the present invention is included in the organic polymer resin by patterning and curing the organic polymer resin on the substrate and then washing the obtained pattern with a basic aqueous solution. This is a method for reducing impurities. As basic aqueous solution, inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine, di-n Secondary amines such as propylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, quaternary ammonium such as tetramethylammonium hydroxide and tetraethylammonium hydroxide An aqueous solution of an alkali such as a salt can be used. Among these, an aqueous solution of tetramethylammonium hydroxide is preferable.

本発明における第3の不純物を低減させる方法は、有機ポリマー樹脂を基板上にパターン加工、硬化を行った後、得られたパターンを酸系水溶液で洗浄することによって、有機ポリマー樹脂中に含まれる不純物を低減する方法である。酸系の水溶液としては、過酸化水素水、塩酸、硝酸、硫酸を用いることができる。これらの中で好ましくは過酸化水素水が含まれる酸系水溶液である。   The third method for reducing impurities in the present invention is included in the organic polymer resin by patterning and curing the organic polymer resin on the substrate and then washing the resulting pattern with an acid-based aqueous solution. This is a method for reducing impurities. As the acid-based aqueous solution, hydrogen peroxide water, hydrochloric acid, nitric acid, and sulfuric acid can be used. Among these, an acid aqueous solution containing hydrogen peroxide is preferable.

本発明に使用することができる有機ポリマー樹脂としては、フッ素を有する耐熱性樹脂が使用できる。これらのフッ素系の有機ポリマー樹脂は化学反応によって気化する工程においてフッ素イオンとして脱離し、そのままでは腐食などの悪影響を及ぼす。   As the organic polymer resin that can be used in the present invention, a heat-resistant resin having fluorine can be used. These fluorine-based organic polymer resins are desorbed as fluorine ions in the process of vaporization by a chemical reaction, and have an adverse effect such as corrosion.

更にフッ素を有する耐熱性樹脂として、好ましくは一般的な非感光性のポリイミド前駆体(ポリアミド酸)樹脂、ポリアミド酸にエステル結合で感光基を導入したり、ポリイミド酸にイオン結合で感光基を導入したネガ型感光性樹脂前駆体組成物、更に、ポリベンゾオキサゾール前駆体にキノンジアジドスルホン酸エステルを添加したり、フェノール性水酸基を有する閉環型ポリイミドにキノンジアジドスルホン酸エステルを添加したり、ポリイミド前駆体−ポリベンゾオキサゾール前駆体共重合物又は保護基を付けたポリイミド前駆体−ポリベンゾオキサゾール前駆体共重合物にキノンジアジドスルホン酸エステルを添加したポジ型感光性樹脂前駆体組成物等から選ばれた有機ポリマー樹脂を使用できる。これら有機ポリマー樹脂は化学反応によって気化する工程においてイオンとして脱離し、そのままでは腐食などの悪影響を及ぼす。   Further, as a heat-resistant resin having fluorine, preferably a general non-photosensitive polyimide precursor (polyamic acid) resin, a photosensitive group is introduced to the polyamic acid by an ester bond, or a photosensitive group is introduced to the polyimide acid by an ionic bond. Negative photosensitive resin precursor composition, quinonediazidesulfonic acid ester added to polybenzoxazole precursor, quinonediazidesulfonic acid ester added to ring-closing polyimide having phenolic hydroxyl group, polyimide precursor- Organic polymer selected from polybenzoxazole precursor copolymer or positive photosensitive resin precursor composition in which quinonediazide sulfonate is added to polyimide precursor-polybenzoxazole precursor copolymer with protecting group Resin can be used. These organic polymer resins are desorbed as ions in the process of vaporization by a chemical reaction, and have an adverse effect such as corrosion.

これらの中で有効なのは感光性樹脂組成物である。その中でも特にフッ素を有するポジ型の感光性樹脂前駆体組成物が有効である。これは化学反応によって気化する処理によって分解された場合、フッ素イオンの他に感光材のキノンジアジドスルホン酸エステルからの硫黄由来の不純物もあるため、本発明の効果は更に大きくなる。
また、本発明では化学反応によって気化する工程自身が汚染源となる場合についても有効である。化学反応によって気化する工程で例えばフッ素系ガスを用いた場合、フッ素系ガスが有機ポリマー樹脂に浸透して残存し、フッ素イオンとして悪影響を及ぼす。
Among these, a photosensitive resin composition is effective. Among these, a positive photosensitive resin precursor composition containing fluorine is particularly effective. When this is decomposed by a process that is vaporized by a chemical reaction, in addition to fluorine ions, there are also sulfur-derived impurities from the quinonediazide sulfonic acid ester of the photosensitive material, so the effect of the present invention is further enhanced.
Further, the present invention is also effective in the case where the process itself that is vaporized by a chemical reaction becomes a contamination source. When, for example, a fluorine-based gas is used in the step of vaporizing by a chemical reaction, the fluorine-based gas permeates and remains in the organic polymer resin, and adversely affects as fluorine ions.

本発明の具体的な方法は、まず有機ポリマー樹脂を該組成物を適当な支持体、例えば、シリコンウェハー、セラミック、アルミ基板等に塗布する。塗布方法としては、スピンナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等がある。次に、60〜130℃でプリベークして塗膜を乾燥後、所望のパターン形状に化学線を照射する。化学線としては、X線、電子線、紫外線、可視光線等が使用できるが、200〜500nmの波長のものが好ましい。次に照射部を現像液で溶解除去することによりレリーフパターンを得る。現像液としては、ポジ型の場合、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第1アミン類、ジエチルアミン、ジ−n−プロピルアミン等の第2アミン類、トリエチルアミン、メチルジエチルアミン等の第3アミン類、ジメチルエタノールアミン、トリエタノールアミン等のア
ルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第4級アンモニウム塩等のアルカリ類の水溶液、及びこれにメタノール、エタノールのごときアルコール類等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液を好適に使用することができる。またネガ型の場合、N―メチルピロリドン、N、N―ジメチルアセトアミドなどの有機溶媒を使用する。現像方法としては、スプレー、パドル、浸漬、超音波等の方式が可能である。次に、現像によって形成したレリーフパターンをリンスする。リンス液としては、蒸留水を使用する。次に加熱処理を行い、閉環させ、耐熱性に富む有機ポリマー樹脂を得る。
In a specific method of the present invention, the organic polymer resin is first applied to the composition on a suitable support such as a silicon wafer, ceramic, aluminum substrate or the like. Examples of the coating method include spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, and the like. Next, after prebaking at 60 to 130 ° C. to dry the coating film, actinic radiation is applied to the desired pattern shape. As the actinic radiation, X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable. Next, a relief pattern is obtained by dissolving and removing the irradiated portion with a developer. As a developer, in the case of positive type, inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia, primary amines such as ethylamine and n-propylamine, Secondary amines such as diethylamine and di-n-propylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc. An aqueous solution of an alkali such as a quaternary ammonium salt and an aqueous solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant is added can be preferably used. In the case of the negative type, an organic solvent such as N-methylpyrrolidone or N, N-dimethylacetamide is used. As a developing method, methods such as spraying, paddle, dipping, and ultrasonic waves are possible. Next, the relief pattern formed by development is rinsed. Distilled water is used as the rinse liquid. Next, heat treatment is performed and the ring is closed to obtain an organic polymer resin having high heat resistance.

この得られた有機ポリマー樹脂を化学反応によって気化する工程で処理を行う。該工程としては、反応性ガスを利用した工程、反応性のプラズマを利用した工程、反応性のプラズマにイオンの物理的効果を利用した工程を使用することができるが、これらの工程に限らず、有機ポリマー樹脂を化学反応を用いて気化することができる工程ならすべて適応することは可能である。またこれらの工程を一度通した後に、再び同じ工程を通しても、また、別の工程を通しても、その後で行う先に示した本発明の方法は有効である。   The obtained organic polymer resin is treated in a step of vaporizing by a chemical reaction. As the process, a process using a reactive gas, a process using a reactive plasma, and a process using a physical effect of ions for reactive plasma can be used, but not limited to these processes. Any process that can vaporize an organic polymer resin using a chemical reaction can be applied. Also, after passing through these steps once, the method of the present invention described above, which is performed afterwards through the same step or through another step, is effective.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

《実施例1》
*ポリベンゾオキサゾール前駆体の合成
温度計、攪拌機、原料仕込口及び窒素ガス導入口を備えた四つ口セパラブルフラスコにジフェニルエーテル−4、4’−ジカルボン酸258.2g(1.0モル)と1−ヒドロキシベンゾトリアゾール270.3g(2.0モル)とをN−メチル−2−ピロリドン1500.0gに溶解した後、 N−メチル−2−ピロリドン500.0gに溶解したジシ
クロヘキシルカルボジイミド412.7g(2.0モル)を反応系の温度を0〜5℃に冷却しながら滴下する。滴下終了後、反応系の温度を室温に戻し、そのまま12時間攪拌した。反応終了後、析出したジシクロヘキシルカルボジウレアをろ過を行うことによって取り除き、次に濾液に純水2000.0gを滴下する。沈殿物を濾集し、イソプロピルアルコールで充分に洗浄した後、真空乾燥を行い、ジフェニルエーテル−4、4’−ジカルボン酸の両末端に1−ヒドロキシベンゾトリアゾールは2モル反応した活性エステル(A)を得た。
次にこのジカルボン酸誘導体(A)147.7g(0.3モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン120.9g(0.33モル)を N−メチル−2−ピロリドン1000.0gに溶解した。その後、反応系を75
℃にして12時間反応した。次にN−メチル−2−ピロリドン50.0gに溶解した5−ノルボルネン−2,3−ジカルボン酸無水物11.5g(0.07モル)を加えて、更に12時間反応した。反応混合液を水/メタノール=3/1の溶液に投入、沈殿物を回収し純水で充分に洗浄した後、真空下で乾燥しポリベンゾオキサゾール前駆体を得た。
Example 1
* Synthesis of polybenzoxazole precursor 258.2 g (1.0 mol) of diphenyl ether-4,4′-dicarboxylic acid was added to a four-necked separable flask equipped with a thermometer, a stirrer, a raw material charging port and a nitrogen gas inlet. After dissolving 270.3 g (2.0 mol) of 1-hydroxybenzotriazole in 1500.0 g of N-methyl-2-pyrrolidone, 412.7 g of dicyclohexylcarbodiimide dissolved in 500.0 g of N-methyl-2-pyrrolidone ( 2.0 mol) is added dropwise while cooling the temperature of the reaction system to 0-5 ° C. After completion of the dropping, the temperature of the reaction system was returned to room temperature and stirred as it was for 12 hours. After completion of the reaction, the precipitated dicyclohexylcarbodiurea is removed by filtration, and then 2000.0 g of pure water is added dropwise to the filtrate. The precipitate was collected by filtration, thoroughly washed with isopropyl alcohol, and then vacuum-dried. The active ester (A) obtained by reacting 2 mol of 1-hydroxybenzotriazole at both ends of diphenyl ether-4,4′-dicarboxylic acid was obtained. Obtained.
Next, 147.7 g (0.3 mol) of this dicarboxylic acid derivative (A) and 120.9 g (0.33 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane were added to N- Dissolved in 1000.0 g of methyl-2-pyrrolidone. Thereafter, the reaction system is 75
The mixture was reacted at 12 ° C. for 12 hours. Next, 11.5 g (0.07 mol) of 5-norbornene-2,3-dicarboxylic anhydride dissolved in 50.0 g of N-methyl-2-pyrrolidone was added, and the reaction was further continued for 12 hours. The reaction mixture was poured into a solution of water / methanol = 3/1, the precipitate was collected, washed thoroughly with pure water, and then dried under vacuum to obtain a polybenzoxazole precursor.

*有機ポリマー樹脂の作製
合成したポリベンゾオキサゾール前駆体100g、下記式の構造を有するジアゾキノン(Q−1)25重量部をN−メチル−2−ピロリドン200重量部に溶解した後、0.2μmのテフロン(R)フィルターで濾過し有機ポリマー樹脂のワニス(W―1)を得た。
* Production of organic polymer resin 100 g of the synthesized polybenzoxazole precursor and 25 parts by weight of diazoquinone (Q-1) having the structure of the following formula were dissolved in 200 parts by weight of N-methyl-2-pyrrolidone. Filtration through a Teflon (R) filter gave an organic polymer resin varnish (W-1).

Figure 2009069849
Figure 2009069849

*不純物低減評価
この得られた有機ポリマー樹脂をシリコンウエハー上にスピンコーターを用いて塗布した後、ホットプレートで120℃/4分で乾燥した。次にこのウエハーをオーブン中で窒素雰囲気下で30分/150℃、30分/320℃の順で加熱、樹脂を硬化させ、硬化後6μmの膜を得た。次にプラズマ装置OPM−EM1000を使用し、酸素ガス200sccmのガスを使用し、600ワットで15分間酸素プラズマ処理した。次にオーブンを用いて300℃/60分、窒素気流下で加熱処理を行った。次にこのポジ型感光性樹脂が付いたウエハーを耐圧容器に入れ、純水を用いて125℃、20時間で抽出を行った。次に純水中のフッ素イオン濃度をイオンクロマトを用いて測定したところ、6インチウエハー1枚あたりから検出されたフッ素イオンは8μgであった。
* Impurity reduction evaluation The obtained organic polymer resin was applied on a silicon wafer using a spin coater, and then dried on a hot plate at 120 ° C for 4 minutes. Next, this wafer was heated in an oven in the order of 30 minutes / 150 ° C. and 30 minutes / 320 ° C. in a nitrogen atmosphere to cure the resin. After curing, a 6 μm film was obtained. Next, the plasma apparatus OPM-EM1000 was used, and oxygen plasma treatment was performed for 15 minutes at 600 watts using a gas of 200 sccm of oxygen gas. Next, heat treatment was performed using an oven at 300 ° C./60 minutes under a nitrogen stream. Next, the wafer with the positive photosensitive resin was placed in a pressure vessel and extracted with pure water at 125 ° C. for 20 hours. Next, when the fluorine ion concentration in the pure water was measured using ion chromatography, the amount of fluorine ion detected from one 6-inch wafer was 8 μg.

《実施例2》
*フェノール性水酸基含有閉環型ポリイミドの合成
温度計、攪拌機、原料仕込口及び窒素ガス導入口を備えた四つ口セパラブルフラスコにヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン292.5(0.80モル)を N−メチル−2−ピロリドン1200.0gに溶解した。
次に4,4’―(ヘキサフルオロイソプロピリデン)フタル酸二無水物173.3g(0.39モル)と3、3’、4、4’―ベンゾフェノンテトラカルボン酸二無水物125.7g(0.39モル)を添加して、室温で8時間攪拌した。次に冷却器ディーンースターク・トラップをフラスコに取り付け、トルエン100gを加える。次に140℃で3時間反応した後、180〜190℃まで昇温し、30分加熱を行い、水―トルエンの共沸物を完全に取り除いた。反応終了後、水浴で室温まで下げて目的のポリイミドワニスを得た。
Example 2
* Synthesis of ring-closed polyimide containing phenolic hydroxyl group Hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) in a four-necked separable flask equipped with a thermometer, stirrer, raw material inlet and nitrogen gas inlet ) Propane 292.5 (0.80 mol) was dissolved in 1200.0 g N-methyl-2-pyrrolidone.
Next, 173.3 g (0.39 mol) of 4,4 ′-(hexafluoroisopropylidene) phthalic dianhydride and 125.7 g of 0,3,4′-benzophenonetetracarboxylic dianhydride (0 .39 mol) was added and stirred at room temperature for 8 hours. A condenser Dean-Stark trap is then attached to the flask and 100 g of toluene is added. Next, after reacting at 140 ° C. for 3 hours, the temperature was raised to 180 to 190 ° C., heating was performed for 30 minutes, and the water-toluene azeotrope was completely removed. After completion of the reaction, the desired polyimide varnish was obtained by lowering to room temperature in a water bath.

*有機ポリマー樹脂の作製
合成したポリイミドワニスに500gに、前記式の構造を有するジアゾキノン(Q−1)40gを溶解した後、0.2μmのテフロン(R)フィルターで濾過し有機ポリマー樹脂のワニス(W―2)を得た。
* Preparation of Organic Polymer Resin After dissolving 40 g of diazoquinone (Q-1) having the structure of the above formula in 500 g of the synthesized polyimide varnish, it was filtered through a 0.2 μm Teflon (R) filter and the organic polymer resin varnish ( W-2) was obtained.

*不純物低減評価
実施例1と同様の方法で分析用サンプルの作成及び処理を行い、フッ素イオンを分析し
たところ、10μgであった。
* Impurity reduction evaluation Samples for analysis were prepared and processed in the same manner as in Example 1 and analyzed for fluorine ions.

《実施例3》
*エステル型感光性ポリイミド前駆体の合成
温度計、攪拌機、原料仕込口及び窒素ガス導入口を備えた四つ口セパラブルフラスコに3、3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物161.1g(0.5モル)、4,4′−(ヘキサフルオロイソプロピリデン)フタル酸ニ無水物222.1g(0.5モル)を2−ヒドロキシエチルメタクリレート260.28g(2.0モル)をN−メチル−2−ピロリドンに懸濁し、ピリジン166.1g(2.1モル)を加え、25℃で10時間反応させた。次に1−ヒドロキシ−1,2,3−ベンゾトリアゾール270.2g(2.0モル)を加え1時間で完全に溶解した後、反応系を10℃以下に保ちながらN−メチル−2−ピロリドン400gに溶解したジシクロヘキシルカルボジイミド412.6g(2.0モル)を約20分かけて滴下した。その後25℃で3時間反応を行った。反応した反応溶液に4,4’−ジアミノジフェニルエーテル190.2(0.95モル)、30℃で5時間反応を行った。ジシクロヘキシルウレアを濾別した後、反応混合物をメタノールに再沈し、固形物を濾集し、メタノールで洗浄後、48時間減圧乾燥した。
*有機ポリマー樹脂の作製*
更に、この得られたポリマー100gを、N−メチル−2−ピロリドン200gに溶解し、更にメチルエーテルハイドロキノン0.1gとN−フェニルグリシン5g、1−フェニル−5−メルカプト−1H−テトラゾール1g、3−(2−ベンズイミダゾリル)−7−ジエチルアミノクマリン0.5g、テトラエチレングリコールジメタクリレート10gを添加し、0.2μmのテフロン(R)フィルターで濾過し有機ポリマー樹脂のワニス(W―3)を得た。
Example 3
* Synthesis of ester-type photosensitive polyimide precursor 3, 3 ', 4, 4'-benzophenone tetracarboxylic dianhydride in a four-necked separable flask equipped with a thermometer, stirrer, raw material inlet and nitrogen gas inlet 161.1 g (0.5 mol), 4,4 ′-(hexafluoroisopropylidene) phthalic dianhydride 222.1 g (0.5 mol) and 260-28 g (2.0 mol) of 2-hydroxyethyl methacrylate Was suspended in N-methyl-2-pyrrolidone, 166.1 g (2.1 mol) of pyridine was added, and the mixture was reacted at 25 ° C. for 10 hours. Next, after adding 270.2 g (2.0 mol) of 1-hydroxy-1,2,3-benzotriazole and completely dissolving in 1 hour, N-methyl-2-pyrrolidone was maintained while maintaining the reaction system at 10 ° C. or lower. 412.6 g (2.0 mol) of dicyclohexylcarbodiimide dissolved in 400 g was added dropwise over about 20 minutes. Thereafter, the reaction was carried out at 25 ° C. for 3 hours. The reacted solution was reacted at 4,4′-diaminodiphenyl ether 190.2 (0.95 mol) at 30 ° C. for 5 hours. After dicyclohexylurea was filtered off, the reaction mixture was reprecipitated in methanol, and the solid matter was collected by filtration, washed with methanol, and dried under reduced pressure for 48 hours.
* Production of organic polymer resin *
Further, 100 g of the obtained polymer was dissolved in 200 g of N-methyl-2-pyrrolidone, and further 0.1 g of methyl ether hydroquinone, 5 g of N-phenylglycine, 1 g of 1-phenyl-5-mercapto-1H-tetrazole, 3 g -(2-Benzimidazolyl) -7-diethylaminocoumarin 0.5 g and tetraethylene glycol dimethacrylate 10 g were added and filtered through a 0.2 μm Teflon (R) filter to obtain an organic polymer resin varnish (W-3). It was.

*不純物低減評価
実施例1と同様の方法で分析用サンプルの作成及び処理を行い、フッ素イオンを分析したところ、7μgであった。
* Impurity reduction evaluation An analytical sample was prepared and processed in the same manner as in Example 1 and analyzed for fluorine ions. The result was 7 µg.

《実施例4》
*ポリアミド酸(ポリイミド前駆体)の合成
温度計、攪拌機、原料仕込口及び窒素ガス導入口を備えた四つ口セパラブルフラスコに2、2’―ビス〔4−(4−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン518.5g(1.00モル)、1、3−ビス(3−アミノプロピル)−1、1、3、3−テトラメチルジシロキサン12.4g(0.05モル)をN−メチル−2−ピロリドン2441gに溶解した。次にこの溶液を氷冷により20℃以下に保ちながら4,4′−(ヘキサフルオロイソプロピリデン)フタル酸ニ無水物444.2g(1.0モル)を加えた。その後、5時間反応させポリアミド酸を得た。次に合成したポリイミドワニスを、0.2μmのテフロン(R)フィルターで濾過し、ワニス(W―4)を得た。
*不純物低減評価
実施例1と同様の方法で分析用サンプルの作成及び処理を行い、フッ素イオンを分析したところ、13μgであった。
Example 4
* Synthesis of polyamic acid (polyimide precursor) 2,2'-bis [4- (4-aminophenoxy) phenyl] into a four-necked separable flask equipped with a thermometer, stirrer, raw material inlet and nitrogen gas inlet 518.5 g (1.00 mol) of hexafluoropropane, 12.4 g (0.05 mol) of 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane were converted to N-methyl. Dissolved in 2441 g of 2-pyrrolidone. Next, 444.2 g (1.0 mol) of 4,4 ′-(hexafluoroisopropylidene) phthalic dianhydride was added while keeping this solution at 20 ° C. or less by cooling with ice. Then, it was made to react for 5 hours and the polyamic acid was obtained. Next, the synthesized polyimide varnish was filtered through a 0.2 μm Teflon (R) filter to obtain a varnish (W-4).
* Impurity reduction evaluation An analytical sample was prepared and processed in the same manner as in Example 1 and analyzed for fluorine ions.

《実施例5》
ヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン219.7g(0.6モル)をN−メチル−2−ピロリドン1000gに溶解させた後、N−メチル−2−ピロリドン800gに溶解させたトリメリット酸クロライド252.7g(1.2モル)を5℃以下に冷却しながら加える。更にピリジン113.9g(1.44モル)を加えて、20℃以下で3時間攪拌する。次に、4,4’−ジアミノジフェニルエーテル120.1g(0.6モル)を加えた後、室温で5時間反応させる。次に内温を85℃に昇温し、3時間攪拌する。反応終了後、濾過した濾液を、水/メタノール=5/1(
容積比)に投入して沈殿を得た。沈殿物をテトラヒドロフラン3000mlに溶解した後、更に0.1%塩酸水溶液へ投入し沈殿物を得た。それを濾集し水で充分洗浄した後、真空下で乾燥し、目的のポリアミド樹脂を得た。
*有機ポリマー樹脂の作製
合成したポリアミド樹脂500gに、前記式の構造を有するジアゾキノン(Q−1)40gを溶解した後、0.2μmのテフロン(R)フィルターで濾過し有機ポリマー樹脂のワニス(W―5)を得た。
*不純物低減評価
実施例1と同様の方法で分析用サンプルの作成及び処理を行い、フッ素イオンを分析したところ、8μgであった。
Example 5
After dissolving 219.7 g (0.6 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane in 1000 g of N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone 252.7 g (1.2 mol) of trimellitic acid chloride dissolved in 800 g is added while cooling to 5 ° C. or lower. Further, 113.9 g (1.44 mol) of pyridine is added and stirred at 20 ° C. or lower for 3 hours. Next, after adding 120.1 g (0.6 mol) of 4,4′-diaminodiphenyl ether, the mixture is reacted at room temperature for 5 hours. Next, the internal temperature is raised to 85 ° C. and stirred for 3 hours. After completion of the reaction, the filtrate was filtered with water / methanol = 5/1 (
To obtain a precipitate. The precipitate was dissolved in 3000 ml of tetrahydrofuran, and then poured into a 0.1% aqueous hydrochloric acid solution to obtain a precipitate. It was collected by filtration, thoroughly washed with water, and then dried under vacuum to obtain the desired polyamide resin.
* Production of organic polymer resin In 500 g of the synthesized polyamide resin, 40 g of diazoquinone (Q-1) having the structure of the above formula was dissolved, and then filtered through a 0.2 μm Teflon (R) filter, and the organic polymer resin varnish (W -5) was obtained.
* Impurity reduction evaluation A sample for analysis was prepared and processed in the same manner as in Example 1 and analyzed for fluorine ions.

《実施例6》
実施例1の不純物低減評価において、同条件で酸素プラズマ処理を行った後、オーブンを用いて220℃/60分、窒素気流下で加熱処理を行った。後は実施例1と全く同様の操作を行い、フッ素イオンを分析したところ、12μgであった。
Example 6
In the impurity reduction evaluation of Example 1, oxygen plasma treatment was performed under the same conditions, and then heat treatment was performed using an oven at 220 ° C./60 minutes under a nitrogen stream. After that, exactly the same operation as in Example 1 was performed, and the fluorine ion was analyzed and found to be 12 μg.

《実施例7》
実施例1の不純物低減評価において、同条件で酸素プラズマ処理を行った後、オーブンを用いて250℃/60分、窒素気流下で加熱処理を行った。後は実施例1と全く同様の操作を行い、フッ素イオンを分析したところ、11μgであった。
Example 7
In the impurity reduction evaluation of Example 1, oxygen plasma treatment was performed under the same conditions, and then heat treatment was performed using an oven at 250 ° C./60 minutes under a nitrogen stream. Thereafter, the same operation as in Example 1 was performed, and the fluorine ion was analyzed and found to be 11 μg.

《実施例8》
実施例1の不純物低減評価においての300℃/60分の熱処理の代わりに、オーブン中で窒素雰囲気下で30分/150℃、30分/320℃の順で再度硬化の熱処理を行い、後は実施例1と全く同様の操作を行い、フッ素イオンを分析したところ、6μgであった。
Example 8
Instead of the heat treatment at 300 ° C./60 minutes in the impurity reduction evaluation of Example 1, the heat treatment for curing was performed again in the order of 30 minutes / 150 ° C. and 30 minutes / 320 ° C. in a nitrogen atmosphere in the oven. The same operation as in Example 1 was performed, and the fluorine ion was analyzed and found to be 6 μg.

《実施例9》
実施例1の不純物低減評価において酸素プラズマ処理において酸素ガス200sccmのガスを使用し、400ワットで10分間酸素プラズマ処理した。後は実施例1と全く同様の操作を行い、フッ素イオンを分析したところ、5μgであった。
Example 9
In the impurity reduction evaluation of Example 1, an oxygen plasma treatment was performed at 400 watts for 10 minutes using a gas of 200 sccm of oxygen gas in the oxygen plasma treatment. Thereafter, the same operation as in Example 1 was performed, and the fluorine ion was analyzed and found to be 5 μg.

《実施例10》
実施例1の不純物低減評価において酸素プラズマ処理においてCF4/O2=160/40sccmの混合ガスを使用し、400ワットで10分間プラズマ処理した。後は実施例1と全く同様の操作を行い、フッ素イオンを分析したところ、5μgであった。
Example 10
In the impurity reduction evaluation of Example 1, a plasma treatment was performed at 400 watts for 10 minutes using a mixed gas of CF 4 / O 2 = 160/40 sccm in the oxygen plasma treatment. Thereafter, the same operation as in Example 1 was performed, and the fluorine ion was analyzed and found to be 5 μg.

《実施例11》
実施例1の不純物低減評価において、同条件で酸素プラズマ処理を行った後、テトラメチルアンモニウムハイドロオキサイド2.38%で10秒洗浄した後、純水で1分間リンスし、60℃で1時間乾燥させた。後は実施例1と全く同様の操作を行い、フッ素イオンを分析したところ、13μgであった。
Example 11
In the impurity reduction evaluation of Example 1, after performing oxygen plasma treatment under the same conditions, it was washed with tetramethylammonium hydroxide 2.38% for 10 seconds, rinsed with pure water for 1 minute, and dried at 60 ° C. for 1 hour. I let you. After that, exactly the same operation as in Example 1 was performed, and the fluorine ion was analyzed and found to be 13 μg.

実施例12〜15については表2に示したように有機ポリマー樹脂の種類を変えて実験した。   Examples 12 to 15 were conducted by changing the kind of the organic polymer resin as shown in Table 2.

実施例16〜17については塩基性溶液をテトラメチルアンモニウムハイドロオキサイド2.38%の代わりに、それぞれ25%NaOH水溶液、10%KOH水溶液を用いて実験した。   For Examples 16 to 17, the basic solution was tested using 25% NaOH aqueous solution and 10% KOH aqueous solution, respectively, instead of tetramethylammonium hydroxide 2.38%.

実施例18については実施例9と同じ化学反応によって気化する条件で処理を行った後、テトラメチルアンモニウムハイドロオキサイド2.38%で10秒洗浄した後、純水で1分間リンスし、60℃で1時間乾燥させた。後は実施例1と全く同様の操作を行い、フッ素イオンの分析を行った。   Example 18 was treated under the same vaporization conditions as in Example 9, then washed with 2.38% tetramethylammonium hydroxide for 10 seconds, rinsed with pure water for 1 minute, and at 60 ° C. Dry for 1 hour. Thereafter, the same operation as in Example 1 was performed to analyze the fluorine ions.

実施例19については実施例10と同じ化学反応によって気化する条件で処理を行った後、テトラメチルアンモニウムハイドロオキサイド2.38%で10秒洗浄した後、純水で1分間リンスし、60℃で1時間乾燥させた後、純水で1分間リンスし、60℃で1時間乾燥させた。後は実施例1と全く同様の操作を行い、フッ素イオンの分析を行った。   Example 19 was treated under the same chemical reaction conditions as Example 10, and then washed with 2.38% tetramethylammonium hydroxide for 10 seconds, rinsed with pure water for 1 minute, and heated at 60 ° C. After drying for 1 hour, it was rinsed with pure water for 1 minute and dried at 60 ° C. for 1 hour. Thereafter, the same operation as in Example 1 was performed to analyze the fluorine ions.

《実施例20》
実施例1の不純物低減評価において、同条件で酸素プラズマ処理を行った後、過酸化水素水で10秒洗浄した後、純水で1分間リンスし、60℃で1時間乾燥させた。後は実施例1と全く同様の操作を行い、フッ素イオン濃度を分析したところ、13μgであった。
Example 20
In the impurity reduction evaluation of Example 1, oxygen plasma treatment was performed under the same conditions, followed by washing with hydrogen peroxide for 10 seconds, rinsing with pure water for 1 minute, and drying at 60 ° C. for 1 hour. Thereafter, the same operation as in Example 1 was performed, and the fluorine ion concentration was analyzed and found to be 13 μg.

実施例21〜24については表3に示したように有機ポリマー樹脂の種類を変えて実験した。   In Examples 21 to 24, as shown in Table 3, the experiment was performed by changing the type of the organic polymer resin.

実施例25〜26については酸性溶液を過酸化水素水の代わりに、それぞれ硫酸/過酸化水素水=4/4(wt%)、塩酸/過酸化水素水/水=1/1/10(wt%)を用いて実験した。   In Examples 25 to 26, instead of the hydrogen peroxide solution, the acidic solution was sulfuric acid / hydrogen peroxide solution = 4/4 (wt%) and hydrochloric acid / hydrogen peroxide solution / water = 1/1/10 (wt), respectively. %).

実施例27については実施例9と同じ化学反応によって気化する条件で処理を行った後、過酸化水素水で10秒洗浄した後、純水で1分間リンスし、60℃で1時間乾燥させた。後は実施例1と全く同様の操作を行い、フッ素イオンの分析を行った。   Example 27 was treated under the same chemical reaction conditions as Example 9, and then washed with hydrogen peroxide for 10 seconds, rinsed with pure water for 1 minute, and dried at 60 ° C. for 1 hour. . Thereafter, the same operation as in Example 1 was performed to analyze the fluorine ions.

実施例28については実施例10と同じ化学反応によって気化する条件で処理を行った後、過酸化水素水で10秒洗浄した後、純水で1分間リンスし、60℃で1時間乾燥させた後、純水で1分間リンスし、60℃で1時間乾燥させた。後は実施例1と全く同様の操作を行い、フッ素イオンの分析を行った。   About Example 28, after performing the process on the conditions which vaporize by the same chemical reaction as Example 10, it wash | cleaned for 10 second with the hydrogen peroxide solution, rinsed with the pure water for 1 minute, and was dried at 60 degreeC for 1 hour. Thereafter, it was rinsed with pure water for 1 minute and dried at 60 ° C. for 1 hour. Thereafter, the same operation as in Example 1 was performed to analyze the fluorine ions.

《比較例1》
実施例1の不純物低減評価において、300℃/60分の加熱処理を行わないで後は実施例1と同様の評価を行い、フッ素イオンを分析したところ、35μgであった。
<< Comparative Example 1 >>
In the impurity reduction evaluation of Example 1, without performing the heat treatment at 300 ° C./60 minutes, the same evaluation as in Example 1 was performed thereafter, and the fluorine ions were analyzed, and the result was 35 μg.

《比較例2》
実施例2の不純物低減評価において、300℃/60分の加熱処理を行わないで後は実施例1と同様の評価を行い、フッ素イオンを分析したところ、41μgであった。
<< Comparative Example 2 >>
In the impurity reduction evaluation in Example 2, the heat treatment at 300 ° C./60 minutes was not performed, and thereafter, the same evaluation as in Example 1 was performed, and the fluorine ions were analyzed. As a result, it was 41 μg.

《比較例3》
実施例3の不純物低減評価において、300℃/60分の加熱処理を行わないで後は実施例1と同様の評価を行い、フッ素イオンを分析したところ、30μgであった。
<< Comparative Example 3 >>
In the impurity reduction evaluation of Example 3, the same evaluation as in Example 1 was performed after the heat treatment at 300 ° C./60 minutes was not performed, and the fluorine ion was analyzed and found to be 30 μg.

《比較例4》
実施例4の不純物低減評価において、300℃/60分の加熱処理を行わないで後は実施例1と同様の評価を行い、フッ素イオンを分析したところ、38μgであった。
<< Comparative Example 4 >>
In the impurity reduction evaluation in Example 4, the heat treatment at 300 ° C./60 minutes was not performed, and thereafter the same evaluation as in Example 1 was performed, and fluorine ions were analyzed. As a result, it was 38 μg.

《比較例5》
実施例5の不純物低減評価において、300℃/60分の加熱処理を行わないで後は実施例1と同様の評価を行い、フッ素イオンを分析したところ、34μgであった。
<< Comparative Example 5 >>
In the impurity reduction evaluation of Example 5, without performing the heat treatment at 300 ° C./60 minutes, the same evaluation as in Example 1 was performed and the fluorine ions were analyzed. As a result, it was 34 μg.

《比較例6》
実施例1の不純物低減評価において、同条件で酸素プラズマ処理を行った後、純水だけで3分間リンスし、60℃で1時間乾燥させた。後は実施例1と全く同様の操作を行い、フッ素イオンを分析したところ、30μgであった。
<< Comparative Example 6 >>
In the impurity reduction evaluation of Example 1, oxygen plasma treatment was performed under the same conditions, followed by rinsing with pure water only for 3 minutes and drying at 60 ° C. for 1 hour. Thereafter, the same operation as in Example 1 was performed, and the fluorine ion was analyzed and found to be 30 μg.

Figure 2009069849
Figure 2009069849

Claims (8)

基板上にパターン加工、硬化した有機ポリマー樹脂の一部を化学反応によって気化した後、100℃以上の温度で加熱処理を行って、有機ポリマー樹脂中に含まれる不純物を低減することを特徴とする不純物の低減方法。 A part of the organic polymer resin that has been patterned and cured on the substrate is vaporized by a chemical reaction, and then heat treatment is performed at a temperature of 100 ° C. or more to reduce impurities contained in the organic polymer resin. Impurity reduction method. 加熱処理を行う温度が200℃以上420℃以下である請求項1記載の不純物低減方法。 The impurity reduction method according to claim 1, wherein a temperature at which the heat treatment is performed is 200 ° C. or higher and 420 ° C. or lower. 基板上にパターン加工、硬化した有機ポリマー樹脂の一部を化学反応によって気化した後、塩基性水溶液で洗浄することによって、有機ポリマー樹脂中に含まれる不純物を低減することを特徴とする不純物の低減方法。 Impurity reduction is characterized by reducing the impurities contained in the organic polymer resin by evaporating a part of the patterned and cured organic polymer resin on the substrate by chemical reaction and then washing with a basic aqueous solution. Method. 塩基性水溶液がテトラメチルアンモニウムハイドロオキシド水溶液である請求項3記載の不純物低減方法。 4. The impurity reduction method according to claim 3, wherein the basic aqueous solution is a tetramethylammonium hydroxide aqueous solution. 基板上にパターン加工、硬化した有機ポリマー樹脂の一部を化学反応によって気化した後、酸系水溶液で洗浄することによって、有機ポリマー樹脂中に含まれる不純物を低減することを特徴とする不純物の低減方法。 Impurity reduction characterized by reducing impurities contained in organic polymer resin by vaporizing a part of the patterned and cured organic polymer resin on the substrate by chemical reaction and then washing with acid aqueous solution Method. 酸系水溶液が過酸化水素水を含む溶液である請求項5記載の不純物低減方法。 The impurity reduction method according to claim 5, wherein the acid-based aqueous solution is a solution containing hydrogen peroxide. 該有機ポリマー樹脂がフッ素を有する耐熱性樹脂であることを特徴とする請求項1〜6のいずれか1項に記載の不純物低減方法。 The impurity reduction method according to claim 1, wherein the organic polymer resin is a heat-resistant resin having fluorine. フッ素を有する耐熱性樹脂が、ポリイミド前駆体樹脂、エステル結合又はイオン結合で感光基を導入ポリアミド酸、ポリベンゾオキサゾール前駆体樹脂、ポリイミド前駆体−ポリベンゾオキサゾール前駆体共重合物、及び保護基を付けたポリイミド前駆体−ポリベンゾオキサゾール前駆体により構成される感光性樹脂組成物の群から選ばれた耐熱性樹脂である請求項7記載の不純物低減方法。 Fluorine-containing heat-resistant resin introduces polyimide precursor resin, photosensitive group introduced by ester bond or ionic bond, polyamic acid, polybenzoxazole precursor resin, polyimide precursor-polybenzoxazole precursor copolymer, and protective group The impurity reduction method according to claim 7, wherein the impurity reduction method is a heat resistant resin selected from the group of photosensitive resin compositions composed of an attached polyimide precursor-polybenzoxazole precursor.
JP2008305913A 2008-12-01 2008-12-01 Method for reducing impurities in insulating film or protective film Expired - Fee Related JP4752902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305913A JP4752902B2 (en) 2008-12-01 2008-12-01 Method for reducing impurities in insulating film or protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305913A JP4752902B2 (en) 2008-12-01 2008-12-01 Method for reducing impurities in insulating film or protective film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003164793A Division JP2005003767A (en) 2003-06-10 2003-06-10 Method for reducing impurity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011070469A Division JP5088431B2 (en) 2011-03-28 2011-03-28 Impurity reduction method

Publications (2)

Publication Number Publication Date
JP2009069849A true JP2009069849A (en) 2009-04-02
JP4752902B2 JP4752902B2 (en) 2011-08-17

Family

ID=40606081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305913A Expired - Fee Related JP4752902B2 (en) 2008-12-01 2008-12-01 Method for reducing impurities in insulating film or protective film

Country Status (1)

Country Link
JP (1) JP4752902B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114873A1 (en) * 2010-03-18 2011-09-22 株式会社半導体エネルギー研究所 Film-forming method and film-forming substrate production method
US8900675B2 (en) 2010-03-18 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing deposition substrate
US8951816B2 (en) 2010-03-18 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Film forming method
WO2022050135A1 (en) * 2020-09-07 2022-03-10 富士フイルム株式会社 Cured product production method, laminate production method, and semiconductor device production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292941A (en) * 1999-04-12 2000-10-20 Hitachi Ltd Manufacture of photomask
JP2001242640A (en) * 2000-02-29 2001-09-07 Sumitomo Bakelite Co Ltd Processing method for photosensitive resin composition and semiconductor device using same
JP2003140364A (en) * 2001-11-02 2003-05-14 Mitsubishi Gas Chem Co Inc Resist removing solution for copper wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292941A (en) * 1999-04-12 2000-10-20 Hitachi Ltd Manufacture of photomask
JP2001242640A (en) * 2000-02-29 2001-09-07 Sumitomo Bakelite Co Ltd Processing method for photosensitive resin composition and semiconductor device using same
JP2003140364A (en) * 2001-11-02 2003-05-14 Mitsubishi Gas Chem Co Inc Resist removing solution for copper wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114873A1 (en) * 2010-03-18 2011-09-22 株式会社半導体エネルギー研究所 Film-forming method and film-forming substrate production method
US8815352B2 (en) 2010-03-18 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Film forming method and method for manufacturing film-formation substrate
US8900675B2 (en) 2010-03-18 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing deposition substrate
US8951816B2 (en) 2010-03-18 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Film forming method
JP5666556B2 (en) * 2010-03-18 2015-02-12 株式会社半導体エネルギー研究所 Film forming method and film forming substrate manufacturing method
WO2022050135A1 (en) * 2020-09-07 2022-03-10 富士フイルム株式会社 Cured product production method, laminate production method, and semiconductor device production method

Also Published As

Publication number Publication date
JP4752902B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
EP2280309B1 (en) Positive-type photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device and display device each comprising the cured film
JP4752902B2 (en) Method for reducing impurities in insulating film or protective film
JP5562585B2 (en) Photosensitive resin composition
JPH11202489A (en) Photosensitive heat resistant resin precursor composition
JP4942552B2 (en) Polyamide and positive photosensitive resin composition
JP5129598B2 (en) Polycondensation compound and positive photosensitive resin composition
JP4752903B2 (en) Method for reducing impurities in insulating film or protective film
JP5088431B2 (en) Impurity reduction method
JP2005242328A (en) Positive photosensitive resin composition, semiconductor device and display component using the positive photosensitive resin composition, and method for producing semiconductor device and display component
JP4878525B2 (en) Positive photosensitive resin composition
JP2005003767A (en) Method for reducing impurity
JP2009175651A (en) Positive photosensitive resin composition, cured layer, protecting layer, insulating layer and semiconductor device and display therewith
JP4548318B2 (en) Positive photosensitive resin composition and semiconductor device using the positive photosensitive resin composition
WO2011121960A1 (en) Method for producing positive photosensitive resin composition, positive photosensitive resin composition, and filter
JP4558976B2 (en) Positive photosensitive resin composition
JP2011133615A (en) Positive photosensitive resin composition
JP3953759B2 (en) Semiconductor device
JP4581511B2 (en) Positive photosensitive resin composition, semiconductor device and display element, and method for manufacturing semiconductor device and display element
JPH04363361A (en) Heat-resistant positive type photoresist composition
CN114539524B (en) Photosensitive resin precursor polymer, photosensitive resin composition slurry and application thereof
JP2005249847A (en) Positive photosensitive resin composition and semiconductor device or display component using the same
JP4245077B1 (en) Photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device using the same.
JP4206718B2 (en) Method for producing photosensitive polyamide resin composition
TW201033251A (en) Positive type photosensitive polyimide resin composition
JP4560247B2 (en) Positive photosensitive resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4752902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees