JP2009068033A - Apparatus for distributing bottom-blowing gas in converter - Google Patents

Apparatus for distributing bottom-blowing gas in converter Download PDF

Info

Publication number
JP2009068033A
JP2009068033A JP2007234922A JP2007234922A JP2009068033A JP 2009068033 A JP2009068033 A JP 2009068033A JP 2007234922 A JP2007234922 A JP 2007234922A JP 2007234922 A JP2007234922 A JP 2007234922A JP 2009068033 A JP2009068033 A JP 2009068033A
Authority
JP
Japan
Prior art keywords
gas
converter
outer cylinder
inner cylinder
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007234922A
Other languages
Japanese (ja)
Other versions
JP5205883B2 (en
Inventor
Tomoyuki Kishinami
智之 岸浪
Toshiaki Amagasa
敏明 天笠
Tomoaki Tadama
智明 田玉
Takashi Yamauchi
崇 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007234922A priority Critical patent/JP5205883B2/en
Publication of JP2009068033A publication Critical patent/JP2009068033A/en
Application granted granted Critical
Publication of JP5205883B2 publication Critical patent/JP5205883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for distributing bottom-blowing gas in a converter which is set to a bottom-blowing converter or a top-and bottom-blowing converter and can uniformly distribute gas or solid-gas two-phase fluid into the plurality of tuyeres at the converter bottom. <P>SOLUTION: In the apparatus for distributing the bottom-blowing gas in the converter, in which a gas circling chamber provided with an outer cylinder and an inner cylinder at the top part is disposed and the plurality of separated chambers divided to each tuyere at the lower part, are disposed, on the side wall of the outer cylinder, an outer cylinder opening part connected with a flowing-in tube, is arranged, and the upper end part of the inner cylinder is opened in the outer cylinder and this lower end part is connected with the plurality of separated chambers, and the minimum distance (a) axial in the axial direction from the upper end part of the outer cylinder opening hole part to the upper end part of the inner cylinder, is ≥0.25 times of the size (b) of the outer cylinder opening hole part in the axial direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、底吹き転炉もしくは上底吹き転炉に設置され、気体ないし固気二相流体を転炉底の複数の羽口に均分することが可能な転炉底吹きガスの分配装置に関する。   The present invention relates to a converter bottom blowing gas distribution device installed in a bottom blowing converter or an upper bottom blowing converter and capable of equally dividing a gas or a solid-gas two-phase fluid into a plurality of tuyere at the bottom of the converter. About.

溶鋼の成分調整を行うため、たとえば図2に示すような転炉2が製鋼工場に設置されている。一般に転炉底には羽口3が、底吹きガスFによる溶鋼Mの攪拌が良好であること、炉体振動が小さいこと、スピッティングが発生しないこと等の性能を満たすよう、複数個所に設けてある。その転炉底の下方には転炉底吹きガスの分配装置が設置されている。
この転炉底吹きガスの分配装置が付帯されている転炉精錬では、転炉底の複数の羽口3から純酸素、不活性ガスあるいは両者を混合したガスなどの気体ないし固気二相流体が分配装置1を経て吹き込まれる。ガスとともに転炉底の複数の羽口から吹き込む粉体は、生石灰や蛍石などフラックスとして作用する固体であって、その粒度は粒径40μm以上が50wt%以上を占める比較的粗いものである。
In order to adjust the components of the molten steel, for example, a converter 2 as shown in FIG. 2 is installed in a steelmaking factory. In general, tuyeres 3 are provided at multiple locations on the bottom of the converter to satisfy performance such as good agitation of the molten steel M by the bottom blowing gas F, small furnace body vibration, and no spitting. It is. Below the converter bottom, a converter bottom blowing gas distribution device is installed.
In converter refining, which is equipped with a converter for blowing converter bottom gas, a gas or solid-gas two-phase fluid such as pure oxygen, inert gas or mixed gas from a plurality of tuyere 3 at the converter bottom Is blown through the distribution device 1. The powder blown from the plurality of tuyere at the bottom of the converter together with the gas is a solid acting as a flux such as quicklime and fluorite, and the particle size is relatively coarse with a particle size of 40 μm or more accounting for 50 wt% or more.

気体ないし固気二相流体を転炉底の複数の羽口3から吹き込む場合、羽口間で、粉体の分配も含め、固気二相流体の配分に偏りが大きいと、所期の吹錬性能が得られなくなるばかりでなく、底吹きガスFの流量の多い羽口3において、火点反応の促進や粉体による磨耗の増大により、損耗が早く進行する。粉体による羽口損耗が早く進行すると、当該羽口のみならず、転炉底全体の補修が必要となる。このため、固気二相流体を転炉底の複数の羽口3から吹き込む場合、羽口間で、単にガスの体積が等しいだけではなく、粉体の分配も等しいことが望まれる。   When a gas or solid-gas two-phase fluid is blown from a plurality of tuyere 3 at the bottom of the converter, if the distribution of the solid-gas two-phase fluid including the powder distribution is large between tuyere, Not only can the smelting performance not be obtained, but also at the tuyere 3 where the flow rate of the bottom blowing gas F is large, the wear proceeds quickly due to the promotion of the hot spot reaction and the increase in wear due to the powder. If the tuyere wear due to the powder progresses quickly, it is necessary to repair not only the tuyere but also the entire converter bottom. For this reason, when the solid-gas two-phase fluid is blown from the plurality of tuyere 3 at the bottom of the converter, it is desired that not only the gas volume is equal but also the powder distribution is equal between the tuyere.

ここで、転炉底の下方に設置される転炉底吹きガスの分配装置の構造について、図により説明しておく。図3は本発明を適用した転炉底吹きガスの分配装置1の外観を示す斜視図、図4は本発明を適用した転炉底吹きガスの分配装置1の内部を示す斜視図である。
図3中、5は外筒4に接続される流入管を示す。また図4中、Rは外筒開口部8からガス旋回室9内へ流入する流入流Iによって生じる旋回流を示す。
Here, the structure of a converter bottom blowing gas distributor installed below the converter bottom will be described with reference to the drawings. FIG. 3 is a perspective view showing an external appearance of a converter bottom blowing gas distribution device 1 to which the present invention is applied, and FIG. 4 is a perspective view showing the inside of the converter bottom blowing gas distribution device 1 to which the present invention is applied.
In FIG. 3, 5 indicates an inflow pipe connected to the outer cylinder 4. In FIG. 4, R indicates a swirl flow generated by the inflow flow I flowing into the gas swirl chamber 9 from the outer cylinder opening 8.

この旋回流Rが生じるガス旋回室9は、外筒開口部8が形成された蓋付き外筒4と、内筒6とを具備し、内筒6の下端が複数の隔室に接続されている。外筒4には流入管5が接続される。7は羽口ごとに区画された隔室を示す。各隔室7には、分配装置1で分配後の気体ないし固気二相流体を、羽口へ気流輸送する連絡配管が接続される。
このような構造を有する転炉底吹きガスの分配装置1では、気体ないし固気二相流体を流入管5へ供給すると、図4に示したように、外筒開口部8からガス旋回室9内へ流入する流入流Iによって旋回流Rが生じる。ガス旋回室9内で形成された旋回流Rは、内筒6上端を旋回しながら内筒6内に流入した後、内筒6内を旋回しながら下降し、次いで複数の隔室7に流入し、隔室7に接続された連絡配管を経て羽口3から転炉2内に底吹きガスFとして噴出する。
The gas swirl chamber 9 in which the swirl flow R is generated includes an outer cylinder 4 with a lid in which an outer cylinder opening 8 is formed, and an inner cylinder 6, and the lower end of the inner cylinder 6 is connected to a plurality of compartments. Yes. An inflow pipe 5 is connected to the outer cylinder 4. 7 indicates a compartment partitioned for each tuyere. Connected to each compartment 7 is a connecting pipe for air-transporting the gas or solid-gas two-phase fluid after distribution by the distribution device 1 to the tuyere.
In the converter bottom blowing gas distribution apparatus 1 having such a structure, when a gas or a solid-gas two-phase fluid is supplied to the inflow pipe 5, as shown in FIG. A swirl flow R is generated by the inflow flow I flowing in. The swirl flow R formed in the gas swirl chamber 9 flows into the inner cylinder 6 while swirling the upper end of the inner cylinder 6, then descends while swirling in the inner cylinder 6, and then flows into the plurality of compartments 7. Then, it is ejected as bottom blowing gas F from the tuyere 3 into the converter 2 through the connecting pipe connected to the compartment 7.

したがって、気体ないし固気二相流体を転炉底の複数の羽口3から吹き込む場合、転炉底吹きガスの分配装置1の隔室7ごとに、気体ないし固気二相流体の配分に偏りが大きいと、転炉精錬や転炉底寿命に問題を生じることとなる。
ところで、固気二相流体を均分することが可能な分配装置が開示されている(特許文献1、2、3)。特許文献1には、分配器または分配器下流の配管の途中に、粉体磨耗に十分耐久性がある材質のオリフィスを、羽口ごとに取付けた粉体供給装置が開示され、また、特許文献2、3には、軸対称形状の気流輸送粉粒体の分配装置が開示されている。
特開2001−304773号公報 特開昭58−69620号公報 特開昭58−216829号公報
Therefore, when the gas or solid-gas two-phase fluid is blown from the plurality of tuyere 3 at the bottom of the converter, the distribution of gas or solid-gas two-phase fluid is biased for each compartment 7 of the converter bottom blowing gas distributor 1. If it is large, problems will arise in the refining of the converter and the bottom life of the converter.
By the way, the distribution apparatus which can equalize solid-gas two-phase fluid is disclosed (patent documents 1, 2, and 3). Patent Document 1 discloses a powder supply device in which an orifice made of a material sufficiently durable to powder wear is attached to each tuyere in the middle of a distributor or a pipe downstream of the distributor. 2 and 3 disclose an axisymmetric-shaped air-transporting granular material distribution device.
JP 2001-304773 A JP 58-69620 A Japanese Patent Laid-Open No. 58-216829

しかしながら、特許文献1にはオリフィスを羽口ごとに取付けた構造が示されているが、固気二相流体を転炉底の複数の羽口に均分することが可能な転炉底吹きガスの分配装置1自体の構造は示されていない。
また、特許文献2、3に記載の気流輸送分配装置は、高炉の羽口部に微粉炭やコ−クス粉を気流輸送するのに好適な装置であり、図4で説明したような転炉底吹きガスの分配装置に適用するのは困難である。
However, although Patent Document 1 shows a structure in which an orifice is attached to each tuyere, a converter bottom blowing gas capable of evenly dividing a solid-gas two-phase fluid into a plurality of tuyere at the bottom of the converter. The structure of the dispensing device 1 itself is not shown.
Moreover, the airflow distribution apparatus of patent document 2, 3 is an apparatus suitable for airflow-transporting pulverized coal and coke powder to the tuyere part of a blast furnace, and the converter as demonstrated in FIG. It is difficult to apply to a bottom blowing gas distribution device.

本発明は、上記した従来技術の問題点に鑑み、底吹き転炉もしくは上底吹き転炉に設置され、気体ないし固気二相流体を転炉底の複数の羽口に均分することが可能な転炉底吹きガスの分配装置を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention is installed in a bottom blown converter or an upper bottom blown converter, and can divide a gas or a solid-gas two-phase fluid into a plurality of tuyere at the bottom of the converter. It is an object of the present invention to provide a converter for blowing converter bottom blowing gas.

本発明者らは、前記問題を解決するために、分配装置自体の各部の寸法を変えて数値実験を重ねた結果、ガス旋回室内に発生する旋回流と、流入管からの流入流との干渉を低減することにより、下部の複数の隔室に固気二相流体を均分することが可能となること、およびガス旋回室内における旋回流と流入流との干渉は、外筒開口部と内筒の上端との位置関係の適正化により実現できることを見出し、以下の本発明をなした。   In order to solve the above problems, the inventors have conducted numerical experiments by changing the dimensions of each part of the distributor itself, and as a result, interference between the swirl flow generated in the gas swirl chamber and the inflow flow from the inflow pipe. The solid-gas two-phase fluid can be evenly divided into a plurality of lower compartments, and the interference between the swirling flow and the inflowing flow in the gas swirl chamber It has been found that this can be realized by optimizing the positional relationship with the upper end of the cylinder, and the following invention has been made.

本発明は、上部に外筒と内筒を具備したガス旋回室を配置し、その下部に羽口ごとに区画された複数の隔室を配置してなる転炉底吹きガスの分配装置において、前記外筒の側壁に流入管を接続する外筒開口部が設けられ、前記内筒の上端が外筒内に開口しその下端が複数の隔室に接続され、前記外筒開口部の上端から前記内筒の上端までの最小軸方向距離aが前記外筒開口部の軸方向寸法bの0.25倍以上であることを特徴とする転炉底吹きガスの分配装置である。   The present invention provides a converter bottom blowing gas distribution device in which a gas swirl chamber having an outer cylinder and an inner cylinder is arranged at the upper portion, and a plurality of compartments divided for each tuyere are arranged at the lower portion thereof. An outer cylinder opening for connecting an inflow pipe is provided on a side wall of the outer cylinder, an upper end of the inner cylinder is opened in the outer cylinder, and a lower end thereof is connected to a plurality of compartments, from an upper end of the outer cylinder opening. The converter bottom blown gas distribution device is characterized in that the minimum axial distance a to the upper end of the inner cylinder is 0.25 times or more the axial dimension b of the outer cylinder opening.

本発明にかかる転炉底吹きガスの分配装置によれば、ガス旋回室内に発生する旋回流と、流入管からの流入流との干渉が低減され、下部の複数の隔室に固気二相流体を均分することが可能となる。この結果、底吹き転炉もしくは上底吹き転炉に設置することで、気体ないし固気二相流体を転炉底の複数の羽口に均分することができ、羽口間の損耗の偏りが抑制され、炉底の寿命を最大とすることが可能である。   According to the converter bottom blowing gas distribution device according to the present invention, interference between the swirl flow generated in the gas swirl chamber and the inflow flow from the inflow pipe is reduced, and the solid gas two-phase is provided in the plurality of lower compartments. It becomes possible to equalize the fluid. As a result, by installing it in the bottom blown converter or top bottom blown converter, gas or solid-gas two-phase fluid can be evenly divided into multiple tuyere at the bottom of the converter, and uneven wear between tuyere Can be suppressed, and the lifetime of the furnace bottom can be maximized.

以下、本発明にかかる転炉底吹きガスの分配装置の構造について説明する
本発明にかかる分配装置の基本構造は、図3、4を用いて説明した、従来の分配装置1と同様である。つまり、上部に外筒4と内筒6を具備したガス旋回室9を配置し、その下部に羽口ごとに区画された複数の隔室7を配置してなる。また内筒6の上端が外筒内に開口しその下端が複数の隔室7に接続される。
Hereinafter, the structure of the converter bottom blowing gas distribution device according to the present invention will be described. The basic structure of the distribution device according to the present invention is the same as that of the conventional distribution device 1 described with reference to FIGS. That is, the gas swirl chamber 9 having the outer cylinder 4 and the inner cylinder 6 is arranged at the upper part, and a plurality of compartments 7 divided for each tuyere are arranged at the lower part. The upper end of the inner cylinder 6 opens into the outer cylinder, and the lower end thereof is connected to the plurality of compartments 7.

そして、ガス旋回室9の外筒開口部8には、外筒4の内周面に沿う方向に向けて流入管5が接続され、外筒開口部8からガス旋回室9内へ流入する流入流Iによって旋回流Rが生じる構造となっている。
本発明の特徴は、外筒開口部8と内筒6の上端との位置関係を以下のようにしたことである。すなわち、図1に示したように、外筒開口部8の全部が、内筒6の上端よりも隔室7の側、つまり内筒6の上端よりも下にあり、外筒開口部8の上端から内筒6の上端までの最小軸方向距離aが外筒開口8の軸方向寸法bの0.25以上である分配装置1としたことである。
The inflow pipe 5 is connected to the outer cylinder opening 8 of the gas swirl chamber 9 in a direction along the inner peripheral surface of the outer cylinder 4, and the inflow flows into the gas swirl chamber 9 from the outer cylinder opening 8. The swirl flow R is generated by the flow I.
The feature of the present invention is that the positional relationship between the outer cylinder opening 8 and the upper end of the inner cylinder 6 is as follows. That is, as shown in FIG. 1, the entire outer cylinder opening 8 is located on the side of the compartment 7 from the upper end of the inner cylinder 6, that is, below the upper end of the inner cylinder 6. This is a distribution device 1 in which the minimum axial distance a from the upper end to the upper end of the inner cylinder 6 is 0.25 or more of the axial dimension b of the outer cylinder opening 8.

なお、図1(a)は、外筒開口部8と内筒6の上端との位置関係(a/b)が底吹きガス分配の均等性(Max(abs(残差/平均))に及ぼす影響を示すグラフ、図1(b)はその位置関係を説明する要部断面図である。ここで、図1(b)は前掲した図4のY−Y縦断面図でもある。Y−Y縦断面の円周方向位置は、外筒開口部8の上端から内筒6の上端までの軸方向距離が最小となる位置である。   In FIG. 1A, the positional relationship (a / b) between the outer cylinder opening 8 and the upper end of the inner cylinder 6 affects the uniformity (Max (abs (residual / average)) of bottom blowing gas distribution. 1B is a cross-sectional view of a main part for explaining the positional relationship, and FIG. 1B is also a YY vertical cross-sectional view of FIG. The circumferential position of the longitudinal section is the position where the axial distance from the upper end of the outer cylinder opening 8 to the upper end of the inner cylinder 6 is minimum.

数値実験は、以下のようにして分配装置1の各部の寸法を変えて行った(各部の寸法条件は実施例を参照方)。粉体を含まないガス(酸素ガス)のみの場合と、粉体を含む固気二相流体の場合とで、流体シュミレーションを行い、その結果に基づき、底吹きガス分配の均等性を、次のようにして求めた(Max(abs(残差/平均))により評価した。
下部の複数の隔室7にそれぞれ配分されるガス流量を測定し、その平均流量に対する各隔室7のガス流量の差を残差(=各隔室のガス流量−平均流量)とし、この残差を平均流量で除した絶対値の内、最大の値を(=Max(abs(残差/平均))とした。
The numerical experiment was performed by changing the dimensions of each part of the distribution device 1 as follows (refer to the example for the dimension conditions of each part). In the case of only gas that does not contain powder (oxygen gas) and in the case of a solid-gas two-phase fluid that contains powder, fluid simulation is performed. Thus, it was evaluated by (Max (abs (residual / average)).
The gas flow allocated to each of the plurality of lower compartments 7 is measured, and the difference in the gas flow rate in each compartment 7 with respect to the average flow rate is defined as a residual (= gas flow rate in each compartment−average flow rate). Among the absolute values obtained by dividing the difference by the average flow rate, the maximum value was defined as (= Max (abs (residual / average)).

その結果を示した図1(a)から明らかなように、a/bが0.25以上であるガス旋回室とした場合、それ未満であるガス旋回室の場合に比べて、下部の複数の隔室に固気二相流体を均等に分配できることがわかる。
ただし、粉体を含む固気二相流体の場合の流体シュミレーションは、粉体がガス中に均一に分布しており、固気二相流体の振る舞いがガスのみの場合と同じであると仮定して行った。具体的には固気二相流体の平均密度=ガスの密度+LLD(Lime Load Factor)とし、LLD=1.43として取り扱った。
As is apparent from FIG. 1 (a) showing the result, when a gas swirl chamber having a / b of 0.25 or more is used, a plurality of lower compartments are provided as compared with a gas swirl chamber having a smaller value than that. It can be seen that the solid-gas two-phase fluid can be evenly distributed.
However, fluid simulation in the case of a solid-gas two-phase fluid containing powder assumes that the powder is uniformly distributed in the gas and the behavior of the solid-gas two-phase fluid is the same as that of the gas only. I went. Specifically, the average density of the solid-gas two-phase fluid = the density of the gas + LLD (Lime Load Factor), and LLD = 1.43.

次に、上記のような構造をもつ転炉底吹きガスの分配装置1の作用につき、図1と図3を参照しつつ説明する。
ガス旋回室内に流入する流入流Iは外筒4の内周面に沿う方向に沿っているため、上部のガス旋回室内のガス流れに角運動量を与え、かつ外筒開口部8の全部が内筒6の上端よりも下にあるため、安定した旋回流Rが形成される。また外筒開口部8の上端から内筒6の上端までの最小軸方向距離aが、外筒開口8の軸方向寸法bの0.25以上である場合、旋回流Rと流入流Iとの干渉が低減され、旋回流Rは軸対称に近い流れとなる。
Next, the operation of the converter bottom blowing gas distribution apparatus 1 having the above-described structure will be described with reference to FIGS.
Since the inflow flow I flowing into the gas swirl chamber is along the direction along the inner peripheral surface of the outer cylinder 4, an angular momentum is given to the gas flow in the upper gas swirl chamber, and the outer cylinder opening 8 is entirely inside. Since it is below the upper end of the cylinder 6, a stable swirl flow R is formed. When the minimum axial distance a from the upper end of the outer cylinder opening 8 to the upper end of the inner cylinder 6 is 0.25 or more of the axial dimension b of the outer cylinder opening 8, the interference between the swirling flow R and the inflow flow I is As a result, the swirl flow R becomes a nearly axisymmetric flow.

そして、内筒6および各隔室7の形状は軸対称状であるため、内筒6の内部へ流下した以降、ガス流れに差異は生じない。流入流Iが固気二相流体の場合も同様である。この結果、下部の複数の隔室7に固気二相流体を均分することが可能となる。
なお、本発明にかかる転炉底吹きガスの分配装置1では、外筒4の側壁に接続する流入管は1本に限るものでなく、複数として同様の作用効果が得られる。
And since the shape of the inner cylinder 6 and each compartment 7 is axisymmetric, after flowing down to the inside of the inner cylinder 6, there is no difference in the gas flow. The same applies when the inflow I is a solid-gas two-phase fluid. As a result, the solid-gas two-phase fluid can be divided into the plurality of lower compartments 7.
In the converter bottom blowing gas distribution device 1 according to the present invention, the number of inflow pipes connected to the side wall of the outer cylinder 4 is not limited to one, and the same effect can be obtained by using a plurality of inflow pipes.

一方、外筒開口部8の上端が内筒6の上端よりも上方位置にあるか、あるいはa/bが0.25未満であると、ガス旋回室内に発生する旋回流と、流入管からの流入流との干渉によって旋回流の乱れが大きくなる。このため、下部の複数の隔室7に配分される固気二相流体に局部的な偏りが生じる。   On the other hand, if the upper end of the outer cylinder opening 8 is located above the upper end of the inner cylinder 6 or if a / b is less than 0.25, the swirl flow generated in the gas swirl chamber and the inflow flow from the inflow pipe Disturbance of the swirl flow increases due to the interference. For this reason, local bias occurs in the solid-gas two-phase fluid distributed to the plurality of lower compartments 7.

(転炉底吹きガスの分配装置1の寸法)
外筒4の内径=900mm、分配装置1の全高さ=750mm、外筒開口部8の上端から内筒6の上端までの最小軸方向距離a=120mm、外筒開口8の軸方向寸法b=300mm、a/b=0.4としたケースAと、a=-60 mm、外筒開口8の軸方向寸法b=300mm、a/b=-0.2としたケースBとで、上記の流体シュミレーションによる数値実験を行った。なお、隔室7の数=18とした。
(Dimensions of converter bottom blowing gas distributor 1)
The inner diameter of the outer cylinder 4 is 900 mm, the total height of the distributor 1 is 750 mm, the minimum axial distance a from the upper end of the outer cylinder opening 8 to the upper end of the inner cylinder 6 is 120 mm, and the axial dimension b of the outer cylinder opening 8 is b = Numerical values based on the above fluid simulation with case A with 300 mm and a / b = 0.4, and case B with a = -60 mm and axial dimension b = 300 mm and a / b = -0.2 The experiment was conducted. The number of compartments 7 was set to 18.

その結果、a/b=0.4としたケースAの方が、a/b=-0.2としたケースBに比べて下部の複数の隔室に固気二相流体を均分することができた。   As a result, the case A with a / b = 0.4 was able to equalize the solid-gas two-phase fluid into the plurality of lower compartments as compared with the case B with a / b = −0.2.

外筒4の内径=800mm〜1000mm、分配装置1の全高さ=600mm〜900mm、外筒開口部8の上端から内筒6の上端までの最小軸方向距離a=0mm〜240mm、外筒開口8の軸方向寸法b=240mm〜360mm。a/b=0〜1.0、隔室7の数=18として、上記の流体シュミレーションによる数値実験を行った。
その結果、a/bが0.25以上であるガス旋回室とした場合、それ未満であるガス旋回室の場合に比べて、複数の隔室に固気二相流体を均等に分配できた。なお、実施例1、2とも、流入流の条件は、5kg/cm2G、流量:670Nm/min、流出ガスの圧力は流入流圧が5kg/cm2Gとなるように調整した。
The inner diameter of the outer cylinder 4 = 800 mm to 1000 mm, the total height of the distributor 1 = 600 mm to 900 mm, the minimum axial distance a = 0 mm to 240 mm from the upper end of the outer cylinder opening 8 to the upper end of the inner cylinder 6, the outer cylinder opening 8 The axial dimension of b = 240mm ~ 360mm. The numerical experiment by the above fluid simulation was performed with a / b = 0 to 1.0 and the number of compartments 7 = 18.
As a result, when the gas swirl chamber having a / b of 0.25 or more is used, the solid-gas two-phase fluid can be evenly distributed to the plurality of compartments as compared with the gas swirl chamber having a / b of less than 0.25. In both Examples 1 and 2, the inflow conditions were 5 kg / cm 2 G, the flow rate was 670 Nm 3 / min, and the outflow gas pressure was adjusted so that the inflow flow pressure was 5 kg / cm 2 G.

実際の転炉底の各羽口3から気体を吹き込む場合には、ガスホルダから減圧弁をへて所定の圧力に減圧され、流量調整弁を経て所定の流量とされたガスが、ロータリージョイントを経て流入管5に供給される。また粉体をガスとともに転炉底の各羽口3から吹き込む場合、図示しない定量切り出し装置で粉体が切り出され、ガスと混合され、固気二相流体として流入管5に供給される。   When the gas is blown from each tuyere 3 at the bottom of the actual converter, the gas is reduced to a predetermined pressure from the gas holder through the pressure reducing valve, and the gas having a predetermined flow rate through the flow rate adjusting valve passes through the rotary joint. It is supplied to the inflow pipe 5. When the powder is blown together with the gas from each tuyere 3 at the bottom of the converter, the powder is cut out by a quantitative cutting device (not shown), mixed with the gas, and supplied to the inflow pipe 5 as a solid-gas two-phase fluid.

(a)は外筒開口部と内筒の上端との位置関係が底吹きガス分配の均等性に及ぼす影響を示すグラフ、(b)はその位置関係を説明する要部断面図である。(A) is a graph which shows the influence which the positional relationship of an outer cylinder opening part and the upper end of an inner cylinder has on the uniformity of bottom blowing gas distribution, (b) is principal part sectional drawing explaining the positional relationship. 転炉底吹きガスの吹き込み系統を例示する断面図である。It is sectional drawing which illustrates the blowing system of converter bottom blowing gas. 本発明を適用した転炉底吹きガスの分配装置の斜視図である。It is a perspective view of the distribution apparatus of the converter bottom blowing gas to which this invention is applied. 本発明を適用した転炉底吹きガスの分配装置の内部を示す斜視図である。It is a perspective view which shows the inside of the distribution apparatus of the converter bottom blowing gas to which this invention is applied.

符号の説明Explanation of symbols

1 分配装置
2 転炉
3 羽口
4 外筒
5 流入管
6 内筒
7 隔室
8 外筒開口部
9 ガス旋回室
F 底吹きガス
M 溶鋼
R 旋回流
I 流入流
a 外筒開口部の上端から前記内筒の上端までの最小軸方向距離
b 外筒開口部の軸方向寸法
DESCRIPTION OF SYMBOLS 1 Distributor 2 Converter 3 tuyere 4 Outer cylinder 5 Inflow pipe 6 Inner cylinder 7 Compartment 8 Outer cylinder opening 9 Gas swirl chamber F Bottom blowing gas M Molten steel R Swirling flow I Inflow a From the upper end of outer cylinder opening Minimum axial distance to the upper end of the inner cylinder b Axial dimension of the outer cylinder opening

Claims (1)

上部に外筒と内筒を具備したガス旋回室を配置し、その下部に羽口ごとに区画された複数の隔室を配置してなる転炉底吹きガスの分配装置において、
前記内筒の上端が外筒内に開口しその下端が複数の隔室に接続され、前記外筒の側壁に流入管を接続する外筒開口部が設けられ、前記外筒開口部の上端から前記内筒の上端までの最小軸方向距離aが、前記外筒開口部の軸方向寸法bの0.25倍以上であることを特徴とする転炉底吹きガスの分配装置。
In the converter bottom blowing gas distribution device, in which a gas swirl chamber having an outer cylinder and an inner cylinder is arranged at the upper part, and a plurality of compartments divided for each tuyere are arranged at the lower part thereof,
The upper end of the inner cylinder opens into the outer cylinder, the lower end thereof is connected to a plurality of compartments, and an outer cylinder opening for connecting an inflow pipe is provided on the side wall of the outer cylinder, from the upper end of the outer cylinder opening A converter bottom blowing gas distribution device, wherein a minimum axial distance a to the upper end of the inner cylinder is 0.25 times or more of an axial dimension b of the outer cylinder opening.
JP2007234922A 2007-09-11 2007-09-11 Converter bottom blowing gas distribution device Active JP5205883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234922A JP5205883B2 (en) 2007-09-11 2007-09-11 Converter bottom blowing gas distribution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234922A JP5205883B2 (en) 2007-09-11 2007-09-11 Converter bottom blowing gas distribution device

Publications (2)

Publication Number Publication Date
JP2009068033A true JP2009068033A (en) 2009-04-02
JP5205883B2 JP5205883B2 (en) 2013-06-05

Family

ID=40604610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234922A Active JP5205883B2 (en) 2007-09-11 2007-09-11 Converter bottom blowing gas distribution device

Country Status (1)

Country Link
JP (1) JP5205883B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801549A (en) * 2019-02-20 2019-05-24 中国恩菲工程技术有限公司 Bottom convertor water model experimental provision and bottom convertor water model experimental method
JP2021195619A (en) * 2020-06-10 2021-12-27 Jfeスチール株式会社 Gas distributor
JP2021195621A (en) * 2020-06-12 2021-12-27 Jfeスチール株式会社 Gas distributor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801549A (en) * 2019-02-20 2019-05-24 中国恩菲工程技术有限公司 Bottom convertor water model experimental provision and bottom convertor water model experimental method
JP2021195619A (en) * 2020-06-10 2021-12-27 Jfeスチール株式会社 Gas distributor
JP7272387B2 (en) 2020-06-10 2023-05-12 Jfeスチール株式会社 gas distributor
JP2021195621A (en) * 2020-06-12 2021-12-27 Jfeスチール株式会社 Gas distributor
JP7222412B2 (en) 2020-06-12 2023-02-15 Jfeスチール株式会社 gas distribution equipment

Also Published As

Publication number Publication date
JP5205883B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN1250747C (en) Method for producing a metal melt and corresponding multifunction lance
HU176383B (en) Nozzle for introducing gases
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP5205883B2 (en) Converter bottom blowing gas distribution device
JP6521177B2 (en) Method and apparatus for desulfurizing molten iron
UA84151C2 (en) Method for producing foamed slag on melt of high-chromium steel
US4417723A (en) Tuyere for blowing gases into molten metal bath container
JP2021195621A (en) Gas distributor
JP2010230202A (en) Distributor of single phase flow or multiphase flow
JP7272387B2 (en) gas distributor
JP2013540251A (en) Flotation furnace and concentrate burner
CN1315596C (en) Gas flushing device for metallurgical melting pots
JP4765372B2 (en) Gas blown tuyere
EP2586877B1 (en) Furnace having even distribution of gas
JP2007270192A (en) Method for charging ore into blast furnace
JP2002363623A (en) Structure of distributing chute in bell-less type furnace top-charging apparatus for blast furnace
JP2010230201A (en) Distributor of single phase flow or multiphase flow
JP2012132056A (en) Top bunker of blast furnace
JP4935529B2 (en) Raw material charging apparatus and charging method for bellless blast furnace
JP2008231511A (en) Method for protecting furnace bottom refractory in blast furnace
JP4734738B2 (en) Brick stacking method near the tap
JP2022013818A (en) Top blowing lance for refining converter and refining method of molten iron using the lance
Kirschen et al. Chemical energy and bottom stirring systems–Cost effective solutions for a better performing EAF
JP2001304773A (en) Powder-supplying device
JPH11124617A (en) Tuyere for blowing gas into molten metal and method of blowing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250