JP2009066582A - Manufacturing method of heteropolyacid-based catalyst for producing methacrylic acid - Google Patents

Manufacturing method of heteropolyacid-based catalyst for producing methacrylic acid Download PDF

Info

Publication number
JP2009066582A
JP2009066582A JP2007241026A JP2007241026A JP2009066582A JP 2009066582 A JP2009066582 A JP 2009066582A JP 2007241026 A JP2007241026 A JP 2007241026A JP 2007241026 A JP2007241026 A JP 2007241026A JP 2009066582 A JP2009066582 A JP 2009066582A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
heteropolyacid
activated sludge
based catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007241026A
Other languages
Japanese (ja)
Inventor
Tomohiro Masaki
朋博 柾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007241026A priority Critical patent/JP2009066582A/en
Publication of JP2009066582A publication Critical patent/JP2009066582A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a heteropolyacid-based catalyst for producing methacrylic acid having a large surface area, modified in its catalytic interface and excellent in the productivity of methacrylic acid from metacrolein. <P>SOLUTION: In the manufacturing method of the heteropolyacid-based catalyst for use in producing methacrylic acid by gaseous phase catalytic oxidation, activated sludge is used in the preparation of the heteropolyacid-based catalyst. The heteropolyacid-based catalyst having the large surface area, modified in its catalytic interface and enhanced in the productivity of methacrylic acid from metacrolein can be manufactured by the manufacturing method of the heteropolyacid-based catalyst for producing methacrylic acid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、気相接触酸化によるメタクリル酸の製造に使用されるヘテロポリ酸系触媒の製造方法に関する。   The present invention relates to a method for producing a heteropolyacid catalyst used for producing methacrylic acid by gas phase catalytic oxidation.

メタクリル酸はメタクロレインに分子酸素を気相接触酸化して製造される。メタクリル酸製造に使用される触媒(メタクリル酸製造用触媒)の性能は、メタクロレインの転化率、生成するメタクリル酸の選択率などで評価され、それらの性能は触媒の細孔構造の影響を大きく受けることが知られている。一般に、適度な平均細孔径や細孔径分布を有し、触媒表面に多くの細孔を有する(表面積が大きい)触媒ほど、高い性能(優れた生産性)を示す。そのため、従来から、平均細孔径、細孔径分布などを制御した触媒や、その製造方法が提案され、触媒表面の細孔容積や成型性などの物性の改良に関する特許が多数出願されている。   Methacrylic acid is produced by gas phase catalytic oxidation of molecular oxygen with methacrolein. The performance of the catalyst used for methacrylic acid production (catalyst for methacrylic acid production) is evaluated by the conversion rate of methacrolein, the selectivity of methacrylic acid to be produced, etc., and these performances greatly influence the pore structure of the catalyst. It is known to receive. In general, a catalyst having an appropriate average pore size and pore size distribution and having many pores on the catalyst surface (large surface area) exhibits higher performance (excellent productivity). For this reason, conventionally, a catalyst with controlled average pore diameter, pore diameter distribution, and the like and a method for producing the same have been proposed, and many patents relating to improvements in physical properties such as pore volume and moldability on the catalyst surface have been filed.

例えば、触媒原料の混合物に、セルロース、ポリビニルアルコール、ポリエチレングリコールおよびゼラチンからなる群から選択された一種以上の有機物を添加する方法(特許文献1)、炭素数1〜6のアルコール、アルデヒド、有機酸を添加する方法(特許文献2)、合成高分子としてシリコーンゴム、ポリスチレン、ポリメタクリル酸メチル、ナイロン66を添加する方法(特許文献3)、精製デンプンを添加する方法(特許文献4)などが提案されている。これらの提案はいずれも、有機物が添加された触媒前駆体を焼成することで、それらの有機物が焼失して生ずる空間(細孔)の制御や、触媒の表面積の制御を目的としている。
特公昭59−27217号公報 特開平6−15178号公報 特開平11−226410号公報 特開平11−226411号公報
For example, a method of adding one or more organic substances selected from the group consisting of cellulose, polyvinyl alcohol, polyethylene glycol, and gelatin to a mixture of catalyst raw materials (Patent Document 1), alcohols having 1 to 6 carbon atoms, aldehydes, organic acids Proposed methods include adding a silicone rubber, polystyrene, polymethyl methacrylate, nylon 66 as a synthetic polymer (Patent Document 3), adding purified starch (Patent Document 4), etc. Has been. Each of these proposals aims at controlling the space (pores) generated by burning out the catalyst precursor to which the organic substance is added and burning out the organic substance, and the surface area of the catalyst.
Japanese Patent Publication No.59-27217 JP-A-6-15178 JP-A-11-226410 Japanese Patent Laid-Open No. 11-226411

しかしながら、これら従来の方法では、添加した有機物の焼失によって細孔を形成し、触媒の表面積を大きくすることができても、触媒界面の改質は望めず、触媒の性能が充分に発揮されにくかった。
本発明は、前記事情に鑑みてなされたものであって、大きな表面積を有し、触媒界面が改質され、メタクロレインからのメタクリル酸の生産性に優れたヘテロポリ酸系触媒の製造方法を目的とするものである。
However, in these conventional methods, even if the pores are formed by burning out the added organic matter and the surface area of the catalyst can be increased, the catalyst interface cannot be modified and the performance of the catalyst is not fully exhibited. It was.
The present invention has been made in view of the above circumstances, and has an object to provide a method for producing a heteropolyacid catalyst having a large surface area, a modified catalyst interface, and excellent productivity of methacrylic acid from methacrolein. It is what.

本発明者らは前記課題を解決するために鋭意検討を行った結果、以下の構成を見出した。
気相接触酸化によるメタクリル酸の製造に使用されるヘテロポリ酸系触媒の製造方法において、該ヘテロポリ酸系触媒の調製に活性汚泥を用いることを特徴とするヘテロポリ酸系触媒の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have found the following configurations.
In the manufacturing method of the heteropolyacid catalyst used for manufacture of methacrylic acid by vapor phase catalytic oxidation, activated sludge is used for preparation of this heteropolyacid catalyst, The manufacturing method of the heteropolyacid catalyst characterized by the above-mentioned.

本発明のメタクリル酸製造用ヘテロポリ酸系触媒の製造方法によると、大きな表面積を有し、触媒界面が改質され、メタクロレインからのメタクリル酸の生産性に優れたヘテロポリ酸系触媒を製造することができる。   According to the method for producing a heteropolyacid catalyst for methacrylic acid production of the present invention, a heteropolyacid catalyst having a large surface area, a modified catalyst interface and excellent productivity of methacrylic acid from methacrolein is produced. Can do.

本発明のメタクリル酸製造用ヘテロポリ酸系触媒は、気相接触酸化によるメタクリル酸の製造に使用されるヘテロポリ酸系触媒の製造方法において、該ヘテロポリ酸系触媒の調製に活性汚泥を用いることを特徴とする。
前記触媒の調製は、水などに原料を加えてスラリーを得る混合工程、該スラリーを乾燥させて触媒前駆体の乾燥物を得る乾燥工程、該触媒前駆体の乾燥物を成型して成型物を得る成型工程、該成型物を焼成する焼成工程に分けられる。
The heteropolyacid catalyst for producing methacrylic acid according to the present invention is characterized in that in the method for producing a heteropolyacid catalyst used for producing methacrylic acid by gas phase catalytic oxidation, activated sludge is used for the preparation of the heteropolyacid catalyst. And
The catalyst is prepared by adding a raw material to water or the like to obtain a slurry, a drying step of drying the slurry to obtain a dried product of the catalyst precursor, and molding the dried product of the catalyst precursor to form a molded product. It is divided into a molding process to obtain and a firing process for firing the molded product.

(触媒の原料)
本発明では、下記式(1)で表される組成を有するヘテロポリ酸系触媒が得られるように、各種の原料を混合するのが好ましい。
MoCu (1)
(式中のMo、V、CuおよびOは、それぞれがモリブデン、バナジウム、銅および酸素を示し、Aはリン、ヒ素からなる群より選ばれた少なくとも1種の元素を示し、Dはアンチモン、ビスマス、ゲルマニウム、ジルコニウム、テルル、銀、セレン、珪素、タングステン、およびホウ素からなる群より選ばれた少なくとも1種の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、マンガン、コバルト、バリウム、ガリウム、セリウム、およびランタンからなる群より選ばれた少なくとも1種の元素を示し、Zはナトリウム、カリウム、ルビジウム、セシウム、およびタリウムからなる群より選ばれた少なくとも1種の元素を示す。a,b,c,d,e,f,g,およびhは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
(Raw material of catalyst)
In the present invention, it is preferable to mix various raw materials so as to obtain a heteropolyacid catalyst having a composition represented by the following formula (1).
A a Mo b V c Cu d D e Y f Z g O h (1)
(In the formula, Mo, V, Cu and O respectively represent molybdenum, vanadium, copper and oxygen, A represents at least one element selected from the group consisting of phosphorus and arsenic, and D represents antimony, bismuth. , At least one element selected from the group consisting of germanium, zirconium, tellurium, silver, selenium, silicon, tungsten, and boron, Y is iron, zinc, chromium, magnesium, tantalum, manganese, cobalt, barium, Z represents at least one element selected from the group consisting of gallium, cerium, and lanthanum, and Z represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium, and thallium. b, c, d, e, f, g, and h represent the atomic ratio of each element. When b = 12, a = 0.5 3, c = 0.01-3, d = 0-2, e = 0-3, f = 0-3, g = 0.01-3, and h satisfies the valence of each component. The atomic ratio of oxygen required for

ヘテロポリ酸系触媒の原料は特に限定されないが、例えば、前記式(1)の組成を得るために混合される触媒の原料には、前記に挙げた各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩などを適宜選択して使用することができる。
前記式(1)におけるMoの原料としては、モリブデン酸や三酸化モリブデンが好ましいが、パラモリブデン酸アンモニウムなども使用できる。
前記式(1)におけるVの原料としては、メタバナジン酸、メタバナジン酸アンモニウム、五酸化二バナジウムなどを使用できる。
前記式(1)におけるCuの原料としては、硝酸銅、硫酸銅、炭酸銅などを使用できる。
前記式(1)におけるAの原料としては、正リン酸、五酸化リン、リン酸アンモニウム、ヒ酸などを使用できる。
前記式(1)におけるDの原料としては、三酸化アンチモンなどを使用できる。
前記式(1)におけるYの原料としては、鉄、亜鉛を含む化合物などを使用できる。
前記式(1)におけるZの原料としては、硝酸セシウムなどの金属化合物などを使用できる。
The raw material of the heteropolyacid catalyst is not particularly limited. For example, the raw material of the catalyst mixed to obtain the composition of the formula (1) includes oxides, nitrates, carbonates, ammoniums of the above-mentioned elements. A salt or the like can be appropriately selected and used.
The Mo raw material in the formula (1) is preferably molybdic acid or molybdenum trioxide, but ammonium paramolybdate or the like can also be used.
As a raw material for V in the formula (1), metavanadate, ammonium metavanadate, divanadium pentoxide, or the like can be used.
As a raw material of Cu in the formula (1), copper nitrate, copper sulfate, copper carbonate, or the like can be used.
As a raw material of A in the formula (1), orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, arsenic acid and the like can be used.
As a raw material for D in the formula (1), antimony trioxide or the like can be used.
As a raw material of Y in the formula (1), a compound containing iron or zinc can be used.
As a raw material of Z in the formula (1), a metal compound such as cesium nitrate can be used.

(活性汚泥)
活性汚泥とは、微生物(酵素、有機物)の混合種を含有する汚泥であり、従来、排水の浄化手段として、排水処理場などの排水工程で広く利用されている。
活性汚泥は、水中に存在する微生物に対して、有機物や酸素の供給を行い、該微生物を人為的に繁殖させることにより得られる。排水処理場などでは、活性汚泥を曝気槽に発生させ、活性汚泥に含有される前記微生物が、有機物(水中の有機性汚濁物質)を分解・吸収し、繁殖することを利用して、排水の浄化を行っている。
前記微生物の混合種は、細菌、真菌、原生動物などであり、その大きさは数10〜数100μmである。これら微生物の学名としては、Opercula、Zoothamnium、Epistyles、Chilodonella、Rotaria、Philodinaなどが挙げられる。
活性汚泥の固形分中の炭素は43〜45質量%程度、窒素量が9〜12質量%程度、リン量は1〜2質量%程度を示す。
本発明で用いられる活性汚泥は特に限定されないが、活性汚泥に含まれる微生物種のサイズおよび/または形状(胞子状や鞭毛虫や繊毛虫など)の違いを鑑み、これらが焼成されて得られる触媒表面の細孔が、好ましい大きさとなるような微生物種を多く含む活性汚泥を選択することが好ましい。
(Activated sludge)
Activated sludge is sludge containing mixed species of microorganisms (enzymes and organic substances) and has been widely used in wastewater processes such as wastewater treatment plants as a means for purifying wastewater.
Activated sludge is obtained by supplying organic matter and oxygen to microorganisms present in water and artificially propagating the microorganisms. In wastewater treatment plants, activated sludge is generated in an aeration tank, and the microorganisms contained in the activated sludge decompose and absorb organic matter (organic pollutants in water) and propagate, Purifying.
The mixed species of microorganisms are bacteria, fungi, protozoa, etc., and the size thereof is several tens to several hundreds μm. The scientific names of these microorganisms include Opercula, Zootamnium, Epistyles, Chilodonella, Rotaria, Philodina and the like.
Carbon in the solid content of the activated sludge is about 43 to 45% by mass, nitrogen is about 9 to 12% by mass, and phosphorus is about 1 to 2% by mass.
The activated sludge used in the present invention is not particularly limited, but in view of the difference in the size and / or shape of microbial species contained in the activated sludge (spore-like, flagellate, ciliate, etc.), a catalyst obtained by firing them. It is preferable to select activated sludge containing a large amount of microbial species such that the surface pores have a preferred size.

活性汚泥に含有される元素のうち、リンは、微生物に含まれるポリリン酸類のATP(アデノシン3リン酸)、ADP(アデノシン2リン酸)に由来すると考えられる。これらのリンは、強熱しても残存しやすい。
活性汚泥は、自然沈降または遠心分離による沈降部の回収を行い、湿粉状態にしてから、触媒原料へ添加するのが好ましい。
活性汚泥は、焼成する前の原料に対して添加される。例えば、後述する触媒の原料のスラリーに活性汚泥を添加してから、成型、焼成してもよいし、該スラリーを乾燥させた後に活性汚泥を添加し、成型、焼成してもよい。
これにより、活性汚泥に含まれるリンが焼成によって触媒界面に付着し、リン酸塩やヘテロ原子としてヘテロポリ酸(以下、HPAともいう。)に作用し、触媒界面の改質効果を発揮する。
触媒界面の改質効果の確認方法としては、例えば、水に対する触媒の溶解性の違いで判断する方法がある。活性汚泥の添加により、水溶解性の酸点が多いプロトン型へテロポリ酸と、水難溶解性で酸点が少ないアルカリ型(例えば、アンモニアやアルカリ金属元素)へテロポリ酸塩の存在量比が変化する。活性汚泥を添加した場合、水難溶解性であるアルカリ型へテロポリ酸塩が減少するという改質効果がある。リンに関しては、活性汚泥の添加によって、水溶解性であるプロトン型へテロポリ酸中のリンが増加することから、活性汚泥の添加による改質効果が示唆される。
また、活性汚泥に含まれるリンは、触媒の表面形状の改質効果も発揮する。このように、活性汚泥に含有されるリンが触媒の改質効果を発揮することで、本発明のヘテロポリ酸系触媒は、従来のヘテロポリ酸系触媒に比べて、優れたメタクリル酸の生産性を有する。
Of the elements contained in the activated sludge, phosphorus is considered to be derived from polyphosphates ATP (adenosine triphosphate) and ADP (adenosine diphosphate) contained in microorganisms. These phosphorus are likely to remain even when ignited.
The activated sludge is preferably added to the catalyst raw material after the sedimentation part is recovered by natural sedimentation or centrifugation to form a wet powder.
The activated sludge is added to the raw material before firing. For example, the activated sludge may be added to a slurry of a catalyst raw material, which will be described later, and then molded and fired, or after the slurry is dried, the activated sludge may be added, molded and fired.
Thereby, phosphorus contained in the activated sludge adheres to the catalyst interface by calcination, acts on a heteropolyacid (hereinafter also referred to as HPA) as a phosphate or a hetero atom, and exhibits a catalyst interface reforming effect.
As a method for confirming the reforming effect on the catalyst interface, for example, there is a method for judging based on the difference in solubility of the catalyst in water. Addition of activated sludge changes the abundance ratio of proton-type heteropolyacids with many water-soluble acid sites and alkali-type (eg ammonia and alkali metal elements) heteropolyacid salts with poor water solubility and low acid sites To do. When activated sludge is added, there is a modification effect that the alkali type heteropolyacid salt which is hardly soluble in water is reduced. Regarding phosphorus, the addition of activated sludge increases phosphorus in proton-type heteropolyacid that is water-soluble, suggesting a modification effect by adding activated sludge.
Moreover, the phosphorus contained in the activated sludge also exhibits an effect of modifying the surface shape of the catalyst. As described above, the phosphorus contained in the activated sludge exerts the catalyst reforming effect, so that the heteropolyacid catalyst of the present invention has superior methacrylic acid productivity compared to the conventional heteropolyacid catalyst. Have.

また、活性汚泥の添加によって、活性汚泥が存在していた空間が焼成工程で消失して細孔構造を形成し、大きな表面積を有したヘテロポリ酸系触媒を得ることができる。
さらに、活性汚泥は不溶体のため、他の沈殿粒子である水難溶解成分とともに共存することによって、アルカリ型ヘテロポリ酸系触媒の還元効果を発揮し、その適度の還元状態によって、酸素が供給し難い触媒種と、酸素が供給しやすい酸化状態の触媒種との配置調整が円滑に進められる。これにより、メタクロレインがメタクリル酸以外(例えば二酸化炭素)の物質に酸化されることを抑制でき、以って収率向上に寄与できる。
また、排水処理場などの排水工程で余剰に発生し、従来は焼却処分されていた活性汚泥を利用することで、触媒製造の低コスト化が期待できる。
活性汚泥の添加量は、原料中のモリブデン100質量部に対して、乾燥活性汚泥換算で
好ましくは0.1質量部〜4質量部、より好ましくは1質量部〜2質量部である。
In addition, by adding the activated sludge, the space where the activated sludge was present disappears in the firing step to form a pore structure, and a heteropolyacid catalyst having a large surface area can be obtained.
Furthermore, since activated sludge is insoluble, it coexists with other poorly soluble components that are precipitated particles, so that it exerts the reducing effect of the alkaline heteropolyacid catalyst, and it is difficult to supply oxygen due to its moderate reduction state. The arrangement adjustment of the catalyst species and the catalyst species in an oxidized state to which oxygen can be easily supplied proceeds smoothly. Thereby, it can suppress that methacrolein is oxidized to substances other than methacrylic acid (for example, carbon dioxide), and can contribute to a yield improvement.
In addition, by using activated sludge that is generated excessively in the drainage process of a wastewater treatment plant or the like and conventionally incinerated, cost reduction in catalyst production can be expected.
The amount of activated sludge added is preferably 0.1 parts by mass to 4 parts by mass, more preferably 1 part by mass to 2 parts by mass in terms of dry activated sludge with respect to 100 parts by mass of molybdenum in the raw material.

(混合工程)
触媒の原料は、均一な分散性を得るために、水などの水性媒体に混合してスラリー化するのが好ましい。水としては、純水が好ましい。また、アルカリ型へテロポリ酸塩やプロトン型へテロポリ酸をより均一化し、各種元素の再編成を促すため、アンモニア水を添加することもある。
(Mixing process)
In order to obtain uniform dispersibility, the catalyst raw material is preferably mixed with an aqueous medium such as water to form a slurry. As water, pure water is preferable. In addition, ammonia water may be added in order to make the alkali-type heteropolyacid salt or proton-type heteropolyacid more uniform and promote reorganization of various elements.

(乾燥工程)
混合工程で得られたスラリーは、次いで乾燥され、触媒前駆体の乾燥物となる。乾燥方法としては、種々の方法を用いることができるが、例えば蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法などが挙げられる。乾燥に使用する乾燥機の機種や乾燥時の温度、雰囲気などは特に限定されず、乾燥条件を適宜変えることによって、目的に応じた触媒前駆体の乾燥物を得ることができる。
(Drying process)
The slurry obtained in the mixing step is then dried to obtain a dried catalyst precursor. Various methods can be used as the drying method, and examples thereof include an evaporation to dryness method, a spray drying method, a drum drying method, and an airflow drying method. There are no particular limitations on the type of dryer used for drying, the temperature during drying, the atmosphere, and the like. By appropriately changing the drying conditions, a dried catalyst precursor according to the purpose can be obtained.

(成型工程)
この触媒前駆体の乾燥物は、そのまま焼成を行ってもよく、なんらかの成型を行ってから焼成を行ってもよい。
成型の方法は特に限定されず、公知の乾式または湿式の成型の方法が適用できるが、担体などを含めず、触媒成分のみで成型する方法が好ましい。具体的な成型の方法としては、例えば、打錠成型、プレス成型、押出成型、造粒成型などが挙げられる。成型品の形状についても特に限定されず、例えば円柱状、リング状、球状などの形状に成型することができる。
(Molding process)
The dried catalyst precursor may be calcined as it is, or may be calcined after some form of molding.
The molding method is not particularly limited, and a known dry or wet molding method can be applied, but a method of molding only with a catalyst component without including a carrier is preferable. Specific examples of the molding method include tableting molding, press molding, extrusion molding, and granulation molding. The shape of the molded product is not particularly limited, and for example, it can be molded into a cylindrical shape, a ring shape, a spherical shape, or the like.

(焼成工程)
この触媒前駆体の乾燥物またはその成型品を焼成する方法、およびその焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、用いる触媒の原料、触媒の組成、調製方法によって異なるが、通常、空気などの酸素含有ガス流通下および/または不活性ガス流通下で200〜500℃、0.2時間〜30時間が好ましい。より好ましくは250〜450℃で0.5時間〜20時間、特に好ましくは280〜390℃で1〜10時間行われる。ここで不活性ガスとは、触媒活性を低下させないような気体を示し、例えば、窒素、炭酸ガス、ヘリウム、アルゴンなどが挙げられる。
この焼成工程により、活性汚泥が焼失し、触媒に細孔が形成される。該細孔の多くは、その形状が短い線状として観察され、該細孔の大きさは数10〜数100μmである。
(Baking process)
The method for firing the dried catalyst precursor or the molded product thereof and the firing conditions thereof are not particularly limited, and known treatment methods and conditions can be applied. Optimum conditions for calcination vary depending on the raw material of the catalyst used, the composition of the catalyst, and the preparation method, but usually 200 to 500 ° C. under an oxygen-containing gas flow such as air and / or an inert gas flow for 0.2 hours to 30 hours is preferred. More preferably, it is carried out at 250 to 450 ° C. for 0.5 to 20 hours, particularly preferably at 280 to 390 ° C. for 1 to 10 hours. Here, the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide gas, helium, and argon.
By this calcination step, the activated sludge is burned off and pores are formed in the catalyst. Many of the pores are observed as short linear shapes, and the size of the pores is several tens to several hundreds μm.

このように、活性汚泥を用いることにより、大きな表面積を有し、かつ触媒界面が改質され、メタクロレインからのメタクリル酸の生産性に優れたヘテロポリ酸系触媒を得ることができる。
本発明のメタクリル酸製造用ヘテロポリ酸系触媒の製造方法は、触媒の調製のスケールを問わず実施可能である。メタクリル酸製造用ヘテロポリ酸系触媒の主原料であるモリブデン化合物の1回の使用量の目安は、その化合物に含まれるモリブデンの質量部換算で100g〜10tが好ましく、1kg〜1tがより好ましい。
Thus, by using activated sludge, a heteropolyacid catalyst having a large surface area, a modified catalyst interface, and excellent productivity of methacrylic acid from methacrolein can be obtained.
The method for producing a heteropolyacid catalyst for methacrylic acid production of the present invention can be carried out regardless of the scale of catalyst preparation. The standard of the amount of the molybdenum compound that is the main raw material of the heteropolyacid catalyst for producing methacrylic acid is preferably 100 g to 10 t, more preferably 1 kg to 1 t in terms of parts by mass of molybdenum contained in the compound.

(触媒としての使用方法)
メタクリル酸製造用ヘテロポリ酸系触媒に、メタクロレインと分子状酸素を含む原料ガスを接触させ、気相接触酸化することで、メタクリル酸が製造される。原料ガス中のメタクロレイン濃度は広い範囲で変えることができるが、1〜20容量%が好ましく、特に3〜10容量%が好ましい。原料ガス中における分子状酸素濃度は、メタクロレイン1モルに対して0.5〜4モル、特に1〜3モルが好ましい。原料ガスに窒素、炭酸ガスなどの不活性ガスを加えて希釈してもよく、また原料ガスに水蒸気を加えてもよい。反応圧力は、常圧1〜5気圧が好ましい。反応温度は230〜450℃が好ましく、250〜400℃がより好ましい。
(Usage as a catalyst)
Methacrylic acid is produced by bringing a raw material gas containing methacrolein and molecular oxygen into contact with a heteropolyacid catalyst for producing methacrylic acid, followed by gas phase catalytic oxidation. The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, particularly 3 to 10% by volume. The molecular oxygen concentration in the raw material gas is preferably 0.5 to 4 mol, particularly preferably 1 to 3 mol, per 1 mol of methacrolein. An inert gas such as nitrogen or carbon dioxide may be added to the source gas for dilution, and water vapor may be added to the source gas. The reaction pressure is preferably from 1 to 5 atmospheric pressure. The reaction temperature is preferably 230 to 450 ° C, more preferably 250 to 400 ° C.

以下に、本発明のメタクリル酸製造用ヘテロポリ酸系触媒の製造方法について、実施例を用いて、さらに詳細に説明する。
ここで、実施例における「部」は質量部である。
<活性汚泥>
広島県大竹市の三菱レイヨン株式会社大竹事業所中央排水処理場から採取した活性汚泥を使用した。この活性汚泥はなんら特殊ではない、ごく一般的な活性汚泥であった。光学顕微鏡観察および排水水質指標から、その活性汚泥種はOpercula、Zoothamnium、Epistyles、Chilodonella、Rotaria、Philodinaなどで、特に繊毛虫類であるOperculaのような微生物が多く観察された。また、これらの微生物の大きさは、数10〜数100μmであった。この活性汚泥中の固形分は、活性汚泥中の約22質量%であった(活性汚泥を105℃で2時間乾燥して、残留した固形分を計量した。)。この活性汚泥は、その固形分中の炭素量が48質量%、窒素量が11質量%、リン量は1.4質量%を示した。活性汚泥に含まれる微生物の量は、活性汚泥の固形物のほぼ全量に近かった。
そして、採取した活性汚泥を遠心分離機により遠心分離(条件:5,000rpm、5分間)して、活性汚泥の沈降部を回収した。この沈降部は、湿り気のある湿粉状態を呈していた。
<分析方法>
製造された触媒中に含まれる含有元素の組成分析は、ICP発光分析法、原子吸光分析法により行った。
触媒の性能評価で用いられるメタクロレインと、得られるメタクリル酸の定量分析は、ガスクロマトグラフィにより行った。
触媒の表面積はBET法により測定した。BET法は、多分子層吸着に基づいて導かれる吸着等温式(BET式)を用いて、単分子層吸着量と吸着質の分子断面積とから固体の表面積を算出する方法であり、周知の方法である。
アルカリ型HPA塩(%)の存在量は次のようにして求めた。触媒0.2g(A)を正確に秤量後、100mlの水に分散させてから超音波洗浄器で30分間処理し、次いで遠心分離器(条件:16,000rpm、5分間)で処理後、上澄み液(プロトン型HPA)と沈殿部(アルカリ型HPA塩)を分離し、沈殿部を60℃に設定した真空乾燥器で一晩乾燥させて質量(B)を求め、(B)÷(A)×100の計算式によりアルカリ型HPA塩(%)の存在量を求めた。
一方、遠心分離後の上澄み液について、ICP発光分析法でリンの定量を行い、プロトン型HPA中のリン(%)を求めた。
<メタクリル酸製造用触媒の性能評価方法>
メタクリル酸製造用触媒の性能評価は、メタクロレインの転化率、生成するメタクリル酸の選択率、および単流収率から行った。これらは以下のように定義される。
メタクロレインの転化率(%)=(B/A)×100
メタクリル酸の選択率(%)=(C/B)×100
メタクリル酸の単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
Below, the manufacturing method of the heteropolyacid catalyst for methacrylic acid manufacture of this invention is demonstrated in detail using an Example.
Here, “parts” in the examples are parts by mass.
<Activated sludge>
The activated sludge collected from Mitsubishi Rayon Co., Ltd.'s Otake Works Central Wastewater Treatment Plant in Otake City, Hiroshima Prefecture was used. This activated sludge was a very general activated sludge that was not special. From the microscopic observation and the wastewater quality index, the activated sludge species were such as Opera, Zoozoomium, Epistyles, Chilodonella, Rotalia, Philodina, and many microorganisms such as the ciliate, Opercula, were observed. Moreover, the magnitude | size of these microorganisms was several 10 to several 100 micrometers. The solid content in the activated sludge was about 22% by mass in the activated sludge (the activated sludge was dried at 105 ° C. for 2 hours, and the remaining solid content was weighed). This activated sludge had a carbon content of 48% by mass, a nitrogen content of 11% by mass and a phosphorus content of 1.4% by mass in the solid content. The amount of microorganisms contained in the activated sludge was close to almost the entire amount of the activated sludge solids.
Then, the collected activated sludge was centrifuged with a centrifuge (condition: 5,000 rpm, 5 minutes), and the sedimented portion of the activated sludge was collected. This sedimentation part was exhibiting a wet powder state.
<Analysis method>
The composition analysis of the contained elements contained in the produced catalyst was performed by ICP emission spectrometry and atomic absorption spectrometry.
Quantitative analysis of methacrolein used in the performance evaluation of the catalyst and methacrylic acid obtained was performed by gas chromatography.
The surface area of the catalyst was measured by the BET method. The BET method is a method for calculating the surface area of a solid from the adsorption amount of a monomolecular layer and the molecular cross-sectional area of the adsorbate using an adsorption isotherm (BET equation) derived on the basis of multimolecular layer adsorption. Is the method.
The abundance of the alkaline HPA salt (%) was determined as follows. After accurately weighing 0.2 g (A) of catalyst, disperse it in 100 ml of water, treat with an ultrasonic cleaner for 30 minutes, then treat with a centrifuge (condition: 16,000 rpm, 5 minutes), and then remove the supernatant. The liquid (proton HPA) and the precipitate (alkaline HPA salt) are separated, and the precipitate is dried overnight in a vacuum dryer set at 60 ° C. to determine the mass (B). (B) ÷ (A) The abundance of the alkaline HPA salt (%) was determined by a formula of × 100.
On the other hand, phosphorus in the supernatant after centrifugation was quantified by ICP emission spectrometry to determine phosphorus (%) in proton type HPA.
<Method for evaluating performance of catalyst for methacrylic acid production>
The performance evaluation of the catalyst for producing methacrylic acid was performed from the conversion rate of methacrolein, the selectivity of methacrylic acid to be produced, and the single flow yield. These are defined as follows:
Conversion rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Single stream yield of methacrylic acid (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
純水800部に、三酸化モリブデン200部、メタバナジン酸6.77部、およびリン酸16.0部を投入してスラリーとした。このスラリーを加温し、100℃で2時間保持した。その後、このスラリーの温度を50℃に下げ、三酸化アンチモン6.66部および純水145部を15秒間かけて投入した。
次いで、このスラリーに、前述した湿粉状態の活性汚泥5g(モリブデン100部に対して乾燥活性汚泥換算1.1部である。)を投入して約10分間攪拌保持した。さらに、このスラリーに、硝酸セシウム24.8部および純水47部を約3分間かけて投入し、15分間攪拌保持した。その後、スラリーの温度を70℃に一端上げてから、28%アンモニア水98部を除熱しながら約20分間かけて投入した。そして、このスラリーを約90分間攪拌保持した。
[Example 1]
To 800 parts of pure water, 200 parts of molybdenum trioxide, 6.77 parts of metavanadate and 16.0 parts of phosphoric acid were added to form a slurry. The slurry was warmed and held at 100 ° C. for 2 hours. Thereafter, the temperature of the slurry was lowered to 50 ° C., and 6.66 parts of antimony trioxide and 145 parts of pure water were added over 15 seconds.
Next, 5 g of the activated sludge in the wet powder state (1.1 parts in terms of dry activated sludge with respect to 100 parts of molybdenum) was added to this slurry and stirred for about 10 minutes. Further, 24.8 parts of cesium nitrate and 47 parts of pure water were added to the slurry over about 3 minutes, and the mixture was stirred and held for 15 minutes. Thereafter, the temperature of the slurry was raised to 70 ° C., and then 98 parts of 28% ammonia water was removed and the mixture was added over about 20 minutes. The slurry was stirred and held for about 90 minutes.

次いで、スラリーの温度を再び50℃に下げてから、このスラリーに硝酸銅3.3部および硝酸鉄1.8部を投入した。そして、このスラリーの温度を100℃まで上昇して、スラリーを濃縮した。さらに、この濃縮したスラリーを、150℃の乾燥器内で一晩(約16時間)乾燥させて、乾燥粉体(触媒前駆体の乾燥物)を得た。
この乾燥粉体を、油圧式加圧成型器を用いて圧力20Mpa(200kg/cm)で1分間保持して破砕し、7.5メッシュ(目開き2.36mm)〜20メッシュ(目開き0.71mm)の破砕品を得た(造粒成型)。
この破砕品を焼成炉に充填して、空気雰囲気下に400℃で一晩焼成することにより、実施例1のメタクリル酸製造用ヘテロポリ酸系触媒を得た。
このメタクリル酸製造用ヘテロポリ酸系触媒の金属成分の組成は、Mo120.51.2Sb0.4Cs1.1Cu0.12Fe0.04であった。
このメタクリル酸製造用ヘテロポリ酸系触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の混合ガスを反応温度270℃、接触時間3.6秒の反応条件で通じ、メタクロレインの気相接触酸化反応によるメタクリル酸の製造を行った。この触媒の性能評価結果を表1に示す。
Next, the temperature of the slurry was lowered again to 50 ° C., and 3.3 parts of copper nitrate and 1.8 parts of iron nitrate were added to the slurry. And the temperature of this slurry was raised to 100 degreeC and the slurry was concentrated. Further, this concentrated slurry was dried overnight (about 16 hours) in a dryer at 150 ° C. to obtain a dry powder (dried catalyst precursor).
This dry powder was crushed by holding it at a pressure of 20 Mpa (200 kg / cm 2 ) for 1 minute using a hydraulic pressure molding machine, and 7.5 mesh (aperture 2.36 mm) to 20 mesh (aperture 0). .71 mm) was obtained (granulation molding).
The crushed product was filled in a firing furnace and fired overnight at 400 ° C. in an air atmosphere to obtain a heteropolyacid catalyst for methacrylic acid production of Example 1.
The composition of the metal component of the heteropolyacid catalyst for producing methacrylic acid was Mo 12 V 0.5 P 1.2 Sb 0.4 Cs 1.1 Cu 0.12 Fe 0.04 .
This heteropolyacid catalyst for producing methacrylic acid is charged into a reaction tube, and a mixed gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, and 55% by volume of nitrogen is reacted at 270 ° C. and contact time is 3.6. Production of methacrylic acid was carried out by gas phase catalytic oxidation of methacrolein under the reaction conditions of seconds. The performance evaluation results of this catalyst are shown in Table 1.

[実施例2]
湿粉状態の活性汚泥の添加量を10部(モリブデン100部に対して乾燥活性汚泥換算で2.2部)とした以外は、実施例1と同様に触媒の調製を行って、実施例2のメタクリル酸製造用ヘテロポリ酸系触媒を得た。そして、このメタクリル酸製造用ヘテロポリ酸系触媒を用い、実施例1と同様の方法でメタクリル酸の製造を行った。性能評価結果を表1に示す。
[Example 2]
Example 2 A catalyst was prepared in the same manner as in Example 1 except that the amount of activated sludge in the wet powder state was 10 parts (2.2 parts in terms of dry activated sludge with respect to 100 parts of molybdenum). A heteropolyacid catalyst for producing methacrylic acid was obtained. And the methacrylic acid was manufactured by the method similar to Example 1 using this heteropoly acid type catalyst for methacrylic acid manufacture. The performance evaluation results are shown in Table 1.

[比較例1]
活性汚泥を添加しない以外は、実施例1と同様に触媒の調製を行って、比較例1のメタクリル酸製造用ヘテロポリ酸系触媒を得た。そして、このメタクリル酸製造用ヘテロポリ酸系触媒を用い、実施例1と同様の方法でメタクリル酸の製造を行った。性能評価結果を表1に示す。
[Comparative Example 1]
A catalyst was prepared in the same manner as in Example 1 except that activated sludge was not added, and a heteropolyacid catalyst for methacrylic acid production in Comparative Example 1 was obtained. And the methacrylic acid was manufactured by the method similar to Example 1 using this heteropoly acid type catalyst for methacrylic acid manufacture. The performance evaluation results are shown in Table 1.

[実施例3]
実施例1で用いた三酸化アンチモン6.66部の代わりに、60%ヒ酸10.9部を用いた以外は、実施例1と同様に触媒の調製を行って、実施例4のメタクリル酸製造用ヘテロポリ酸系触媒を得た。このメタクリル酸製造用ヘテロポリ酸系触媒の金属成分の組成は、Mo120.51.2As0.4Cs1.1Cu0.12Fe0.04であった。そして、このメタクリル酸製造用ヘテロポリ酸系触媒を用い、実施例1と同様の方法でメタクリル酸の製造を行った。性能評価結果を表1に示す。
[Example 3]
The catalyst was prepared in the same manner as in Example 1 except that 10.9 parts of 60% arsenic acid was used instead of 6.66 parts of antimony trioxide used in Example 1, and methacrylic acid of Example 4 was used. A heteropolyacid catalyst for production was obtained. The composition of the metal component of the heteropolyacid catalyst for producing methacrylic acid was Mo 12 V 0.5 P 1.2 As 0.4 Cs 1.1 Cu 0.12 Fe 0.04 . And the methacrylic acid was manufactured by the method similar to Example 1 using this heteropoly acid type catalyst for methacrylic acid manufacture. The performance evaluation results are shown in Table 1.

[実施例4]
湿粉状態の活性汚泥の添加量を10部(モリブデン100部に対して乾燥活性汚泥換算で2.2部)とした以外は、実施例3と同様に触媒の調製を行って、実施例4のメタクリル酸製造用ヘテロポリ酸系触媒を得た。そして、このメタクリル酸製造用ヘテロポリ酸系触媒を用い、実施例1と同様の方法でメタクリル酸の製造を行った。性能評価結果を表1に示す。
[Example 4]
Example 4 A catalyst was prepared in the same manner as in Example 3 except that the amount of activated sludge in a wet powder state was 10 parts (2.2 parts in terms of dry activated sludge with respect to 100 parts of molybdenum). A heteropolyacid catalyst for producing methacrylic acid was obtained. And the methacrylic acid was manufactured by the method similar to Example 1 using this heteropoly acid type catalyst for methacrylic acid manufacture. The performance evaluation results are shown in Table 1.

[比較例2]
活性汚泥を添加しない以外は、実施例3と同様に触媒の調製を行って、比較例2のメタクリル酸製造用ヘテロポリ酸系触媒を得た。そして、このメタクリル酸製造用ヘテロポリ酸系触媒を用い、実施例1と同様の方法でメタクリル酸の製造を行った。性能評価結果を表1に示す。
[Comparative Example 2]
A catalyst was prepared in the same manner as in Example 3 except that activated sludge was not added, to obtain a heteropolyacid catalyst for methacrylic acid production in Comparative Example 2. And the methacrylic acid was manufactured by the method similar to Example 1 using this heteropoly acid type catalyst for methacrylic acid manufacture. The performance evaluation results are shown in Table 1.

Figure 2009066582
Figure 2009066582

実施例1、2、3、4はいずれも良好な性能のバランスを示した。
その中でも、実施例1、3はメタクロレインの転化率、メタクリル酸の単流収率に特に優れており、触媒の表面積も大きかった。
実施例2、4は、メタクリル酸の選択率に特に優れていた。
一方、比較例1、2は総じて劣っていた。
また、アルカリ型HPAの量は、各比較例に比べて各実施例の方が少なく、プロトン型HPA中のリンの量は、各比較例に比べて各実施例の方が多く、触媒界面の改質効果が認められた。
Examples 1, 2, 3, and 4 all showed a good balance of performance.
Among them, Examples 1 and 3 were particularly excellent in methacrolein conversion rate and single flow yield of methacrylic acid, and the surface area of the catalyst was also large.
Examples 2 and 4 were particularly excellent in the selectivity of methacrylic acid.
On the other hand, Comparative Examples 1 and 2 were generally inferior.
In addition, the amount of alkaline HPA is less in each example than in each comparative example, and the amount of phosphorus in proton type HPA is greater in each example than in each comparative example. A reforming effect was observed.

Claims (1)

気相接触酸化によるメタクリル酸の製造に使用されるヘテロポリ酸系触媒の製造方法において、該ヘテロポリ酸系触媒の調製に活性汚泥を用いることを特徴とするヘテロポリ酸系触媒の製造方法。   In the manufacturing method of the heteropolyacid catalyst used for manufacture of methacrylic acid by vapor phase catalytic oxidation, activated sludge is used for preparation of this heteropolyacid catalyst, The manufacturing method of the heteropolyacid catalyst characterized by the above-mentioned.
JP2007241026A 2007-09-18 2007-09-18 Manufacturing method of heteropolyacid-based catalyst for producing methacrylic acid Pending JP2009066582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241026A JP2009066582A (en) 2007-09-18 2007-09-18 Manufacturing method of heteropolyacid-based catalyst for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241026A JP2009066582A (en) 2007-09-18 2007-09-18 Manufacturing method of heteropolyacid-based catalyst for producing methacrylic acid

Publications (1)

Publication Number Publication Date
JP2009066582A true JP2009066582A (en) 2009-04-02

Family

ID=40603406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241026A Pending JP2009066582A (en) 2007-09-18 2007-09-18 Manufacturing method of heteropolyacid-based catalyst for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP2009066582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015043A (en) * 2015-03-09 2020-01-30 日本化薬株式会社 Method fop producing catalyst for producing methacrylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015043A (en) * 2015-03-09 2020-01-30 日本化薬株式会社 Method fop producing catalyst for producing methacrylic acid

Similar Documents

Publication Publication Date Title
JP2008000709A (en) Manufacturing method of heteropoly-acid based catalyst for manufacturing methacrylic acid
WO2008152952A1 (en) Catalyst for producing of acrylic acid, method for producing acrylic acid using the catalyst and method for producing water-absorbent resin using the acrylic acid
JP4922614B2 (en) Method for producing a catalyst for methacrylic acid production
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2009066582A (en) Manufacturing method of heteropolyacid-based catalyst for producing methacrylic acid
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP2008284439A (en) Heteropolyacid catalyst for preparing methacrylic acid
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP5149135B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP4933736B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2009213969A (en) Catalyst for unsaturated carboxylic acid synthesis, method for manufacturing the same, and method for manufacturing unsaturated carboxylic acid using this catalyst
JP5842378B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
WO2000072964A1 (en) Catalyst for methacrylic acid production and process for producing methacrylic acid
JP4825030B2 (en) Method for producing a catalyst for methacrylic acid production
JP5149138B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2017100952A (en) Method for producing acrolein and/or acrylic acid