JP7272387B2 - gas distributor - Google Patents

gas distributor Download PDF

Info

Publication number
JP7272387B2
JP7272387B2 JP2021091433A JP2021091433A JP7272387B2 JP 7272387 B2 JP7272387 B2 JP 7272387B2 JP 2021091433 A JP2021091433 A JP 2021091433A JP 2021091433 A JP2021091433 A JP 2021091433A JP 7272387 B2 JP7272387 B2 JP 7272387B2
Authority
JP
Japan
Prior art keywords
gas
outer cylinder
powder
baffle plate
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021091433A
Other languages
Japanese (ja)
Other versions
JP2021195619A (en
Inventor
勝太 天野
裕貴 木下
新吾 佐藤
鎮彦 池野
涼 川畑
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021195619A publication Critical patent/JP2021195619A/en
Application granted granted Critical
Publication of JP7272387B2 publication Critical patent/JP7272387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、底吹き転炉もしくは上底吹き転炉に設置され、気体又は固気二相流体を転炉の底に設置された複数の羽口に均等分配することが可能な気体の分配装置に関する。 The present invention is a gas distribution device installed in a bottom-blown converter or a top-bottom blown converter, capable of evenly distributing a gas or a solid-gas two-phase fluid to a plurality of tuyeres installed at the bottom of the converter. Regarding.

製鉄所の製鋼工場では、溶鋼の成分調整を行うため、たとえば図1に示すような転炉2が設置されている。一般的に、転炉には、転炉底吹きガスFによる溶鉄Mの攪拌が良好であること、炉体振動が小さくスロッシングが起きにくいこと、スピッティングが発生しないこと等の性能を満たすよう、底部に羽口3が複数設けてられている。そして、転炉2の底部の下方には、底部の限られたスペースで羽口3に転炉底吹きガスの分配を行うため、転炉底吹きガスの分配装置が設置されている。 In a steelmaking plant of an ironworks, a converter 2 as shown in FIG. 1, for example, is installed in order to adjust the composition of molten steel. In general, the converter is designed to satisfy the following performance requirements: good agitation of the molten iron M by the bottom-blown gas F of the converter, small vibration of the furnace body, less sloshing, and no spitting. A plurality of tuyeres 3 are provided at the bottom. A bottom-blown gas distribution device for the converter is installed below the bottom of the converter 2 in order to distribute the bottom-blown gas to the tuyeres 3 in the limited space of the bottom.

このような転炉底吹きガスの分配装置が付帯されている転炉2における精錬では、脱炭を行い、冶金特性を向上させるため、純酸素、不活性ガス又は両者を混合したガスなどの気体又は固気二相流体(以下、底吹きガスとも称する)が分配装置1を経て複数の羽口3から吹き込まれる。なお、気体とともに複数の羽口3から吹き込む固体は、生石灰などフラックスとして作用する粉体である。 In the refining in the converter 2 equipped with such a bottom-blown gas distribution device, in order to decarburize and improve metallurgical properties, a gas such as pure oxygen, an inert gas, or a mixture of both is used. Alternatively, a solid-gas two-phase fluid (hereinafter also referred to as bottom-blown gas) is blown from a plurality of tuyeres 3 through the distributor 1 . The solids blown from the plurality of tuyeres 3 together with the gas are powders such as quicklime that act as a flux.

底吹きガスを複数の羽口3から吹き込む場合、羽口3間で、粉体や気体の分配に偏りが大きいと、期待される吹錬性能が得られなくなるばかりでなく、転炉底吹きガスFの流量の多い羽口3において、火点反応量や粉体摩耗量が増大するなどして、羽口3の損耗が早く進行する。粉体による羽口3の損耗が早く進行すると、当該羽口3のみならず、転炉底全体の補修が必要となる。このため、固気二相流体を転炉底の複数の羽口3から吹き込む場合、羽口3間で、単にガスの分配が等しいだけではなく、粉体の分配も等しいことが望まれる。 When the bottom-blown gas is blown from a plurality of tuyeres 3, if the distribution of powder or gas is uneven among the tuyeres 3, the expected blowing performance cannot be obtained, and the bottom-blown gas of the converter is not obtained. At the tuyere 3 where the flow rate of F is large, the amount of spark reaction and the amount of powder wear increase, and the wear of the tuyere 3 progresses quickly. If the wear of the tuyeres 3 due to powder progresses quickly, not only the tuyeres 3 but also the entire bottom of the converter must be repaired. Therefore, when a solid-gas two-phase fluid is blown from a plurality of tuyeres 3 on the bottom of the converter, it is desired that not only the gas distribution but also the powder distribution be equal among the tuyeres 3 .

ここで、転炉2の底部の下方に設置される転炉底吹きガスの分配装置1の構造について、図2及び図3に示す。図2及び図3に示すように、分配装置1では、外筒4に接続された導入管5から複数の羽口3に底吹きガスを導入する。また図2及び図3中の矢印は、Iが不図示の供給装置から導入管5を通じて供給される底吹きガスの流れ(流入流)を示し、Rが導入管5から外筒開口部41を通じて外筒4内部の旋回室8に流入する流入流Iによって生じる旋回流を示す。 2 and 3 show the structure of the converter bottom-blown gas distributor 1 installed below the bottom of the converter 2. FIG. As shown in FIGS. 2 and 3 , in the distributor 1 , the bottom-blown gas is introduced into the plurality of tuyeres 3 from the introduction pipe 5 connected to the outer cylinder 4 . Arrows in FIGS. 2 and 3 indicate the flow (inflow) of bottom-blown gas supplied from a supply device (not shown) through the introduction pipe 5, and R from the introduction pipe 5 through the opening 41 of the outer cylinder. A swirling flow caused by an inflow I flowing into the swirling chamber 8 inside the outer cylinder 4 is shown.

この旋回流Rが生じる旋回室8は、外筒開口部41が形成された蓋付きの外筒4と、内筒6とを備え、内筒6の下端が複数の隔室7に接続されている。また、外筒4には導入管5が接続される。符号7は羽口3ごとに区画された隔室を示す。各隔室7には、分配装置1で分配後の底吹きガスを、羽口3へ気流輸送する連絡配管(不図示)が接続される。 The swirl chamber 8 in which the swirl flow R is generated includes an outer cylinder 4 with a lid and an outer cylinder opening 41 formed thereon, and an inner cylinder 6 . there is An introduction pipe 5 is connected to the outer cylinder 4 . Reference numeral 7 indicates a compartment partitioned for each tuyere 3 . Each compartment 7 is connected to a communication pipe (not shown) for pneumatically transporting the bottom-blown gas distributed by the distributor 1 to the tuyeres 3 .

このような構造を有する転炉底吹きガスの分配装置1では、底吹きガスを導入管5へ供給すると、図3に示すように、外筒開口部41から旋回室8内へ流入する流入流Iによって、旋回室8内で旋回しながら上昇する旋回流Rが生じる。旋回室8内で発生した旋回流Rは、その後、内筒6上端を旋回しながら内筒6内に流入した後、内筒6内を旋回しながら下降し、次いで複数の隔室7に流入し、隔室7に接続された連絡配管を経て羽口3から転炉2内に転炉底吹きガスFとして噴出される。 In the converter bottom-blown gas distribution apparatus 1 having such a structure, when the bottom-blown gas is supplied to the introduction pipe 5, as shown in FIG. A swirling flow R that rises while swirling in the swirling chamber 8 is generated by I. The swirl flow R generated in the swirl chamber 8 then flows into the inner cylinder 6 while swirling the upper end of the inner cylinder 6, descends while swirling inside the inner cylinder 6, and then flows into the plurality of compartments 7. Then, it is jetted from the tuyere 3 into the converter 2 as a converter bottom-blown gas F through a connecting pipe connected to the compartment 7 .

したがって、底吹きガスを複数の羽口3から吹き込む場合、転炉底吹きガスの分配装置1の隔室7ごとの、底吹きガスの配分に偏りが大きいと、転炉精錬や転炉2の底部寿命に問題を生じることとなる。また、旋回室8に固体を滞留させることなく操業をすることが求められる。 Therefore, when the bottom-blown gas is blown from a plurality of tuyeres 3, if the distribution of the bottom-blown gas for each chamber 7 of the converter bottom-blown gas distribution device 1 is large, the converter refining and the converter 2 This will cause problems with bottom life. In addition, it is required to operate without allowing solids to remain in the swirl chamber 8 .

例えば、特許文献1には、固気二相流体を均分することが可能な分配装置として、分配器又は分配器下流の配管の途中に、粉体磨耗に十分耐久性がある材質のオリフィスを、羽口ごとに取付けた粉体供給装置が開示されている。また、特許文献2,3には、固気二相流体を均分することが可能な分配装置として、軸対称形状の気流輸送粉粒体の分配装置が開示されている。さらに、特許文献4には、固気二相流体を均分することが可能な分配装置として、旋回室内に発生する旋回流と導入管からの流入流との干渉を低減することにより、下部の複数の隔室に固気二相流体を均分する転炉底吹きガスの分配装置が開示されている。 For example, in Patent Document 1, as a distribution device capable of evenly dividing a solid-gas two-phase fluid, an orifice made of a material that is sufficiently durable against powder abrasion is provided in the middle of a distribution device or a pipe downstream of the distribution device. , a powder feeder mounted at each tuyere is disclosed. Further, Patent Literatures 2 and 3 disclose a distributing device for airflow-transporting granular materials having an axially symmetrical shape as a distributing device capable of evenly distributing a solid-gas two-phase fluid. Furthermore, in Patent Document 4, as a distribution device capable of evenly dividing a solid-gas two-phase fluid, by reducing the interference between the swirl flow generated in the swirl chamber and the inflow flow from the introduction pipe, A converter bottom-blown gas distribution apparatus is disclosed for evenly distributing a solid-gas two-phase fluid into a plurality of compartments.

特開2001-304773号公報Japanese Patent Application Laid-Open No. 2001-304773 特開昭58-69620号公報JP-A-58-69620 特開昭58-216829号公報JP-A-58-216829 特開2009-68033号公報JP-A-2009-68033

特許文献1には、オリフィスを羽口ごとに取付けた構造が示されているが、固気二相流体を転炉底の複数の羽口に均分することが可能な転炉底吹きガスの分配装置自体の構造は示されていない。
また、特許文献2,3に記載の気流輸送分配装置は、高炉の羽口部に微粉炭やコ-クス粉を気流輸送するのに好適な装置であり、図2や図3で説明したような転炉底吹きガスの分配装置に適用するのは困難である。また、気流と共に転炉に吹き込む粉体には、粉体製造工程に伴い混入した異物、特に粉砕ミルなどで不可避的に混入する異物が含まれる。一般には搬送経路に磁石を設置する、篩を設置するなどして異物を除去することが行われている。しかしながら、これらの方策を講じてもなお、異物を完全に除去することが不可能である。
Patent Document 1 shows a structure in which an orifice is attached to each tuyere. The structure of the dispensing device itself is not shown.
In addition, the pneumatic transport/distribution devices described in Patent Documents 2 and 3 are suitable devices for pneumatically transporting pulverized coal and coke powder to the tuyeres of blast furnaces, as described in FIGS. However, it is difficult to apply it to a distribution system for bottom-blown converter gas. Also, the powder that is blown into the converter together with the air flow contains foreign matter that is mixed in during the powder manufacturing process, especially foreign matter that is unavoidably mixed in a pulverizing mill or the like. In general, foreign substances are removed by installing magnets or sieves in the conveying path. However, even if these measures are taken, it is still impossible to completely remove the foreign matter.

さらに、特許文献4に開示の分配器内では、遠心分離により、比重が大きく粒度の粗い粉体が濃縮、滞留し、固気2相流の均等分配を妨げることがある。さらに、粉体滞留の防止のための方策について特許文献4では考えられていない。実操業においては、定期的に残留粉体を排出することになるが、転炉の稼働率が下がるため、生産性を阻害する。
本発明は、上記した従来技術の問題点に鑑みたものであり、底吹き転炉又は上底吹き転炉に設置され、気体又は固気二相流体を転炉の底部の複数の羽口に均分することが可能で、粉体の滞留を生じない、気体の分配装置を提供することを目的とする。
Furthermore, in the distributor disclosed in Patent Document 4, centrifugal separation causes powder with a large specific gravity and a coarse particle size to concentrate and stagnate, which may hinder uniform distribution of the solid-gas two-phase flow. Furthermore, Patent Document 4 does not consider measures for preventing powder retention. In actual operation, the residual powder is periodically discharged, which reduces the operating rate of the converter, which hinders productivity.
The present invention has been made in view of the above-described problems of the prior art, and is installed in a bottom-blown converter or a top-bottom blown converter to feed a gas or a solid-gas two-phase fluid to a plurality of tuyeres at the bottom of the converter. It is an object of the present invention to provide a gas distribution device capable of evenly distributing and not causing powder to stagnate.

本発明の一態様によれば、外筒及び内筒が上部に配置され、転炉の羽口ごとに区画された複数の隔室が下部に配置された、気体の分配装置であって、上記内筒は、上端が上記外筒内に開口し、下端が複数の隔室に接続され、上記外筒は、下端に底板を有し、気体を供給する導入管が接続される外筒開口部が側壁に設けられ、上記外筒開口部の下端と上記底板との高さ方向の距離である接続高さaが、上記外筒の内側の上記気体が旋回する旋回室の高さbの1/10以下である、気体の分配装置が提供される。 According to one aspect of the present invention, a gas distribution device in which an outer cylinder and an inner cylinder are arranged in the upper part and a plurality of compartments partitioned for each tuyere of a converter are arranged in the lower part, The inner cylinder has an upper end that opens into the outer cylinder and a lower end that is connected to the plurality of compartments. The outer cylinder has a bottom plate at the lower end and an outer cylinder opening to which an introduction pipe for supplying gas is connected. is provided on the side wall, and the connection height a, which is the distance in the height direction between the lower end of the opening of the outer cylinder and the bottom plate, is 1 of the height b of the swirl chamber inside the outer cylinder in which the gas swirls. A gas dispensing device is provided that is less than or equal to /10.

本発明の一態様によれば、外筒及び内筒が上部に配置され、転炉の羽口ごとに区画された複数の隔室が下部に配置された、気体の分配装置であって、上記内筒は、上端が上記外筒内に開口し、下端が複数の隔室に接続され、上記外筒は、下端に底板を有し、気体を供給する導入管が接続される外筒開口部が側壁に設けられ、上記旋回室の下側に、邪魔板が設置される、気体の分配装置が提供される。 According to one aspect of the present invention, a gas distribution device in which an outer cylinder and an inner cylinder are arranged in the upper part and a plurality of compartments partitioned for each tuyere of a converter are arranged in the lower part, The inner cylinder has an upper end that opens into the outer cylinder and a lower end that is connected to the plurality of compartments. The outer cylinder has a bottom plate at the lower end and an outer cylinder opening to which an introduction pipe for supplying gas is connected. is provided on the side wall and a baffle is provided on the underside of said swirl chamber.

本発明の一態様によれば、外筒及び内筒が上部に配置され、転炉の羽口ごとに区画された複数の隔室が下部に配置された、気体の分配装置であって、上記内筒は、上端が上記外筒内に開口し、下端が複数の隔室に接続され、上記外筒は、下端に底板を有し、気体を供給する導入管が接続される外筒開口部が側壁に設けられ、上記外筒開口部の下端と上記底板との高さ方向の距離である接続高さaが、上記外筒の内側の上記気体が旋回する旋回室の高さbの1/10以下であり、上記旋回室の下側に、邪魔板が設置される、気体の分配装置が提供される。 According to one aspect of the present invention, a gas distribution device in which an outer cylinder and an inner cylinder are arranged in the upper part and a plurality of compartments partitioned for each tuyere of a converter are arranged in the lower part, The inner cylinder has an upper end that opens into the outer cylinder and a lower end that is connected to the plurality of compartments. The outer cylinder has a bottom plate at the lower end and an outer cylinder opening to which an introduction pipe for supplying gas is connected. is provided on the side wall, and the connection height a, which is the distance in the height direction between the lower end of the opening of the outer cylinder and the bottom plate, is 1 of the height b of the swirl chamber inside the outer cylinder in which the gas swirls. /10 or less, and a baffle plate is provided on the underside of the swirl chamber.

本発明の一態様によれば、底吹き転炉又は上底吹き転炉に設置され、気体又は固気二相流体を転炉の底部の複数の羽口に均分することが可能で、粉体の滞留を生じない、気体の分配装置が提供される。 According to one aspect of the present invention, it is installed in a bottom-blown converter or a top-bottom blown converter, and is capable of evenly dividing a gas or a solid-gas two-phase fluid into a plurality of tuyeres at the bottom of the converter, and A gas dispensing system is provided that does not cause body retention.

底吹き転炉の構造を示す概略図である。It is a schematic diagram showing the structure of a bottom-blown converter. 気体の分配装置を示す斜視図である。1 is a perspective view of a gas distribution device; FIG. 気体の分配装置を示す模式図である。1 is a schematic diagram showing a gas distribution device; FIG. 本発明の第1の実施形態に係る気体の分配装置を示す断面図である。1 is a cross-sectional view showing a gas distribution device according to a first embodiment of the present invention; FIG. 通気時間と粉体の残留しるとの関係を示すグラフである。It is a graph which shows the relationship between ventilation time and residual powder. 接続高さa/旋回室の高さbと粉体の残留率との関係を示すグラフである。It is a graph which shows the relationship between connection height a/height b of a swirling chamber, and a residual rate of powder. 本発明の第2及び第3の実施形態に係る気体の分配装置を示す断面図である。FIG. 4 is a cross-sectional view showing a gas distribution device according to second and third embodiments of the present invention; 邪魔板の形状を示す模式図であり、(A)は方形状の邪魔板を示し、(B)はフラップ形状の邪魔板を示し、(C)は円柱状の邪魔板を示す。It is a schematic diagram which shows the shape of a baffle plate, (A) shows a rectangular baffle plate, (B) shows a flap-shaped baffle plate, and (C) shows a cylindrical baffle plate. 邪魔板の設置位置を示す模式図である。It is a schematic diagram which shows the installation position of a baffle plate. 邪魔板の高さH/旋回室の高さbと粉体の残留率との関係を示すグラフである。It is a graph which shows the relationship between the height H of a baffle plate/height b of a swirl chamber, and a residual ratio of powder. 邪魔板の幅W/旋回室の幅wと粉体の残留率との関係を示すグラフである。4 is a graph showing the relationship between the width W of the baffle plate/the width w of the swirl chamber and the residual rate of powder.

以下の詳細な説明では、図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において種々の変更を加えることができる。 The following detailed description describes embodiments of the invention with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals, and overlapping descriptions are omitted. Each drawing is schematic and may differ from the actual one. In addition, the embodiments shown below are examples of apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material, structure, arrangement, etc. of component parts. It is not specific to the following. Various modifications can be made to the technical idea of the present invention within the technical scope defined by the claims.

本発明者らは、上述の問題を解決するために、分配装置1自体の各部の寸法を変えて実験を重ねた。実験では、内筒内径、内筒高さ、外筒径、外筒高さ、導入部断面寸法を一定として、導入部の接続高さaを変更した分配装置1を用いた。分配装置1は、図2及び図3に示すものと同様なものである。つまり、分配装置1は、図1に示す転炉2に設けられ、転炉2の底部に設けられる複数の羽口3に、気体である底吹きガスを供給する装置である。底吹きガスは、純酸素、不活性ガス又は両者を混合したガスである。また、分配装置1は、この底吹きガスに粉体を含ませた固気二相流体を複数の羽口3に供給する装置であってもよい。分配装置1は、図2~図4に示すように、外筒4と、導入管5と、内筒6と、複数の隔室7とを備える。外筒4は、円筒状の形状を有し、周面に導入管5が接続される外筒開口部41が形成される。また、外筒4は、上端の開口を覆うように蓋42が設けられ、下端には後述する内筒6を除いた開口面を覆う底板43が設けられる。なお、本実施形態では、上下方向とは鉛直方向である。また、内筒6を除いた外筒4内の空間(外筒4内の内筒6よりも外側の空間)を旋回室8ともいう。導入管5は、外筒開口部41に接続され、不図示の供給装置から供給される底吹きガスを旋回室8に供給する。内筒6は、円筒状の部材であり、外筒4と円筒状の軸心が同一となるように外筒4の内側に設けられる。内筒6の下端は、複数の隔室7へと接続される。このような分配装置1において、底吹きガスが旋回室8に導入される箇所であり、外筒開口部41が形成される箇所を導入部といい、導入管5の延在方向から視た導入部の断面寸法を導入部断面寸法という。また、導入部の接続高さaとは、図4に示すように、底板43の上面から、外筒開口部41の下端までの距離である。 In order to solve the above-described problems, the inventors conducted experiments by changing the dimensions of each part of the dispensing device 1 itself. In the experiment, a distribution device 1 was used in which the inner diameter of the inner cylinder, the height of the inner cylinder, the diameter of the outer cylinder, the height of the outer cylinder, and the cross-sectional dimensions of the introduction part were fixed, and the connection height a of the introduction part was changed. The dispensing device 1 is similar to that shown in FIGS. That is, the distribution device 1 is provided in the converter 2 shown in FIG. The bottom-blown gas is pure oxygen, an inert gas, or a mixture of both. Further, the distribution device 1 may be a device that supplies a solid-gas two-phase fluid containing powder in the bottom-blown gas to a plurality of tuyeres 3 . The distribution device 1 comprises an outer cylinder 4, an introduction tube 5, an inner cylinder 6, and a plurality of compartments 7, as shown in FIGS. The outer cylinder 4 has a cylindrical shape, and an outer cylinder opening 41 to which the introduction pipe 5 is connected is formed on the peripheral surface. Further, the outer cylinder 4 is provided with a lid 42 so as to cover the opening at the upper end, and is provided with a bottom plate 43 at the lower end to cover the opening surface excluding the inner cylinder 6, which will be described later. In addition, in this embodiment, the vertical direction is the vertical direction. The space inside the outer cylinder 4 excluding the inner cylinder 6 (the space inside the outer cylinder 4 outside the inner cylinder 6 ) is also called a swirl chamber 8 . The introduction pipe 5 is connected to the outer cylinder opening 41 and supplies the swirl chamber 8 with bottom-blown gas supplied from a supply device (not shown). The inner cylinder 6 is a cylindrical member, and is provided inside the outer cylinder 4 so that the axis of the cylinder is the same as that of the outer cylinder 4 . A lower end of the inner cylinder 6 is connected to a plurality of compartments 7 . In such a distribution device 1, the portion where the bottom-blown gas is introduced into the swirl chamber 8 and the portion where the outer cylinder opening 41 is formed is called an introduction portion. The cross-sectional dimension of the part is called the cross-sectional dimension of the introduction part. The connection height a of the introduction portion is the distance from the upper surface of the bottom plate 43 to the lower end of the outer cylinder opening 41, as shown in FIG.

本実験では、酸素ガスと、質量分率にして1%の鉄粉を混合した石灰粉とを、導入管5から供給した。酸素ガスの供給速度は500Nm/minとし、石灰粉の供給速度は500kg/minとした。そして、所定時間通気した後に、酸素ガスと石灰分の供給を停止し、分配装置1を開放し、残存した粉体の体積及び残留粉体中の鉄の質量濃度を測定した。また、本実験では、石灰粉と鉄粉として、200μm以下となるように篩ったものを用いた。さらに、転炉2の吹錬はおおよそ10~20分の間に行われることから、実験時間は最大で20分とした。さらに、別途流量偏差や固気の均等分配性を検討した結果、残留率を5%以下、望ましくは1%以下、濃縮率を50倍以下とすることが求められることを確認した。 In this experiment, oxygen gas and lime powder mixed with iron powder having a mass fraction of 1% were supplied from the introduction pipe 5 . The oxygen gas supply rate was 500 Nm 3 /min, and the lime powder supply rate was 500 kg/min. After a predetermined time of ventilation, the supply of oxygen gas and lime was stopped, the distributor 1 was opened, and the volume of the remaining powder and the mass concentration of iron in the remaining powder were measured. In this experiment, the lime powder and the iron powder were sieved to a size of 200 μm or less. Furthermore, since the blowing of the converter 2 is performed for about 10 to 20 minutes, the maximum experimental time was set to 20 minutes. Furthermore, as a result of a separate study of the flow rate deviation and uniform distribution of solid and gas, it was confirmed that the residual rate should be 5% or less, preferably 1% or less, and the concentration rate should be 50 times or less.

旋回室8の高さbに対する接続高さaの比であるa/bが0.26である分配装置1を用いた時の粉体の残留率を通気時間ごとに測定結果を図5に示す。なお、旋回室8の高さbとは、図4に示すように、底板43の上面から外筒4の高さ(外筒4の円筒部の上端までの高さ)である。また、粉体の残留率とは、分配装置1内に滞留した粉体の体積を外筒4の内容積で除した値の百分率で示したものである。
図5に示すように、粉体の通過量が増加するのに伴い粉体の残留率は上がるが、ある閾値を超えるとそれ以上は残留率が上昇しないことが確認できた。
FIG. 5 shows the measurement results of the residual ratio of powder for each aeration time when using the distribution device 1 in which the ratio a/b, which is the ratio of the connection height a to the height b of the swirl chamber 8, is 0.26. . The height b of the swirling chamber 8 is the height of the outer cylinder 4 from the upper surface of the bottom plate 43 (the height from the upper end of the cylindrical portion of the outer cylinder 4), as shown in FIG. Further, the residual ratio of powder is the percentage of the value obtained by dividing the volume of the powder staying in the distribution device 1 by the internal volume of the outer cylinder 4 .
As shown in FIG. 5, it was confirmed that the residual rate of powder increased as the passing amount of powder increased, but the residual rate did not increase beyond a certain threshold value.

また、接続高さaと旋回室8の高さbを変更したときの、a/bに対する粉体の残留率を図6に示す。なお、図6に示す実験では、実験時間を20分とした。残留率はa/bが小さくなるほど低減することが確認でき、b=200mm及びb=300mmのどちらの高さの外筒を使用した場合においても、a/bを0.1以下とすることで粉体の残留率が5%以下となることが確認できた。また、分配装置1をアクリルで作製し、内部の粉体挙動を観察したところ、旋回室8内に発生する旋回流の下側に粉体が滞留する傾向があることを見出した。このことから、a/bを小さくし、0.1以下とすることで、旋回流の下側の粉体滞留を防止することができることが知見された。そして、外筒4と内筒6とに挟まれた、旋回室8に邪魔板を設置することで、粉体をより排出できることが発起された。 FIG. 6 shows the residual ratio of powder to a/b when the connection height a and the height b of the swirl chamber 8 are changed. In addition, in the experiment shown in FIG. 6, experiment time was made into 20 minutes. It can be confirmed that the residual ratio decreases as a/b becomes smaller. It was confirmed that the powder residual rate was 5% or less. Also, when the distribution device 1 was made of acrylic and the behavior of the powder inside was observed, it was found that the powder tended to stay below the swirl flow generated in the swirl chamber 8 . From this, it was found that by reducing a/b to 0.1 or less, it is possible to prevent the powder from stagnation below the swirling flow. Then, it was suggested that by installing a baffle plate in the swirl chamber 8 sandwiched between the outer cylinder 4 and the inner cylinder 6, the powder can be discharged more effectively.

さらに、本発明者らは、上記の知見から、図7に示すように旋回室8内の底板43に邪魔板9を設置した分配装置1を用いて、邪魔板9による粉体の残留率への影響を調査した。図7に示す分配装置1は、邪魔板9の有無以外の構成については、図4で説明したものと同様とした。本調査では、実験時間は20分とし、邪魔板9の形状を図8(A)に示す方形とした。なお、図8に示す邪魔板9の形状において、旋回室8を旋回する底吹きガスの旋回方向に対して直交する断面形状の、鉛直方向の長さを高さHとし、水平方向の長さを幅Wとする。旋回方向は、底吹きガスの流れ方向について、水平方向に平行な方向である。また、邪魔板9の形状が方形とは、旋回方向に対して直交する断面形状が方形であることをいう。さらに、本調査では、旋回室8の幅をwとし、邪魔板9の幅Wを0.3wとした。旋回室8の幅wとは、図7に示すように、内筒6の外周面から外筒4の内周面までの水平方向の距離であり、「(外筒4の内径-内筒6の外径)/2」で求められる距離である。さらに、本調査では、邪魔板9としては、厚さ20mmの鋼板を、幅W及び高さHが後述の所定のものとなる方形状の切断したものを用いた。また、図9に分配装置1における邪魔板9の設置位置(底板43上の黒丸の位置)を示す平面模式図を示す。本調査では、邪魔板9の設置位置は、図9(A)に示す位置とした。 Furthermore, based on the above knowledge, the inventors of the present invention used the distribution device 1 in which the baffle plate 9 is installed on the bottom plate 43 in the swirl chamber 8 as shown in FIG. investigated the impact of The distribution device 1 shown in FIG. 7 is the same as that explained in FIG. 4 except for the presence or absence of the baffle plate 9 . In this investigation, the experimental time was 20 minutes, and the shape of the baffle plate 9 was a rectangle as shown in FIG. 8(A). In addition, in the shape of the baffle plate 9 shown in FIG. 8, the length in the vertical direction of the cross-sectional shape perpendicular to the swirling direction of the bottom-blown gas swirling in the swirl chamber 8 is defined as the height H, and the length in the horizontal direction is defined as H. is the width W. The swirl direction is parallel to the horizontal direction with respect to the flow direction of the bottom-blown gas. Moreover, the square shape of the baffle plate 9 means that the cross-sectional shape perpendicular to the turning direction is square. Furthermore, in this investigation, the width of the whirling chamber 8 was set to w, and the width W of the baffle plate 9 was set to 0.3w. The width w of the swirl chamber 8 is the horizontal distance from the outer peripheral surface of the inner cylinder 6 to the inner peripheral surface of the outer cylinder 4, as shown in FIG. (outer diameter)/2". Further, in this investigation, as the baffle plate 9, a steel plate having a thickness of 20 mm was cut into a rectangular shape having a width W and a height H specified later. 9 shows a schematic plan view showing the installation position of the baffle plate 9 (the position of the black circle on the bottom plate 43) in the distribution device 1. As shown in FIG. In this survey, the installation position of the baffle plate 9 was the position shown in FIG. 9(A).

本調査では、はじめに、邪魔板9の幅Wを0.3wの一定とし、邪魔板9の高さHを変えた複数の条件で粉体の残留率を調査した。図10に、邪魔板9の高さHを変化させた時の旋回室8の高さbに対する邪魔板9の高さHの比(H/b)と、粉体の残留率との関係を示す。図10に示すように、H/bが0.25以上0.8以下で粉体の残留率が5%未満と低くなることが確認できた。 In this investigation, first, the residual ratio of powder was investigated under a plurality of conditions in which the width W of the baffle plate 9 was fixed at 0.3w and the height H of the baffle plate 9 was changed. FIG. 10 shows the relationship between the ratio (H/b) of the height H of the baffle plate 9 to the height b of the swirling chamber 8 when the height H of the baffle plate 9 is changed, and the residual ratio of powder. show. As shown in FIG. 10, it was confirmed that the residual ratio of the powder is as low as less than 5% when H/b is 0.25 or more and 0.8 or less.

次に、邪魔板9の高さHを0.3aとし、邪魔板9の幅Wを変化させた複数の条件で粉体の残留率を調査した。図11に、邪魔板9の幅Wを変化させた時の旋回室8の幅wに対する邪魔板9の幅Wの比(W/w)と、粉体の残留率との関係を示す。図11に示すように、W/wが0.1以上で粉体の残留率が5%以下と低くなることが確認できた。
これらの結果から、邪魔板9を旋回室8の底板43に設置し、邪魔板9の高さHを0.25b以上0.8b以下とすることで、旋回室8内の粉体の滞留が抑制され、邪魔板9の幅Wを0.1w以上とすることで、旋回室8内の粉体の滞留がさらに抑制されることが知見された。
Next, the residual ratio of powder was investigated under a plurality of conditions in which the height H of the baffle plate 9 was set to 0.3a and the width W of the baffle plate 9 was changed. FIG. 11 shows the relationship between the ratio (W/w) of the width W of the baffle plate 9 to the width w of the swirl chamber 8 when the width W of the baffle plate 9 is changed, and the residual ratio of powder. As shown in FIG. 11, it was confirmed that when W/w is 0.1 or more, the powder residual rate is as low as 5% or less.
From these results, by installing the baffle plate 9 on the bottom plate 43 of the swirl chamber 8 and setting the height H of the baffle plate 9 to 0.25b or more and 0.8b or less, the retention of powder in the swirl chamber 8 can be reduced. It has been found that by setting the width W of the baffle plate 9 to 0.1 w or more, the retention of the powder in the swirl chamber 8 is further suppressed.

さらに、本発明者らは、同様の実験を、邪魔板9の断面積を変えず、邪魔板9の形状を図9(B)に示すフラップ形状としたところ、同条件の図9(A)に示す矩形の邪魔板9に比べて、粉体の残留率が20~40%%程度低減することを確認した。フラップ形状とは、旋回方向の下流側になるほど高さHが徐々に大きくなる形状であり、邪魔板9の幅方向から視た底板94(つまり水平方向)に対する直線状の上面の傾きは30°以上70°以下とすることが好ましい。なお、フラップ形状は、邪魔板9の幅方向から視て、上面がなだらかに傾斜していればよく、直線的な傾斜でもよく曲線的な傾斜であってもよい。 Furthermore, the present inventors conducted a similar experiment without changing the cross-sectional area of the baffle plate 9 and changed the shape of the baffle plate 9 to the flap shape shown in FIG. 9(B). It was confirmed that the residual powder rate was reduced by about 20 to 40% as compared with the rectangular baffle plate 9 shown in FIG. The flap shape is a shape in which the height H gradually increases toward the downstream side in the turning direction. More than 70° or less is preferable. Note that the flap shape may have a gentle upper surface slope when viewed from the width direction of the baffle plate 9, and may be a linear slope or a curved slope.

<第1の実施形態>
(気体の分配装置)
本発明の第1の実施形態に係る気体の分配装置1は、上記の実験・調査の知見に基づくものであり、図4に示すように、外筒4と、導入管5と、内筒6と、複数の隔室7と、を備える。なお、分配装置1が設けられる転炉2は、底吹き転炉又は上底吹き転炉である。
<First embodiment>
(Gas distributor)
The gas distribution device 1 according to the first embodiment of the present invention is based on the findings of the above experiments and investigations, and as shown in FIG. and a plurality of compartments 7. The converter 2 in which the distributor 1 is installed is a bottom-blown converter or a top-bottom-blown converter.

外筒4、導入管5、内筒6及び複数の隔室7は、上記の実験・調査で説明したものと同様である。すなわち、分配装置1は、外筒4内に旋回室8を有し、旋回室8の下に羽口3ごとに分けられた複数の隔室7を有する。また、内筒6の上端が外筒4内に開放しており、内筒6の下端が複数の隔室7に接続される。さらに、外筒4における導入部の接続高さaに対する旋回室8の高さbの比a/bは、1/10以下である。 The outer cylinder 4, the introduction pipe 5, the inner cylinder 6 and the plurality of compartments 7 are the same as those described in the above experiments and investigations. That is, the distribution device 1 has a swirl chamber 8 inside the outer cylinder 4 and a plurality of compartments 7 divided by the tuyeres 3 under the swirl chamber 8 . Further, the upper end of the inner cylinder 6 is open to the inside of the outer cylinder 4 , and the lower end of the inner cylinder 6 is connected to a plurality of compartments 7 . Furthermore, the ratio a/b of the height b of the whirling chamber 8 to the connection height a of the introduction portion of the outer cylinder 4 is 1/10 or less.

上記の構成の分配装置1では、導入管5から外筒開口部41を通じて旋回室8へと底吹きガスが流入し、旋回室8内に旋回流Rが発生する。この際、a/bを上記の範囲とすることにより、旋回室8の下側(底板43の近傍で、好ましくは底板43から接続高さaまでの範囲を含む領域)での流体の滞留を低減することができる。このため、粉体を含む固気二相流体を用いる場合において、粉体の滞留が低減され、複数の隔室7へ固気の均等分配を長期間保つことができる。 In the distributor 1 configured as described above, the bottom-blown gas flows into the swirl chamber 8 from the introduction pipe 5 through the outer cylinder opening 41 , and a swirl flow R is generated in the swirl chamber 8 . At this time, by setting a/b within the above range, fluid retention in the lower side of the swirling chamber 8 (in the vicinity of the bottom plate 43, preferably the region including the range from the bottom plate 43 to the connection height a) can be prevented. can be reduced. Therefore, when a solid-gas two-phase fluid containing powder is used, retention of powder is reduced, and uniform distribution of solid and gas to the plurality of compartments 7 can be maintained for a long period of time.

<第2の実施形態>
(気体の分配装置)
本発明の第2の実施形態に係る気体の分配装置1は、上記の実験・調査の知見に基づくものであり、図7に示すように、外筒4と、導入管5と、内筒6と、複数の隔室7と、邪魔板9とを備える。なお、分配装置1が設けられる転炉2は、底吹き転炉又は上底吹き転炉である。
外筒4、導入管5、内筒6及び複数の隔室7は、上記の実験・調査で説明したものと同様である。すなわち、分配装置1は、外筒4内に旋回室8を有し、旋回室8の下に羽口3ごとに分けられた複数の隔室7を有する。また、内筒6の上端が外筒4内に開放しており、内筒6の下端が複数の隔室7に接続される。
<Second embodiment>
(Gas distributor)
The gas distribution device 1 according to the second embodiment of the present invention is based on the findings of the above experiments and investigations, and as shown in FIG. , a plurality of compartments 7 and baffle plates 9 . The converter 2 in which the distributor 1 is installed is a bottom-blown converter or a top-bottom-blown converter.
The outer cylinder 4, the introduction pipe 5, the inner cylinder 6 and the plurality of compartments 7 are the same as those described in the above experiments and investigations. That is, the distribution device 1 has a swirl chamber 8 inside the outer cylinder 4 and a plurality of compartments 7 divided by the tuyeres 3 under the swirl chamber 8 . Further, the upper end of the inner cylinder 6 is open to the inside of the outer cylinder 4 , and the lower end of the inner cylinder 6 is connected to a plurality of compartments 7 .

邪魔板9は、旋回室8内の下側に設けられ、底板43の上面に設置されることが好ましい。また、邪魔板9は、旋回する底吹きガスの旋回方向に対して直交する断面形状(つまり、円筒状の旋回室8の周方向に直交する断面形状)について、高さHが0.25b以上0.8以下であることが好ましく、幅Wが0.1w以上であることが好ましい。また、邪魔板9の形状は特に限定されないが、高さH及び幅Wの最大長さが上記の条件となることが好ましい。このため、邪魔板9の形状は、図8(A)に示す方形状であってもよく、図8(B)に示すフラップ形状であってもよい。フラップ形状の場合、幅方向から視た底板94に対する直線状の上面の傾きは30°以上70°以下とすることが好ましい。また、邪魔板9の形状は、図8(C)に示す円柱状であってもよい。さらに、邪魔板9の設置位置は、図8に示すような平面視において、旋回室8内のどの位置(例えば、図8(A)~図9(E)の全ての位置)に設置されてもよいが、図9(A)~図9(D)に示す外筒開口部41から視て旋回室8の下流側に設けることが好ましい。 The baffle plate 9 is provided on the lower side of the swirl chamber 8 and is preferably installed on the upper surface of the bottom plate 43 . The baffle plate 9 has a cross-sectional shape perpendicular to the swirling direction of the swirling bottom-blown gas (that is, a cross-sectional shape perpendicular to the circumferential direction of the cylindrical swirl chamber 8) having a height H of 0.25 b or more. The width W is preferably 0.8 or less, and the width W is preferably 0.1w or more. Although the shape of the baffle plate 9 is not particularly limited, it is preferable that the maximum length of the height H and the width W meet the above conditions. Therefore, the baffle plate 9 may have a rectangular shape as shown in FIG. 8(A) or a flap shape as shown in FIG. 8(B). In the case of the flap shape, the inclination of the linear upper surface with respect to the bottom plate 94 when viewed in the width direction is preferably 30° or more and 70° or less. Also, the baffle plate 9 may have a columnar shape as shown in FIG. 8(C). Further, the installation position of the baffle plate 9 is set at any position (for example, all positions in FIGS. 8(A) to 9(E)) in the swirling chamber 8 in plan view as shown in FIG. 9(A) to 9(D).

上記の構成の分配装置1では、導入管5から外筒開口部41を通じて旋回室8へと底吹きガスが流入し、旋回室8内に旋回流Rが発生する。この際、邪魔板9を設けることにより、旋回室8の下側での流体の滞留を低減することができる。このため、粉体を含む固気二相流体を用いる場合において、粉体の滞留が低減され、複数の隔室7へ固気の均等分配を長期間保つことができる。 In the distributor 1 configured as described above, the bottom-blown gas flows into the swirl chamber 8 from the introduction pipe 5 through the outer cylinder opening 41 , and a swirl flow R is generated in the swirl chamber 8 . At this time, by providing the baffle plate 9, it is possible to reduce the retention of the fluid under the swirl chamber 8. FIG. Therefore, when a solid-gas two-phase fluid containing powder is used, retention of powder is reduced, and uniform distribution of solid and gas to the plurality of compartments 7 can be maintained for a long period of time.

<第3の実施形態>
(気体の分配装置)
本発明の第2の実施形態に係る気体の分配装置1は、上記の実験・調査の知見に基づくものであり、図7に示すように、外筒4と、導入管5と、内筒6と、複数の隔室7と、邪魔板9とを備える。なお、分配装置1が設けられる転炉2は、底吹き転炉又は上底吹き転炉である。
外筒4、導入管5、内筒6及び複数の隔室7は、上記の実験・調査で説明したものと同様である。すなわち、分配装置1は、外筒4内に旋回室8を有し、旋回室8の下に羽口3ごとに分けられた複数の隔室7を有する。また、内筒6の上端が外筒4内に開放しており、内筒6の下端が複数の隔室7に接続される。さらに、外筒4における導入部の接続高さaに対する旋回室8の高さbの比a/bは、1/10以下である。
邪魔板9は、第2の実施形態と同様である。
<Third Embodiment>
(Gas distributor)
The gas distribution device 1 according to the second embodiment of the present invention is based on the findings of the above experiments and investigations, and as shown in FIG. , a plurality of compartments 7 and baffle plates 9 . The converter 2 in which the distributor 1 is installed is a bottom-blown converter or a top-bottom-blown converter.
The outer cylinder 4, the introduction pipe 5, the inner cylinder 6 and the plurality of compartments 7 are the same as those described in the above experiments and investigations. That is, the distribution device 1 has a swirl chamber 8 inside the outer cylinder 4 and a plurality of compartments 7 divided by the tuyeres 3 under the swirl chamber 8 . Further, the upper end of the inner cylinder 6 is open to the inside of the outer cylinder 4 , and the lower end of the inner cylinder 6 is connected to a plurality of compartments 7 . Furthermore, the ratio a/b of the height b of the whirling chamber 8 to the connection height a of the introduction portion of the outer cylinder 4 is 1/10 or less.
The baffle plate 9 is the same as in the second embodiment.

上記の構成の分配装置1では、導入管5から外筒開口部41を通じて旋回室8へと底吹きガスが流入し、旋回室8内に旋回流Rが発生する。この際、a/bを上記の範囲とし、邪魔板9を設けることにより、旋回室8の下側での流体の滞留をより低減することができる。このため、粉体を含む固気二相流体を用いる場合において、粉体の滞留が低減され、複数の隔室7へ固気の均等分配を長期間保つことができる。 In the distributor 1 configured as described above, the bottom-blown gas flows into the swirl chamber 8 from the introduction pipe 5 through the outer cylinder opening 41 , and a swirl flow R is generated in the swirl chamber 8 . At this time, by setting a/b within the above range and providing the baffle plate 9, it is possible to further reduce the retention of the fluid in the lower side of the swirl chamber 8. FIG. Therefore, when a solid-gas two-phase fluid containing powder is used, retention of powder is reduced, and uniform distribution of solid and gas to the plurality of compartments 7 can be maintained for a long period of time.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
<Modification>
Although the invention has been described with reference to particular embodiments, it is not intended that the invention be limited by these descriptions. Along with the disclosed embodiments, other embodiments of the invention, including various modifications, will be apparent to persons skilled in the relevant art(s) upon reference to the description of the invention. Therefore, the embodiments of the invention set forth in the claims should be construed to cover the embodiments that include these variations described herein singly or in combination.

例えば、上記実施形態では好ましい態様として、邪魔板9が底板43の上面に設けられるとしたが、本発明はかかる例に限定されない。邪魔板9は旋回室8の下側に設けられればよく、例えば、外筒4の内周面に設けられてもよい。
また、上記第2及び第3の実施形態では、邪魔板9を1個設ける構成としたが、本発明はかかる例に限定されない。邪魔板9は、複数個設けられてもよく、好ましくは1個~3個設けられる。
For example, in the above embodiment, the baffle plate 9 is provided on the upper surface of the bottom plate 43 as a preferred aspect, but the present invention is not limited to this example. The baffle plate 9 may be provided on the lower side of the swirl chamber 8, and may be provided on the inner peripheral surface of the outer cylinder 4, for example.
Further, in the second and third embodiments, one baffle plate 9 is provided, but the present invention is not limited to such an example. A plurality of baffle plates 9 may be provided, preferably one to three.

<実施形態の効果>
(1)本発明の一態様に係る気体の分配装置1は、外筒4及び内筒6が上部に配置され、転炉2の羽口3ごとに区画された複数の隔室7が下部に配置された、気体の分配装置1であって、内筒6は、上端が外筒4内に開口し、下端が複数の隔室7に接続され、外筒4は、下端に底板43を有し、気体を供給する導入管5が接続される外筒開口部41が側壁に設けられ、外筒開口部41の下端と底板43との高さ方向の距離である接続高さaが、外筒4の内側の気体が旋回する旋回室8の高さbの1/10以下である。
<Effects of Embodiment>
(1) In a gas distribution device 1 according to one aspect of the present invention, an outer cylinder 4 and an inner cylinder 6 are arranged in the upper part, and a plurality of compartments 7 partitioned for each tuyere 3 of the converter 2 are arranged in the lower part. The gas distribution device 1 is arranged, wherein the inner cylinder 6 is opened into the outer cylinder 4 at the upper end and connected to the plurality of compartments 7 at the lower end, and the outer cylinder 4 has a bottom plate 43 at the lower end. An outer cylinder opening 41 to which the introduction pipe 5 for supplying gas is connected is provided in the side wall, and the connection height a, which is the distance in the height direction between the lower end of the outer cylinder opening 41 and the bottom plate 43, is It is 1/10 or less of the height b of the swirl chamber 8 in which the gas inside the cylinder 4 swirls.

上記(1)の構成によれば、旋回室8の高さbに対して接続高さaを十分に小さくすることにより、旋回室8の下側での気体の滞留を抑えることができる。このため、気体に粉体が含まれる場合には、粉体の滞留を抑制することができ、複数の隔室7へ固気の均等分配を長期間保つことができる。また、転炉2の生産量を落とすことなく、分配装置1の長期間の稼働が可能となる。 According to the configuration (1) above, by making the connection height a sufficiently small relative to the height b of the swirl chamber 8 , it is possible to suppress gas from stagnation below the swirl chamber 8 . Therefore, when the gas contains powder, the powder can be prevented from staying, and the uniform distribution of solid and gas to the plurality of compartments 7 can be maintained for a long period of time. Further, the distribution device 1 can be operated for a long period of time without reducing the production volume of the converter 2 .

(2)本発明の一態様に係る気体の分配装置1は、外筒4及び内筒6が上部に配置され、転炉2の羽口3ごとに区画された複数の隔室7が下部に配置された、気体の分配装置1であって、内筒6は、上端が外筒4内に開口し、下端が複数の隔室7に接続され、外筒4は、下端に底板43を有し、気体を供給する導入管5が接続される外筒開口部41が側壁に設けられ、旋回室8の下側に、邪魔板9が設置される。 (2) In the gas distribution device 1 according to one aspect of the present invention, the outer cylinder 4 and the inner cylinder 6 are arranged in the upper part, and a plurality of compartments 7 partitioned for each tuyere 3 of the converter 2 are arranged in the lower part. The gas distribution device 1 is arranged, wherein the inner cylinder 6 is opened into the outer cylinder 4 at the upper end and connected to the plurality of compartments 7 at the lower end, and the outer cylinder 4 has a bottom plate 43 at the lower end. An outer cylinder opening 41 to which an introduction pipe 5 for supplying gas is connected is provided on the side wall, and a baffle plate 9 is provided below the swirl chamber 8 .

上記(2)の構成によれば、旋回室8の下側に邪魔板9を設けることにより、旋回室8の下側での気体の滞留を抑えることができる。このため、気体に粉体が含まれる場合には、粉体の滞留を抑制することができ、複数の隔室7へ固気の均等分配を長期間保つことができる。また、転炉2の生産量を落とすことなく、分配装置1の長期間の稼働が可能となる。 According to the configuration (2) above, by providing the baffle plate 9 on the lower side of the swirl chamber 8 , gas retention in the lower side of the swirl chamber 8 can be suppressed. Therefore, when the gas contains powder, the powder can be prevented from staying, and the uniform distribution of solid and gas to the plurality of compartments 7 can be maintained for a long period of time. Further, the distribution device 1 can be operated for a long period of time without reducing the production volume of the converter 2 .

(3)本発明の一態様に係る気体の分配装置1は、外筒4及び内筒6が上部に配置され、転炉2の羽口3ごとに区画された複数の隔室7が下部に配置された、気体の分配装置1であって、内筒6は、上端が外筒4内に開口し、下端が複数の隔室7に接続され、外筒4は、下端に底板43を有し、気体を供給する導入管5が接続される外筒開口部41が側壁に設けられ、外筒開口部41の下端と底板43との高さ方向の距離である接続高さaが、外筒4の内側の気体が旋回する旋回室8の高さbの1/10以下であり、旋回室8の下側に、邪魔板9が設置される。 (3) In the gas distribution device 1 according to one aspect of the present invention, the outer cylinder 4 and the inner cylinder 6 are arranged in the upper part, and a plurality of compartments 7 partitioned for each tuyere 3 of the converter 2 are arranged in the lower part. The gas distribution device 1 is arranged, wherein the inner cylinder 6 is opened into the outer cylinder 4 at the upper end and connected to the plurality of compartments 7 at the lower end, and the outer cylinder 4 has a bottom plate 43 at the lower end. An outer cylinder opening 41 to which the introduction pipe 5 for supplying gas is connected is provided in the side wall, and the connection height a, which is the distance in the height direction between the lower end of the outer cylinder opening 41 and the bottom plate 43, is The height b of the swirl chamber 8 in which the gas inside the cylinder 4 swirls is 1/10 or less, and a baffle plate 9 is installed below the swirl chamber 8 .

上記(3)の構成によれば、旋回室8の高さbに対して接続高さaを十分に小さくし、旋回室8の下側に邪魔板9を設けることにより、旋回室8の下側での気体の滞留をより抑えることができる。このため、気体に粉体が含まれる場合には、粉体の滞留を抑制することができ、複数の隔室7へ固気の均等分配を長期間保つことができる。また、転炉2の生産量を落とすことなく、分配装置1の長期間の稼働が可能となる。 According to the configuration (3) above, the connection height a is made sufficiently small with respect to the height b of the swirl chamber 8, and the baffle plate 9 is provided on the lower side of the swirl chamber 8. stagnation of gas on the side can be further suppressed. Therefore, when the gas contains powder, the powder can be prevented from staying, and the uniform distribution of solid and gas to the plurality of compartments 7 can be maintained for a long period of time. Further, the distribution device 1 can be operated for a long period of time without reducing the production volume of the converter 2 .

(4)上記(2)又は(3)の構成において、邪魔板9の形状は、旋回室8のガス流方向に対して、直交する断面形状の高さHが0.25b以上0.8b未満で、断面形状の幅Wが0.1w以上である。
(5)上記(2)~(4)のいずれか一つの構成において、邪魔板9は、底板43に設置される
(6)上記(2)~(6)のいずれか一つの構成において、邪魔板9は、旋回室8内の気体が旋回する旋回方向の下流側になるほど、旋回方向に直交する断面形状の高さHが徐々に大きくなるフラップ形状である。
上記(4)~(6)の構成によれば、気体、粉体の滞留をより低減することができる。
(4) In the configuration of (2) or (3) above, the baffle plate 9 has a cross-sectional height H of 0.25 b or more and less than 0.8 b that is perpendicular to the gas flow direction of the swirling chamber 8. and the width W of the cross-sectional shape is 0.1w or more.
(5) In any one of the configurations (2) to (4) above, the baffle plate 9 is installed on the bottom plate 43. (6) In any one of the configurations (2) to (6) above, the baffle The plate 9 has a flap shape in which the height H of the cross-sectional shape perpendicular to the swirl direction gradually increases toward the downstream side in the swirl direction in which the gas in the swirl chamber 8 swirls.
According to the configurations (4) to (6) above, it is possible to further reduce the stagnation of gas and powder.

次に、本発明者らが行った実施例1について説明する。実施例1では、第1の実施形態に係る分配装置1を用いて粉体を含んだ底吹きガスである固気二相流体を羽口3に流し、羽口3ごとの粉体の排出量を測定した。分配装置1は、外筒4の内径が900mm、分配装置1の全高さが750mm、内筒6の高さが450mmであるものを用いた。また、分配装置1は、外筒4への導入管5の断面形状を250mm又は300mm四方の正方形とし、接続高さaを0~80mmの任意の距離とした。さらに、実施例では、旋回室に邪魔板9を設置した。邪魔板9は、図8(A),(B)に示す、方形状、フラップ形状、円柱のいずれかの形状とし、底板43上の図9(A)~(D)に示す設置位置に設置した。さらに、導入管5から酸素ガスを500Nm/min、CaO-1%Fe粉体を500kg/minを流した。そして、20分間、羽口3ごとのガス流量と粉体の排出量を測定した。 Next, Example 1 conducted by the present inventors will be described. In Example 1, the distribution device 1 according to the first embodiment is used to flow a solid-gas two-phase fluid, which is a bottom-blown gas containing powder, to the tuyeres 3, and the powder discharge amount for each tuyere 3 is was measured. The distribution device 1 used had an inner diameter of the outer cylinder 4 of 900 mm, a total height of the distribution device 1 of 750 mm, and a height of the inner cylinder 6 of 450 mm. Further, in the distribution device 1, the cross-sectional shape of the introduction pipe 5 to the outer cylinder 4 is a square of 250 mm or 300 mm, and the connection height a is an arbitrary distance from 0 to 80 mm. Furthermore, in the embodiment, a baffle plate 9 is installed in the swirl chamber. The baffle plate 9 has a rectangular shape, a flap shape, or a cylindrical shape as shown in FIGS. 8A and 8B, and is installed at the installation position shown in FIGS. bottom. Further, 500 Nm 3 /min of oxygen gas and 500 kg/min of CaO-1% Fe powder were flowed through the introduction pipe 5 . Then, the gas flow rate and powder discharge amount for each tuyere 3 were measured for 20 minutes.

また、比較例として、実施例と同様な条件において、接続高さa、邪魔板9の形状又は邪魔板9の設置位置が異なる条件についても調査を行った。
表1に、実施例及び比較例における条件並びに、測定結果である流量偏差、粉体偏差、分配装置1内の粉体の残留率及びCaO粉中のFe粉の濃縮率を示す。なお、流量偏差は各羽口3で測定されたガス流量の偏差であり、粉体偏差は各羽口3で測定された粉体の排出量の偏差である。
In addition, as a comparative example, investigations were also conducted under the same conditions as in the embodiment, but with different connection heights a, shapes of the baffle plates 9, and installation positions of the baffle plates 9. FIG.
Table 1 shows the conditions in the examples and the comparative examples, and the flow rate deviation, powder deviation, residual ratio of powder in the distribution device 1, and concentration ratio of Fe powder in CaO powder, which are measurement results. The flow rate deviation is the deviation of the gas flow rate measured at each tuyere 3 , and the powder deviation is the deviation of the discharge amount of powder measured at each tuyere 3 .

Figure 0007272387000001
Figure 0007272387000001

比較例1-1~1-4から明らかなように、本発明を実施することにより、分配装置1内の粉体の滞留を5%以下に、また可燃性物質であるFe粉の濃縮率を50倍以下にすることが可能であることが確認できた。 As is clear from Comparative Examples 1-1 to 1-4, by carrying out the present invention, the retention of powder in the distribution device 1 can be reduced to 5% or less, and the concentration rate of Fe powder, which is a combustible substance, can be reduced to 5% or less. It has been confirmed that it is possible to increase it by 50 times or less.

次に、本発明者らが行った実施例2について説明する。実施例2では、第2の実施形態に係る分配装置1を用いて粉体を含んだ底吹きガスである固気二相流体を羽口3に流し、羽口3ごとの粉体の排出量を測定した。分配装置1は、外筒4の内径が900mm、分配装置1の全高さが750mm、内筒6の高さが450mmであるものを用いた。また、分配装置1は、外筒4への導入管5の断面形状を300mm四方の正方形とし、接続高さaを0mmとした。さらに、実施例2では、旋回室に邪魔板9を設置した。邪魔板9は、図8(A),(B)に示す、方形状、フラップ形状、円柱のいずれかの形状とし、底板43上の図9(A)~(D)に示す設置位置に設置した。さらに、導入管5から酸素ガスを500Nm/min、CaO-1%Fe粉体を500kg/minを流した。そして、20分間、羽口3ごとのガス流量と粉体の排出量を測定した。 Next, Example 2 performed by the present inventors will be described. In Example 2, the distribution device 1 according to the second embodiment is used to flow a solid-gas two-phase fluid, which is a bottom-blown gas containing powder, to the tuyeres 3, and the powder discharge amount for each tuyere 3 is was measured. The distribution device 1 used had an inner diameter of the outer cylinder 4 of 900 mm, a total height of the distribution device 1 of 750 mm, and a height of the inner cylinder 6 of 450 mm. In the distribution device 1, the cross-sectional shape of the introduction pipe 5 to the outer cylinder 4 was a square of 300 mm square, and the connection height a was 0 mm. Furthermore, in Example 2, a baffle plate 9 is installed in the swirl chamber. The baffle plate 9 has a rectangular shape, a flap shape, or a cylindrical shape as shown in FIGS. 8A and 8B, and is installed at the installation position shown in FIGS. bottom. Further, 500 Nm 3 /min of oxygen gas and 500 kg/min of CaO-1% Fe powder were flowed through the introduction pipe 5 . Then, the gas flow rate and powder discharge amount for each tuyere 3 were measured for 20 minutes.

また、比較例として、実施例と同様な条件において、邪魔板9の形状や設置位置が異なる条件についても調査を行った。
表2に、実施例及び比較例における条件並びに、測定結果である流量偏差、粉体偏差、分配装置1内の粉体の残留率及びCaO粉中のFe粉の濃縮率を示す。なお、流量偏差は各羽口3で測定されたガス流量の偏差であり、粉体偏差は各羽口3で測定された粉体の排出量の偏差である。また、比較例2-3,2-6における邪魔板9の設置位置である壁A及び壁Eとは、図9(A)及び図9(E)に示す位置の外筒4の内壁面に邪魔板9をそれぞれ取り付けたことを示す。なお、邪魔板9の取り付け高さについては、邪魔板9の上端が底板43からとなるように壁A及び壁Eに邪魔板9を設置した。
In addition, as a comparative example, investigations were also conducted under the same conditions as in the embodiment, but with different shapes and installation positions of the baffle plate 9 .
Table 2 shows the conditions in the examples and comparative examples, and the flow rate deviation, powder deviation, powder residual rate in the distribution device 1, and concentration rate of Fe powder in CaO powder, which are measurement results. The flow rate deviation is the deviation of the gas flow rate measured at each tuyere 3 , and the powder deviation is the deviation of the discharge amount of powder measured at each tuyere 3 . Further, the walls A and E, which are the installation positions of the baffle plate 9 in Comparative Examples 2-3 and 2-6, are the inner wall surfaces of the outer cylinder 4 at the positions shown in FIGS. 9A and 9E. It shows that the baffle plate 9 is attached. Regarding the installation height of the baffle plate 9, the baffle plate 9 was installed on the wall A and the wall E so that the upper end of the baffle plate 9 was H from the bottom plate 43. As shown in FIG.

Figure 0007272387000002
Figure 0007272387000002

比較例1-1,2-2~2-6から明らかなように、本発明を実施することにより、分配装置1内の粉体の滞留を5%以下に、また可燃性物質であるFe粉の濃縮率を50倍以下にすることが可能であることが確認できた。 As is clear from Comparative Examples 1-1 and 2-2 to 2-6, by carrying out the present invention, the retention of powder in the distribution device 1 can be reduced to 5% or less, and Fe powder, which is a combustible substance, can be reduced to 5% or less. It was confirmed that it is possible to make the concentration rate of 50 times or less.

次に、本発明者らが行った実施例3について説明する。実施例3では、分配装置1を用いて粉体を含んだ底吹きガスである固気二相流体を羽口3に流し、羽口3ごとの粉体の排出量を測定した。分配装置1は、外筒4の内径が900mm、分配装置1の全高さが750mm、内筒6の高さが450mmであるものを用いた。また、分配装置1は、外筒4への導入管5の断面形状を250mm又は300mm四方の正方形とし、接続高さaを0~80mmの任意の距離とした。さらに、実施例では、旋回室に邪魔板9を設置した。邪魔板9は、図8(A),(B)に示す、方形状、フラップ形状、円柱のいずれかの形状とし、底板43上の図9(A)~(D)に示す設置位置に設置した。さらに、導入管5から酸素ガスを500Nm/min、CaO-1%Fe粉体を500kg/minを流した。そして、20分間、羽口3ごとのガス流量と粉体の排出量を測定した。 Next, Example 3 performed by the present inventors will be described. In Example 3, the solid-gas two-phase fluid, which is a bottom-blowing gas containing powder, was flowed through the tuyeres 3 using the distribution device 1, and the amount of powder discharged from each tuyere 3 was measured. The distribution device 1 used had an inner diameter of the outer cylinder 4 of 900 mm, a total height of the distribution device 1 of 750 mm, and a height of the inner cylinder 6 of 450 mm. Further, in the distribution device 1, the cross-sectional shape of the introduction pipe 5 to the outer cylinder 4 is a square of 250 mm or 300 mm, and the connection height a is an arbitrary distance from 0 to 80 mm. Furthermore, in the embodiment, a baffle plate 9 is installed in the swirl chamber. The baffle plate 9 has a rectangular shape, a flap shape, or a cylindrical shape as shown in FIGS. 8A and 8B, and is installed at the installation position shown in FIGS. bottom. Further, 500 Nm 3 /min of oxygen gas and 500 kg/min of CaO-1% Fe powder were flowed through the introduction pipe 5 . Then, the gas flow rate and powder discharge amount for each tuyere 3 were measured for 20 minutes.

また、比較例として、実施例と同様な条件において、邪魔板9を設けない条件、接続高さa、邪魔板9の形状又は邪魔板9の設置位置が異なる条件についても調査を行った。
表1に、実施例及び比較例における条件並びに、測定結果である流量偏差、粉体偏差、分配装置1内の粉体の残留率及びCaO粉中のFe粉の濃縮率を示す。なお、表1の邪魔板の設置位置において、底A~底Eは、図9(A)~図9(E)にそれぞれ対応した位置である。また、流量偏差は各羽口3で測定されたガス流量の偏差であり、粉体偏差は各羽口3で測定された粉体の排出量の偏差である。
Further, as a comparative example, under the same conditions as in the embodiment, investigations were also conducted under conditions in which the connection height a, the shape of the baffle plate 9, or the installation position of the baffle plate 9 were different.
Table 1 shows the conditions in the examples and the comparative examples, and the flow rate deviation, powder deviation, residual ratio of powder in the distribution device 1, and concentration ratio of Fe powder in CaO powder, which are measurement results. In addition, in the installation positions of the baffle plates in Table 1, bottoms A to E are positions corresponding to FIGS. 9A to 9E, respectively. Further, the flow rate deviation is the deviation of the gas flow rate measured at each tuyere 3, and the powder deviation is the deviation of the discharge amount of powder measured at each tuyere 3.

Figure 0007272387000003
Figure 0007272387000003

比較例2-2~2-6,1-1~1-4から明らかなように、上記実施形態に係る分配装置1を用いることにより、分配装置1内の粉体の滞留率が1%以下となり、さらに可燃性物質であるFe粉の濃縮率を50倍以下にすることが可能であることが確認できた。 As is clear from Comparative Examples 2-2 to 2-6 and 1-1 to 1-4, by using the distribution device 1 according to the above embodiment, the retention rate of powder in the distribution device 1 is 1% or less. As a result, it was confirmed that the concentration ratio of Fe powder, which is a combustible substance, can be reduced to 50 times or less.

1 分配装置
2 転炉
3 羽口
4 外筒
41 外筒開口部
42 蓋
43 底板
44 旋回室
5 導入管
6 内筒
7 隔室
M 溶鉄
F 転炉底吹きガス
REFERENCE SIGNS LIST 1 distributor 2 converter 3 tuyere 4 outer cylinder 41 outer cylinder opening 42 lid 43 bottom plate 44 swirling chamber 5 introduction pipe 6 inner cylinder 7 compartment M molten iron F converter bottom blown gas

Claims (4)

外筒及び内筒が上部に配置され、転炉の羽口ごとに区画された複数の隔室が下部に配置された、気体の分配装置であって、
前記内筒は、上端が前記外筒内に開口し、下端が複数の隔室に接続され、
前記外筒は、下端に底板を有し、気体を供給する導入管が接続される外筒開口部が側壁に設けられ、
前記外筒の内側の前記気体が旋回し且つ高さbとなる旋回室の下側に、邪魔板が設置され
前記邪魔板の形状は、前記旋回室内の前記気体が旋回する旋回方向に対して、直交する断面形状の高さHが0.25b以上0.8b未満で、前記断面形状の幅Wが0.1w以上である、気体の分配装置。
A gas distribution device in which an outer cylinder and an inner cylinder are arranged in the upper part and a plurality of compartments partitioned for each tuyere of a converter are arranged in the lower part,
The inner cylinder has an upper end opened into the outer cylinder and a lower end connected to a plurality of compartments,
The outer cylinder has a bottom plate at the lower end, and an outer cylinder opening to which an introduction pipe for supplying gas is connected is provided on the side wall,
A baffle plate is installed on the lower side of the swirl chamber in which the gas swirls inside the outer cylinder and has a height b ,
The baffle plate has a cross-sectional height H of 0.25 b or more and less than 0.8 b perpendicular to the swirling direction of the gas swirling in the swirling chamber, and a cross-sectional width W of 0.25b or more and less than 0.8b. A gas distribution device that is 1 w or more .
外筒及び内筒が上部に配置され、転炉の羽口ごとに区画された複数の隔室が下部に配置された、気体の分配装置であって、
前記内筒は、上端が前記外筒内に開口し、下端が複数の隔室に接続され、
前記外筒は、下端に底板を有し、気体を供給する導入管が接続される外筒開口部が側壁に設けられ、
前記外筒開口部の下端と前記底板との高さ方向の距離である接続高さaが、前記外筒の内側の前記気体が旋回する旋回室の高さbの1/10以下であり、
前記旋回室の下側に、邪魔板が設置され
前記邪魔板の形状は、前記旋回室内の前記気体が旋回する旋回方向に対して、直交する断面形状の高さHが0.25b以上0.8b未満で、前記断面形状の幅Wが0.1w以上である、気体の分配装置。
A gas distribution device in which an outer cylinder and an inner cylinder are arranged in the upper part and a plurality of compartments partitioned for each tuyere of a converter are arranged in the lower part,
The inner cylinder has an upper end opened into the outer cylinder and a lower end connected to a plurality of compartments,
The outer cylinder has a bottom plate at the lower end, and an outer cylinder opening to which an introduction pipe for supplying gas is connected is provided on the side wall,
A connection height a, which is the distance in the height direction between the lower end of the opening of the outer cylinder and the bottom plate, is 1/10 or less of the height b of the swirl chamber in which the gas swirls inside the outer cylinder,
A baffle plate is installed on the lower side of the swirl chamber ,
The baffle plate has a cross-sectional height H of 0.25 b or more and less than 0.8 b perpendicular to the swirling direction of the gas swirling in the swirling chamber, and a cross-sectional width W of 0.25b or more and less than 0.8b. A gas distribution device that is 1 w or more .
前記邪魔板は、前記底板に設置される、請求項1又は2に記載の気体の分配装置。 3. The gas distribution device according to claim 1 or 2 , wherein the baffle plate is installed on the bottom plate. 前記邪魔板は、前記旋回室内の前記気体が旋回する旋回方向の下流側になるほど、前記旋回方向に直交する断面形状の高さHが徐々に大きくなるフラップ形状である、請求項1~3のいずれか1項に記載の気体の分配装置。 According to any one of claims 1 to 3 , the baffle plate has a flap shape in which a height H of a cross-sectional shape perpendicular to the swirling direction gradually increases toward the downstream side in the swirling direction in which the gas swirls in the swirling chamber. A gas dispensing device according to any one of the preceding claims.
JP2021091433A 2020-06-10 2021-05-31 gas distributor Active JP7272387B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101152 2020-06-10
JP2020101152 2020-06-10

Publications (2)

Publication Number Publication Date
JP2021195619A JP2021195619A (en) 2021-12-27
JP7272387B2 true JP7272387B2 (en) 2023-05-12

Family

ID=79197384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021091433A Active JP7272387B2 (en) 2020-06-10 2021-05-31 gas distributor

Country Status (1)

Country Link
JP (1) JP7272387B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068033A (en) 2007-09-11 2009-04-02 Jfe Steel Kk Apparatus for distributing bottom-blowing gas in converter
JP2010230202A (en) 2009-03-26 2010-10-14 Jfe Steel Corp Distributor of single phase flow or multiphase flow
JP2010230201A (en) 2009-03-26 2010-10-14 Jfe Steel Corp Distributor of single phase flow or multiphase flow

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237958A (en) * 1986-04-10 1987-10-17 Hisashi Imai Centrifugal force type fluid distributor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068033A (en) 2007-09-11 2009-04-02 Jfe Steel Kk Apparatus for distributing bottom-blowing gas in converter
JP2010230202A (en) 2009-03-26 2010-10-14 Jfe Steel Corp Distributor of single phase flow or multiphase flow
JP2010230201A (en) 2009-03-26 2010-10-14 Jfe Steel Corp Distributor of single phase flow or multiphase flow

Also Published As

Publication number Publication date
JP2021195619A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
US9139889B2 (en) Apparatus for atomizing molten slag and recovering valuable metal
JP7272387B2 (en) gas distributor
FI105828B (en) Device for equalizing the feeding-in of pulverulent material in an enrichment burner in the ore concentrate burner of a suspension smelting furnace
US11542565B2 (en) Charging system, in particular for a shaft smelt reduction furnace
JP7222412B2 (en) gas distribution equipment
JP5515288B2 (en) Raw material charging method to blast furnace
JP5205883B2 (en) Converter bottom blowing gas distribution device
US4824030A (en) Jet air flow crusher
US4406746A (en) Coke dry cooler in the form of a shaft
KR102090550B1 (en) Fluidized furnace
GB1569813A (en) Nozzle assembly
JP2018150565A (en) Method for use of fine particle material, and smelting method for molten metal
JP2577697Y2 (en) Spouted bed granulator
JP2571994B2 (en) Fluidized bed furnace
KR101311957B1 (en) Storage apparatus for source
JP2010150642A (en) Method for charging raw material to blast furnace
ES2288996T3 (en) PROCEDURE AND DEVICE FOR CREATING A FIXED MILK.
KR101977356B1 (en) Charging apparatus for raw material
JP2010150644A (en) Method for charging raw material to blast furnace
JPWO2021106884A5 (en) How to introduce concentrate burner, flash furnace and reaction gas
JP3204917B2 (en) Fluidized bed furnace
RU2012596C1 (en) Method of carrying out blast furnace melting and apparatus for performing the same
KR20200011223A (en) Device for decreasing silicon content in hot metal
JPS59176584A (en) Disperser for gas of fluidized bed spare reducing furnace
JPS6296624A (en) Copper making method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7272387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150