JP2009068096A - Method for refining stainless steel - Google Patents

Method for refining stainless steel Download PDF

Info

Publication number
JP2009068096A
JP2009068096A JP2007240610A JP2007240610A JP2009068096A JP 2009068096 A JP2009068096 A JP 2009068096A JP 2007240610 A JP2007240610 A JP 2007240610A JP 2007240610 A JP2007240610 A JP 2007240610A JP 2009068096 A JP2009068096 A JP 2009068096A
Authority
JP
Japan
Prior art keywords
slag
refining
molten steel
stainless steel
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007240610A
Other languages
Japanese (ja)
Other versions
JP5338056B2 (en
Inventor
Masahiro Yamazaki
正弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007240610A priority Critical patent/JP5338056B2/en
Publication of JP2009068096A publication Critical patent/JP2009068096A/en
Application granted granted Critical
Publication of JP5338056B2 publication Critical patent/JP5338056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining stainless steel, which can efficiently desulfurize, reduce and refine the stainless steel to a high level at a low cost, and can produce a safe slag for civil engineering and construction materials. <P>SOLUTION: In a process of refining the stainless steel by forming molten steel and slag floating on its bath surface with an AOD process or a VOD process, and refining the molten steel by reacting the molten steel with the slag while stirring them with argon gas blown into the molten steel, this refining method includes adding three kinds of quicklime, ferrosilicon and metallic Al at the same time into a molten steel which has been decarbonization-refined, without using a slag-making material containing CaF<SB>2</SB>as a main component to control a distribution ratio of S between the slag and the molten steel to 300 or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ステンレス鋼の精錬方法に関し、特に、AOD法またはVOD法によるステンレス鋼の精錬方法に関する。   The present invention relates to a method for refining stainless steel, and particularly to a method for refining stainless steel by an AOD method or a VOD method.

図1は、ステンレス鋼を製造する概略工程を説明する図である。同図に示すように、ステンレス鋼は、電気炉または転炉で溶製したステンレス粗溶鋼をAOD法、VOD法、またはこれらの組合せによって二次精錬を行い、その溶鋼を鋳造し、圧延して製造される。   FIG. 1 is a diagram illustrating a schematic process for producing stainless steel. As shown in the figure, stainless steel is obtained by performing secondary refining of stainless steel coarsely melted in an electric furnace or converter using the AOD method, VOD method, or a combination thereof, casting the molten steel, and rolling it. Manufactured.

その際、電気炉では、所望の成分組成となるように、主原料としてのステンレススクラップ、および各種成分の原料を溶解し、粗溶鋼を溶製する。転炉では、溶銑にCr合金鉄等を添加して粗溶鋼を溶製する。   At that time, in the electric furnace, the stainless steel scrap as the main raw material and the raw materials of various components are melted so as to obtain a desired component composition, and the molten steel is melted. In the converter, Cr alloy iron or the like is added to the molten iron to produce crude molten steel.

VOD法による二次精錬においては、粗溶鋼をVOD用取鍋に移送し、減圧雰囲気下で、アルゴンガスを粗溶鋼内に吹き込むことによって粗溶鋼を攪拌させながら、酸素ガスを粗溶鋼の浴面に吹き付けて脱炭精錬を行い、溶鋼中のC濃度を目標値に調整する。その後、脱炭精錬時に付随的に酸化されて溶鋼中からスラグ中に移行したCrを回収するために、脱酸剤を添加し還元精錬を行う。還元精錬時に、Si、Mn等の成分調整を行う。また、AOD法による二次精錬においては、粗溶鋼をAOD用炉に移送し、アルゴンガスと酸素ガスを粗溶鋼内に吹き込むことによって粗溶鋼を攪拌させながら脱炭精錬を行い、その後、脱酸剤の添加により溶鋼を還元精錬し、成分調整を行う。   In secondary refining by the VOD method, the crude molten steel is transferred to a ladle for VOD, and oxygen gas is supplied to the bath surface of the molten molten steel while stirring the molten molten steel by blowing argon gas into the molten molten steel under a reduced pressure atmosphere. And decarburizing and refining to adjust the C concentration in the molten steel to the target value. Thereafter, in order to recover Cr that has been incidentally oxidized during the decarburization refining and transferred from the molten steel to the slag, a deoxidizing agent is added and reductive refining is performed. During reductive refining, components such as Si and Mn are adjusted. In the secondary refining by the AOD method, the molten steel is transferred to an AOD furnace, and decarburization refining is performed while the molten molten steel is stirred by blowing argon gas and oxygen gas into the molten molten steel. Additives are added to reduce and refine the molten steel to adjust the ingredients.

そして、二次精錬後の溶鋼を連続鋳造機にて鋳造し、得られた鋳片を熱間圧延、冷間圧延することにより、ステンレス鋼としての所望の鋼材が製造される。   And the desired steel material as stainless steel is manufactured by casting the molten steel after secondary refining with a continuous casting machine, and carrying out hot rolling and cold rolling of the obtained slab.

ここで、電気炉または転炉にて溶製した粗溶鋼中には、原料または合金鉄に含まれるS(硫黄)成分に起因して、高濃度のSが含有され、AOD法またはVOD法による二次精錬における脱炭精錬の後にも残留する。このため、脱炭精錬後の還元精錬工程において、脱酸剤の他に、造滓剤としてCaOを主成分とする生石灰を添加し、溶鋼中のSをスラグに移行させる脱硫も行われる。   Here, due to the S (sulfur) component contained in the raw material or the alloyed iron, the high-concentration S is contained in the crude molten steel melted in the electric furnace or converter, and the AOD method or the VOD method is used. It remains after decarburization in secondary refining. For this reason, in the reductive refining process after decarburization refining, desulfurization which adds quick lime which has CaO as a main ingredient as a slagging agent other than a deoxidizer, and shifts S in molten steel to slag is also performed.

従来から、還元精錬工程における脱酸剤として、SiおよびAlのいずれか1種が用いられてきた。Siを脱酸剤として用いる場合、減圧雰囲気下において、アルゴンガスと酸素ガスによる脱炭精錬を行う前に昇熱用としてAlを添加するが、この場合のAlは、脱炭精錬中に完全に酸化されるため、還元精錬時の脱酸剤として機能するものではない。一方、Alを脱酸剤として用いる場合には、還元精錬の後に成分調整用としてSiを添加する。従って、従来のステンレス鋼の二次精錬においては、還元精錬工程の直前または還元精錬工程中に、SiとAlの2種の脱酸剤を同時に溶鋼に添加することはなかった。   Conventionally, any one of Si and Al has been used as a deoxidizer in the reductive refining process. When Si is used as a deoxidizing agent, Al is added for heating up before decarburizing and refining with argon gas and oxygen gas in a reduced-pressure atmosphere. In this case, Al is completely removed during decarburizing and refining. Since it is oxidized, it does not function as a deoxidizer during reductive refining. On the other hand, when Al is used as a deoxidizer, Si is added for component adjustment after reductive refining. Therefore, in the conventional secondary refining of stainless steel, two types of deoxidizers of Si and Al were not simultaneously added to the molten steel immediately before or during the refining refining process.

従来、還元精錬時には、脱酸剤(SiまたはAl)および生石灰とともに、CaF2を主成分とする蛍石が造滓剤として添加されてきた。蛍石の添加は、スラグの融点を低下させてスラグの流動性を向上させるため、スラグと溶鋼の反応を促進させるのに有効である。従って、溶鋼に、脱酸剤および生石灰とともに蛍石を添加すると、スラグによる還元精錬および脱硫を効率的に行うことができる。 Conventionally, during refining and refining, fluorite containing CaF 2 as a main component has been added as a fossilizing agent together with a deoxidizer (Si or Al) and quicklime. The addition of fluorite is effective in promoting the reaction between the slag and molten steel because the melting point of the slag is lowered to improve the fluidity of the slag. Therefore, when fluorite is added to molten steel together with a deoxidizer and quicklime, reductive refining and desulfurization with slag can be performed efficiently.

ところで、上述したステンレス鋼の精錬過程で生成したスラグは、路盤材等の土木・建設用資材として活用されているが、近年、環境保全の観点から、その活用が制限される状況になっている。これは、従来のスラグには、還元精錬時の蛍石の添加によって多量のフッ素が必然的に含まれるが、環境基準として土木・建材用製鋼スラグ中に含まれるフッ素の溶出量を規制する土壌汚染に関する環境基準が定められたことによる。   By the way, although the slag produced | generated in the refining process of the stainless steel mentioned above is utilized as civil engineering and construction materials, such as a roadbed material, in recent years, the utilization is restricted from a viewpoint of environmental conservation. . This is because conventional slag necessarily contains a large amount of fluorine due to the addition of fluorite during refining and refining, but as an environmental standard, soil that regulates the elution amount of fluorine contained in steelmaking slag for civil engineering and building materials. This is due to the establishment of environmental standards for pollution.

そのため、近年において、土壌汚染の規制に対応して、スラグ中のフッ素を低減したり、スラグからのフッ素の溶出を防止する技術が種々提案されている。   Therefore, in recent years, various techniques for reducing fluorine in slag and preventing elution of fluorine from slag have been proposed in response to the regulation of soil contamination.

例えば、特許文献1には、電気炉にて溶鋼を精錬する際に、フッ素源である蛍石を使用せず、生成されたスラグの総量に対するCaO、SiO2、およびAl23の濃度を所定範囲内に規定する技術が提案されている。特許文献2および3には、電気炉にて溶鋼を精錬する際に、蛍石を使用せず、生成されたスラグの塩基度(CaO/SiO2)を0.6〜1.1に規定する技術が提案されている。 For example, Patent Document 1 discloses the concentration of CaO, SiO 2 , and Al 2 O 3 with respect to the total amount of slag generated without using fluorite as a fluorine source when refining molten steel in an electric furnace. Techniques for defining within a predetermined range have been proposed. In Patent Documents 2 and 3, when refining molten steel in an electric furnace, fluorite is not used, and the basicity (CaO / SiO 2 ) of the generated slag is defined as 0.6 to 1.1. Technology has been proposed.

しかし、前記特許文献1〜3に提案された技術では、スラグの低融点化は期待できるものの、いずれも電気炉における精錬を対象としていることから、スラグ中のCaO濃度が低く規定されており(前記特許文献1では30〜50質量%、前記特許文献2および3では20〜40質量%)、溶鋼中から除去できるSの量に限界がある。一方、近年のAOD法またはVOD法による二次精錬には、ステンレス鋼の高品質化への要請から、溶鋼中のSを0.0015質量%以下の極めて低濃度まで脱硫することが要求される。そのため、前記特許文献1〜3に提案された技術は、AOD法またはVOD法による二次精錬における脱硫能が不十分であり、スラグ中のフッ素を低減する手段として適用できない。すなわち、スラグ中のフッ素を低減する技術は、前記特許文献1〜3に提案されているものの、高度な脱硫能も具備しつつ、スラグ中のフッ素を低減する技術は、実用化されていないのが現状である。   However, although the techniques proposed in Patent Documents 1 to 3 can be expected to lower the melting point of slag, since both are targeted for refining in an electric furnace, the CaO concentration in the slag is specified to be low ( In Patent Document 1, 30 to 50% by mass, and in Patent Documents 2 and 3, 20 to 40% by mass), the amount of S that can be removed from the molten steel is limited. On the other hand, in recent secondary refining by the AOD method or VOD method, it is required to desulfurize S in molten steel to a very low concentration of 0.0015% by mass or less due to a demand for high quality stainless steel. . For this reason, the techniques proposed in Patent Documents 1 to 3 have insufficient desulfurization ability in secondary refining by the AOD method or VOD method, and cannot be applied as a means for reducing fluorine in slag. That is, although the technology for reducing fluorine in slag has been proposed in Patent Documents 1 to 3, the technology for reducing fluorine in slag has not been put into practical use while having high desulfurization capability. Is the current situation.

また、特許文献4には、スラグからのフッ素の溶出を防止する技術が提案されている。提案の技術は、溶鋼上のフッ素を含むスラグに、CaOとAl23を加えてカルシウムアルミネート相を形成し、その後にMgOを加えてスラグを調製するものであり、フッ素の溶出を防止することができ、安定した脱硫能を期待することができるとしている。しかし、提案の技術が対象とするスラグは、プリメルトスラグであることから、溶鋼の脱酸を促進させるために、SiまたはAlを新たに添加しなければならず、これによりスラグ量が増大し、コストも悪化するという問題がある。 Patent Document 4 proposes a technique for preventing elution of fluorine from slag. Proposed technology is to add CaO and Al 2 O 3 to slag containing fluorine on molten steel to form calcium aluminate phase, and then add MgO to prepare slag to prevent elution of fluorine. It is said that stable desulfurization ability can be expected. However, since the slag targeted by the proposed technology is pre-melt slag, Si or Al must be newly added to promote deoxidation of molten steel, which increases the amount of slag. There is a problem that the cost also deteriorates.

特開2001−342510号公報JP 2001-342510 A 特開2003−239011号公報JP 2003-239011 A 特開2003−239012号公報Japanese Patent Laid-Open No. 2003-239012 特開2003−321709号公報JP 2003-321709 A

本発明は、上記の問題に鑑みてなされたものであり、低コストで効率良く、高度な脱硫および還元精錬を行うことができ、しかも、土木・建設用資材として土壌汚染を生ずることなく、安全なスラグを生成することができるステンレス鋼の精錬方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and can perform high-grade desulfurization and reductive refining efficiently at low cost, and without causing soil contamination as a civil engineering / construction material. It is an object of the present invention to provide a method for refining stainless steel that can produce slag.

本発明者は、上記目的を達成するために、ステンレス鋼の鋼材を製造する際のAOD法またはVOD法による二次精錬において、スラグ中のフッ素を低減することを前提として、還元精錬の能力に優れ、合わせて溶鋼中のSを0.0015質量%以下にまで脱硫することができる精錬方法について鋭意検討を重ね、本発明を完成させた。   In order to achieve the above object, the present inventor has achieved the ability of reductive refining on the premise of reducing fluorine in slag in secondary refining by AOD method or VOD method when producing stainless steel materials. The present invention has been completed by intensively studying a refining method that is excellent and can desulfurize S in molten steel to 0.0015% by mass or less.

本発明は、AOD法またはVOD法により、溶鋼とその浴面上に浮遊するスラグを形成し、溶鋼内に吹き込んだアルゴンガスによる攪拌にて溶鋼とスラグを反応させて溶鋼を精錬するステンレス鋼の精錬方法において、CaF2を主成分とする造滓剤(蛍石など)を用いることなしに、脱炭精錬後の溶鋼に生石灰、フェロシリコン、およびAlの3種を同時に添加し、スラグと溶鋼との間のS分配比を300以上に制御することを特徴とするものである。 The present invention is a stainless steel that forms molten steel and slag floating on the bath surface by AOD method or VOD method, and refines molten steel by reacting molten steel and slag by stirring with argon gas blown into the molten steel. In the refining method, three types of lime, ferrosilicon, and Al are simultaneously added to the molten steel after decarburization refining without using a slagging agent (such as fluorite) containing CaF 2 as a main component. The S distribution ratio between and is controlled to 300 or more.

ここで、前記スラグの組成を、質量%で表したとき、下記(1)〜(3)の条件を満足するように制御することが望ましい。   Here, when the composition of the slag is expressed by mass%, it is desirable to control so as to satisfy the following conditions (1) to (3).

1.6≦CaO/(Al23+SiO2)≦2.2 ・・・(1)
0.35≦Al23/SiO2≦4.10 ・・・(2)
CaF2≦1.0 ・・・(3)
本発明において、「S分配比」とは、スラグ中のS濃度と溶鋼中のS濃度との比を意味する。
1.6 ≦ CaO / (Al 2 O 3 + SiO 2 ) ≦ 2.2 (1)
0.35 ≦ Al 2 O 3 / SiO 2 ≦ 4.10 (2)
CaF 2 ≦ 1.0 (3)
In the present invention, the “S distribution ratio” means the ratio of the S concentration in the slag to the S concentration in the molten steel.

本発明のステンレス鋼の精錬方法によれば、脱炭精錬後の溶鋼に生石灰、金属Si、および金属Alを同時に添加することにより低融点のスラグが形成されるので、CaF2を主成分とする造滓剤を添加することなく、流動性および脱硫能の優れたスラグを得ることができる。その結果、スラグと溶鋼との間のS分配比を300以上に制御することができ、溶鋼の精錬に際し、効率良く高度な脱硫および還元精錬を行うことが可能になる。 According to the method for refining stainless steel of the present invention, slag having a low melting point is formed by simultaneously adding quick lime, metal Si, and metal Al to molten steel after decarburization refining, so CaF 2 is the main component. A slag excellent in fluidity and desulfurization ability can be obtained without adding a faux former. As a result, the S distribution ratio between the slag and the molten steel can be controlled to 300 or more, and it is possible to efficiently perform advanced desulfurization and reductive refining when refining the molten steel.

また、二次精錬の際に、CaF2を主成分とする造滓剤を用いないことから、生成されたスラグ中のフッ素を著しく低減することができる。従って、このスラグは、土木・建設用資材として土壌汚染を生ずることなく、安全に活用することができる。 In addition, since the slagging agent mainly composed of CaF 2 is not used in the secondary refining, fluorine in the generated slag can be significantly reduced. Therefore, this slag can be safely used as a civil engineering / construction material without causing soil contamination.

さらに、溶鋼の脱酸を促進させるために、SiまたはAlを新たに添加することは不要であるため、スラグ量の抑制ができ、コストの低減も可能である。   Furthermore, since it is not necessary to newly add Si or Al in order to promote deoxidation of the molten steel, the amount of slag can be suppressed and the cost can be reduced.

本発明の精錬方法は、上述したように、AOD法またはVOD法により、溶鋼とその浴面上に浮遊するスラグを形成し、溶鋼内に吹き込んだアルゴンガスによる攪拌にて溶鋼とスラグを反応させて溶鋼を精錬するステンレス鋼の精錬方法において、蛍石を用いることなしに、脱炭精錬後の溶鋼に生石灰、フェロシリコン、およびAlの3種を同時に添加し、スラグと溶鋼との間のS分配比を300以上に制御することを特徴とする。   As described above, the refining method of the present invention forms molten steel and slag floating on the bath surface by the AOD method or VOD method, and reacts the molten steel and slag by stirring with argon gas blown into the molten steel. In the refining method of stainless steel, the slag between the slag and the molten steel is added to the molten steel after decarburizing and refining by adding three kinds of quick lime, ferrosilicon, and Al simultaneously without using fluorite. The distribution ratio is controlled to 300 or more.

本発明の精錬方法を前記の通り規定した理由を以下に説明する。   The reason why the refining method of the present invention is defined as described above will be described below.

図2は、二次精錬で生成されたスラグにおける「CaO/(Al23+SiO2)」と、そのスラグと溶鋼との間のS分配比((S)/[S])との関係を示す図である。ここでは、スラグ中の酸化物の組成をCaO−Al23−SiO2の3元系のスラグ組成に換算している。「CaO/(Al23+SiO2)」は、スラグ中に含有されるCaO、Al23、およびSiO2のそれぞれの濃度から算出した質量濃度比である。S分配比は、スラグ中のSの濃度(S)と溶鋼中のSの濃度[S]との比「(S)/[S]」を表したものである。濃度の単位は、すべて質量%である。 FIG. 2 shows the relationship between “CaO / (Al 2 O 3 + SiO 2 )” in the slag produced by secondary refining and the S distribution ratio ((S) / [S]) between the slag and molten steel. FIG. Here, the composition of the oxide in the slag is converted to a ternary slag composition of CaO—Al 2 O 3 —SiO 2 . “CaO / (Al 2 O 3 + SiO 2 )” is a mass concentration ratio calculated from the respective concentrations of CaO, Al 2 O 3 and SiO 2 contained in the slag. The S distribution ratio represents the ratio “(S) / [S]” between the concentration of S in the slag (S) and the concentration of S in the molten steel [S]. The unit of concentration is all mass%.

図2で示す黒塗潰しの丸印は、本発明で規定する構成をすべて満足する状態で行った本発明例の試験結果を示し、同白抜きの丸印は、本発明で規定する構成を一部満足しない状態で行った比較例の試験結果を示す。   The solid black circles shown in FIG. 2 show the test results of the examples of the present invention conducted in a state satisfying all the configurations defined in the present invention, and the white circles indicate the configurations defined in the present invention. The test result of the comparative example performed in the state which is not satisfied partially is shown.

本発明例では、VOD法による二次精錬において、脱炭精錬後、溶鋼上の酸化物に生石灰、フェロシリコン、およびAlの3種を同時に投入して還元精錬および脱硫を行い、スラグの主成分をCaO−Al23−SiO2系に調整した。一方、比較例では、二次精錬における脱炭精錬後、脱酸剤として、Alを用いずに専らSiを用いるか、またはSiを用いずに専らAlを用いた。また、本発明例および比較例とも、粗溶鋼の溶製時も含め、二次精錬時に、フッ素源となる蛍石を一切使用せずに試験を行った。 In the present invention example, in the secondary refining by the VOD method, after decarburization refining, three kinds of quick lime, ferrosilicon, and Al are simultaneously added to the oxide on the molten steel to perform refining refining and desulfurization, and the main component of slag Was adjusted to CaO—Al 2 O 3 —SiO 2 system. On the other hand, in the comparative example, after decarburization refining in the secondary refining, Si was used exclusively without using Al as the deoxidizer, or Al was used exclusively without using Si. In addition, both the inventive examples and the comparative examples were tested without using any fluorite as a fluorine source during secondary refining, including during the melting of the crude molten steel.

本発明例では、脱炭精錬後に添加するフェロシリコンとして、普通Fe−Siを使用したが、その他に低P Fe−Siを使用することもできる。Alとしては、金属Alを使用したが、その他にAl合金を使用することができる。   In the examples of the present invention, Fe-Si is usually used as ferrosilicon added after decarburization refining, but low P Fe-Si can also be used. As Al, metal Al was used, but Al alloy can also be used.

さらに、本発明例では、還元および脱硫後のスラグの組成について、「Al23/SiO2」で表される質量濃度比が0.35〜4.10となるように調整した。実績値として、還元および脱硫後のスラグ中のCaO濃度は54〜62質量%で、還元および脱硫後の溶鋼中の[S]は0.0007〜0.0014質量%であった。 Furthermore, in the present invention example, the composition of the slag after reduction and desulfurization was adjusted such that the mass concentration ratio represented by “Al 2 O 3 / SiO 2 ” was 0.35 to 4.10. As actual values, the CaO concentration in the slag after reduction and desulfurization was 54 to 62 mass%, and [S] in the molten steel after reduction and desulfurization was 0.0007 to 0.0014 mass%.

本発明例においては、「Al23/SiO2」を0.35以上に規定することにより、Al23源を確保し必要上の脱硫能を安定して得られる。但し、「Al23/SiO2」を4.1以上とすると、Al23源が過剰となりスラグの流動性が得られず精錬スラグとして操業できなくなる。 In the example of the present invention, by defining “Al 2 O 3 / SiO 2 ” to be 0.35 or more, an Al 2 O 3 source can be secured and the necessary desulfurization ability can be stably obtained. However, if “Al 2 O 3 / SiO 2 ” is 4.1 or more, the Al 2 O 3 source becomes excessive, and the fluidity of the slag cannot be obtained, making it impossible to operate as a refined slag.

前記図2から明らかなように、本発明例においては、「CaO/(Al23+SiO2)」を1.6以上に規定することにより、S分配比を安定して300以上に確保することができる。さらに、「CaO/(Al23+SiO2)」を1.9以上に規定すれば、S分配比を安定して400以上に確保することも可能である。但し、「CaO/(Al23+SiO2)」が高くなり過ぎると、スラグの流動性が低下し、スラグと溶鋼との反応の促進が損なわれるため、「CaO/(Al23+SiO2)」の上限は2.2に規定する。スラグの流動性を一層重視する場合には、「CaO/(Al23+SiO2)」を2.0以下とするのが好適である。 As is apparent from FIG. 2, in the present invention example, by setting “CaO / (Al 2 O 3 + SiO 2 )” to 1.6 or more, the S distribution ratio is stably secured to 300 or more. be able to. Furthermore, if “CaO / (Al 2 O 3 + SiO 2 )” is specified to be 1.9 or more, the S distribution ratio can be stably secured to 400 or more. However, if too high "CaO / (Al 2 O 3 + SiO 2) ", decreases the fluidity of the slag, since the promotion of the reaction between the slag and the molten steel is impaired, "CaO / (Al 2 O 3 + SiO 2 ) ”is specified in 2.2. In the case where slag fluidity is more important, it is preferable to set “CaO / (Al 2 O 3 + SiO 2 )” to 2.0 or less.

一方、比較例においては、「CaO/(Al23+SiO2)」が1.6であるときのS分配比は高々200であり、「CaO/(Al23+SiO2)」が2.2と高くてもS分配比が400を超えることはない。 On the other hand, in the comparative example, when “CaO / (Al 2 O 3 + SiO 2 )” is 1.6, the S distribution ratio is 200 at most, and “CaO / (Al 2 O 3 + SiO 2 )” is 2 Even if it is as high as .2, the S distribution ratio does not exceed 400.

このような本発明例の試験結果から、蛍石を添加しなくても、脱炭精錬後に生石灰、金属Si、および金属Alを同時に添加し、S分配比を300以上に制御することにより、高品質のステンレス鋼に精錬できる。   From the test results of the present invention example, by adding quick lime, metal Si, and metal Al at the same time after decarburization refining without adding fluorite, the S distribution ratio is controlled to 300 or higher. Can be refined to quality stainless steel.

特に、本発明の精錬方法では、脱炭精錬後に生石灰、金属Si、および金属Alを同時に添加することが重要である。先に金属Siを添加し、その後に生石灰と金属Alを添加すると、生石灰を溶融させるための熱量が不足するか、または生石灰が溶解するまで時間が遅延する。この場合のスラグは、生石灰が完全に溶融しないことから、脱硫能が不安定で流動性が悪化したものとなる。そのため、そのスラグは、精錬スラグとして不適当であるばかりではなく、操業不能の事態をもたらす。これに対し、生石灰、金属Si、および金属Alを同時に投入することにより、金属Siおよび金属Alの酸化還元反応熱が急激に発生するため、生石灰の溶融促進が可能となり、その結果、短時間で流動性の優れたスラグが得られ、しかも脱硫能の安定したスラグとなる。   In particular, in the refining method of the present invention, it is important to add quick lime, metal Si, and metal Al simultaneously after decarburization refining. If metal Si is added first, and quick lime and metal Al are added thereafter, the amount of heat for melting quick lime is insufficient, or the time is delayed until quick lime is dissolved. The slag in this case is one in which quick lime is not completely melted, so that the desulfurization ability is unstable and the fluidity is deteriorated. Therefore, the slag not only is not suitable as a refining slag, but also causes an inoperable situation. On the other hand, by simultaneously adding quick lime, metal Si, and metal Al, the oxidation-reduction heat of metal Si and metal Al is generated abruptly, so that quick lime melting can be accelerated. A slag having excellent fluidity is obtained, and the slag has a stable desulfurization ability.

本発明の精錬方法によれば、AOD法またはVOD法による二次精錬の際に、CaF2を主成分とする造滓剤である蛍石を用いないことから、生成されたスラグ中のフッ素を著しく低減することができる。この場合、生成されたスラグ中のフッ素に関連するCaF2濃度は、多くても1.0質量%程度に過ぎず、このスラグは、土木・建設用資材として土壌汚染を生ずることなく、安全に活用することができる。 According to the refining method of the present invention, in the secondary refining by the AOD method or the VOD method, fluorite, which is a fossilizing agent mainly composed of CaF 2 , is not used. It can be significantly reduced. In this case, the CaF2 concentration related to fluorine in the generated slag is only about 1.0% by mass at most, and this slag can be safely used without causing soil contamination as a civil engineering / construction material. can do.

また、本発明の精錬方法によれば、脱炭精錬後の溶鋼に生石灰、金属Si、および金属Alの3種を同時に添加することにより低融点のスラグが形成されるので、蛍石の添加がなくても、流動性および脱硫能の優れたスラグを得ることができ、その結果、スラグと溶鋼との間のS分配比を300以上に制御することができる。従って、溶鋼に効率良く高度な脱硫および還元精錬を行うことが可能になる。   Further, according to the refining method of the present invention, low melting point slag is formed by simultaneously adding three kinds of quick lime, metal Si, and metal Al to the molten steel after decarburization refining. Even if not, slag excellent in fluidity and desulfurization ability can be obtained, and as a result, the S distribution ratio between the slag and the molten steel can be controlled to 300 or more. Therefore, it is possible to efficiently perform advanced desulfurization and refining on the molten steel.

さらに、本発明の精錬方法は、前記特許文献4に提案された技術のような、溶鋼の脱酸を促進させるためのSiまたはAlの添加は不要であるため、スラグ量の抑制が可能であり、コストの低減が図れる。例えば、本発明の精錬方法によれば、前記特許文献4に提案された技術と比較して、溶鋼1t当たり8.0kgのスラグ量の減少効果が期待できる。   Furthermore, since the refining method of the present invention does not require the addition of Si or Al for promoting deoxidation of molten steel as in the technique proposed in Patent Document 4, the amount of slag can be suppressed. Cost can be reduced. For example, according to the refining method of the present invention, an effect of reducing the amount of slag of 8.0 kg per ton of molten steel can be expected as compared with the technique proposed in Patent Document 4.

本発明のステンレス鋼の精錬方法による効果を確認するため、脱硫および還元精錬の試験を行い、その結果を評価した。本実施例の試験では、電気炉でステンレススクラップを溶解し、または転炉で溶銑にCrを添加し、ステンレス粗溶鋼を75t/ch(チャージ)溶製した。各粗溶鋼を、先ずAOD法によって粗脱炭精錬および昇熱を実施し、さらに、スラグの還元精錬および溶鋼成分の粗調整を実施した。続いて、VOD法によって脱炭精錬を実施し、その後に還元精錬および脱硫を実施した。   In order to confirm the effect of the method for refining stainless steel of the present invention, desulfurization and reduction refining tests were conducted and the results were evaluated. In the test of this example, stainless steel scrap was melted in an electric furnace, or Cr was added to the hot metal in a converter to melt stainless steel coarse molten steel at 75 t / ch (charge). Each of the crude molten steels was first subjected to rough decarburization refining and heating by the AOD method, and further slag reduction refining and coarse adjustment of the molten steel components. Subsequently, decarburization refining was performed by the VOD method, and then reduction refining and desulfurization were performed.

その際、VOD法による二次精錬の脱炭精錬工程の後に、生石灰、金属Si、および金属Alを同時に添加し、スラグ組成を調整した。このとき、脱炭精錬後、すなわち脱硫精錬前における粗溶鋼中に含有されるSの濃度は、0.015〜0.020質量%の範囲内に調整し、生石灰の投入量は、粗溶鋼1t当たり20〜40kgの範囲内とした。   At that time, after the decarburization refining process of secondary refining by the VOD method, quick lime, metal Si, and metal Al were simultaneously added to adjust the slag composition. At this time, the concentration of S contained in the crude molten steel after decarburization refining, that is, before desulfurization refining is adjusted within a range of 0.015 to 0.020 mass%, and the input amount of quick lime is 1 t of crude molten steel. The range was 20 to 40 kg per hit.

表1に、VOD法による還元・脱硫後のスラグをCaO−Al23−SiO2の3元系に換算した組成と、各組成での評価をまとめた試験結果を示す。評価は、脱硫後の溶鋼中のS濃度[S]、S分配比、脱硫率、およびスラグの流動性により行った。 Table 1 shows a composition in which the slag after reduction and desulfurization by the VOD method is converted to a ternary system of CaO—Al 2 O 3 —SiO 2 and the test results summarizing the evaluation of each composition. The evaluation was performed based on the S concentration [S] in the molten steel after desulfurization, the S distribution ratio, the desulfurization rate, and the slag fluidity.

Figure 2009068096
Figure 2009068096

試験番号1〜8は、本発明で規定する条件の少なくとも一部を満足しない比較例を示し、試験番号9〜15は、本発明で規定する条件をすべて満足する本発明例を示した。   Test numbers 1 to 8 show comparative examples that do not satisfy at least a part of the conditions specified in the present invention, and test numbers 9 to 15 show examples of the present invention that satisfy all the conditions specified in the present invention.

表1から明らかなように、試験番号1〜8の比較例では、スラグの流動性、脱硫率の少なくとも一方を満足できなかった。すなわち、試験番号1および3では、スラグの流動性は確保できたが、「CaO/(Al23+SiO2)」、「Al23/SiO2」およびS分配比が低いのに起因して、脱硫後の溶鋼中のS濃度が高くなり、精錬を中断した。試験番号2では、スラグの流動性は確保できたが、「Al23/SiO2」が高く、S分配比が低いのに起因して、脱硫後の溶鋼中のS濃度を0.0015質量%以下にまで低減できなかった。 As is clear from Table 1, in the comparative examples of test numbers 1 to 8, at least one of the slag fluidity and the desulfurization rate could not be satisfied. That is, in the test numbers 1 and 3, although the fluidity of the slag could be secured, “CaO / (Al 2 O 3 + SiO 2 )”, “Al 2 O 3 / SiO 2 ” and the S distribution ratio were low. As a result, the S concentration in the molten steel after desulfurization increased, and the refining was interrupted. In Test No. 2, the fluidity of the slag was secured, but due to the high “Al 2 O 3 / SiO 2 ” and the low S distribution ratio, the S concentration in the molten steel after desulfurization was 0.0015. It could not be reduced to less than mass%.

試験番号4では、脱硫後の溶鋼中のS濃度を0.0015質量%以下にまで低減できたが、「Al23/SiO2」が低いのに起因して、スラグの流動性が不十分となり、蛍石を添加し精錬を続行した。試験番号5では、「CaO/(Al23+SiO2)」が高く、「Al23/SiO2」が低いのに起因して、S分配比が低く、脱硫後の溶鋼中のS濃度が高い上、スラグの流動性も悪化し、精錬を中断した。 In Test No. 4, the S concentration in the molten steel after desulfurization was reduced to 0.0015% by mass or less, but due to the low “Al 2 O 3 / SiO 2 ”, the fluidity of the slag was poor. After enough, fluorite was added and refining continued. In test number 5, “CaO / (Al 2 O 3 + SiO 2 )” is high and “Al 2 O 3 / SiO 2 ” is low, so the S distribution ratio is low, and S in the molten steel after desulfurization is low. The concentration was high and the fluidity of the slag deteriorated, so the refining was stopped.

試験番号6では、「CaO/(Al23+SiO2)」およびS分配比が低く、試験番号7では、「CaO/(Al23+SiO2)」が高く、S分配比が低く、試験番号8では、「Al23/SiO2」が高く、S分配比が低いのに起因して、脱硫後の溶鋼中のS濃度を0.0015質量%以下にまで低減できず、またスラグの流動性も不十分となり、精錬を中断した。 In test number 6, “CaO / (Al 2 O 3 + SiO 2 )” and the S distribution ratio are low, and in test number 7, “CaO / (Al 2 O 3 + SiO 2 )” is high and the S distribution ratio is low. In test number 8, “Al 2 O 3 / SiO 2 ” is high and the S distribution ratio is low, so the S concentration in the molten steel after desulfurization cannot be reduced to 0.0015% by mass or less. The fluidity of the slag became insufficient and refining was interrupted.

これらに対して、本発明例である試験番号9〜15では、いずれも、S分配比が300以上と高く、脱硫後の溶鋼中のS濃度は0.0015質量%以下まで低減でき、良好な脱硫率が得られた。さらに、スラグの流動性も確保できた。   On the other hand, in test numbers 9 to 15 which are examples of the present invention, the S distribution ratio is as high as 300 or more, and the S concentration in the molten steel after desulfurization can be reduced to 0.0015% by mass or less. Desulfurization rate was obtained. In addition, the slag fluidity was secured.

本発明の精錬方法によれば、AOD法またはVOD法による二次精錬において、CaF2を主成分とする造滓剤の添加がなくても、溶鋼に効率良く高度な脱硫および還元精錬を行うことができる。また、土木・建設用資材として土壌環境に安全に活用することが可能なスラグを得ることができる。さらに、スラグ量の抑制が可能であり、コストの低減も可能である。 According to the refining method of the present invention, in the secondary refining by the AOD method or the VOD method, efficient desulfurization and reductive refining can be efficiently performed on molten steel without the addition of a fossilizing agent mainly composed of CaF 2. Can do. Moreover, the slag which can be safely utilized for soil environment as a civil engineering / construction material can be obtained. Further, the amount of slag can be suppressed, and the cost can be reduced.

ステンレス鋼を製造する概略工程を説明する図である。It is a figure explaining the schematic process which manufactures stainless steel. 二次精錬で生成されたスラグにおける「CaO/(Al23+SiO2)」と、そのスラグと溶鋼との間のS分配比((S)/[S])との関係を示す図である。A diagram showing a relationship between "CaO / (Al 2 O 3 + SiO 2) " in the slag generated in the secondary refining, the S distribution ratio between the slag and the molten steel ((S) / [S] ) is there.

Claims (2)

AOD法またはVOD法により、溶鋼とその浴面上に浮遊するスラグを形成し、溶鋼内に吹き込んだアルゴンガスによる攪拌にて溶鋼とスラグを反応させて溶鋼を精錬するステンレス鋼の精錬方法において、
蛍石を用いることなしに、脱炭精錬後の溶鋼に生石灰、フェロシリコン、およびAlの3種を同時に添加し、スラグと溶鋼との間のS分配比を300以上に制御することを特徴とするステンレス鋼の精錬方法。
In the refining method of stainless steel, a slag floating on the molten steel and its bath surface is formed by the AOD method or the VOD method, and the molten steel and slag are reacted by stirring with argon gas blown into the molten steel to refine the molten steel.
3 types of quick lime, ferrosilicon, and Al are simultaneously added to the molten steel after decarburizing and refining without using fluorite, and the S distribution ratio between the slag and molten steel is controlled to 300 or more. To refine stainless steel.
前記スラグの組成を、質量%で表したとき、下記(1)〜(3)の条件を満足するように制御することを特徴とする請求項1に記載のステンレス鋼の精錬方法。
1.6≦CaO/(Al23+SiO2)≦2.2 ・・・(1)
0.35≦Al23/SiO2≦4.10 ・・・(2)
CaF2≦1.0 ・・・(3)
2. The method for refining stainless steel according to claim 1, wherein the slag composition is controlled so as to satisfy the following conditions (1) to (3) when expressed in mass%.
1.6 ≦ CaO / (Al 2 O 3 + SiO 2 ) ≦ 2.2 (1)
0.35 ≦ Al 2 O 3 / SiO 2 ≦ 4.10 (2)
CaF 2 ≦ 1.0 (3)
JP2007240610A 2007-09-18 2007-09-18 Stainless steel refining method Active JP5338056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240610A JP5338056B2 (en) 2007-09-18 2007-09-18 Stainless steel refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240610A JP5338056B2 (en) 2007-09-18 2007-09-18 Stainless steel refining method

Publications (2)

Publication Number Publication Date
JP2009068096A true JP2009068096A (en) 2009-04-02
JP5338056B2 JP5338056B2 (en) 2013-11-13

Family

ID=40604664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240610A Active JP5338056B2 (en) 2007-09-18 2007-09-18 Stainless steel refining method

Country Status (1)

Country Link
JP (1) JP5338056B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397131A (en) * 2013-08-11 2013-11-20 山西太钢不锈钢股份有限公司 Pure iron smelting method
CN109136470A (en) * 2018-11-05 2019-01-04 北京首钢自动化信息技术有限公司 A kind of VOD technique smelting autocontrol method
CN109252013A (en) * 2018-09-28 2019-01-22 中天钢铁集团有限公司 A kind of bearing steel slagging process control method of full plastic occluded foreignsubstance
CN109897938A (en) * 2019-04-03 2019-06-18 西宁特殊钢股份有限公司 Produce Cr13The electric furnace and refining furnace smelting control method of series stainless steel
KR20200044045A (en) * 2017-08-25 2020-04-28 바오샨 아이론 앤 스틸 유한공사 Smelting method of ultra-low carbon 13Cr stainless steel
CN112063801A (en) * 2020-09-17 2020-12-11 浦项(张家港)不锈钢股份有限公司 Stainless steel and preparation method thereof
JP2021059759A (en) * 2019-10-08 2021-04-15 Jfeスチール株式会社 Production method of ultra-low sulfur stainless steel
CN115125366A (en) * 2021-03-25 2022-09-30 上海梅山钢铁股份有限公司 Intelligent production control method for argon blowing station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313309A (en) * 2014-11-17 2015-01-28 中冶南方工程技术有限公司 Technology and system for producing stainless steel by submerged arc furnace and AOD furnace duplex process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589914A (en) * 1981-06-30 1983-01-20 Sumitomo Metal Ind Ltd Refining method for steel
JPH09263824A (en) * 1996-03-29 1997-10-07 Kawasaki Steel Corp Vacuum refining method for chromium-containing molten steel
JP2002339014A (en) * 2001-03-16 2002-11-27 Kawasaki Steel Corp Method for producing extra low sulfur steel
JP2006104531A (en) * 2004-10-06 2006-04-20 Sumitomo Metal Ind Ltd Ti-CONTAINING STAINLESS STEEL MANUFACTURING METHOD
JP2007119837A (en) * 2005-10-27 2007-05-17 Nippon Steel Corp Method for producing molten steel containing chromium and extremely little sulfur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589914A (en) * 1981-06-30 1983-01-20 Sumitomo Metal Ind Ltd Refining method for steel
JPH09263824A (en) * 1996-03-29 1997-10-07 Kawasaki Steel Corp Vacuum refining method for chromium-containing molten steel
JP2002339014A (en) * 2001-03-16 2002-11-27 Kawasaki Steel Corp Method for producing extra low sulfur steel
JP2006104531A (en) * 2004-10-06 2006-04-20 Sumitomo Metal Ind Ltd Ti-CONTAINING STAINLESS STEEL MANUFACTURING METHOD
JP2007119837A (en) * 2005-10-27 2007-05-17 Nippon Steel Corp Method for producing molten steel containing chromium and extremely little sulfur

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397131A (en) * 2013-08-11 2013-11-20 山西太钢不锈钢股份有限公司 Pure iron smelting method
CN103397131B (en) * 2013-08-11 2015-02-25 山西太钢不锈钢股份有限公司 Pure iron smelting method
KR102294309B1 (en) * 2017-08-25 2021-08-27 바오샨 아이론 앤 스틸 유한공사 Smelting method of ultra-low carbon 13Cr stainless steel
KR20200044045A (en) * 2017-08-25 2020-04-28 바오샨 아이론 앤 스틸 유한공사 Smelting method of ultra-low carbon 13Cr stainless steel
JP2020531691A (en) * 2017-08-25 2020-11-05 宝山鋼鉄股▲分▼有限公司 Refining method of ultra-low carbon 13Cr stainless steel
CN109252013A (en) * 2018-09-28 2019-01-22 中天钢铁集团有限公司 A kind of bearing steel slagging process control method of full plastic occluded foreignsubstance
CN109136470A (en) * 2018-11-05 2019-01-04 北京首钢自动化信息技术有限公司 A kind of VOD technique smelting autocontrol method
CN109897938A (en) * 2019-04-03 2019-06-18 西宁特殊钢股份有限公司 Produce Cr13The electric furnace and refining furnace smelting control method of series stainless steel
JP2021059759A (en) * 2019-10-08 2021-04-15 Jfeスチール株式会社 Production method of ultra-low sulfur stainless steel
JP7126096B2 (en) 2019-10-08 2022-08-26 Jfeスチール株式会社 Manufacturing method of ultra-low sulfur stainless steel
CN112063801A (en) * 2020-09-17 2020-12-11 浦项(张家港)不锈钢股份有限公司 Stainless steel and preparation method thereof
CN115125366A (en) * 2021-03-25 2022-09-30 上海梅山钢铁股份有限公司 Intelligent production control method for argon blowing station
CN115125366B (en) * 2021-03-25 2024-05-10 上海梅山钢铁股份有限公司 Intelligent production control method for argon blowing station

Also Published As

Publication number Publication date
JP5338056B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5338056B2 (en) Stainless steel refining method
RU2527569C2 (en) CONTROL OVER ULTRA-LOW TITANIUM CONTENT IN ULTRA-LOW-CARBON Al-Si KILLED STEEL
JP5152442B2 (en) Environmental protection molten steel desulfurization flux
KR101252644B1 (en) Flux and Method for refining molten steel by Converter
WO2016027765A1 (en) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
JP3428628B2 (en) Stainless steel desulfurization refining method
JP2002053351A (en) Pollution-free stainless steel slag and method for manufacturing the same
JP6311466B2 (en) Method of dephosphorizing molten steel using vacuum degassing equipment
JP5268019B2 (en) How to remove hot metal
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
CA2559154C (en) Method for a direct steel alloying
JP5634966B2 (en) Method for suppressing hexavalent chromium in slag
JP2006283164A (en) Method for desulfurize-treating chromium-contained molten iron
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JP4304110B2 (en) Detoxification method for chromium-containing steel slag
JP4388845B2 (en) Detoxification method for chromium-containing steel slag
JP2010280942A (en) Method for manufacturing low-phosphorus stainless steel
JP2011246765A (en) Method of reduction-refining molten steel
JP2008050700A (en) Method for treating chromium-containing steel slag
JP2008063600A (en) Method for desulfurizing molten iron containing chromium
KR20130110795A (en) Method for controlling composition of ladle slag
KR101412546B1 (en) Desurfurization method for hot metal
US20230304110A1 (en) Method for producing chromium-containing molten steel
RU2364632C2 (en) Steel production method
KR20060035274A (en) Method for manufacturing molten steel for galvanized steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5338056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350