JP2008284439A - Heteropolyacid catalyst for preparing methacrylic acid - Google Patents

Heteropolyacid catalyst for preparing methacrylic acid Download PDF

Info

Publication number
JP2008284439A
JP2008284439A JP2007130478A JP2007130478A JP2008284439A JP 2008284439 A JP2008284439 A JP 2008284439A JP 2007130478 A JP2007130478 A JP 2007130478A JP 2007130478 A JP2007130478 A JP 2007130478A JP 2008284439 A JP2008284439 A JP 2008284439A
Authority
JP
Japan
Prior art keywords
heteropolyacid
water
catalyst
soluble
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007130478A
Other languages
Japanese (ja)
Inventor
Tomohiro Masaki
朋博 柾
Tsutomu Fujita
藤田  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007130478A priority Critical patent/JP2008284439A/en
Publication of JP2008284439A publication Critical patent/JP2008284439A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heteropolyacid catalyst having a high productivity of high methacrylic acid. <P>SOLUTION: A heteropolyacid catalyst containing water-soluble heteropolyacid and hardly water-soluble heteropolyacid salt for preparing methacrylic acid is disclosed. The water-soluble heteropolyacid and the hardly water-soluble heteropolyacid salt of the finished catalyst has the degree of reduction controlled by controlling the degree of reduction controlled at the time of preparing a slurry. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用されるヘテロポリ酸系触媒に関する。   The present invention relates to a heteropolyacid catalyst used in the production of methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用される触媒としてヘテロポリ酸系触媒がある。このようなヘテロポリ酸系触媒としては、例えばモリブドリン酸、モリブドバナドリン酸などのカウンターカチオンがプロトンであるヘテロポリ酸や、そのプロトンの一部をセシウム、ルビジウム、タリウム、カリウムなどで置換したヘテロポリ酸塩が知られている。ヘテロポリ酸は、酸性度が高いため、これを単独で触媒として使用するとメタクリル酸の選択率・生産性(単流収率)が低くなる。そこで、カウンターカチオンのプロトンの一部を部分中和することにより酸性度を調整したものを触媒とすることが非特許文献1に記載されている。   There is a heteropolyacid catalyst as a catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. Examples of such heteropolyacid catalysts include heteropolyacids whose counter cations are protons, such as molybdophosphoric acid and molybdovanadolinic acid, and heteropolyacids in which part of the protons are substituted with cesium, rubidium, thallium, potassium, etc. Salt is known. Since the heteropolyacid has high acidity, when it is used alone as a catalyst, the selectivity / productivity (single-flow yield) of methacrylic acid is lowered. Therefore, Non-Patent Document 1 describes that a catalyst whose acidity is adjusted by partially neutralizing a part of protons of a counter cation is used.

カウンターカチオンがプロトンであるヘテロポリ酸は水溶性であるが、プロトンがセシウム(Cs)、ルビジウム(Rb)、タリウム(Tl)、カリウム(K)等で置換されたヘテロポリ酸塩は、これらカチオンのイオン半径が大きいため、一般に水に難溶性である。とくに、Cs、Rb、Tl、Kは、これら元素のカチオンのイオン半径が1.1Å以上であり、このために、これらで置換されたヘテロポリ酸塩は、極めて難溶解性または不溶性であり、例えば、特許文献1にはこれらの元素を含む水酸化物等の化合物がヘテロポリ酸の沈殿剤として使用できることを開示している。   Heteropolyacids whose protons are counter cations are water-soluble, but heteropolyacid salts in which protons are substituted with cesium (Cs), rubidium (Rb), thallium (Tl), potassium (K), etc. are ions of these cations. Due to its large radius, it is generally poorly soluble in water. In particular, Cs, Rb, Tl, and K have an ionic radius of cations of these elements of 1.1 Å or more. Therefore, heteropolyacid salts substituted with these elements are extremely hardly soluble or insoluble, for example, Patent Document 1 discloses that a compound such as a hydroxide containing these elements can be used as a precipitant for a heteropoly acid.

特許文献1は、触媒成分の回収方法に関するものであり、難溶解性ヘテロポリ酸塩を水酸化ナトリウムによるアルカリ性で溶解後、強酸性型イオン交換樹脂による処理により、プロトン型、つまり、水溶解性ヘテロポリ酸として回収する方法が開示されている。しかしながら、水溶解性ヘテロポリ酸及び水難溶解性ヘテロポリ酸からメタクリル酸製造用のヘテロポリ酸系触媒を製造することについては記載がない。   Patent Document 1 relates to a method for recovering a catalyst component. After dissolving a hardly soluble heteropolyacid salt with sodium hydroxide in an alkaline manner, treatment with a strongly acidic ion exchange resin results in a proton type, that is, a water-soluble heteropolyacid salt. A method for recovery as an acid is disclosed. However, there is no description about producing a heteropolyacid catalyst for producing methacrylic acid from a water-soluble heteropolyacid and a hardly water-soluble heteropolyacid.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するときの選択率・生産性を向上させる方法として上記の酸性度を調整する方法以外に、ヘテロポリ酸またはその塩の還元度を調整する方法がある。例えば、特許文献2は、イソブタンを酸化するに際してPまたはAsを中心元素としMoを含んでなるヘテロポリ酸またはその塩を、還元度の高い状態で触媒として使用すると、特に、ヘテロポリ酸一分子当たり一〜六電子相当還元した触媒を用いると、メタクリル酸の選択性が改善されることを開示している。   In addition to the above-mentioned method for adjusting the acidity as a method for improving the selectivity and productivity when producing methacrolein by vapor-phase catalytic oxidation of molecular metholine with molecular oxygen, the reduction degree of the heteropolyacid or its salt There is a way to adjust. For example, in Patent Document 2, when isobutane is oxidized, a heteropolyacid or a salt thereof containing P or As as a central element and containing Mo is used as a catalyst in a highly reduced state, in particular, one molecule per heteropolyacid. It is disclosed that the selectivity of methacrylic acid is improved when a catalyst reduced by ˜6-electron is used.

特許文献2ではヘテロポリ酸一分子当たりの電子相当還元の電子数が、その系全体の平均値として示されている。しかしながら、同特許文献記載の触媒では、還元が過剰なためヘテロポリ酸からの効率的な酸素供給による酸化反応が行えない等の理由により、メタクロレインからメタクリル酸への酸化反応は充分な生産性がないので工業的に適さない。また、特許文献2には、「PまたはAsを中心元素としMoを含むヘテロポリ酸またはその塩を、ヘテロポリ酸一分子当たり一〜六電子相当還元した触媒を用いる」と記載されている。しかしながら、これら還元度は特許文献2に記載されているように系全体を平均的に表現したものである。それらヘテロポリ酸とヘテロポリ酸塩は、酸性度を調整した酸化機能が異なる状態にあり、それぞれの還元しやすさ及び還元状態の定量化と最適化を行い好ましい範囲を明らかにする必要がある。   In Patent Document 2, the number of electrons corresponding to electron reduction per molecule of heteropolyacid is shown as an average value of the entire system. However, in the catalyst described in the patent document, the oxidation reaction from methacrolein to methacrylic acid has a sufficient productivity because the reduction is excessive and the oxidation reaction by the efficient oxygen supply from the heteropolyacid cannot be performed. Because it is not industrially suitable. Patent Document 2 describes that “a catalyst obtained by reducing a heteropolyacid or salt thereof containing P or As as a central element and containing Mo by 1 to 6 electrons per molecule of the heteropolyacid” is used. However, the degree of reduction is an average expression of the entire system as described in Patent Document 2. These heteropolyacids and heteropolyacid salts are in a state of different oxidation functions adjusted for acidity, and it is necessary to quantify and optimize the respective reduction eases and reduction states to clarify a preferable range.

Okuhara,et,al,J.catal,83,121(1983)Okuhara, et, al, J.catal, 83,121 (1983) 特開平07−213922号公報JP 07-213992 A 特公平7−33344号公報Japanese Patent Publication No. 7-33344

本発明は上記事情に鑑みてなされたものであり、メタクリル酸の生産性の高いヘテロポリ酸系触媒を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a heteropolyacid-based catalyst with high productivity of methacrylic acid.

本発明者らは、水難溶性ヘテロポリ酸塩と水溶性ヘテロポリ酸を、ヘテロポリ酸のカウンターカチオン種の違いにより、触媒の酸化・還元状態を個別に制御できることを見出し本発明を完成するに到った。
すなわち、本発明は、水溶性へテロポリ酸および水難溶性ヘテロポリ酸塩を含むメタクリル酸製造用のヘテロポリ酸系触媒であって、スラリー調製時に還元度を調整して、完成した触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の還元度を制御したメタクリル酸製造用のヘテロポリ酸系触媒である。
The present inventors have found that a hardly water-soluble heteropolyacid salt and a water-soluble heteropolyacid can be individually controlled in the oxidation / reduction state of the catalyst by the difference in the counter cation species of the heteropolyacid, and have completed the present invention. .
That is, the present invention is a heteropolyacid catalyst for the production of methacrylic acid containing a water-soluble heteropolyacid and a poorly water-soluble heteropolyacid salt, the degree of reduction being adjusted during slurry preparation, And a heteropolyacid catalyst for the production of methacrylic acid in which the degree of reduction of the poorly water-soluble heteropolyacid salt is controlled.

本発明により、高選択率でメタクリル酸を製造することのできるヘテロポリ酸系触媒を提供することができる。   According to the present invention, a heteropolyacid catalyst capable of producing methacrylic acid with high selectivity can be provided.

以下、本発明を詳細に説明する。
本発明は、メタクリル酸製造用のヘテロポリ酸系触媒に関する。より詳しくは、本発明は、スラリー調製時に還元度を調整して、完成した触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の還元度を制御したヘテロポリ酸系触媒に関する。
Hereinafter, the present invention will be described in detail.
The present invention relates to a heteropolyacid catalyst for producing methacrylic acid. More specifically, the present invention relates to a heteropolyacid catalyst in which the reduction degree is adjusted during slurry preparation to control the reduction degree of the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt of the completed catalyst.

本発明のメタクリル酸製造用のヘテロポリ酸系触媒は、完成した触媒の前記水溶性ヘテロポリ酸のヘテロポリ酸1分子当たりの還元度をα、水難溶性ヘテロポリ酸塩のヘテロポリ酸1分子当たりの還元度をβとしたとき、該還元度αおよびβが下記式(1)から(3)で示される関係を満たすことが好ましい。
0<α≦1 (1)
0.01<β≦2 (2)
α−β≦0.2 (3)
The heteropolyacid catalyst for producing methacrylic acid according to the present invention has a degree of reduction per molecule of the heteropolyacid of the water-soluble heteropolyacid of the finished catalyst α, and a degree of reduction per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid salt. When β is defined, it is preferable that the reduction degrees α and β satisfy the relationships represented by the following formulas (1) to (3).
0 <α ≦ 1 (1)
0.01 <β ≦ 2 (2)
α−β ≦ 0.2 (3)

前記水溶性ヘテロポリ酸または水難溶性ヘテロポリ酸塩のヘテロポリ酸1分子当たりの還元度とは、JIS K0102の(工場排水試験方法)に規定されている化学的酸素消費量(別名COD法)に準じた方法により求めるものである。この方法において、前記水溶性ヘテロポリ酸または水難溶性ヘテロポリ酸塩が酸化されるときの、過マンガン酸(記載はないが、カリウム塩)の反応は下記式(4)により表すことができる。例えば、前記水溶性ヘテロポリ酸または水難溶性ヘテロポリ酸塩が、ヘテロポリ酸一分子当り1モルの過マンガン酸塩を消費すると下記式(4)に示されるように5モルの電子が前記水溶性ヘテロポリ酸または水難溶性ヘテロポリ酸塩から奪われ酸化される。そして、該過マンガン酸中のMnはこれにより7価から2価へ還元される。本発明においては、この場合の還元度αまたはβを5と定義する。   The degree of reduction per one molecule of the water-soluble heteropolyacid or poorly water-soluble heteropolyacid salt is in accordance with the chemical oxygen consumption (also known as COD method) defined in JIS K0102 (Factory Wastewater Test Method). It is determined by the method. In this method, the reaction of permanganic acid (not shown, but potassium salt) when the water-soluble heteropolyacid or the poorly water-soluble heteropolyacid salt is oxidized can be represented by the following formula (4). For example, when the water-soluble heteropolyacid or the poorly water-soluble heteropolyacid salt consumes 1 mol of permanganate per molecule of the heteropolyacid, 5 mol of electrons are converted into the water-soluble heteropolyacid as shown in the following formula (4). Or it is deprived of water-insoluble heteropoly acid salt and oxidized. Thus, Mn in the permanganic acid is reduced from 7-valent to 2-valent. In the present invention, the degree of reduction α or β in this case is defined as 5.

Figure 2008284439
Figure 2008284439

本発明における還元度αまたはβこの反応を利用して算出した。   The reduction degree α or β in the present invention was calculated using this reaction.

本発明のヘテロポリ酸系触媒は、前記式(1)に示されているように、該触媒に含まれる水溶性ヘテロポリ酸のヘテロポリ酸一分子当たりの還元度αが、0よりも大きく1以下であることが好ましい。また、0よりも大きく0.5以下であることがより好ましく、0よりも大きく0.2以下であることがさらに好ましい。該水溶性ヘテロポリ酸のヘテロポリ酸一分子当たりの還元度αを、このような、微還元の範囲とすると触媒の活性度が高くなり好ましい。   In the heteropolyacid catalyst of the present invention, as shown in the formula (1), the reduction degree α per molecule of the heteropolyacid of the water-soluble heteropolyacid contained in the catalyst is greater than 0 and 1 or less. Preferably there is. Further, it is more preferably greater than 0 and 0.5 or less, and more preferably greater than 0 and 0.2 or less. It is preferable that the degree of reduction α per one molecule of the water-soluble heteropolyacid is within such a fine reduction range because the activity of the catalyst becomes high.

一方、本発明のヘテロポリ酸系触媒は、前記式(2)に示されているように、該触媒に含まれる水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子当たりの還元度βは、0.01よりも大きく2以下であることが好ましい。また、0.01よりも大きく1以下であることがより好ましい。水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子当たりの還元度βを、このような還元度とすることで、水難溶性ヘテロポリ酸塩自体が持つマイルドな活性点と、これに加えて、このような還元度にすることによる酸素供給の抑制効果で、逐次酸化反応を抑制することができる。例えば、ヘテロポリ酸一分子当たりの還元度βが2以下の場合、ヘテロポリ酸構造内約40個のうちの酸素一つが、引き抜かれた状態あるいはその酸素に水素付加したような還元をイメージすることができる。こういった状態のヘテロポリ酸塩はメタクロレインの酸化反応に供給する過剰な酸素の出し入れに支障をきたし、その効果は酸化の抑制、つまりメタクロレインがメタクリル酸に酸化してさらに、酸化反応が継続して、所謂、燃焼してしまうような一酸化炭素、二酸化炭素、酢酸等の増加という逐次酸化反応を抑制する効果があり、それがメタクリル酸の選択性向上発現に寄与すると考えられる。   On the other hand, in the heteropolyacid catalyst of the present invention, as shown in the formula (2), the degree of reduction β per molecule of heteropolyacid of the poorly water-soluble heteropolyacid salt contained in the catalyst is 0.01 Is preferably 2 or less. Further, it is more preferably greater than 0.01 and not greater than 1. By setting the degree of reduction β per molecule of heteropolyacid of the poorly water-soluble heteropolyacid salt to such a reduction degree, in addition to this mild active site possessed by the poorly water-soluble heteropolyacid salt itself, such reduction The sequential oxidation reaction can be suppressed by the effect of suppressing the oxygen supply by increasing the temperature. For example, when the degree of reduction β per molecule of heteropolyacid is 2 or less, it can be imagined that one of about 40 oxygen atoms in the heteropolyacid structure is extracted or hydrogenated to the oxygen. it can. In this state, the heteropolyacid salt hinders the inflow and removal of excess oxygen supplied to the methacrolein oxidation reaction, and its effect is to suppress oxidation, that is, methacrolein is oxidized to methacrylic acid, and the oxidation reaction continues. Thus, there is an effect of suppressing the so-called sequential oxidation reaction such as increase of carbon monoxide, carbon dioxide, acetic acid and the like that burns, which is considered to contribute to the improvement in selectivity of methacrylic acid.

また、本発明のヘテロポリ酸系触媒は、該触媒に含まれる、水溶性ヘテロポリ酸のヘテロポリ酸一分子当たりの還元度αと、水難溶性ヘテロポリ酸のヘテロポリ酸一分子当たりの還元度βとが、式(3)に示される関係を満たすことが好ましい。このような関係を満たすと、高活性でありながら逐次酸化を抑制した高選択率な触媒であり、メタクリル酸の生産性が向上し好ましい。   Moreover, the heteropolyacid catalyst of the present invention includes a reduction degree α per molecule of the heteropolyacid of the water-soluble heteropolyacid and a reduction degree β per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid, It is preferable to satisfy the relationship shown in Formula (3). Satisfying such a relationship is preferable because it is a highly selective catalyst that suppresses sequential oxidation while being highly active, and the productivity of methacrylic acid is improved.

さらに、本発明のヘテロポリ酸系触媒は、水溶性ヘテロポリ酸の含有量が該ヘテロポリ酸系触媒の全質量に対し10〜60質量%であることが好ましく、20〜60質量%であることがより好ましい。水難溶性ヘテロポリ酸塩の含有量は90〜40質量%であることが好ましく、80〜40質量%であることがより好ましい。なお、本発明のヘテロポリ酸系触媒は、水溶性ヘテロポリ酸または水難溶性ヘテロポリ酸塩以外の成分、例えば、ヘテロポリ酸になり得なかった不純物等を該触媒の全質量に対し0〜5質量%含むものであってもよい。水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の含有量を上記範囲とすると本発明のヘテロポリ酸系触媒の酸性度と還元度とが最適化され、選択率・生産性の向上を達成することができる。   Furthermore, in the heteropolyacid catalyst of the present invention, the content of the water-soluble heteropolyacid is preferably 10 to 60% by mass, more preferably 20 to 60% by mass, based on the total mass of the heteropolyacid catalyst. preferable. The content of the poorly water-soluble heteropolyacid salt is preferably 90 to 40% by mass, and more preferably 80 to 40% by mass. The heteropolyacid catalyst of the present invention contains 0 to 5% by mass of components other than water-soluble heteropolyacid or poorly water-soluble heteropolyacid salt, such as impurities that could not become heteropolyacid, with respect to the total mass of the catalyst. It may be a thing. When the content of the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt is within the above range, the acidity and reduction degree of the heteropolyacid catalyst of the present invention are optimized, and improvement in selectivity and productivity can be achieved. .

このような構成を有するヘテロポリ酸系触媒を製造するには、例えば、水溶性ヘテロポリ酸を含むスラリーと、水難溶性ヘテロポリ酸塩を含むスラリーを個別に調製し、これらを、完成した触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の含有量が前記含有量となるような割合で混合させることが好ましい。   In order to produce a heteropolyacid-based catalyst having such a configuration, for example, a slurry containing a water-soluble heteropolyacid and a slurry containing a poorly water-soluble heteropolyacid salt are prepared separately, and these are prepared as a water-soluble solution of the finished catalyst. It is preferable that the heteropolyacid and the poorly water-soluble heteropolyacid salt are mixed at a ratio such that the content is the above-mentioned content.

前記水溶性ヘテロポリ酸とは、ヘテロポリ酸のカウンターカチオンが3置換に水素(プロトン)であるものをいう。プロトンの存在はメタクロレインの分子引き寄せ効果と、そのヘテロポリ酸の酸素の供給を受けてメタクロレインをメタクリル酸とする上で重要な化学構造である。   The water-soluble heteropolyacid refers to one in which the countercation of the heteropolyacid is hydrogen (proton) in three substitutions. The presence of protons is an important chemical structure for making methacrolein into methacrylic acid upon receiving the molecular attracting effect of methacrolein and the supply of oxygen of the heteropolyacid.

また、前記水難溶性ヘテロポリ酸塩とは、ヘテロポリ酸のカウンターカチオンであるプロトンが、カリウム、ルビジウム、セシウム等のアルカリ元素やタリウム、アンモニウムなどの元素で少なくとも1つ置換されたものをいう。水難溶性ヘテロポリ酸塩ではプロトンが減少しているためにメタクロレインの分子引き寄せ効果はマイルドなため、前記水溶性ヘテロポリ酸と水難溶性ヘテロポリ酸塩の組み合わせは重要である。   The poorly water-soluble heteropoly acid salt is a compound in which at least one proton, which is a counter cation of a heteropoly acid, is substituted with an alkali element such as potassium, rubidium or cesium, or an element such as thallium or ammonium. Since the molecular attracting effect of methacrolein is mild due to the decrease in protons in the poorly water-soluble heteropolyacid salt, the combination of the water-soluble heteropolyacid and the hardly water-soluble heteropolyacid salt is important.

本発明のヘテロポリ酸系触媒に含まれる水溶性ヘテロポリ酸と水難溶性ヘテロポリ酸塩の定量方法の概要は次のとおりである。すなわち、本発明のヘテロポリ酸系触媒を純水に溶解または分散させ、超音波溶出処理し、更に遠心分離機で水溶出部と水不溶解部を分離する。水不溶解部を乾燥・秤量することで水難溶性ヘテロポリ酸塩の質量%を算出する。続いて100質量%から前記の水難溶性ヘテロポリ酸塩の質量%を減ずることで水溶性ヘテロポリ酸の含有量を算出すればよい。なお、水溶性ヘテロポリ酸の定量性を高めるために、該水溶出部にセシウム、ルビジウム、タリウム、カリウム等の水溶液を加えて水難溶性のヘテロポリ酸塩を析出させ、この量を測定することにより、水溶性ヘテロポリ酸の含有量を求めてもよい。   The outline of the method for quantifying the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt contained in the heteropolyacid catalyst of the present invention is as follows. That is, the heteropolyacid catalyst of the present invention is dissolved or dispersed in pure water, subjected to ultrasonic elution treatment, and the water elution part and the water insoluble part are separated by a centrifuge. The water-insoluble portion is dried and weighed to calculate the mass% of the poorly water-soluble heteropolyacid salt. Then, what is necessary is just to calculate content of water-soluble heteropolyacid by reducing the mass% of the said poorly water-soluble heteropoly acid salt from 100 mass%. In order to improve the quantitativeness of the water-soluble heteropolyacid, an aqueous solution of cesium, rubidium, thallium, potassium, etc. is added to the water elution part to precipitate a poorly water-soluble heteropolyacid salt, and this amount is measured, The content of the water-soluble heteropolyacid may be determined.

また、本発明のメタクリル酸製造用のヘテロポリ酸系触媒は下記式で表される組成を有することが好ましい。
aMobcCudefgh (5)
(式中、Mo、V、CuおよびOは、それぞれモリブデン、バナジウム、銅および酸素を示し、Aは、リン、ヒ素、ケイ素、ホウ素からなる群より選ばれた少なくとも1種の元素を示し、Dは、アンチモン、ビスマス、ゲルマニウム、ジルコニウム、テルル、銀、セレン、珪素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種の元素を示し、Yは、鉄、亜鉛、クロム、マグネシウム、タンタル、マンガン、コバルト、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種の元素を示し、Zは、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示す。また、a,b,c,d,e,f,g,およびhは、各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0〜2、e=0〜3、f=0〜3、g=0.01〜3の実数を表し、hは、前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
Moreover, it is preferable that the heteropolyacid catalyst for methacrylic acid production of the present invention has a composition represented by the following formula.
A a Mo b V c Cu d De Y f Z g O h (5)
(In the formula, Mo, V, Cu and O represent molybdenum, vanadium, copper and oxygen, respectively, A represents at least one element selected from the group consisting of phosphorus, arsenic, silicon and boron; D Represents at least one element selected from the group consisting of antimony, bismuth, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron, and Y represents iron, zinc, chromium, magnesium, tantalum, manganese And at least one element selected from the group consisting of cobalt, barium, gallium, cerium and lanthanum, and Z represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium Moreover, a, b, c, d, e, f, g, and h represent the atomic ratio of each element, = 12 represents a real number of a = 0.5-3, c = 0.01-3, d = 0-2, e = 0-3, f = 0-3, g = 0.01-3, h is an atomic ratio of oxygen necessary to satisfy the valence of each component.)

次に、本発明のヘテロポリ酸系触媒の調製方法について詳細に説明する。   Next, the method for preparing the heteropolyacid catalyst of the present invention will be described in detail.

(調製のスケール)
本発明のヘテロポリ酸系触媒は調製のスケールを問わず製造可能である。モリブデン原料の一回の使用量として100g以上10t以下が好ましく、1kg以上1t以下がより好ましい。
(Scale of preparation)
The heteropolyacid catalyst of the present invention can be produced regardless of the scale of preparation. The amount of the molybdenum raw material used at one time is preferably 100 g or more and 10 t or less, and more preferably 1 kg or more and 1 t or less.

(触媒の原料)
本発明のヘテロポリ酸系触媒の原料としては、各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩等を適宜選択して使用することができる。例えば、モリブデンの原料としては、モリブデン酸や三酸化モリブデンが好ましいが、パラモリブデン酸アンモニウム等も使用できる。また、リンの原料としては、正リン酸、五酸化リン、リン酸アンモニウム等が使用できる。また、バナジウムの原料としては、メタバナジン酸アンモニウム、五酸化二バナジウム等が使用できる。また、銅の原料としては硝酸銅、硫酸銅、炭酸銅等が使用できる。
(Raw material of catalyst)
As raw materials for the heteropolyacid catalyst of the present invention, oxides, nitrates, carbonates, ammonium salts and the like of each element can be appropriately selected and used. For example, as a raw material of molybdenum, molybdic acid or molybdenum trioxide is preferable, but ammonium paramolybdate or the like can also be used. Moreover, as a raw material of phosphorus, orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, etc. can be used. Moreover, as a raw material of vanadium, ammonium metavanadate, divanadium pentoxide, etc. can be used. Moreover, copper nitrate, copper sulfate, copper carbonate, etc. can be used as a raw material of copper.

(スラリーの調製)
本発明におけるヘテロポリ酸系触媒の製造方法は、原則として水に各種原料を投入し加熱攪拌してスラリーを調製し、スラリー調製時に還元度を調整する。スラリー調製時に還元度を調整する方法としては、例えば、電気還元や還元性物質(無機系{例えば2価の鉄やヒドラジン、水素}、有機系{例えばアスコルビン酸、ホルマリン}、)による還元などの方法を挙げることができる。
(Preparation of slurry)
In the method for producing a heteropolyacid catalyst in the present invention, in principle, various raw materials are charged into water, heated and stirred to prepare a slurry, and the degree of reduction is adjusted at the time of slurry preparation. Examples of methods for adjusting the degree of reduction during slurry preparation include electroreduction and reduction with a reducing substance (inorganic {eg, divalent iron or hydrazine, hydrogen}, organic {eg, ascorbic acid, formalin}). A method can be mentioned.

水溶性ヘテロポリ酸を含むスラリーと、水難溶性ヘテロポリ酸を含むスラリーとを別個に調製しこれらを混合することにより還元度の調整を行う場合は、例えば、次のようにしてスラリーを調製することができる。   When adjusting the degree of reduction by separately preparing a slurry containing a water-soluble heteropolyacid and a slurry containing a poorly water-soluble heteropolyacid and mixing them, the slurry can be prepared as follows, for example. it can.

(A液の調製)
まず、少なくとも、モリブデン、リン及びバナジウム、並びに、D元素を含む場合はD元素、の各原料を水に溶解または懸濁させて、少なくとも、モリブデン、リン及びバナジウムを含む溶液またはスラリーとなるA液を調製する。使用する水の量は、モリブデンの原料100質量部に対し200質量部以上が好ましく、300質量部以上がより好ましい。また、2000質量部以下が好ましく、1000質量部以下がより好ましい。A液調製時の温度は問わないが、高温ほどヘテロポリ酸の生成速度が高まるので80℃〜100℃とすることが好ましい。A液は、Z元素の原料以外の任意の原料を含んでいてもよく、例えば銅元素の原料やY元素の原料を含んでいてもよい。A液のpHが高い場合には、リン酸根や硝酸根を多く含むよう原料を選択しpHは4以下、より好ましくは2以下とすることが好ましい。A液調製時の攪拌については、原料が沈降しない程度であればよく、反応への影響はほとんどない。
(Preparation of solution A)
First, at least molybdenum, phosphorus, and vanadium, and in the case where D element is included, each raw material of D element is dissolved or suspended in water, so that solution A or slurry containing at least molybdenum, phosphorus, and vanadium is obtained. To prepare. The amount of water used is preferably 200 parts by mass or more and more preferably 300 parts by mass or more with respect to 100 parts by mass of the molybdenum raw material. Moreover, 2000 mass parts or less are preferable, and 1000 mass parts or less are more preferable. Although the temperature at the time of preparing the liquid A is not limited, the higher the temperature, the higher the production rate of the heteropolyacid, so 80 ° C. to 100 ° C. is preferable. The A liquid may contain any raw material other than the Z element raw material, and may contain, for example, a copper element raw material or a Y element raw material. When pH of A liquid is high, it is preferable to select a raw material so that many phosphate groups and nitrate groups may be included, and to set pH to 4 or less, more preferably 2 or less. Stirring at the time of preparing the liquid A is sufficient as long as the raw material does not settle, and there is almost no influence on the reaction.

(B液の調製)
また、Z元素の原料を水に溶解または懸濁させて、少なくともZ元素を含む溶液またはスラリーとなるB液を調製する。使用する水の量は、Z元素の原料100質量部に対し100質量部以上が好ましく、200質量部以上がより好ましい。また、500質量部以下が好ましく、400質量部以下がより好ましい。B液調製時の温度は30℃〜80℃であることが好ましいが、攪拌は必ずしも必要としない。B液は、他の任意の原料を含んでいてもよく、例えば銅元素の原料やY元素の原料を含んでいてもよいが、D元素の原料は含まない方が好ましい。
(Preparation of liquid B)
Further, a Z-element raw material is dissolved or suspended in water to prepare a solution B that becomes a solution or slurry containing at least the Z element. The amount of water used is preferably 100 parts by mass or more and more preferably 200 parts by mass or more with respect to 100 parts by mass of the Z element raw material. Moreover, 500 mass parts or less are preferable, and 400 mass parts or less are more preferable. The temperature at the time of preparing the B liquid is preferably 30 ° C. to 80 ° C., but stirring is not necessarily required. The liquid B may contain other arbitrary raw materials. For example, it may contain a copper element raw material or a Y element raw material, but preferably does not contain a D element raw material.

(A液とB液の混合)
次に、上記のA液とB液を混合して、水難溶性ヘテロポリ酸塩を含むスラリー液となるAB混合液を調製する。A液及びB液それぞれの温度は異なっていてもよいが、混合後の温度が0℃から40℃となるようにすることが好ましい。この混合の際に沈殿が生成するが、その反応は瞬時に生じ反応熱も少ないため、混合後の温度はA液およびB液の温度から容易に予測可能であり、両液の温度を適切に選択すればよい。A液とB液の温度を10℃から30℃の範囲とし同一温度とするのがより好ましい。A液とB液の混合の方法は特に制限されないが、より短時間での混合が生産効率上好ましい。通常A液はB液よりも多いので、A液にB液を注入するのが実際的である。
(Mixing of liquid A and liquid B)
Next, said A liquid and B liquid are mixed and AB mixed liquid used as the slurry liquid containing a water poorly soluble heteropolyacid salt is prepared. The temperatures of the A liquid and the B liquid may be different, but it is preferable that the temperature after mixing be 0 ° C. to 40 ° C. During this mixing, a precipitate is formed, but since the reaction occurs instantaneously and there is little reaction heat, the temperature after mixing can be easily predicted from the temperatures of the liquid A and the liquid B. Just choose. It is more preferable that the temperature of the liquid A and the liquid B is in the range of 10 ° C. to 30 ° C. and the same temperature. The method for mixing the A solution and the B solution is not particularly limited, but mixing in a shorter time is preferable in terms of production efficiency. Usually, the liquid A is more than the liquid B, so it is practical to inject the liquid B into the liquid A.

(C液の調製)
まず、少なくとも、モリブデン、リン及びバナジウム、並びに、D元素を含む場合はD元素、の各原料を水に溶解または懸濁させて、少なくとも、モリブデン、リン及びバナジウムを含む水溶性ヘテロポリ酸を含む溶液またはスラリー液であるC液を調製する。使用する水の量は、モリブデンの原料100質量部に対し200質量部以上が好ましく、400質量部以上がより好ましい。また、2000質量部以下が好ましく、1000質量部以下がより好ましい。C液調製時の温度は問わないが、高温ほどヘテロポリ酸生成速度が高まるので0℃〜150℃とすることが好ましい。C液は、Z元素の原料以外の任意の原料を含んでいてもよく、例えば銅元素の原料やY元素の原料を含んでいてもよい。C液のpHが高い場合には、リン酸根や硝酸根を多く含むよう原料を選択しpHは4以下、より好ましくは2以下とすることが好ましい。C液調製時の攪拌については、原料が沈降しない程度であればよく、反応への影響はほとんどない。
(Preparation of liquid C)
First, a solution containing at least molybdenum, phosphorus and vanadium, and a water-soluble heteropolyacid containing at least molybdenum, phosphorus and vanadium by dissolving or suspending each raw material of water in the case of containing element D. Alternatively, a C liquid which is a slurry liquid is prepared. The amount of water used is preferably 200 parts by mass or more and more preferably 400 parts by mass or more with respect to 100 parts by mass of the molybdenum raw material. Moreover, 2000 mass parts or less are preferable, and 1000 mass parts or less are more preferable. Although the temperature at the time of preparation of C liquid is not ask | required, since heteropoly acid production | generation rate increases so that it is high temperature, it is preferable to set it as 0 to 150 degreeC. The liquid C may contain any raw material other than the Z element raw material, for example, a copper element raw material or a Y element raw material. When pH of C liquid is high, it is preferable to select a raw material so that many phosphate radicals and nitrate radicals may be included, and to make pH into 4 or less, More preferably, 2 or less. About stirring at the time of C liquid preparation, it should just be a grade which a raw material does not precipitate, and there is almost no influence on reaction.

(AB混合液とC液の混合)
そして、上記のAB混合溶液に対し、上記のC液を混合して、ABC混合液とする。このとき、ABC混合液のpHを8以下に調節することが好ましい。通常、より少量であるC液をAB混合液に注入するのが好ましく、1分以上20分以下の時間でC液を注入するのがより好ましい。この際のAB混合溶液及びC液の温度は両液とも25℃から100℃が好ましく、25℃から80℃がより好ましい。
(Mixing of AB liquid mixture and C liquid)
And said C liquid is mixed with said AB mixed solution, and it is set as ABC mixed liquid. At this time, it is preferable to adjust the pH of the ABC mixed solution to 8 or less. Usually, it is preferable to inject a smaller amount of C liquid into the AB mixed liquid, and it is more preferable to inject C liquid in a period of 1 minute to 20 minutes. In this case, the temperature of the AB mixed solution and the solution C is preferably 25 ° C. to 100 ° C., more preferably 25 ° C. to 80 ° C. for both solutions.

(ABC混合液の保持)
その後、ABC混合液は40℃〜100℃、より好ましくは40℃〜80℃で、攪拌しながら1分以上15分以下保持することが必要である。ABC混合液の保持時間は、良好なスラリーを生成するために少なくとも1分以上必要であり、生産性を考慮すると15分以下好ましくは12分以下とすることが好ましい。本発明のヘテロポリ酸系触媒の調製においては、最終的なスラリーのpHが重要である。最終的なスラリーのpHは8以下であることが好ましく、最終的なスラリーのpHを8以下とすると触媒粒子が構成されやすくなり触媒性能が向上し好ましい。また最終的なスラリーのpHは、本発明の触媒を調製するためには、3以下であることがより好ましい。
(Retention of ABC liquid mixture)
Thereafter, the ABC mixed solution needs to be kept at 40 ° C. to 100 ° C., more preferably 40 ° C. to 80 ° C., for 1 to 15 minutes with stirring. The retention time of the ABC mixed solution is required to be at least 1 minute in order to produce a good slurry, and is 15 minutes or less, preferably 12 minutes or less in consideration of productivity. In preparing the heteropolyacid catalyst of the present invention, the final slurry pH is important. The final slurry preferably has a pH of 8 or less. When the final slurry has a pH of 8 or less, catalyst particles are easily formed, and the catalyst performance is improved. Further, the final slurry pH is more preferably 3 or less in order to prepare the catalyst of the present invention.

(乾燥工程)
前記ABC混合液の乾燥方法としては、種々の方法を用いることができる。例えば蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が挙げられる。乾燥に使用する乾燥機の機種や乾燥時の温度、雰囲気等は特に限定されず、乾燥条件を適宜変えることによって目的に応じた触媒前駆体の乾燥物を得ることができる。
(Drying process)
As a method for drying the ABC mixed solution, various methods can be used. For example, an evaporating and drying method, a spray drying method, a drum drying method, an air current drying method and the like can be mentioned. There are no particular limitations on the model of the dryer used for drying, the temperature, atmosphere, etc. during drying, and a dried catalyst precursor according to the purpose can be obtained by appropriately changing the drying conditions.

(成型工程)
前記ABC混合液を乾燥して得られた触媒前駆体の乾燥物は、そのまま焼成を行ってよく、または、なんらかの予備成型を行ってから焼成を行ってもよい。予備成型方法は特に限定されず、公知の乾式および湿式の種々の成型方法が適用できるが、担体等を含めず触媒成分のみで成型する方法が好ましい。具体的な成型方法としては、例えば、打錠成型、プレス成型、押出成型、造粒成型等があげられる。成型品の形状についても特に限定されず、例えば、円柱状、リング状、球状等の形状に成型することができる。
(Molding process)
The dried catalyst precursor obtained by drying the ABC mixed solution may be calcined as it is, or may be calcined after performing some preforming. The preforming method is not particularly limited, and various dry and wet molding methods known in the art can be applied, but a method of molding only with a catalyst component without including a carrier or the like is preferable. Specific examples of the molding method include tableting molding, press molding, extrusion molding, granulation molding, and the like. The shape of the molded product is not particularly limited, and for example, it can be molded into a columnar shape, a ring shape, a spherical shape, or the like.

(焼成工程)
この触媒前駆体の乾燥物またはその成型品を焼成する方法や焼成条件は特に限定されず、公知の処理方法及び条件を適用することができる。焼成の最適条件は、用いる触媒原料、触媒組成、調製法によって異なるが、通常、空気等の酸素含有ガス流通下または不活性ガス流通下で200〜500℃、好ましくは300〜400℃で、0.5時間以上、好ましくは1〜40時間行われる。ここで不活性ガスとは触媒活性を低下させないような気体を示し、例えば、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。
(Baking process)
There are no particular limitations on the method and firing conditions for firing the dried catalyst precursor or the molded product thereof, and known processing methods and conditions can be applied. Optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition, and preparation method to be used, but are usually 200 to 500 ° C., preferably 300 to 400 ° C. under an oxygen-containing gas stream such as air or an inert gas stream. .5 hours or more, preferably 1 to 40 hours. Here, the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon.

(触媒としての使用方法)
本発明のヘテロポリ酸系触媒を用いてメタクリル酸を製造する際にはメタクロレインと分子状酸素を含む原料ガスを、接触させる。原料ガス中のメタクロレイン濃度は広い範囲で変えることができるが、通常、1〜20容量%であることが適当であり、特に3〜10容量%であることが好ましい。原料ガス中の分子状酸素濃度はメタクロレイン1モルに対して0.5〜4モル、特に1〜3モルであることが好ましい。原料ガスは窒素、炭酸ガス等の不活性ガスを加えて希釈してもよく、また原料ガスに水蒸気を加えてもよい。
(Usage as a catalyst)
When producing methacrylic acid using the heteropolyacid catalyst of the present invention, a raw material gas containing methacrolein and molecular oxygen is brought into contact. Although the concentration of methacrolein in the raw material gas can be varied within a wide range, it is usually suitably 1 to 20% by volume, particularly preferably 3 to 10% by volume. The molecular oxygen concentration in the raw material gas is preferably 0.5 to 4 mol, particularly 1 to 3 mol, per 1 mol of methacrolein. The source gas may be diluted by adding an inert gas such as nitrogen or carbon dioxide, or water vapor may be added to the source gas.

反応圧力は常圧から数気圧までがよい。反応温度は230〜450℃の範囲で選ぶことができるが、特に250〜400℃が好ましい。   The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 230 to 450 ° C, but 250 to 400 ° C is particularly preferable.

以下、実施例を用いて本発明をさらに詳細に説明する。なお、本実施例において、特にことわらないかぎり、「部」は「質量部」を示す。   Hereinafter, the present invention will be described in more detail with reference to examples. In this example, “part” means “part by mass” unless otherwise specified.

本実施例において、得られた触媒に含まれる水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子当たりの還元度αおよびβ並びにこれらの触媒全質量に対する含有量(%)は下記の方法により分析した。   In this example, the degree of reduction α and β per molecule of the heteropolyacid of the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt contained in the obtained catalyst and the content (%) of these catalysts relative to the total mass are the following methods: Was analyzed.

[触媒中の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の含有量の分析]
触媒0.2gを純水100mlに加え、約25℃で30分間超音波処理を行う。続いて、この超音波処理した触媒分散液を素早くステンレス製の遠心分離管に移して、遠心分離機を用い、室温下で、16,000rpmで5分間遠心分離処理して、水溶出部と水不溶解部を分離する。前記遠心分離操作によって分離した上澄み液を別の容器に移す。一方、遠心分離管の底部に残った水不溶解部は40℃で一晩真空乾燥し秤量する。純水に投入した触媒の質量に対するこの水不溶解部の質量の百分率を水難溶性ヘテロポリ酸塩の含有量(質量%)とする。続いて100質量%から前記水難溶性ヘテロポリ酸塩の質量%を差し引いて水溶性ヘテロポリ酸の含有量とする。
[Analysis of content of water-soluble heteropolyacid and poorly water-soluble heteropolyacid salt in catalyst]
0.2 g of catalyst is added to 100 ml of pure water and sonicated at about 25 ° C. for 30 minutes. Subsequently, the ultrasonically treated catalyst dispersion is quickly transferred to a stainless steel centrifuge tube, and centrifuged at 16,000 rpm for 5 minutes at room temperature using a centrifuge. Separate the insoluble part. The supernatant liquid separated by the centrifugation operation is transferred to another container. On the other hand, the water-insoluble portion remaining at the bottom of the centrifuge tube is vacuum-dried overnight at 40 ° C. and weighed. The percentage of the mass of the water-insoluble portion relative to the mass of the catalyst charged in pure water is defined as the content (mass%) of the poorly water-soluble heteropolyacid salt. Subsequently, the mass% of the poorly water-soluble heteropolyacid salt is subtracted from 100 mass% to obtain the content of the water-soluble heteropolyacid.

なお触媒によっては、水溶性ヘテロポリ酸量の定量精度を高めるために、遠心分離操作によって分離した上澄み液に、セシウム、ルビジウム、タリウム、カリウム等の塩の水溶液を加えて一晩放置し、生成した新たな沈殿部分を前記方法により分離し秤量して水溶性ヘテロポリ酸の質量に換算した後に、触媒の質量に対する百分率を求め、これを水溶性ヘテロポリ酸の含有量としてもよい。   Depending on the catalyst, in order to improve the accuracy of quantitative determination of the amount of water-soluble heteropolyacid, an aqueous solution of a salt such as cesium, rubidium, thallium, potassium, etc. was added to the supernatant separated by centrifugation, and it was allowed to stand overnight. A new precipitate portion is separated and weighed by the above-mentioned method and converted into the mass of the water-soluble heteropolyacid, and then the percentage with respect to the mass of the catalyst is obtained, and this may be the content of the water-soluble heteropolyacid.

[水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の還元度αおよびβの分析]
触媒に含まれる水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子当たりの還元度αおよびβの分析は、前記水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の含有量の分析において得られた水溶出部および水不溶解部を用いて行う。
[Analysis of reduction degree α and β of water-soluble heteropolyacid and poorly water-soluble heteropolyacid salt]
Analysis of the degree of reduction α and β per molecule of the water-soluble heteropolyacid and poorly water-soluble heteropolyacid salt contained in the catalyst was obtained in the analysis of the content of the water-soluble and poorly water-soluble heteropolyacid salt. Perform using water elution part and water insoluble part.

前記水溶出部に含まれる水溶性ヘテロポリ酸および水不溶解部に含まれる水難溶性ヘテロポリ酸塩の分析はJIS K0102(排水試験法)に準じた酸化・還元測定により行なう。   Analysis of the water-soluble heteropolyacid contained in the water-eluting portion and the poorly water-soluble heteropolyacid salt contained in the water-insoluble portion is performed by oxidation / reduction measurement according to JIS K0102 (drainage test method).

具体的な分析法を以下に説明する。
前記の水溶出部の場合は、該水溶出部を適量(例;0.1〜1g)精秤し、これを純水100mlに加え、それらの水溶液を用意する。次に、硫酸(硫酸1容+水2容)10mlを加える。さらに、これに5mmol/Lの過マンガン酸カリウム溶液10mlを加えて、沸騰水浴中で30分間加熱を行う。次いで、12.5mmol/Lのシュウ酸溶液10mlを加える。次に、過剰のシュウ酸を5mmol/Lの過マンガン酸カリウム溶液で滴定(いわゆる逆滴定である)する。滴定に要した5mmol/L過マンガン酸カリウム溶液の液量をAmlとする。
A specific analysis method will be described below.
In the case of the water elution part, an appropriate amount (for example, 0.1 to 1 g) of the water elution part is accurately weighed and added to 100 ml of pure water to prepare an aqueous solution thereof. Next, 10 ml of sulfuric acid (1 volume of sulfuric acid + 2 volumes of water) is added. Further, 10 ml of a 5 mmol / L potassium permanganate solution is added thereto and heated in a boiling water bath for 30 minutes. Then 10 ml of a 12.5 mmol / L oxalic acid solution is added. Next, excess oxalic acid is titrated with a 5 mmol / L potassium permanganate solution (so-called back titration). The amount of the 5 mmol / L potassium permanganate solution required for the titration is Aml.

一方水不溶解部の場合は、該水不溶解部を適量(例;0.1〜1g)精秤し、これを純水100mlに分散させ、その分散液を用意する。次に、硫酸(硫酸1容+水2容)10mlを加える。さらに、これに5mmol/Lの過マンガン酸カリウム溶液10mlを加えて、沸騰水浴中で30分間加熱を行う。次いで12.5mmol/Lのシュウ酸溶液10mlを加えたのちに、0.45μmフィルターでろ過し、少量の純水で洗浄し、この洗浄液を合わせたのち、このろ液を再び沸騰水浴中で3分間加熱する。次に、過剰のシュウ酸を5mmol/Lの過マンガン酸カリウム溶液で滴定(いわゆる逆滴定である)する。滴定に要した5mmol/L過マンガン酸カリウム溶液の液量をAmlとする。   On the other hand, in the case of a water-insoluble portion, an appropriate amount (for example, 0.1 to 1 g) of the water-insoluble portion is precisely weighed and dispersed in 100 ml of pure water to prepare a dispersion. Next, 10 ml of sulfuric acid (1 volume of sulfuric acid + 2 volumes of water) is added. Further, 10 ml of a 5 mmol / L potassium permanganate solution is added thereto and heated in a boiling water bath for 30 minutes. Next, after adding 10 ml of a 12.5 mmol / L oxalic acid solution, the solution was filtered with a 0.45 μm filter, washed with a small amount of pure water, combined with this washing solution, and then the filtrate was again added in a boiling water bath. Heat for minutes. Next, excess oxalic acid is titrated with a 5 mmol / L potassium permanganate solution (so-called back titration). The amount of the 5 mmol / L potassium permanganate solution required for the titration is Aml.

さらに、別途、上記分析において用いた純水100mlを被験試料として用い、上記水溶出部の場合と同様にして滴定を行う。滴定に要した5mmol/L過マンガン酸カリウム溶液の液量をB(ml)とする。   Separately, 100 ml of pure water used in the above analysis is used as a test sample, and titration is performed in the same manner as in the case of the water elution part. The amount of 5 mmol / L potassium permanganate solution required for titration is defined as B (ml).

すると、本発明における水溶性ヘテロポリ酸または水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子当りの還元度αまたはβは、下記式により求めることができる。
α(またはβ)=5×10-6(mol/ml)×(A-B)×5×(MwH/Cw) (5)
(式中、MwHは前記水溶出部に含まれる水溶性ヘテロポリ酸または水不溶解部に含まれる水難溶性ヘテロポリ酸塩の分子量を表し、Cwは前記水溶出部に含まれる水溶性ヘテロポリ酸または水不溶解部に含まれる水難溶性ヘテロポリ酸塩の質量(g)を示す。)
Then, the reduction degree α or β per molecule of the heteropolyacid of the water-soluble heteropolyacid or poorly water-soluble heteropolyacid salt in the present invention can be obtained by the following formula.
α (or β) = 5 × 10 −6 (mol / ml) × (AB) × 5 × (Mw H / Cw) (5)
(Wherein, Mw H represents the molecular weight of the water-soluble heteropolyacid contained in the water-eluting part or the poorly water-soluble heteropolyacid salt contained in the water-insoluble part, and Cw represents the water-soluble heteropolyacid contained in the water-eluting part or (The mass (g) of the poorly water-soluble heteropolyacid salt contained in the water-insoluble part is shown.)

[水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の分子量]
上記の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の分子量は構造式より算出した。
[Molecular weight of water-soluble heteropolyacid and poorly water-soluble heteropolyacid salt]
The molecular weight of the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt was calculated from the structural formula.

[触媒の組成分析]
本実施例にて調製した触媒の含有元素の定量分析はICP発光分析法、原子吸光分析法より行った。
[Catalyst composition analysis]
Quantitative analysis of the elements contained in the catalyst prepared in this example was performed by ICP emission spectrometry and atomic absorption spectrometry.

[反応生成物の分析]
また、本実施例にて調製したヘテロポリ酸系触媒を用いた気相接触酸化によるメタクリル酸の製造における原料ガスのメタクロレインおよび生成物の定量分析はガスクロマトグラフィーを用いて行った。なお、メタクロレインの反応率、生成するメタクリル酸の選択率および単流収率は以下のように定義される。
メタクロレインの反応率(モル%)=(B/A)×100
メタクリル酸の選択率(モル%)=(C/B)×100
メタクリル酸の単流収率(モル%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
[Analysis of reaction products]
The quantitative analysis of the raw material gas methacrolein and products in the production of methacrylic acid by gas phase catalytic oxidation using the heteropolyacid catalyst prepared in this example was performed using gas chromatography. In addition, the reaction rate of methacrolein, the selectivity of the methacrylic acid to produce | generate, and a single flow yield are defined as follows.
Reaction rate of methacrolein (mol%) = (B / A) × 100
Methacrylic acid selectivity (mol%) = (C / B) × 100
Single flow yield of methacrylic acid (mol%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
酸化モリブデン酸68部、メタバナジン酸1部、85%リン酸7部を水200部に分散し、昇温して1時間還流処理しスラリー(A液)を調製した。別途、硝酸セシウム14部を水25部に溶解させB液を調製し、これを前記スラリー(A液)に加えAB液を調製した。
[Example 1]
68 parts of molybdic oxide, 1 part of metavanadate and 7 parts of 85% phosphoric acid were dispersed in 200 parts of water, heated to reflux for 1 hour to prepare a slurry (liquid A). Separately, 14 parts of cesium nitrate was dissolved in 25 parts of water to prepare liquid B, which was added to the slurry (liquid A) to prepare liquid AB.

また、別途、酸化モリブデン50部、メタバナジン酸1部を水200部に分散し、昇温して1時間還流処理した。これを室温まで冷却した後、60%ヒ酸13部、28%アンモニア水40部、硝酸ジルコニウム0.2部、硝酸銅1部、硝酸鉄2部のそれぞれを加えC液を調製した。ヒ酸を加えたあとに乾電池を2個接続した直流電流3Vの条件で、1時間電気還元処理した。0.1mmの白金線を目開き0.1mmで1cm角の網に編んだ電極と、直径2mmの白金線5cmをコイル状にした電極を使用した。   Separately, 50 parts of molybdenum oxide and 1 part of metavanadate were dispersed in 200 parts of water, heated to reflux for 1 hour. After cooling this to room temperature, C part was prepared by adding 13 parts of 60% arsenic acid, 40 parts of 28% aqueous ammonia, 0.2 part of zirconium nitrate, 1 part of copper nitrate and 2 parts of iron nitrate. After the addition of arsenic acid, electroreduction treatment was performed for 1 hour under the condition of a direct current of 3 V in which two dry batteries were connected. An electrode in which a 0.1 mm platinum wire was knitted into a 1 cm square mesh with an opening of 0.1 mm and an electrode in which a 5 cm platinum wire with a diameter of 2 mm was coiled were used.

その後、AB液にC液を投入しABC液を調製した後、これを加熱攪拌しながら蒸発乾固し固形物を得た。得られた固形物を130℃で16時間乾燥した。これを温度20〜30℃、圧力20MPaで加圧成型し、さらに得られた成形体を温度20〜30℃、約1MPa程度で破砕した。得られた破砕物を篩を用いて分級し、0.85〜1.70mmの粒径を有する粉体を分取し触媒前駆体を得た。これを、空気流通下に380℃で5時間焼成して触媒を得た。この触媒の金属成分組成(酸素を除いた組成)はP1As1Mo120.3Cu0.1Zr0.02Fe0.1Cs1.3であった。 Thereafter, the C solution was added to the AB solution to prepare an ABC solution, which was then evaporated to dryness while stirring with heating to obtain a solid. The resulting solid was dried at 130 ° C. for 16 hours. This was press-molded at a temperature of 20 to 30 ° C. and a pressure of 20 MPa, and the obtained molded body was crushed at a temperature of 20 to 30 ° C. and about 1 MPa. The obtained crushed material was classified using a sieve, and a powder having a particle size of 0.85 to 1.70 mm was collected to obtain a catalyst precursor. This was calcined at 380 ° C. for 5 hours under air flow to obtain a catalyst. The metal component composition (composition excluding oxygen) of this catalyst was P 1 As 1 Mo 12 V 0.3 Cu 0.1 Zr 0.02 Fe 0.1 Cs 1.3 .

得られた触媒について上記方法により、ヘテロポリ酸一分子あたりの水溶性ヘテロポリ酸の還元度αおよび水難溶性ヘテロポリ酸塩の還元度β並びに水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸の含有量を測定した。この触媒の水溶性ヘテロポリ酸のヘテロポリ酸一分子あたりの還元度αは0.383であり、水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子あたりの還元度βは0.216であった。また、この触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩の含有量は、触媒全質量に対しそれぞれ47%および53%であった。   With respect to the obtained catalyst, the reduction degree α of the water-soluble heteropolyacid and the reduction degree β of the poorly water-soluble heteropolyacid salt and the contents of the water-soluble and poorly water-soluble heteropolyacid per molecule of the heteropolyacid were measured by the above method. The degree of reduction α per molecule of the water-soluble heteropolyacid of this catalyst was 0.383, and the degree of reduction β per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid salt was 0.216. The contents of the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt in this catalyst were 47% and 53%, respectively, with respect to the total mass of the catalyst.

この触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の混合ガスを装入し、反応温度270℃、反応圧力101kPa、接触時間3.6秒の条件下で反応を行い触媒の性能評価を行った。メタクロレイン転化率は68.0モル%、メタクリル酸選択率はモル88.9%、メタクリル酸の単流収率は60.3モル%であった。   This catalyst is filled in a reaction tube, charged with a mixed gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of steam and 55% by volume of nitrogen, a reaction temperature of 270 ° C., a reaction pressure of 101 kPa, and a contact time of 3. The reaction was evaluated under the condition of 6 seconds to evaluate the performance of the catalyst. The methacrolein conversion was 68.0 mol%, the methacrylic acid selectivity was 88.9%, and the single flow yield of methacrylic acid was 60.3 mol%.

[比較例1]
酸化モリブデン118部、メタバナジン酸2部、85%リン酸7部を水200部に分散させ、昇温しながら、60%ヒ酸13部、硝酸セシウム14部、28質量%アンモニア水40部、硝酸ジルコニウム0.2部、硝酸銅1部、硝酸鉄2部のそれぞれを加えて、加熱し攪拌しながら蒸発乾固し固形物を得たこと以外は実施例1と同様にして触媒を得、この触媒を分析し、この触媒の性能評価を行った。この触媒の金属成分組成はP1As1Mo120.3Cu0.1Zr0.02Fe0.1Cs1.3であった。
[Comparative Example 1]
118 parts of molybdenum oxide, 2 parts of metavanadate, and 7 parts of 85% phosphoric acid are dispersed in 200 parts of water, and while raising the temperature, 13 parts of 60% arsenic acid, 14 parts of cesium nitrate, 40 parts of 28% by weight ammonia water, nitric acid A catalyst was obtained in the same manner as in Example 1 except that 0.2 part of zirconium, 1 part of copper nitrate and 2 parts of iron nitrate were added, and heated and stirred to evaporate to dryness to obtain a solid. The catalyst was analyzed and the performance of the catalyst was evaluated. The metal component composition of this catalyst was P 1 As 1 Mo 12 V 0.3 Cu 0.1 Zr 0.02 Fe 0.1 Cs 1.3 .

この触媒の水溶性ヘテロポリ酸のヘテロポリ酸一分子あたりの還元度αは0.402であり、水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子あたりの還元度βは0.182であった。またこの触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩含有量は触媒全質量に対しそれぞれ40%および60%であった。   The degree of reduction α per molecule of the heteropolyacid of the water-soluble heteropolyacid of this catalyst was 0.402, and the degree of reduction β per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid salt was 0.182. Further, the contents of the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt in this catalyst were 40% and 60%, respectively, with respect to the total mass of the catalyst.

また、この触媒のメタクロレイン転化率は62.1モル%、メタクリル酸選択率は90.1モル%、メタクリル酸の単流収率は56.0モル%であった。   Moreover, the methacrolein conversion rate of this catalyst was 62.1 mol%, the methacrylic acid selectivity was 90.1 mol%, and the single stream yield of methacrylic acid was 56.0 mol%.

[比較例2]
触媒前駆体を、窒素/空気=90/10流通下に380℃で5時間焼成したこと以外は、比較例1と同様にして触媒を得、この触媒を分析し、この触媒の性能評価を行った。この触媒の金属成分組成はP1As1Mo120.3Cu0.1Zr0.02Fe0.1Cs1.3であった。
[Comparative Example 2]
Except that the catalyst precursor was calcined at 380 ° C. for 5 hours under a flow of nitrogen / air = 90/10, a catalyst was obtained in the same manner as in Comparative Example 1, the catalyst was analyzed, and the performance of the catalyst was evaluated. It was. The metal component composition of this catalyst was P 1 As 1 Mo 12 V 0.3 Cu 0.1 Zr 0.02 Fe 0.1 Cs 1.3 .

また、この触媒の水溶性ヘテロポリ酸のヘテロポリ酸一分子あたりの還元度αは0.779であり、水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子あたりの還元度βは0.302であった。またこの触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩含有量は触媒全質量に対しそれぞれ45%および55%であった。   Further, the degree of reduction α per molecule of the heteropolyacid of the water-soluble heteropolyacid of this catalyst was 0.779, and the degree of reduction β per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid salt was 0.302. The contents of the water-soluble heteropolyacid and the hardly water-soluble heteropolyacid salt in this catalyst were 45% and 55%, respectively, with respect to the total mass of the catalyst.

また、この触媒のメタクロレイン転化率は51.2モル%、メタクリル酸選択率は91.0モル%、メタクリル酸の単流収率は46.6%であった。   Further, the methacrolein conversion rate of this catalyst was 51.2 mol%, the methacrylic acid selectivity was 91.0 mol%, and the single flow yield of methacrylic acid was 46.6%.

[比較例3]
触媒前駆体を窒素/空気=90/10流通下に380℃で7時間焼成したこと以外は、比較例1と同様にして触媒を得、この触媒を分析し、この触媒の性能評価を行った。この触媒の金属成分組成はP1As1Mo120.3Cu0.1Zr0.02Fe0.1Cs1.3であった。
[Comparative Example 3]
Except that the catalyst precursor was calcined at 380 ° C. for 7 hours under a flow of nitrogen / air = 90/10, a catalyst was obtained in the same manner as in Comparative Example 1, the catalyst was analyzed, and the performance of the catalyst was evaluated. . The metal component composition of this catalyst was P 1 As 1 Mo 12 V 0.3 Cu 0.1 Zr 0.02 Fe 0.1 Cs 1.3 .

また、この触媒の水溶性ヘテロポリ酸のヘテロポリ酸一分子あたりの還元度αは0.742であり、水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子あたりの還元度βは0.514であった。またこの触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩含有量は触媒全質量に対しそれぞれ42%および58%であった。   In addition, the degree of reduction α per molecule of the heteropolyacid of the water-soluble heteropolyacid of this catalyst was 0.742, and the degree of reduction β per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid salt was 0.514. The contents of the water-soluble heteropolyacid and the hardly water-soluble heteropolyacid salt in this catalyst were 42% and 58%, respectively, with respect to the total mass of the catalyst.

また、この触媒のメタクロレイン転化率は40.1モル%、メタクリル酸選択率は91.2モル%、メタクリル酸の単流収率は36.6モル%であった。   Further, the methacrolein conversion rate of this catalyst was 40.1 mol%, the selectivity of methacrylic acid was 91.2 mol%, and the single flow yield of methacrylic acid was 36.6 mol%.

[比較例4]
60%ヒ酸を加えなかったこと以外は比較例1と同様にして固形物を得、触媒を得、この触媒を分析し、この触媒の性能評価を行った。この触媒の酸素以外の金属成分組成はP1Mo120.3Cu0.1Zr0.02Fe0.1Cs1.3であった。
[Comparative Example 4]
A solid was obtained in the same manner as in Comparative Example 1 except that 60% arsenic acid was not added, a catalyst was obtained, this catalyst was analyzed, and the performance of this catalyst was evaluated. The metal component composition other than oxygen of this catalyst was P 1 Mo 12 V 0.3 Cu 0.1 Zr 0.02 Fe 0.1 Cs 1.3 .

また、この触媒の水溶性ヘテロポリ酸のヘテロポリ酸一分子あたりの還元度αは0.415であり、水難溶性ヘテロポリ酸塩のヘテロポリ酸一分子あたりの還元度βは0.199であった。また、この触媒の水溶性ヘテロポリ酸および水難溶性ヘテロポリ酸塩含有量は触媒全質量に対し45%および55%であった。   In addition, the degree of reduction α per molecule of the heteropolyacid of the water-soluble heteropolyacid of this catalyst was 0.415, and the degree of reduction β per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid salt was 0.199. Further, the contents of the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid salt in this catalyst were 45% and 55% with respect to the total mass of the catalyst.

また、この触媒のメタクロレイン転化率は57.4モル%、メタクリル酸選択率は87.5モル%、メタクリル酸の単流収率は50.2モル%であった。   Further, the methacrolein conversion rate of this catalyst was 57.4 mol%, the methacrylic acid selectivity was 87.5 mol%, and the single flow yield of methacrylic acid was 50.2 mol%.

Figure 2008284439
Figure 2008284439

Figure 2008284439
Figure 2008284439

Claims (4)

水溶性へテロポリ酸および水難溶性ヘテロポリ酸塩を含むメタクリル酸製造用のヘテロポリ酸系触媒であって、スラリー調製時に還元度を調整して、完成した触媒の水溶性へテロポリ酸および水難溶性ヘテロポリ酸塩の還元度を制御したメタクリル酸製造用のヘテロポリ酸系触媒。   A heteropolyacid catalyst for the production of methacrylic acid including a water-soluble heteropolyacid and a poorly water-soluble heteropolyacid salt, the degree of reduction being adjusted during slurry preparation, and the water-soluble heteropolyacid and the poorly water-soluble heteropolyacid of the finished catalyst A heteropolyacid catalyst for the production of methacrylic acid with a controlled degree of salt reduction. 前記水溶性ヘテロポリ酸のヘテロポリ酸1分子当たりの還元度をα、前記水難溶性ヘテロポリ酸塩のヘテロポリ酸1分子当たりの還元度をβとしたとき、該還元度αおよびβが下記式(1)から(3)で示される関係を満たす請求項1記載のヘテロポリ酸系触媒。
0<α≦1 (1)
0.01<β≦2 (2)
α−β≦0.2 (3)
When the reduction degree per molecule of the heteropolyacid of the water-soluble heteropolyacid is α and the reduction degree per molecule of the heteropolyacid of the poorly water-soluble heteropolyacid salt is β, the reduction degrees α and β are represented by the following formula (1): The heteropolyacid catalyst according to claim 1, which satisfies the relationship represented by (3) to (3).
0 <α ≦ 1 (1)
0.01 <β ≦ 2 (2)
α−β ≦ 0.2 (3)
前記ヘテロポリ酸系触媒の水溶性ヘテロポリ酸の含有量が該ヘテロポリ酸系触媒の全質量に対し10〜60質量%であり、前記水難溶性ヘテロポリ酸塩の含有量が該ヘテロポリ酸系触媒の全質量に対し90〜40質量%である請求項1記載のヘテロポリ酸系触媒。   The water-soluble heteropolyacid content of the heteropolyacid catalyst is 10 to 60% by mass relative to the total mass of the heteropolyacid catalyst, and the water-insoluble heteropolyacid salt content is the total mass of the heteropolyacid catalyst. The heteropolyacid catalyst according to claim 1, wherein the amount is 90 to 40% by mass. 前記水溶性ヘテロポリ酸を含むスラリーと前記水難溶性ヘテロポリ酸塩を含むスラリーとを個別に調製しこれらを混合することにより前記スラリー調製時の還元度の調整を行う請求項1ないし3のいずれかに記載のヘテロポリ酸系触媒。   The reduction degree at the time of the said slurry preparation is adjusted by preparing the slurry containing the said water-soluble heteropoly acid and the slurry containing the said poorly water-soluble heteropoly acid salt individually, and mixing these. The heteropolyacid catalyst as described.
JP2007130478A 2007-05-16 2007-05-16 Heteropolyacid catalyst for preparing methacrylic acid Pending JP2008284439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130478A JP2008284439A (en) 2007-05-16 2007-05-16 Heteropolyacid catalyst for preparing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130478A JP2008284439A (en) 2007-05-16 2007-05-16 Heteropolyacid catalyst for preparing methacrylic acid

Publications (1)

Publication Number Publication Date
JP2008284439A true JP2008284439A (en) 2008-11-27

Family

ID=40144671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130478A Pending JP2008284439A (en) 2007-05-16 2007-05-16 Heteropolyacid catalyst for preparing methacrylic acid

Country Status (1)

Country Link
JP (1) JP2008284439A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142687A (en) * 2008-12-16 2010-07-01 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing unsaturated carboxylic acid
JP2011224505A (en) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid and method for producing the same, and method for producing methacrylic acid
KR20200047014A (en) * 2018-10-26 2020-05-07 주식회사 엘지화학 Initiator composition for producing of viniy chloride based polymer and method for preparing vinyl chloride based polymer using the same
KR20230159843A (en) 2021-03-24 2023-11-22 미쯔비시 케미컬 주식회사 Catalyst, method for producing catalyst, and method for producing α,β-unsaturated aldehyde, α,β-unsaturated carboxylic acid, and α,β-unsaturated carboxylic acid ester

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142687A (en) * 2008-12-16 2010-07-01 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing unsaturated carboxylic acid
JP2011224505A (en) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid and method for producing the same, and method for producing methacrylic acid
KR20200047014A (en) * 2018-10-26 2020-05-07 주식회사 엘지화학 Initiator composition for producing of viniy chloride based polymer and method for preparing vinyl chloride based polymer using the same
KR102498716B1 (en) 2018-10-26 2023-02-13 주식회사 엘지화학 Initiator composition for producing of viniy chloride based polymer and method for preparing vinyl chloride based polymer using the same
KR20230159843A (en) 2021-03-24 2023-11-22 미쯔비시 케미컬 주식회사 Catalyst, method for producing catalyst, and method for producing α,β-unsaturated aldehyde, α,β-unsaturated carboxylic acid, and α,β-unsaturated carboxylic acid ester

Similar Documents

Publication Publication Date Title
KR20110044266A (en) Catalyst for methacrylic acid production, process for producing same, and process for producing methacrylic acid
JP2008000709A (en) Manufacturing method of heteropoly-acid based catalyst for manufacturing methacrylic acid
CN110300622B (en) Catalyst for methacrylic acid production, catalyst precursor for methacrylic acid production, processes for producing these, process for producing methacrylic acid, and process for producing methacrylic acid ester
JP4922614B2 (en) Method for producing a catalyst for methacrylic acid production
JP2008284439A (en) Heteropolyacid catalyst for preparing methacrylic acid
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP5915894B2 (en) Method for producing a catalyst for methacrylic acid production
JP5838613B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5362370B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP2005169311A (en) Production method for complex oxide catalyst
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JP5663902B2 (en) Method for producing a catalyst for methacrylic acid production
JP2008000710A (en) Manufacturing method of heteropolyacid based catalyst for manufacturing methacrylic acid
CN110062656B (en) Method for producing catalyst precursor for production of alpha, beta-unsaturated carboxylic acid
JP5789917B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5861267B2 (en) Method for producing a catalyst for methacrylic acid production
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP5424914B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP6769557B2 (en) Catalyst precursor, catalyst production method, methacrylic acid and acrylic acid production method, and methacrylic acid ester and acrylic acid ester production method.
WO2000072964A1 (en) Catalyst for methacrylic acid production and process for producing methacrylic acid