JP2009064907A - Optically-coupled semiconductor device - Google Patents

Optically-coupled semiconductor device Download PDF

Info

Publication number
JP2009064907A
JP2009064907A JP2007230422A JP2007230422A JP2009064907A JP 2009064907 A JP2009064907 A JP 2009064907A JP 2007230422 A JP2007230422 A JP 2007230422A JP 2007230422 A JP2007230422 A JP 2007230422A JP 2009064907 A JP2009064907 A JP 2009064907A
Authority
JP
Japan
Prior art keywords
semiconductor device
optically coupled
cooling
hole
coupled semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007230422A
Other languages
Japanese (ja)
Inventor
Tomoya Furutsu
友也 古津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007230422A priority Critical patent/JP2009064907A/en
Publication of JP2009064907A publication Critical patent/JP2009064907A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optically-coupled semiconductor device capable of exerting dramatically large heat radiation capability as compared with a conventional one in spite of a simple structure, and of sufficiently responding to miniaturization of a package and increase of current capacity. <P>SOLUTION: This optically-coupled semiconductor device 1 is provided with a light emitting-side lead frame 2 and a light receiving-side lead frame 3, a light emitting element 4 mounted on a semiconductor element mounting header part 21 of the light emitting-side lead frame 2, and a light receiving element 5 mounted on a semiconductor element mounting header part 31 of the light receiving-side lead frame 3, and is structured such that the light emitting element 4 and the light receiving element 5 are arranged oppositely to each other, and both the lead frames 2 and 3 and both the elements 4 and 5 are resin-sealed by a sealing resin 6. The sealing resin 6 is provided with a cooling through-hole 7 communicating with at least one-side semiconductor non-mounting surface 32 of the semiconductor element mounting header part 31. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放熱性に優れた光結合半導体装置及びその製造方法、並びにその光結合半導体装置を用いた電子機器に関する。   The present invention relates to an optically coupled semiconductor device excellent in heat dissipation, a manufacturing method thereof, and an electronic apparatus using the optically coupled semiconductor device.

近年の光結合半導体装置の技術動向として、パッケージの小型化や、電流容量の増加が顕著である。これに伴い、使用時に発生する熱も増加傾向にあり、この熱について十分な対策を講じないと光結合半導体装置それ自体が自己の発生する熱でダメージを受け、特性の劣化を招来することとなる。そのため、パッケージの小型化や電流容量の増加に対応するには、使用時に発生する熱を効率よく放出させることが肝要である。   As recent technological trends of the optically coupled semiconductor device, the downsizing of the package and the increase of the current capacity are remarkable. Along with this, the heat generated during use is also increasing, and unless sufficient measures are taken for this heat, the optically coupled semiconductor device itself is damaged by the heat generated by itself, leading to deterioration of characteristics. Become. Therefore, it is important to efficiently release the heat generated during use in order to cope with the downsizing of the package and the increase in current capacity.

そこで、従来、光結合半導体装置における放熱性の向上を図るために、例えば、温度の影響を受けやすい集積回路素子を熱伝導性の高いリードフレームに接触させることによって、自己発熱の影響を低減させたり、また、樹脂パッケージを実装基板に密着させることで基板に熱を逃がす方法等が採られている。   Therefore, conventionally, in order to improve heat dissipation in the optically coupled semiconductor device, for example, an integrated circuit element that is easily affected by temperature is brought into contact with a lead frame having high thermal conductivity to reduce the influence of self-heating. In addition, a method of releasing heat from the substrate by bringing the resin package into close contact with the mounting substrate is employed.

さらに、リードフレームを、遮光性樹脂からなる二次モールド内で折曲させるとともに外部実装基板上に面実装できるように前記二次モールド体表面に露出させる構造として、放熱問題の解決を図ったものもある(例えば、特許文献1参照)。   Furthermore, the lead frame is bent in a secondary mold made of light-shielding resin and exposed to the surface of the secondary mold body so that it can be surface-mounted on an external mounting board. (For example, refer to Patent Document 1).

また、外部実装基板に貫通孔を設け、貫通孔と係合する凸部を二次モールド体底面に形成して放熱させるといった手段も提案されている。
特開平09-083013号
In addition, means has also been proposed in which a through hole is provided in the external mounting substrate, and a convex portion that engages with the through hole is formed on the bottom surface of the secondary mold body to dissipate heat.
JP 09-083013 A

しかし、電流容量が増加すると発熱量が増え、これに伴い放熱性をより一層高める必要がでてくるが、特許文献1に記載の手段でそれに対応しようとすると、外部実装基板上に面実装されるリードフレームの面積を大きく取らざるを得なくなる。その結果、光結合半導体装置全体の大型化を招き、パッケージの小型化という要望に応えることができないといった問題があった。   However, when the current capacity increases, the amount of heat generation increases, and accordingly, it is necessary to further improve the heat dissipation. However, if the means described in Patent Document 1 tries to cope with it, it is surface-mounted on the external mounting board. Therefore, it is necessary to increase the area of the lead frame. As a result, there is a problem in that the entire optically coupled semiconductor device is increased in size and cannot meet the demand for a smaller package.

また、電流容量の増加度合いが大きいと、基板の放熱量に対し発熱量が上回ってしまい、基板に熱が溜まることから、満足な放熱性が確保できなくなるばかりか、長時間熱にさらされることにより基板そのものも熱によるダメージを受けてしまうといった問題があった。   If the increase in current capacity is large, the amount of heat generated will exceed the amount of heat released from the board, and heat will accumulate on the board, so it will not be possible to ensure satisfactory heat dissipation and it will be exposed to heat for a long time. As a result, the substrate itself is also damaged by heat.

一方、二次モールド体底面に凸部を形成して放熱する構成では、発熱量が増加するにしたがって貫通孔を大きく取らざるを得なくなる。ところが、外部実装基板上に貫通孔を設けるにはスペース上自ずと制限があるため、許容される径の大きさには限界がある。そのため、この構成においても満足な放熱性の確保が困難であり、光結合半導体装置の小型化や電流容量の増加等に対応できないといった問題があった。   On the other hand, in the configuration in which a convex portion is formed on the bottom surface of the secondary mold body to dissipate heat, the through holes must be made larger as the amount of heat generation increases. However, there is a limit to the size of the allowable diameter because the space is naturally limited in providing the through hole on the external mounting board. Therefore, even in this configuration, it is difficult to ensure satisfactory heat dissipation, and there is a problem that it is not possible to cope with downsizing of the optically coupled semiconductor device and increase in current capacity.

本発明は上記従来の問題を解決すべく創案されたものであり、簡素な構成でありながら従来に比べて格段に大きな放熱性を発揮することができ、パッケージの小型化及び電流容量の増加に十分対応することのできる光結合半導体装置を提供することを目的とするものである。   The present invention was devised to solve the above-mentioned conventional problems, and although it has a simple configuration, it can exhibit much greater heat dissipation than the conventional one, and it is possible to reduce the size of the package and increase the current capacity. It is an object of the present invention to provide an optically coupled semiconductor device that can sufficiently cope.

上記課題を解決するため本発明に係る光結合半導体装置は、発光側リードフレーム及び受光側リードフレームと、前記発光側リードフレームの半導体素子搭載ヘッダ部に搭載される発光素子と、前記受光側リードフレームの半導体素子搭載ヘッダ部に搭載される受光素子とを備え、前期発光素子と受光素子とが対向配置されるとともに、前記両リードフレームおよび前記両素子が封止樹脂により樹脂封止された光結合半導体装置において、前記封止樹脂に、前記半導体素子搭載ヘッダ部の少なくとも一方の半導体非搭載面と連通する冷却用通孔が設けられたことを特徴とするものである。   In order to solve the above problems, an optically coupled semiconductor device according to the present invention includes a light emitting side lead frame and a light receiving side lead frame, a light emitting element mounted on a semiconductor element mounting header portion of the light emitting side lead frame, and the light receiving side lead. A light receiving element mounted on a semiconductor element mounting header portion of the frame, wherein the light emitting element and the light receiving element are arranged opposite to each other, and both the lead frame and the both elements are sealed with a sealing resin. In the bonded semiconductor device, a cooling through hole communicating with at least one semiconductor non-mounting surface of the semiconductor element mounting header portion is provided in the sealing resin.

この特定事項により、半導体素子搭載ヘッダ部の少なくとも一方の半導体非搭載面に冷却用通孔を介して外気が導入され、半導体素子搭載ヘッダ部と外気との間で直接熱交換が行われることになり、従来のリードフレームや外部実装基板を介して放熱を行う方法に比べて、放熱が極めて効率的に行われる。なお、冷却用通孔を設けたことによって封止樹脂から半導体素子搭載ヘッダ部が剥離し易くならないよう、冷却用通孔の径の大きさは半導体素子搭載ヘッダ部より小さくするのが望ましい。   With this specific matter, outside air is introduced into the at least one semiconductor non-mounting surface of the semiconductor element mounting header portion through the cooling through hole, and direct heat exchange is performed between the semiconductor element mounting header portion and the outside air. Thus, heat dissipation is performed extremely efficiently compared to the conventional method of performing heat dissipation via a lead frame or an external mounting substrate. In order to prevent the semiconductor element mounting header portion from being easily peeled off from the sealing resin by providing the cooling through holes, it is desirable that the size of the diameter of the cooling through holes be smaller than that of the semiconductor element mounting header portion.

また、上記冷却用通孔は一つであってもよいが、複数個配置されてもよい。   Moreover, although the said cooling through-hole may be one, multiple may be arrange | positioned.

冷却用通孔を複数個配置した場合、半導体素子搭載ヘッダ部への効率的な外気導入を確保しながら封止樹脂から該ヘッダ部が剥離するのをより確実に防ぐことができる。   When a plurality of cooling through holes are arranged, it is possible to more reliably prevent the header portion from being peeled off from the sealing resin while ensuring efficient introduction of outside air to the semiconductor element mounting header portion.

また、上記冷却用通孔には放熱材が充填されてもよい。   The cooling through hole may be filled with a heat radiating material.

この場合、放熱材により半導体素子搭載ヘッダ部と外部との間の絶縁性が保たれた状態で半導体素子搭載ヘッダ部の熱が効率よく放熱材を介して外部に放出される。つまり、絶縁性と放熱性が両立することとなる。   In this case, the heat of the semiconductor element mounting header portion is efficiently released to the outside through the heat dissipation material in a state where the insulation between the semiconductor element mounting header portion and the outside is maintained by the heat dissipation material. That is, both insulating properties and heat dissipation properties are achieved.

また、半導体素子搭載ヘッダ部の半導体非搭載面に凹凸が設けられていてもよい。   Further, irregularities may be provided on the semiconductor non-mounting surface of the semiconductor element mounting header portion.

この場合、封止樹脂と半導体非搭載面との接触面積が、半導体非搭載面が平滑面である場合に比べて増えるため、封止樹脂から半導体素子搭載ヘッダ部が剥離するのをより確実に防止できると同時に、半導体非搭載面の冷却用通孔に臨む部分における表面積が平滑面である場合に比べて増えるため、外気との接触面積を稼ぐことができ、外気への放熱がより効率的に行われるようになる。   In this case, the contact area between the sealing resin and the non-semiconductor mounting surface increases as compared with the case where the non-semiconductor mounting surface is a smooth surface, so that the semiconductor element mounting header is more reliably peeled off from the sealing resin. At the same time, the surface area of the surface facing the cooling hole on the non-semiconductor mounting surface increases compared to a smooth surface, so that the contact area with the outside air can be increased, and the heat radiation to the outside air is more efficient. To be done.

また、半導体素子搭載ヘッダ部の半導体非搭載面に冷却用通孔を通じて外部から浸入する水分を遮断する止水部が冷却用通孔を包囲するように設けられていてもよい。   In addition, a water stop portion that blocks moisture entering from the outside through the cooling through hole may be provided on the semiconductor non-mounting surface of the semiconductor element mounting header portion so as to surround the cooling through hole.

この場合、たとえ外部から冷却用通孔を通じて水分が浸入してきても、止水部によりこれを防ぐことができる。   In this case, even if moisture enters from the outside through the cooling through hole, this can be prevented by the water stop portion.

ここで、上記止水部は、冷却用通孔を多重に包囲するように設けられていてもよい。   Here, the said water stop part may be provided so that the through-hole for cooling may be enclosed in multiple.

この場合、冷却用通孔を通じての水分の浸入をより確実に防止することができる。   In this case, it is possible to more reliably prevent moisture from entering through the cooling holes.

また、上記止水部は、半導体非搭載面に形成した複数の凸部または凹部で構成してもよい。   Moreover, you may comprise the said water stop part by the some convex part or recessed part formed in the semiconductor non-mounting surface.

この場合、半導体非搭載面を加圧成形加工するだけで容易に止水部を形成することができる。   In this case, the water stop portion can be easily formed simply by pressure forming the semiconductor non-mounting surface.

また、上記冷却用通孔は、その開口端が封止樹脂の側面に臨む溝とされてもよい。   Further, the cooling through hole may be a groove whose opening end faces the side surface of the sealing resin.

この場合、半導体非搭載面に触れた外気が冷却用通孔内で滞留することなく下から横に抜けることができ、常に新鮮な外気が半導体非搭載面に導入されることになるため、放熱がより効率的に行われるようになる。   In this case, the outside air that has touched the non-semiconductor mounting surface can escape from the bottom without staying in the cooling through hole, and fresh outside air is always introduced to the non-semiconductor mounting surface. Will be done more efficiently.

また、上記冷却用通孔は、半導体素子搭載ヘッダ部に対し傾斜して設けられていてもよい。   Further, the cooling through hole may be provided inclined with respect to the semiconductor element mounting header portion.

この場合、冷却用通孔を通じて外気が半導体非搭載面に導入されることになるため、放熱が効率的に行われると同時に、冷却用通孔を垂設した場合に比べて装置の1次側と2次側との間の沿面絶縁距離を稼ぐことができる。   In this case, since the outside air is introduced to the non-semiconductor mounting surface through the cooling through hole, heat is efficiently dissipated, and at the same time, the primary side of the apparatus as compared with the case where the cooling through hole is vertically provided. And creepage insulation distance between the secondary side and the secondary side.

本発明に係る光結合半導体装置の製造方法は、封止樹脂充填時に半導体素子搭載ヘッダ部の半導体非搭載面と当接する凸部を備えた樹脂封止用金型を用いることを特徴とするものである。   The method of manufacturing an optically coupled semiconductor device according to the present invention is characterized in that a resin sealing mold having a convex portion that comes into contact with a semiconductor non-mounting surface of a semiconductor element mounting header portion when a sealing resin is filled is used. It is.

この特定事項により、樹脂封止用金型にモールド樹脂を流し込むだけで冷却用通孔を形成することができる。また、光結合半導体装置が平面搭載型である場合は、樹脂封止時に金型の凸部で半導体素子搭載ヘッダ部が支持されることになるので、モールド時におけるリードフレームの形状安定化を図ることができる。   By this specific matter, the cooling through hole can be formed simply by pouring the mold resin into the resin sealing mold. Further, when the optically coupled semiconductor device is a flat-mounting type, the semiconductor element mounting header is supported by the convex portion of the mold at the time of resin sealing, so that the shape of the lead frame at the time of molding is stabilized. be able to.

また、本発明に係る光結合半導体装置の製造方法は、冷却用通孔を、封止樹脂に対して切削加工を施すことにより形成することを特徴とするものである。   The method for manufacturing an optically coupled semiconductor device according to the present invention is characterized in that the cooling through hole is formed by cutting a sealing resin.

この特定事項により、既存の切削装置で容易に冷却用通孔を形成することができる。   With this specific matter, the cooling through hole can be easily formed with an existing cutting device.

本発明に係る電子機器は、以上説明した光結合半導体装置を用いたことを特徴とするものである。   Electronic equipment according to the present invention is characterized by using the above-described optically coupled semiconductor device.

本発明によれば、簡素な構成でありながら従来に比べて格段に大きな放熱性を発揮することができ、パッケージの小型化及び電流容量の増加に十分対応することのできる光結合半導体装置を提供することができる。   According to the present invention, there is provided an optically coupled semiconductor device capable of exhibiting much larger heat dissipation than the conventional one with a simple configuration and capable of sufficiently responding to the downsizing of the package and the increase in current capacity. can do.

以下、本発明の実施の形態を図面に基づいて説明する。なお、ここでは本発明を対向型フォトカプラに適用した例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, an example in which the present invention is applied to a counter-type photocoupler will be described.

<実施形態1>
図1(a)は、本発明の実施形態1に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図、図1(b)はそれを下から観た底面図である。
<Embodiment 1>
FIG. 1A is a perspective view showing a schematic configuration of the optically coupled semiconductor device (opposing photocoupler) according to the first embodiment of the present invention as viewed from the front, and FIG. 1B is a bottom view when viewed from below. FIG.

この光結合半導体装置1は、発光側リードフレーム2及び受光側リードフレーム3と、発光側リードフレーム2の半導体素子搭載ヘッダ部21に搭載される発光素子4と、受光側リードフレーム3の半導体素子搭載ヘッダ部31に搭載される受光素子5とを備えたものである。発光素子4と受光素子5とは対向配置されており、両リードフレーム3,4とともに樹脂封止6されている。   This optically coupled semiconductor device 1 includes a light emitting side lead frame 2 and a light receiving side lead frame 3, a light emitting element 4 mounted on a semiconductor element mounting header portion 21 of the light emitting side lead frame 2, and a semiconductor element of the light receiving side lead frame 3. The light receiving element 5 mounted on the mounting header portion 31 is provided. The light emitting element 4 and the light receiving element 5 are arranged to face each other and are sealed with resin 6 together with both lead frames 3 and 4.

上記封止樹脂6には、受光側リードフレーム3の半導体素子搭載ヘッダ部31における半導体非搭載面32と連通する冷却用通孔7が設けられている。この冷却用通孔7の断面形状は円形とされ、その内径は、冷却用通孔7を設けたことによって封止樹脂6から半導体素子搭載ヘッダ部31が剥離し易くならないよう、半導体素子搭載ヘッダ部31より小さくするのが望ましい。なお、この冷却用通孔7の断面形状は円形に限るものではなく、三角形や五角形以上の多角形、或いは楕円など任意の形状をとりうる。   The sealing resin 6 is provided with a cooling through hole 7 communicating with the semiconductor non-mounting surface 32 in the semiconductor element mounting header portion 31 of the light receiving side lead frame 3. The cross-sectional shape of the cooling through hole 7 is circular, and the inner diameter of the cooling through hole 7 is such that the semiconductor element mounting header portion 31 is not easily peeled off from the sealing resin 6 by providing the cooling through hole 7. It is desirable to make it smaller than the portion 31. The cross-sectional shape of the cooling through hole 7 is not limited to a circular shape, and may be an arbitrary shape such as a triangle, a polygon more than a pentagon, or an ellipse.

このように、冷却用通孔7が封止樹脂6に設けられたことにより、半導体素子搭載ヘッダ部31の半導体非搭載面32に冷却用通孔7を介して外気が導入され、半導体素子搭載ヘッダ部31と外気との間で直接熱交換が行われることになり、従来のリードフレームや外部実装基板を介して放熱を行う方法に比べて、放熱が極めて効率的に行われる。   As described above, since the cooling through hole 7 is provided in the sealing resin 6, the outside air is introduced into the semiconductor non-mounting surface 32 of the semiconductor element mounting header portion 31 through the cooling through hole 7, and the semiconductor element mounting is performed. Heat exchange is performed directly between the header portion 31 and the outside air, and heat dissipation is performed extremely efficiently compared to the conventional method of performing heat dissipation via a lead frame or an external mounting board.

<実施形態2>
図2(a)は、本発明の実施形態2に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図、図2(b)はそれを下から観た底面図である。なお、実施形態1と同一の構成要素には同一符号を付し、その説明を省略する。本実施形態2は、上記実施形態1と冷却用通孔7の構成が異なるだけであるので、この相違点についてのみ説明する。
<Embodiment 2>
FIG. 2A is a perspective view showing a schematic configuration of an optically coupled semiconductor device (opposing photocoupler) according to Embodiment 2 of the present invention as viewed from the front, and FIG. 2B is a bottom view when viewed from below. FIG. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1, and the description is abbreviate | omitted. Since the second embodiment is different from the first embodiment only in the configuration of the cooling through hole 7, only this difference will be described.

本実施形態2では、冷却用通孔7は複数個(図示例では5個)設けられている。個々の冷却用通孔7は、実施形態1で説明したものより内径がかなり小さなものとされており、半導体非搭載面32に略均一に分散するよう配置されている。これら各冷却用通孔7は、実施形態1のものと同様、断面形状が円形とされているが、これに限らず、三角形や五角形以上の多角形、或いは楕円など任意の形状をとりうる。また、個数も5個に限らず、2〜4個でも6個以上でもよい。但し、個数が少なくなるほど一つ一つの冷却用通孔7の内径を大きくし、個数が多くなるほど一つ一つの冷却用通孔7の内径を小さくするのが望ましい。さらに、冷却用通孔7の配置パターンは図示例に限るものではなく、半導体非搭載面32における発熱分布を把握しておき、発熱量の多い箇所に冷却用通孔7を集中的に配置するようにしてもよい。   In the second embodiment, a plurality of cooling through holes 7 (five in the illustrated example) are provided. Each cooling through hole 7 has a considerably smaller inner diameter than that described in the first embodiment, and is arranged so as to be distributed substantially uniformly on the semiconductor non-mounting surface 32. Each of the cooling through holes 7 has a circular cross-sectional shape as in the first embodiment, but is not limited thereto, and can take any shape such as a triangle, a polygon of pentagon or higher, or an ellipse. Also, the number is not limited to five, and may be two to four or six or more. However, it is desirable to increase the inner diameter of each cooling through hole 7 as the number decreases, and to decrease the inner diameter of each cooling through hole 7 as the number increases. Furthermore, the arrangement pattern of the cooling through holes 7 is not limited to the illustrated example, and the heat generation distribution on the non-semiconductor mounting surface 32 is grasped, and the cooling through holes 7 are arranged in a concentrated manner at a location where a large amount of heat is generated. You may do it.

本実施形態2の場合、実施形態1と同様、半導体素子搭載ヘッダ部31の半導体非搭載面32に複数個の冷却用通孔7を介して外気が導入され、半導体素子搭載ヘッダ部31と外気との間で直接熱交換が行われることになり、従来のリードフレームや外部実装基板を介して放熱を行う方法に比べて、放熱が極めて効率的に行われる。また、内径の小さい冷却用通孔7を複数個設けたことにより、冷却用通孔7に起因する封止樹脂6からの半導体素子搭載ヘッダ部31の剥離の虞がない。   In the case of the second embodiment, as in the first embodiment, outside air is introduced into the semiconductor non-mounting surface 32 of the semiconductor element mounting header portion 31 through the plurality of cooling holes 7, and the semiconductor element mounting header portion 31 and the outside air are connected. The heat exchange is performed directly between the two and the heat dissipation, and the heat dissipation is performed extremely efficiently compared to the conventional method of performing heat dissipation via the lead frame or the external mounting substrate. Further, by providing a plurality of cooling through holes 7 having a small inner diameter, there is no possibility of peeling of the semiconductor element mounting header portion 31 from the sealing resin 6 due to the cooling through holes 7.

<実施形態3>
図3(a)は、本発明の実施形態3に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図、図3(b)はそれを下から観た底面図である。なお、実施形態1と同一の構成要素には同一符号を付し、その説明を省略する。本実施形態3は、上記各実施形態と冷却用通孔7の構成が異なるだけであるので、この相違点についてのみ説明する。
<Embodiment 3>
3A is a perspective view showing a schematic configuration of an optically coupled semiconductor device (opposing photocoupler) according to Embodiment 3 of the present invention as viewed from the front, and FIG. 3B is a bottom view when viewed from below. FIG. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1, and the description is abbreviate | omitted. The third embodiment is different from the above-described embodiments only in the configuration of the cooling through hole 7, and only this difference will be described.

本実施形態3では、実施形態1で示した光結合半導体装置1の冷却用通孔7内に放熱材8が充填されている。この放熱材8としては、封止樹脂6よりも比熱の低い材料からなるものが好ましく、例えばセラミックが挙げられるが、これに限定されるものではない。   In the third embodiment, the heat radiation material 8 is filled in the cooling through hole 7 of the optically coupled semiconductor device 1 shown in the first embodiment. The heat radiating material 8 is preferably made of a material having a specific heat lower than that of the sealing resin 6, and examples thereof include ceramics, but are not limited thereto.

このように、冷却用通孔7に放熱材8が設けられた場合は、放熱材8により半導体素子搭載ヘッダ部31と外部との間の絶縁性が保たれた状態で半導体素子搭載ヘッダ部31の熱が効率よく放熱材8を介して外部に放出される。つまり、絶縁性と放熱性が両立することとなる。   Thus, when the heat dissipation material 8 is provided in the cooling through hole 7, the semiconductor element mounting header portion 31 is maintained in a state in which the insulation between the semiconductor element mounting header portion 31 and the outside is maintained by the heat dissipation material 8. Is efficiently released to the outside through the heat dissipating material 8. That is, both insulating properties and heat dissipation properties are achieved.

<実施形態4>
図4は、本発明の実施形態4に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図である。なお、実施形態1と同一の構成要素には同一符号を付し、その説明を省略する。本実施形態4は、上記各実施形態と半導体素子搭載ヘッダ部31の半導体非搭載面32の構成が異なるだけであるので、この相違点についてのみ説明する。
<Embodiment 4>
FIG. 4 is a front perspective view showing a schematic configuration of the optically coupled semiconductor device (opposing photocoupler) according to the fourth exemplary embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1, and the description is abbreviate | omitted. The fourth embodiment is different from the above embodiments only in the configuration of the semiconductor non-mounting surface 32 of the semiconductor element mounting header portion 31, and only this difference will be described.

本実施形態4では、半導体素子搭載ヘッダ部31の半導体非搭載面32に凹凸9が設けられている。この凹凸9は半導体非搭載面32の全域に亘っている。   In the fourth embodiment, the unevenness 9 is provided on the semiconductor non-mounting surface 32 of the semiconductor element mounting header portion 31. The unevenness 9 extends over the entire semiconductor non-mounting surface 32.

このような凹凸9が半導体非搭載面32に設けられた場合、封止樹脂6と半導体非搭載面32との接触面積が、半導体非搭載面32が平滑面である場合(実施形態1参照)に比べて増えるため、封止樹脂6から半導体素子搭載ヘッダ部31が剥離するのをより確実に防止できると同時に、半導体非搭載面32の冷却用通孔7に臨む部分における表面積が平滑面である場合に比べて増えるため、外気との接触面積を稼ぐことができ、外気への放熱がより効率的に行われるようになる。   When such unevenness 9 is provided on the non-semiconductor mounting surface 32, the contact area between the sealing resin 6 and the non-semiconductor mounting surface 32 is such that the non-semiconductor mounting surface 32 is a smooth surface (see Embodiment 1). Therefore, it is possible to more reliably prevent the semiconductor element mounting header portion 31 from being peeled off from the sealing resin 6, and at the same time, the surface area of the portion facing the cooling hole 7 of the semiconductor non-mounting surface 32 is a smooth surface. Since it increases compared with a certain case, the contact area with the outside air can be gained, and the heat radiation to the outside air can be performed more efficiently.

<実施形態5>
図5(a)は、本発明の実施形態5に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図、図5(b)はそれを下から観た底面図である。なお、実施形態1と同一の構成要素には同一符号を付し、その説明を省略する。本実施形態5は、上記各実施形態と止水部10を設けた点が異なるだけであるので、この相違点についてのみ説明する。
<Embodiment 5>
FIG. 5A is a perspective view showing a schematic configuration of an optically coupled semiconductor device (opposing photocoupler) according to Embodiment 5 of the present invention as viewed from the front, and FIG. 5B is a bottom view when viewed from below. FIG. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1, and the description is abbreviate | omitted. Since this Embodiment 5 differs only in the point which provided the water stop part 10 from said each embodiment, only this difference is demonstrated.

本実施形態5では、半導体素子搭載ヘッダ部31の半導体非搭載面32に冷却用通孔7を通じて外部から浸入する水分を遮断する止水部10が冷却用通孔7を包囲するように設けられている。この止水部10は、半導体非搭載面32の表面に、冷却用通孔7と同心円状に断続的に突設された多数個の楔状の凸部で構成されている。   In the fifth embodiment, the water stop portion 10 that blocks moisture entering from the outside through the cooling through hole 7 is provided on the semiconductor non-mounting surface 32 of the semiconductor element mounting header portion 31 so as to surround the cooling through hole 7. ing. The water-stop portion 10 is configured by a large number of wedge-shaped convex portions that protrude intermittently and concentrically with the cooling through hole 7 on the surface of the semiconductor non-mounting surface 32.

このように、冷却用通孔7が止水部10で包囲されたことにより、たとえ外部から冷却用通孔7を通じて水分が浸入してきても、止水部10によりこれを防ぎ止められる。   As described above, since the cooling through hole 7 is surrounded by the water stop portion 10, even if moisture enters from the outside through the cooling through hole 7, the water stop portion 10 can prevent and stop this.

なお、止水部10は上記したような凸部で構成されるだけではなく、図6(a)及び同図(b)に示すように、半導体非搭載面32の表面に、冷却用通孔7と同心円状に断続的に刻設された多数個の凹部で構成されてもよい。また、止水部10は冷却用通孔7を一重に包囲しているが、図6(a)及び同図(b)に示すように、多重に包囲してもよく、この場合は、冷却用通孔7を通じての水分の浸入がより確実に防止される。   In addition, the water stop part 10 is not only comprised by the above convex parts, but as shown to Fig.6 (a) and the same figure (b), it is a through-hole for cooling on the surface of the semiconductor non-mounting surface 32. 7 may be constituted by a large number of recesses intermittently engraved in a concentric manner. Further, the water stop portion 10 surrounds the cooling through hole 7 in a single layer, but as shown in FIGS. 6 (a) and 6 (b), it may be enclosed in multiple layers. Intrusion of moisture through the service hole 7 is more reliably prevented.

以上説明したように止水部10を、半導体非搭載面32に形成した複数の凸部または凹部で構成した場合は、半導体非搭載面32を加圧成形加工するだけで容易に止水部10を形成することができる。なお、止水部10を凸部又は凹部で構成する場合、いずれか一方のみで構成する必要はなく、凸部と凹部とを適宜混在させてもよい。   As described above, in the case where the water-stopping portion 10 is constituted by a plurality of convex portions or concave portions formed on the semiconductor non-mounting surface 32, the water-stopping portion 10 can be easily formed only by pressure molding the semiconductor non-mounting surface 32. Can be formed. In addition, when comprising the water stop part 10 by a convex part or a recessed part, it is not necessary to comprise only any one, You may mix a convex part and a recessed part suitably.

<実施形態6>
図7(a)は、本発明の実施形態6に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図、図7(b)はそれを下から観た底面図である。なお、実施形態1と同一の構成要素には同一符号を付し、その説明を省略する。本実施形態6は、上記各実施形態と冷却用通孔7の構成が異なるだけであるので、この相違点についてのみ説明する。
<Embodiment 6>
FIG. 7A is a perspective view showing a schematic configuration of an optically coupled semiconductor device (opposing photocoupler) according to Embodiment 6 of the present invention as viewed from the front, and FIG. 7B is a bottom view when viewed from below. FIG. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1, and the description is abbreviate | omitted. Since the sixth embodiment is different from the above embodiments only in the configuration of the cooling through hole 7, only the difference will be described.

本実施形態6では、冷却用通孔7が、その開口端71が封止樹脂6の側面61に臨む溝とされている。   In the sixth embodiment, the cooling through hole 7 is a groove whose opening end 71 faces the side surface 61 of the sealing resin 6.

この場合、半導体非搭載面32に触れた外気が冷却用通孔7内で滞留することなく封止樹脂6の下から横に抜けることができ、常に新鮮な外気が半導体非搭載面32に導入されることになるため、放熱がより効率的に行われるようになる。   In this case, the outside air that has touched the semiconductor non-mounting surface 32 can escape from the bottom of the sealing resin 6 without staying in the cooling through hole 7, and fresh fresh air is always introduced into the semiconductor non-mounting surface 32. Therefore, heat dissipation is performed more efficiently.

<実施形態7>
図8(a)は、本発明の実施形態7に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図、図8(b)はそれを下から観た底面図である。なお、実施形態1と同一の構成要素には同一符号を付し、その説明を省略する。本実施形態7は、上記各実施形態と冷却用通孔7の構成が異なるだけであるので、この相違点についてのみ説明する。
<Embodiment 7>
FIG. 8A is a perspective view showing a schematic configuration of an optically coupled semiconductor device (opposing photocoupler) according to Embodiment 7 of the present invention viewed from the front, and FIG. 8B is a bottom view viewed from below. FIG. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1, and the description is abbreviate | omitted. Since the present embodiment 7 is different from the above embodiments only in the configuration of the cooling through hole 7, only this difference will be described.

本実施形態7では、冷却用通孔7が、半導体素子搭載ヘッダ部31に対し傾斜して設けられている。   In the seventh embodiment, the cooling through hole 7 is provided to be inclined with respect to the semiconductor element mounting header portion 31.

この場合、冷却用通孔7を通じて外気が半導体非搭載面32に導入されることになるため、放熱が効率的に行われると同時に、冷却用通孔7を垂設した場合(実施形態1参照)に比べて装置の1次側と2次側との間の沿面絶縁距離を稼ぐことができる。   In this case, since the outside air is introduced to the non-semiconductor mounting surface 32 through the cooling through hole 7, heat is efficiently dissipated and at the same time the cooling through hole 7 is vertically provided (see Embodiment 1). ), The creeping insulation distance between the primary side and the secondary side of the apparatus can be earned.

<製造方法に係る実施形態>
次に、本発明に係る光結合半導体装置の製造方法の実施形態について、図9(a)及び同図(b)を参照して説明する。
<Embodiment related to manufacturing method>
Next, an embodiment of a method for manufacturing an optically coupled semiconductor device according to the present invention will be described with reference to FIGS. 9 (a) and 9 (b).

図9(a)は、上記各実施形態で示した対向型フォトカプラの製造に本発明を適用した例の概略構成を示す正面から観た透視図、同図(b)は平面搭載型フォトカプラの製造に本発明を適用した例の概略構成を示す正面から観た透視図である。   FIG. 9A is a perspective view showing a schematic configuration of an example in which the present invention is applied to the manufacturing of the opposed photocoupler shown in each of the above embodiments, and FIG. 9B is a plane-mounted photocoupler. It is the perspective view seen from the front which shows schematic structure of the example which applied this invention to manufacture of this.

いずれのタイプの光結合半導体装置についても、樹脂封止用金型12,13に、封止樹脂充填時に半導体素子搭載ヘッダ部31,21の半導体非搭載面32,22と当接する凸部14が設けられている。そしてこのような構成の樹脂封止用金型12,13内に、発光素子4、受光素子5をそれぞれ搭載したリードフレーム2,3を配置するとともに、金型12,13内の凸部14に半導体素子搭載ヘッダ部31,21の半導体非搭載面32,22を当接させる。その後、金型12,13内にモールド樹脂を流し込むだけで冷却用通孔7が形成されることになる。ここで、光結合半導体装置1が図9(b)に示すような平面搭載型である場合は、樹脂封止時に金型13の凸部14で半導体素子搭載ヘッダ部21,31が支持されることになるので、モールド時におけるリードフレーム2,3の形状安定化を図ることができる。   In any type of optically coupled semiconductor device, the resin sealing molds 12 and 13 have protrusions 14 that contact the semiconductor non-mounting surfaces 32 and 22 of the semiconductor element mounting header portions 31 and 21 when the sealing resin is filled. Is provided. The lead frames 2 and 3 on which the light emitting element 4 and the light receiving element 5 are respectively mounted are arranged in the resin sealing molds 12 and 13 having such a configuration, and the convex portions 14 in the molds 12 and 13 are arranged on the convex parts 14. The semiconductor non-mounting surfaces 32 and 22 of the semiconductor element mounting header portions 31 and 21 are brought into contact with each other. Thereafter, the cooling through hole 7 is formed simply by pouring mold resin into the molds 12 and 13. Here, in the case where the optically coupled semiconductor device 1 is a planar mounting type as shown in FIG. 9B, the semiconductor element mounting header portions 21 and 31 are supported by the convex portions 14 of the mold 13 during resin sealing. Therefore, it is possible to stabilize the shape of the lead frames 2 and 3 during molding.

また、本発明に係る光結合半導体装置の製造方法は、冷却用通孔7を、封止樹脂6に対して切削加工を施すことにより形成してもよい。   In the method for manufacturing an optically coupled semiconductor device according to the present invention, the cooling through hole 7 may be formed by cutting the sealing resin 6.

この場合、既存の切削装置で容易に冷却用通孔を形成することができる。   In this case, the cooling through hole can be easily formed with an existing cutting apparatus.

また、本発明は、以上説明した光結合半導体装置及びその製造方法だけではなく、上記の光結合半導体装置を用いた電子機器を包含する。電子機器としては、テレビジョン受像機用やFA用の電源装置等があり、入出力間を絶縁して信号伝達を行う回路を含むものであれば、如何なる種類のものであっても構わない。   Further, the present invention includes not only the above-described optically coupled semiconductor device and the manufacturing method thereof but also an electronic device using the above-described optically coupled semiconductor device. As the electronic device, there is a power supply device for a television receiver or an FA, and any kind of electronic device may be used as long as it includes a circuit for performing signal transmission with insulation between input and output.

図1(a)は、本発明の実施形態1に係る光結合半導体装置の概略構成を示す正面から観た透視図、図1(b)はそれを下から観た底面図である。FIG. 1A is a perspective view of a schematic configuration of the optically coupled semiconductor device according to the first embodiment of the present invention viewed from the front, and FIG. 1B is a bottom view thereof viewed from below. 図2(a)は、本発明の実施形態2に係る光結合半導体装置の概略構成を示す正面から観た透視図、図2(b)はそれを下から観た底面図である。FIG. 2A is a perspective view seen from the front showing the schematic configuration of the optically coupled semiconductor device according to the second embodiment of the present invention, and FIG. 2B is a bottom view seen from below. 図3(a)は、本発明の実施形態3に係る光結合半導体装置の概略構成を示す正面から観た透視図、図3(b)はそれを下から観た底面図である。FIG. 3A is a perspective view seen from the front showing a schematic configuration of the optically coupled semiconductor device according to Embodiment 3 of the present invention, and FIG. 3B is a bottom view seen from below. 図4は、本発明の実施形態4に係る光結合半導体装置の概略構成を示す正面から観た透視図である。FIG. 4 is a front perspective view showing a schematic configuration of the optically coupled semiconductor device according to Embodiment 4 of the present invention. 図5(a)は、本発明の実施形態5に係る光結合半導体装置の概略構成を示す正面から観た透視図、図5(b)はそれを下から観た底面図である。FIG. 5A is a perspective view of the schematic configuration of the optically coupled semiconductor device according to the fifth embodiment of the present invention viewed from the front, and FIG. 5B is a bottom view of the optical coupled semiconductor device viewed from below. 本発明の実施形態5の変形例を示し、図6(a)は光結合半導体装置の概略構成を示す正面から観た透視図、図6(b)はそれを下から観た底面図である。FIG. 6A shows a modified example of the fifth embodiment of the present invention, FIG. 6A is a perspective view showing a schematic configuration of the optically coupled semiconductor device viewed from the front, and FIG. 6B is a bottom view seen from below. . 図7(a)は、本発明の実施形態6に係る光結合半導体装置(対向型フォトカプラ)の概略構成を示す正面から観た透視図、図7(b)はそれを下から観た底面図であるFIG. 7A is a perspective view showing a schematic configuration of an optically coupled semiconductor device (opposing photocoupler) according to Embodiment 6 of the present invention as viewed from the front, and FIG. 7B is a bottom view when viewed from below. It is a figure 図8(a)は、本発明の実施形態7に係る光結合半導体装置の概略構成を示す正面から観た透視図、図8(b)はそれを下から観た底面図である。FIG. 8A is a perspective view seen from the front showing a schematic configuration of the optically coupled semiconductor device according to Embodiment 7 of the present invention, and FIG. 8B is a bottom view seen from below. 図9(a)は、対向型フォトカプラの製造に本発明を適用した例の概略構成を示す正面から観た透視図、図9(b)は平面搭載型フォトカプラの製造に本発明を適用した例の概略構成を示す正面から観た透視図である。FIG. 9A is a perspective view seen from the front showing a schematic configuration of an example in which the present invention is applied to the manufacture of a counter-type photocoupler, and FIG. 9B is an application of the present invention to the manufacture of a plane-mounted photocoupler. It is the perspective view seen from the front which shows schematic structure of the example which was made.

符号の説明Explanation of symbols

1 光結合半導体装置
2 発光側リードフレーム
21 半導体素子搭載ヘッダ部
22 半導体非搭載面
3 受光側リードフレーム
31 半導体素子搭載ヘッダ部
32 半導体非搭載面
4 発光素子
5 受光素子
6 封止樹脂
61 側面
7 冷却用通孔
71 開口端
8 放熱材
9 半導体非搭載面の凹凸
10 止水部
12 樹脂封止用金型
13 樹脂封止用金型
14 凸部
DESCRIPTION OF SYMBOLS 1 Optical coupling semiconductor device 2 Light emission side lead frame 21 Semiconductor element mounting header part 22 Semiconductor non-mounting surface 3 Light receiving side lead frame 31 Semiconductor element mounting header part 32 Semiconductor non-mounting surface 4 Light emitting element 5 Light receiving element 6 Sealing resin 61 Side surface 7 Cooling hole 71 Open end 8 Heat dissipating material 9 Uneven surface of semiconductor non-mounting surface 10 Water stop 12 Resin sealing mold 13 Resin sealing mold 14 Convex

Claims (12)

発光側リードフレーム及び受光側リードフレームと、
前記発光側リードフレームの半導体素子搭載ヘッダ部に搭載される発光素子と、
前記受光側リードフレームの半導体素子搭載ヘッダ部に搭載される受光素子とを備え、
前記発光素子と受光素子とが対向配置されるとともに、前記両リードフレーム及び前記両素子が封止樹脂により樹脂封止された光結合半導体装置において、
前記封止樹脂に、前記半導体素子搭載ヘッダ部の少なくとも一方の半導体非搭載面と連通する冷却用通孔が設けられたことを特徴とする光結合半導体装置。
A light emitting side lead frame and a light receiving side lead frame;
A light emitting element mounted on a semiconductor element mounting header portion of the light emitting side lead frame;
A light receiving element mounted on a semiconductor element mounting header portion of the light receiving side lead frame,
In the optically coupled semiconductor device in which the light emitting element and the light receiving element are arranged to face each other, and both the lead frames and the both elements are sealed with a sealing resin.
An optically coupled semiconductor device, wherein the sealing resin is provided with a cooling through hole communicating with at least one semiconductor non-mounting surface of the semiconductor element mounting header portion.
請求項1に記載の光結合半導体装置において、
前記冷却用通孔が複数個配置されたことを特徴とする光結合半導体装置。
The optically coupled semiconductor device according to claim 1,
An optically coupled semiconductor device comprising a plurality of cooling holes.
請求項1に記載の光結合半導体装置において、
前記冷却用通孔に放熱材が充填されたことを特徴とする光結合半導体装置。
The optically coupled semiconductor device according to claim 1,
An optically coupled semiconductor device, wherein the cooling through hole is filled with a heat dissipation material.
請求項1に記載の光結合半導体装置において、
前記半導体非搭載面に凹凸が設けられたことを特徴とする光結合半導体装置。
The optically coupled semiconductor device according to claim 1,
An optically coupled semiconductor device, wherein the semiconductor non-mounting surface is provided with irregularities.
請求項1に記載の光結合半導体装置において、
前記半導体非搭載面に、前記冷却用通孔を通じて外部から浸入する水分を遮断する止水部が、前記冷却用通孔を包囲するように設けられた光結合半導体装置。
The optically coupled semiconductor device according to claim 1,
An optically coupled semiconductor device, wherein a water stop portion for blocking moisture entering from the outside through the cooling through hole is provided on the non-semiconductor mounting surface so as to surround the cooling through hole.
請求項5に記載の光結合半導体装置において、
前記止水部は、前記冷却用通孔を多重に包囲するように設けられたことを特徴とする光結合半導体装置。
The optically coupled semiconductor device according to claim 5,
The optically coupled semiconductor device, wherein the water stop portion is provided so as to surround the cooling through hole in multiple layers.
請求項5又は6に記載の光結合半導体装置において、
前記止水部は、前記半導体非搭載面に形成した複数の凸部又は凹部で構成されたことを特徴とする光結合半導体装置。
In the optical coupling semiconductor device according to claim 5 or 6,
The optically coupled semiconductor device, wherein the water stop portion is configured by a plurality of convex portions or concave portions formed on the semiconductor non-mounting surface.
請求項1に記載の光結合半導体装置において、
前記冷却用通孔は、その開口端が前記封止樹脂の側面に臨む溝とされたことを特徴とする光結合半導体装置。
The optically coupled semiconductor device according to claim 1,
The optical coupling semiconductor device, wherein the cooling through hole is a groove whose opening end faces a side surface of the sealing resin.
請求項1に記載の光結合半導体装置において、
前記冷却用通孔は、前記ヘッダ部に対し傾斜して設けられたことを特徴とする光結合半導体装置。
The optically coupled semiconductor device according to claim 1,
The optical coupling semiconductor device, wherein the cooling through hole is provided to be inclined with respect to the header portion.
封止樹脂充填時に半導体素子搭載ヘッダ部の半導体非搭載面と当接する凸部を備えた樹脂封止用金型を用いることを特徴とする請求項1に記載の光結合半導体装置の製造方法。   2. The method of manufacturing an optically coupled semiconductor device according to claim 1, wherein a resin sealing mold having a convex portion that comes into contact with the semiconductor non-mounting surface of the semiconductor element mounting header portion when the sealing resin is filled is used. 前記冷却用通孔を、封止樹脂に対して切削加工を施すことにより形成することを特徴とする請求項1に記載の光結合半導体装置の製造方法。   The method for manufacturing an optically coupled semiconductor device according to claim 1, wherein the cooling through hole is formed by cutting a sealing resin. 請求項1〜9のいずれか一つに記載の光結合半導体装置を用いたことを特徴とする電子機器。   An electronic apparatus comprising the optically coupled semiconductor device according to claim 1.
JP2007230422A 2007-09-05 2007-09-05 Optically-coupled semiconductor device Pending JP2009064907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230422A JP2009064907A (en) 2007-09-05 2007-09-05 Optically-coupled semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230422A JP2009064907A (en) 2007-09-05 2007-09-05 Optically-coupled semiconductor device

Publications (1)

Publication Number Publication Date
JP2009064907A true JP2009064907A (en) 2009-03-26

Family

ID=40559250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230422A Pending JP2009064907A (en) 2007-09-05 2007-09-05 Optically-coupled semiconductor device

Country Status (1)

Country Link
JP (1) JP2009064907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050487A (en) * 2015-09-04 2017-03-09 株式会社東芝 Optical coupling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050487A (en) * 2015-09-04 2017-03-09 株式会社東芝 Optical coupling device

Similar Documents

Publication Publication Date Title
US8513530B2 (en) Package carrier and manufacturing method thereof
US7606035B2 (en) Heat sink and memory module using the same
US20080283951A1 (en) Semiconductor device and method for manufacturing the same
JP2008060172A (en) Semiconductor device
WO2012029912A1 (en) Light emitting device, and package array for light emitting device
JP2012114393A (en) Heat dissipation substrate and manufacturing method for the same
JP2016096329A (en) Heat removal from multiple optical devices
JP2008199720A (en) Power supply module
JP2010238833A (en) Package for optical semiconductor device, and optical semiconductor device
JP5888236B2 (en) LIGHT EMITTING DEVICE, CIRCUIT BOARD, LIGHT EMITTING DEVICE PACKAGE ARRAY, AND LIGHT EMITTING DEVICE PACKAGE ARRAY MANUFACTURING METHOD
JP2016111089A (en) Semiconductor device
US9704794B2 (en) Electronic device with die being sunk in substrate
JP2011091259A (en) Semiconductor module and method of manufacturing the same
JP2009016605A (en) Heat radiation structure, its manufacturing method, and indoor base station apparatus using heat radiation structure
JP2010251427A (en) Semiconductor module
JP2007281201A (en) Semiconductor device
JP2009064907A (en) Optically-coupled semiconductor device
JP2008004688A (en) Semiconductor package
CN106941759B (en) Optical module
US8217506B2 (en) Semiconductor packaging structure having conductive gel to package semiconductor device
KR20140025257A (en) Three-dimensional integrated circuit structure and method of aluminum nitride interposer substrate
US10251256B2 (en) Heat dissipating structure
TWI666979B (en) Circuit board and manufacturing method thereof
KR101315912B1 (en) Base for semiconductor package and lighting device using the same
JP2007235061A (en) Double-sided cooling semiconductor device