JP2009064624A - Inspection method and inspection device of ion conductive electrolyte membrane - Google Patents

Inspection method and inspection device of ion conductive electrolyte membrane Download PDF

Info

Publication number
JP2009064624A
JP2009064624A JP2007230133A JP2007230133A JP2009064624A JP 2009064624 A JP2009064624 A JP 2009064624A JP 2007230133 A JP2007230133 A JP 2007230133A JP 2007230133 A JP2007230133 A JP 2007230133A JP 2009064624 A JP2009064624 A JP 2009064624A
Authority
JP
Japan
Prior art keywords
hydrogen
electrolyte membrane
thin film
electrode
light control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007230133A
Other languages
Japanese (ja)
Other versions
JP5150173B2 (en
Inventor
Naoki Uchiyama
直樹 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsumitec Co Ltd
Original Assignee
Atsumitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsumitec Co Ltd filed Critical Atsumitec Co Ltd
Priority to JP2007230133A priority Critical patent/JP5150173B2/en
Publication of JP2009064624A publication Critical patent/JP2009064624A/en
Application granted granted Critical
Publication of JP5150173B2 publication Critical patent/JP5150173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the inspection method and the inspection device of an ion conductive electrolyte membrane. <P>SOLUTION: The inspection device practicing the inspection method for inspecting the hydrogen ion conductive electrolyte membrane having a light modulation thin film and a hydrogen electrode joined to both surfaces thereof has a container for forming a space on a hydrogen electrode side and an electric circuit electrically connected between the light modulation thin film and the hydrogen electrode through a switch. The inspection device inspects the presence or absence of a defective part by the change of the optical reflectance of the light modulation thin film caused by hydrogenation by supplying hydrogen gas to the space on the hydrogen electrode side in a switch-off sate and hydrogenating the light modulation thin film with hydrogen gas leaked through the defective part of the electrolyte membrane, and also inspects the uniformity of the hydrogen ion conductivity of the electrolyte membrane by the uniformity of the change of the optical reflectance of the light modulation thin film caused by hydrogenation by supplying hydrogen gas to the space on the hydrogen electrode side in a switch-on state, transmitting hydrogen ions produced by ionization from the hydrogen electrode to the electrolyte membrane, and hydrogenating the light modulating thin film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素イオン伝導性電解質膜の検査方法および検査装置に関するものである。   The present invention relates to an inspection method and an inspection apparatus for a hydrogen ion conductive electrolyte membrane.

水素イオン伝導性電解質膜(「電解質膜」と表示することがある)は、例えば固体高分子型燃料電池の膜電極接合体(membrane electrode assembly )に用いられ、膜電極接合体は、電解質膜である固体高分子膜の一方の面に水素極(燃料極)を他方の面に空気極(酸素極)を接合等して構成される。かかる固体高分子型燃料電池では、水素極には水素が、空気極には酸素(又は空気)がそれぞれ供給される。水素は、水素極でイオン化して水素イオンと電子を生成する。水素イオンは、電解質膜を透過して空気極へと達する。電子は、水素極と空気極との間に接続された電気的負荷を介して空気極へ達する。電子が供給された空気極では、水素イオンと酸素が反応して、水(水蒸気)が生成される。   A hydrogen ion conductive electrolyte membrane (sometimes referred to as “electrolyte membrane”) is used, for example, in a membrane electrode assembly of a polymer electrolyte fuel cell, and the membrane electrode assembly is an electrolyte membrane. It is configured by joining a hydrogen electrode (fuel electrode) to one surface of a solid polymer film and an air electrode (oxygen electrode) to the other surface. In such a polymer electrolyte fuel cell, hydrogen is supplied to the hydrogen electrode, and oxygen (or air) is supplied to the air electrode. Hydrogen is ionized at the hydrogen electrode to generate hydrogen ions and electrons. Hydrogen ions pass through the electrolyte membrane and reach the air electrode. The electrons reach the air electrode via an electrical load connected between the hydrogen electrode and the air electrode. At the air electrode supplied with electrons, hydrogen ions and oxygen react to generate water (water vapor).

固体高分子型燃料電池では、電解質膜にピンホールやクラック等の欠陥部があると、欠陥部でガス漏れが生じて発電能力が低下する。欠陥部は、電解質膜のいずれか一方の面側の空間に水素ガスを供給した場合、電解質膜の他方の面に水素ガスの漏洩を生じさせるから、水素センサで漏洩水素ガスの濃度を測定することで欠陥部が存在することを検知できる。こうした測定における水素センサとしては、例えば水素吸収合金を用いることができる(例えば特許文献1)。また固体高分子型燃料電池において、膜電極接合体を電気的に直列接続して出力電圧を高めるときの最大出力電流は、水素イオン(プロトン)伝導が最も低い膜電極接合体で決定される。よって直列接続される膜電極接合体は、水素イオン伝導ができるだけ均一であることが望ましい。そこで、均一な水素イオン伝導性を実現する膜電極接合体の製造方法が開発された(例えば特許文献2)。
特開2004−233097号公報 特開2006−252938号公報
In a polymer electrolyte fuel cell, if the electrolyte membrane has a defective portion such as a pinhole or a crack, gas leakage occurs in the defective portion and power generation capacity is reduced. When the hydrogen gas is supplied to the space on either side of the electrolyte membrane, the defective portion causes leakage of the hydrogen gas on the other surface of the electrolyte membrane. Therefore, the concentration of the leaked hydrogen gas is measured with a hydrogen sensor. Therefore, it can be detected that a defective portion exists. As a hydrogen sensor in such measurement, for example, a hydrogen absorbing alloy can be used (for example, Patent Document 1). In the polymer electrolyte fuel cell, the maximum output current when the membrane electrode assembly is electrically connected in series to increase the output voltage is determined by the membrane electrode assembly having the lowest hydrogen ion (proton) conduction. Therefore, it is desirable that membrane electrode assemblies connected in series have hydrogen ion conduction as uniform as possible. Therefore, a method for manufacturing a membrane electrode assembly that realizes uniform hydrogen ion conductivity has been developed (for example, Patent Document 2).
JP 2004-233097 A JP 2006-252938 A

しかし、雰囲気中に拡散した漏洩水素ガスを検知しても、漏洩水素ガスの拡散で電解質膜の欠陥部を検知する感度が低下するし、欠陥部の位置を特定することができない。また均一な水素イオン伝導性を有する電解質膜の製造方法を用いても、製造された電解質膜が均一な水素イオン伝導性を有しているか否かを検査しなければ、電解質膜の品質を保証することができない。加えてこれら技術は、連続した工程において、電解質膜の欠陥部と水素イオン伝導性の均一を検査する技術ではない。そこで本発明は、電解質膜の欠陥部の位置と水素イオン伝導性の均一性を連続した工程で検査できるイオン伝導性電解質膜の検査方法および検査装置の提供を課題とする。   However, even if the leaked hydrogen gas diffused in the atmosphere is detected, the sensitivity of detecting the defective portion of the electrolyte membrane decreases due to the diffusion of the leaked hydrogen gas, and the position of the defective portion cannot be specified. Even if a method for producing an electrolyte membrane having uniform hydrogen ion conductivity is used, the quality of the electrolyte membrane is guaranteed if the manufactured electrolyte membrane is not inspected for uniform hydrogen ion conductivity. Can not do it. In addition, these techniques are not techniques for inspecting defects in the electrolyte membrane and uniformity of hydrogen ion conductivity in a continuous process. Therefore, an object of the present invention is to provide an ion conductive electrolyte membrane inspection method and an inspection apparatus capable of inspecting the position of a defective portion of the electrolyte membrane and the uniformity of hydrogen ion conductivity in a continuous process.

上記課題を解決するため、本発明に係るイオン伝導性電解質膜の検査方法(請求項1)では、電解質膜の一方の面に調光薄膜が、前記電解質膜の他方の面に水素極が、それぞれ接合され、調光薄膜と水素極との間にスイッチを介して電気回路が接続される。スイッチをオフにした状態で水素ガスを水素極側の空間に供給した場合において、電解質膜にガスの漏洩を生じさせる欠陥部があるときには、欠陥部を通じて水素ガスが水素極側の空間から電解質膜の一方の面へと漏洩する。するとこの漏洩水素ガスが調光薄膜を水素化して、調光薄膜の光学的反射率が変化する。この光学的反射率によって、電解質膜の欠陥部の有無を検査することができる(欠陥部検査工程)。   In order to solve the above problems, in the method for inspecting an ion conductive electrolyte membrane according to the present invention (Claim 1), a light control thin film is provided on one surface of the electrolyte membrane, a hydrogen electrode is provided on the other surface of the electrolyte membrane, Each is joined, and an electric circuit is connected between the light control thin film and the hydrogen electrode via a switch. When hydrogen gas is supplied to the space on the hydrogen electrode side with the switch turned off, if there is a defect in the electrolyte membrane that causes gas leakage, the hydrogen gas passes from the space on the hydrogen electrode side through the defect to the electrolyte membrane. Leaks to one side of Then, the leaked hydrogen gas hydrogenates the light control thin film, and the optical reflectance of the light control thin film changes. With this optical reflectance, the presence or absence of a defective portion of the electrolyte membrane can be inspected (defect portion inspection step).

またスイッチをオンにした状態で水素ガスを水素極側の空間に供給すると、水素ガスは水素極によってイオン化する。イオン化で生じた電子を電気回路経由で水素極から調光薄膜に供給するとともに、イオン化で生じた水素イオンを水素極から電解質膜を透過させて調光薄膜に供給し、調光薄膜に到達した水素イオンで調光薄膜を水素化する。すると調光薄膜は、水素化して光学的反射率が変化する。この光学的反射率の変化は、電解質膜を透過して調光薄膜に達した水素イオンの多寡に依存するから、電解質膜の水素イオン伝導性の相違が調光薄膜の光学的反射率の斑(むら)として検知されて、電解質膜の水素イオン伝導性の均一性の良否を検査することができる(イオン伝導性検査工程)。該検査方法では、スイッチの操作によって、欠陥部の検査とイオン伝導性の検査を連続した工程で実施することができ、また上記水素イオン伝導性検査は、常温で行うことができる。   When hydrogen gas is supplied to the space on the hydrogen electrode side with the switch turned on, the hydrogen gas is ionized by the hydrogen electrode. Electrons generated by ionization are supplied from the hydrogen electrode to the light control thin film via an electric circuit, and hydrogen ions generated by ionization are transmitted from the hydrogen electrode through the electrolyte film to the light control thin film and reach the light control thin film. Hydrogenate the light control thin film with hydrogen ions. Then, the light control thin film is hydrogenated and the optical reflectance is changed. This change in optical reflectivity depends on the amount of hydrogen ions that have passed through the electrolyte membrane and reached the light control thin film. Therefore, the difference in the hydrogen ion conductivity of the electrolyte membrane is a variation in the optical reflectivity of the light control thin film. It is detected as (unevenness), and the quality of the hydrogen ion conductivity uniformity of the electrolyte membrane can be inspected (ion conductivity inspection step). In the inspection method, the defect inspection and the ion conductivity inspection can be performed in a continuous process by operating the switch, and the hydrogen ion conductivity inspection can be performed at room temperature.

請求項2に記載のように、電気回路を電源回路で構成し、水素極を前記電源回路の正電圧電極に、そして調光薄膜を電源回路の負電圧電極にそれぞれ電気的に接続すれば、水素極で生成された電子を、電源回路の正電圧電極に流入させて更に負電圧電極から調光薄膜へと供給できるとともに、水素極で生成された水素イオンを電気的斥力で電解質膜へと流入させて更に調光薄膜へと供給することができる。かくして電解質膜の水素イオン伝導性の均一性をより良好に検査することができる。   According to claim 2, if the electric circuit is constituted by a power circuit, the hydrogen electrode is electrically connected to the positive voltage electrode of the power circuit, and the dimming thin film is electrically connected to the negative voltage electrode of the power circuit, Electrons generated at the hydrogen electrode can flow into the positive voltage electrode of the power supply circuit and be further supplied from the negative voltage electrode to the light control thin film, and the hydrogen ions generated at the hydrogen electrode can be electrically repulsively into the electrolyte membrane. It can be made to flow and further supplied to the light control thin film. Thus, the uniformity of hydrogen ion conductivity of the electrolyte membrane can be inspected better.

請求項3に記載のように、調光薄膜が触媒層と反応層を有し、反応層が電源回路の負電圧電極に電気的に接続され、触媒層が電解質膜と接していれば、触媒層の触媒作用で、反応層が電解質膜を透過した水素ガスで水素化して、調光薄膜の光学的反射率が変化する。請求項4に記載のように、水素極が水素拡散膜とアノード極を有し、アノード極が電源回路の正電圧電極に電気的に接続されるとともに電解質膜と接していれば、水素拡散膜が水素ガスを拡散して、アノード極で効率よく水素イオンを生成することができる。請求項5に記載のように、調光薄膜が、マグネシウム・ニッケル合金、マグネシウム・チタン合金、マグネシウム・ニオブ合金、マグネシウム・バナジウム合金もしくはマグネシウムで形成した反応膜と、触媒膜をパラジウムもしくは白金で形成した触媒膜を有していれば、調光薄膜は、水素化すると迅速かつ可逆的に光学的反射率が変化する。   If the light control thin film has a catalyst layer and a reaction layer, the reaction layer is electrically connected to the negative voltage electrode of the power supply circuit, and the catalyst layer is in contact with the electrolyte membrane, Due to the catalytic action of the layer, the reaction layer is hydrogenated with hydrogen gas that has passed through the electrolyte membrane, and the optical reflectance of the light control thin film changes. If the hydrogen electrode has a hydrogen diffusion film and an anode electrode, and the anode electrode is electrically connected to the positive voltage electrode of the power supply circuit and is in contact with the electrolyte membrane, the hydrogen diffusion film Can diffuse hydrogen gas and efficiently generate hydrogen ions at the anode electrode. The light control thin film is formed of a magnesium / nickel alloy, a magnesium / titanium alloy, a magnesium / niobium alloy, a magnesium / vanadium alloy or magnesium, and a catalyst film made of palladium or platinum. If the catalyst film is provided, the light control thin film changes its optical reflectance rapidly and reversibly when hydrogenated.

請求項6に記載のように、水素極側の空間における気圧を調光薄膜側の空間における気圧よりも高く維持することができれば、水素ガスを電解質膜の他方の面に接合された水素極から電解質膜へと到達させることができて、欠陥部における漏洩水素ガスの量を多くすることができる(電解質膜の欠陥部の有無を迅速に検査することができる)。
本発明に係るイオン伝導性電解質膜の検査装置(請求項7)は、一方の面に調光薄膜を接合し、且つ他方の面に水素極を接合した水素イオン伝導性電解質膜を検査する装置であって、水素極側の空間を形成する容器と、調光薄膜と水素極との間にスイッチを介して電気的に接続される電気回路とを有している。したがって、スイッチがオフの状態において水素極側の空間に水素ガスを供給すれば、請求項1の検査方法と同様に電解質膜の欠陥部の有無を検査することができる(欠陥部検査)。また、スイッチがオンの状態において水素極側の空間に水素ガスを供給すれば請求項1の検査方法と同様に電解質膜の水素イオン伝導性の均一性の良否を検査することができる(イオン伝導性検査)。該検査装置は、スイッチの操作で電解質膜の欠陥部の位置と水素イオン伝導性の均一性を連続した工程で検査でき、上記水素イオン伝導性検査は、常温で行うことができる。
If the atmospheric pressure in the space on the hydrogen electrode side can be maintained higher than the atmospheric pressure in the space on the light control thin film side as described in claim 6, hydrogen gas is supplied from the hydrogen electrode joined to the other surface of the electrolyte membrane. It can reach the electrolyte membrane, and the amount of leaked hydrogen gas at the defective portion can be increased (the presence or absence of the defective portion of the electrolyte membrane can be quickly inspected).
An inspection apparatus for an ion conductive electrolyte membrane according to the present invention (Claim 7) is an apparatus for inspecting a hydrogen ion conductive electrolyte membrane in which a light control thin film is bonded to one surface and a hydrogen electrode is bonded to the other surface. And it has the container which forms the space by the side of a hydrogen electrode, and the electric circuit electrically connected between a light control thin film and a hydrogen electrode via a switch. Therefore, if hydrogen gas is supplied to the space on the hydrogen electrode side when the switch is off, the presence or absence of a defective portion of the electrolyte membrane can be inspected as in the inspection method of claim 1 (defective portion inspection). In addition, if hydrogen gas is supplied to the space on the hydrogen electrode side when the switch is on, the uniformity of the hydrogen ion conductivity of the electrolyte membrane can be inspected as in the inspection method of claim 1 (ion conduction). Sex test). The inspection apparatus can inspect the position of the defective portion of the electrolyte membrane and the uniformity of hydrogen ion conductivity in a continuous process by operating a switch, and the hydrogen ion conductivity inspection can be performed at room temperature.

請求項8では、請求項2と同様に電解質膜の水素イオン伝導性の均一性をより良好に検査することができる。請求項9では、水素極側の空間の気圧が高いから、請求項6と同様に電解質膜の欠陥部の有無を迅速に検査することができる。   In the eighth aspect, similarly to the second aspect, the uniformity of the hydrogen ion conductivity of the electrolyte membrane can be inspected better. According to the ninth aspect, since the atmospheric pressure in the space on the hydrogen electrode side is high, the presence or absence of a defective portion of the electrolyte membrane can be quickly inspected similarly to the sixth aspect.

以上のように本発明にかかるイオン伝導性電解質膜の検査方法および検査装置によれば、電解質膜に接合された調光薄膜の光学的反射率の変化に基づき、電解質膜の欠陥部と水素イオン伝導性の均一性を極めて迅速かつ高感度に検査できる。しかも、該検査方法および検査装置は、スイッチを操作することで、電解質膜の欠陥部と水素イオン伝導性の均一性を連続した工程で検査でき、よって検査のコスト削減も実現できる。   As described above, according to the inspection method and the inspection apparatus for the ion conductive electrolyte membrane according to the present invention, based on the change in the optical reflectance of the light control thin film joined to the electrolyte membrane, the defect portion of the electrolyte membrane and the hydrogen ion Conductivity uniformity can be inspected extremely quickly and with high sensitivity. In addition, the inspection method and the inspection apparatus can inspect the defective portion of the electrolyte membrane and the uniformity of hydrogen ion conductivity in a continuous process by operating the switch, and thus can reduce the inspection cost.

以下、図面を参照して、本発明にかかるイオン伝導性電解質膜の検査方法および検査装置について説明する。   Hereinafter, an inspection method and an inspection apparatus for an ion conductive electrolyte membrane according to the present invention will be described with reference to the drawings.

本実施例は、一方の面に調光薄膜を、他方の面に水素極を接合した水素イオン伝導性電解質膜の検査方法および検査装置に関するものである。ここで、図1は、検査対象となる電解質膜に調光薄膜および水素極を接合して、電気回路(電源回路)を接続したときの概略構成例を示す図であり、図2は、電解質膜等の斜視図であり、図3は、本発明にかかるイオン伝導性電解質膜の検査方法を実施する検査装置に電解質膜等を収容したときの概略構成例を示す図である。   The present embodiment relates to an inspection method and an inspection apparatus for a hydrogen ion conductive electrolyte membrane in which a light control thin film is bonded to one surface and a hydrogen electrode is bonded to the other surface. Here, FIG. 1 is a diagram showing a schematic configuration example when a light control thin film and a hydrogen electrode are joined to an electrolyte membrane to be inspected, and an electric circuit (power supply circuit) is connected, and FIG. FIG. 3 is a perspective view of a membrane and the like, and FIG. 3 is a diagram showing a schematic configuration example when the electrolyte membrane and the like are accommodated in an inspection apparatus for performing the ion conductive electrolyte membrane inspection method according to the present invention.

(電解質膜)
図1及び図2に示すように、検査対象となる電解質膜10は、その一方の面10aに電解質膜10と同一平面状形を有する調光薄膜11が接合され、その他方の面10bに電解質膜10と同一平面状形を有する水素極14が接合されている。ここで調光薄膜11は、触媒膜12と反応膜13を有し、触媒膜12で電解質膜10の一方の面10aに接している。また水素極14は、水素拡散膜15とアノード極16を有し、アノード極16で電解質膜10の他方の面10bに接している。かくして調光薄膜11と調光薄膜11は、電解質膜10を挟んで相対している。また電源回路17の正電圧電極17pは、図1に示すように、水素極14のアノード極16に接続され、負電圧電極17nは、スイッチSを介し調光薄膜11の反応膜13に接続される。すなわちスイッチSがオンされると、電源回路17は、アノード極16から電子を取り出して反応膜13へと移動させる電気回路を形成するとともに、反応膜13をアノード極16に対し負電位にバイアスする(反応膜13とアノード極16間に電界を生じさせる)。
(Electrolyte membrane)
As shown in FIGS. 1 and 2, the electrolyte membrane 10 to be inspected is bonded to one surface 10a with a light control thin film 11 having the same planar shape as the electrolyte membrane 10, and to the other surface 10b. A hydrogen electrode 14 having the same planar shape as the membrane 10 is joined. Here, the light control thin film 11 has a catalyst film 12 and a reaction film 13, and the catalyst film 12 is in contact with one surface 10 a of the electrolyte membrane 10. The hydrogen electrode 14 includes a hydrogen diffusion film 15 and an anode electrode 16, and the anode electrode 16 is in contact with the other surface 10 b of the electrolyte membrane 10. Thus, the light control thin film 11 and the light control thin film 11 are opposed to each other with the electrolyte film 10 interposed therebetween. Further, as shown in FIG. 1, the positive voltage electrode 17p of the power supply circuit 17 is connected to the anode electrode 16 of the hydrogen electrode 14, and the negative voltage electrode 17n is connected to the reaction film 13 of the light control thin film 11 through the switch S. The That is, when the switch S is turned on, the power supply circuit 17 forms an electric circuit that takes out electrons from the anode electrode 16 and moves them to the reaction film 13, and biases the reaction film 13 to a negative potential with respect to the anode electrode 16. (An electric field is generated between the reaction film 13 and the anode 16).

なお電解質膜10には、例えば固体高分子膜であるパーフルオロスルホン酸基ポリマー膜、あるいはナフィオン膜等が使用される。また調光薄膜11が有する反応膜13は、例えばMgNix(0≦x<0.6)で形成され、あるいはマグネシウム・チタン合金、マグネシウム・ニオブ合金、マグネシウム・バナジウム合金もしくはマグネシウムで形成される。触媒膜12は、例えばパラジウムもしくは白金からなり、反応膜13の表面にコーティングなどによって形成され、厚さは1nmないし100nmである。かかる調光薄膜11が、水素濃度が100ppmないし1%程度以上の雰囲気に触れると、例えば数秒ないし10秒程度で、反応膜13が迅速かつ可逆的に水素化して光学的反射率(以下、単に「反射率」と表示することがある)に目視可能な変化が生じる(反応膜13は、水素化していないときには反射率が高く、水素化すると反射率が低下する)。また水素極14が有する水素拡散膜15は、例えばカーボンクロス、カーボンペーパー等の炭素繊維、または多孔質樹脂、多孔質セラミック若しくは多孔質金属(発泡金属)等で構成され、厚さが例えば0.1mmないし50mmであり、またアノード極16は、例えば白金等の水素イオン触媒膜等で構成される。また水素極14が電解質膜10とともに燃料電池の膜電極接合体の一部を形成するものであれば、電解質膜10に水素極14を接合した状態において、膜電極接合体の水素イオン伝導性を検査することができる。   For the electrolyte membrane 10, for example, a perfluorosulfonic acid group polymer membrane or a Nafion membrane which is a solid polymer membrane is used. The reaction film 13 included in the light control thin film 11 is made of, for example, MgNix (0 ≦ x <0.6), or made of magnesium / titanium alloy, magnesium / niobium alloy, magnesium / vanadium alloy, or magnesium. The catalyst film 12 is made of, for example, palladium or platinum, and is formed on the surface of the reaction film 13 by coating or the like, and has a thickness of 1 nm to 100 nm. When the light control thin film 11 is exposed to an atmosphere having a hydrogen concentration of about 100 ppm to about 1% or more, the reaction film 13 is rapidly and reversibly hydrogenated in a few seconds to 10 seconds, for example, and the optical reflectance (hereinafter simply referred to as “light reflectivity”). There is a visible change in “sometimes indicated as“ reflectance ”” (the reaction film 13 has a high reflectance when not hydrogenated, and the reflectance decreases when hydrogenated). The hydrogen diffusion film 15 included in the hydrogen electrode 14 is made of, for example, carbon fiber such as carbon cloth or carbon paper, or a porous resin, a porous ceramic, a porous metal (foamed metal), or the like. The anode electrode 16 is made of, for example, a hydrogen ion catalyst film such as platinum. If the hydrogen electrode 14 forms part of the membrane electrode assembly of the fuel cell together with the electrolyte membrane 10, the hydrogen ion conductivity of the membrane electrode assembly is improved in a state where the hydrogen electrode 14 is joined to the electrolyte membrane 10. Can be inspected.

(検査装置)
イオン伝導性電解質膜の検査装置30は、図3に示す第1の空間(水素極側の空間)21を形成する容器20、電源回路17およびスイッチSを有している。電源回路17は、スイッチSを介し調光薄膜11および水素極に電気的に接続される。容器20は、調光薄膜11を接合した電解質膜10を収容すると、水素極14側に第1の空間を形成し、調光薄膜11側に第2の空間を形成する。もちろん両空間は、電解質膜10等で遮られる(調光薄膜11および水素極14を接合した電解質膜10は、その周辺部を枠(図示せず)で挟持されるなどして容器20の内部に取り付けられる)。第1の空間21は、水素ガスHを供給する水素ガス供給口21aを有し、第2の空間22は、空気(又は酸素)を供給する空気供給口22aを有している。なお図3中の21bは、未反応水素ガスHを回収するための回収口であり、同じく22bは未反応空気(酸素)と調光薄膜11で生成された水蒸気を排出する排出口である。また第2の空間22の周壁23には、調光薄膜11を目視するための窓24が設けられている(ガラス25が窓24に取り付けられて容器20の内部と外部を遮蔽している)。好ましくは、第1の空間21の気圧が、ポンプ(気圧調整手段)26で、第2の空間22の気圧よりも高い気圧に維持される。なお気圧調整手段は、第1の空間21の気圧を第2の空間22の気圧よりも高く維持する機能を有するものであれば、その構成を問わない。
(Inspection equipment)
The ion conductive electrolyte membrane inspection device 30 includes a container 20, a power supply circuit 17, and a switch S that form a first space (a space on the hydrogen electrode side) 21 shown in FIG. The power supply circuit 17 is electrically connected to the light control thin film 11 and the hydrogen electrode via the switch S. When the container 20 accommodates the electrolyte membrane 10 to which the light control thin film 11 is bonded, the container 20 forms a first space on the hydrogen electrode 14 side and forms a second space on the light control thin film 11 side. Of course, both spaces are blocked by the electrolyte membrane 10 or the like (the electrolyte membrane 10 in which the light control thin film 11 and the hydrogen electrode 14 are joined is sandwiched by a frame (not shown) around the inside of the container 20). To be attached). The first space 21, a hydrogen gas supply port 21a for supplying hydrogen gas H 2, the second space 22 has an air supply port 22a for supplying air (or oxygen). Incidentally 21b in FIG. 3 is a recovery port for recovering the unreacted hydrogen gas H 2, also 22b is a discharge port for discharging the steam generated in the dimmer film 11 unreacted air (oxygen) . A window 24 for viewing the light control thin film 11 is provided on the peripheral wall 23 of the second space 22 (a glass 25 is attached to the window 24 to shield the inside and the outside of the container 20). . Preferably, the air pressure in the first space 21 is maintained at a pressure higher than the air pressure in the second space 22 by the pump (atmospheric pressure adjusting means) 26. The air pressure adjusting means may be of any configuration as long as it has a function of maintaining the air pressure in the first space 21 higher than the air pressure in the second space 22.

(欠陥部検査)
電解質膜の欠陥部検査(欠陥部検査工程)は、以下のとおりである。スイッチSをオフにした状態で、例えばポンプ26で加圧された水素ガスHを第1の空間21に供給し、第2の空間22には、例えばポンプ(図示せず)で空気を供給する(図3)。かかる状態において、電解質膜10にピンホール等の欠陥部が全くないときには、第1の空間21に供給された水素ガスHは、電解質膜10に阻まれて調光薄膜11に触れることができない。したがって、調光薄膜11は水素化されず、調光薄膜11の反射率は変化しない(調光薄膜11の表面11aを目視したとき、調光薄膜11は、均一な高い反射率を有して鏡面のように見える)。電解質膜10にクラック10c(欠陥部)があるときには、図4に示すように、水素ガスHが、水素極14を透過して、電解質膜10の他方の面10bからクラック10cを経て電解質膜10の一方の面10aへと漏洩する。するとクラック10cに接する調光薄膜11の部分11cは、漏洩した水素ガスHの多寡に応じて反射率が迅速に変化する(反射率が低下して、調光薄膜11の斑として目視できる)。かくして調光薄膜11に水素ガス漏洩を生じさせる欠陥部の有無、欠陥部の位置、欠陥部の形状を目視によって迅速に検査することができる。
(Defect inspection)
The defect inspection (defect inspection step) of the electrolyte membrane is as follows. With the switch S turned off, for example, hydrogen gas H 2 pressurized by the pump 26 is supplied to the first space 21, and air is supplied to the second space 22 by, for example, a pump (not shown). (FIG. 3). In this state, when the electrolyte membrane 10 has no defect such as a pinhole, the hydrogen gas H 2 supplied to the first space 21 is blocked by the electrolyte membrane 10 and cannot touch the light control thin film 11. . Therefore, the light control thin film 11 is not hydrogenated, and the reflectance of the light control thin film 11 does not change (when the surface 11a of the light control thin film 11 is observed, the light control thin film 11 has a uniform high reflectance. Looks like a mirror). When the electrolyte membrane 10 has a crack 10c (defect portion), as shown in FIG. 4, the hydrogen gas H 2 passes through the hydrogen electrode 14, passes through the crack 10c from the other surface 10b of the electrolyte membrane 10, and passes through the electrolyte membrane. 10 leaks to one surface 10a. Then, the reflectance of the portion 11c of the light control thin film 11 in contact with the crack 10c changes rapidly according to the amount of the leaked hydrogen gas H 2 (the reflectivity decreases and can be visually observed as spots of the light control thin film 11). . Thus, the presence / absence of a defective portion that causes hydrogen gas leakage in the light control thin film 11, the position of the defective portion, and the shape of the defective portion can be quickly inspected visually.

(イオン伝導性の検査工程)
電解質膜のイオン伝導性検査(イオン伝導性検査工程)は、以下のとおりである。スイッチSをオンにした状態で、例えばポンプ26で加圧された水素ガスHを第1の空間21に供給し、第2の空間22には、例えばポンプ(図示せず)で空気を供給する(図3)。かかる状態では、図5に示すように、第1の空間21に供給された水素ガスHは、水素極14の水素拡散膜15で拡散されアノード極16に到達する。アノード極16では水素ガスHが水素イオンH+と電子eに分離する。水素イオンH+は、電源回路17の正電圧による電気的斥力と、アノード極16に対し負電位にバイアスさた反応膜13の電気的引力とによって、電解質膜10を透過して触媒膜12に到達する(矢印C)。一方、電子eは、電源回路17の正電圧電極17pから負電圧電極17nを経て調光薄膜11の反応膜13へ達し、さらに触媒膜12へ向かう(矢印A及びB)。かくして電解質膜10内を透過した水素イオンH+は、電解質膜10と触媒膜12との界面近傍において、電子eと結合して一旦水素ガスHとなる。こうして生成された水素ガスHは、触媒膜12の作用で反応膜13と反応して(水素分子Hとなって)、反応膜13を可逆的に水素化する(調光薄膜11が、水素イオンH+の多寡に応じて鏡面状態から透明状態へと可逆的に変化する)。この検査では、スイッチSは、第1の空間21に水素ガスH2を供給したのちオンされても、あるいは水素ガスHの供給前にオンされてもよい。電願回路17によって、電解質膜10における水素イオンH+の透過が促進されればよいのである。
(Ion conductivity inspection process)
The ion conductivity test (ion conductivity test process) of the electrolyte membrane is as follows. With the switch S turned on, for example, hydrogen gas H 2 pressurized by the pump 26 is supplied to the first space 21, and air is supplied to the second space 22 by, for example, a pump (not shown). (FIG. 3). In this state, as shown in FIG. 5, the hydrogen gas H 2 supplied to the first space 21 is diffused by the hydrogen diffusion film 15 of the hydrogen electrode 14 and reaches the anode electrode 16. At the anode electrode 16, the hydrogen gas H 2 is separated into hydrogen ions H + and electrons e. Hydrogen ions H + permeate the electrolyte membrane 10 and reach the catalyst membrane 12 by the electric repulsive force due to the positive voltage of the power supply circuit 17 and the electric attractive force of the reaction membrane 13 biased to a negative potential with respect to the anode electrode 16. (Arrow C). On the other hand, the electrons e reach the reaction film 13 of the light control thin film 11 from the positive voltage electrode 17p of the power supply circuit 17 through the negative voltage electrode 17n, and further toward the catalyst film 12 (arrows A and B). Thus the hydrogen ion H + passes through the electrolyte membrane 10, in the vicinity of the interface between the electrolyte membrane 10 and the catalyst layer 12, the hydrogen gas H 2 once combine with electrons e. The hydrogen gas H 2 thus generated reacts with the reaction film 13 by the action of the catalyst film 12 (to become hydrogen molecules H), and reversibly hydrogenates the reaction film 13 (the light control thin film 11 is hydrogenated). It changes reversibly from a mirror surface state to a transparent state according to the number of ions H +). In this test, the switch S is be turned on after supplying the hydrogen gas H2 into the first space 21, or may be turned on before the supply of the hydrogen gas H 2. The electronic circuit 17 only needs to promote the permeation of hydrogen ions H + through the electrolyte membrane 10.

電解質膜10の水素イオン伝導性が如何なる領域においても均一であれば、電解質膜10の一方の面10aの如何なる領域においても、触媒膜12へ到達する水素イオンH+の量が等しくなる。ここで調光薄膜11の反射率は、電解質膜10を透過した水素イオンH+の多寡に応じて迅速かつ可逆的に変化するから、電解質膜10の水素イオン伝導性が均一であれば、調光薄膜11の反射率が均一かつ迅速に変化する。すなわち調光薄膜11を目視等したとき、調光薄膜11の表面11aの全領域において、反射率が等しく変化したときには、電解質膜10における水素イオン伝導性が電解質膜10の如何なる領域においても均一であると判断することができる。   If the hydrogen ion conductivity of the electrolyte membrane 10 is uniform in any region, the amount of hydrogen ions H + reaching the catalyst membrane 12 is equal in any region of the one surface 10a of the electrolyte membrane 10. Here, the reflectivity of the light control thin film 11 changes rapidly and reversibly according to the amount of hydrogen ions H + that have passed through the electrolyte film 10, so that the light control can be performed if the hydrogen ion conductivity of the electrolyte film 10 is uniform. The reflectance of the thin film 11 changes uniformly and rapidly. That is, when the light control thin film 11 is visually observed, the hydrogen ion conductivity in the electrolyte membrane 10 is uniform in any region of the electrolyte membrane 10 when the reflectance changes equally in the entire region of the surface 11 a of the light control thin film 11. It can be judged that there is.

電解質膜10の水素イオン伝導性が不均一であるときには、水素イオン伝導性が低い領域に接した調光薄膜11の領域では、反射率の変化が他の領域よりも少なくなる。すなわち調光薄膜11の反射率に目視可能な斑が生じて、水素イオン伝導性が不均一であると判断することができる。もし電解質膜10に水素イオン伝導性の局部的欠陥があるときには、該欠陥領域に接する調光薄膜11の反射率が他の領域と異なるから、水素イオン伝導性の局部的欠陥も直接的かつ迅速に検査することができる。   When the hydrogen ion conductivity of the electrolyte membrane 10 is non-uniform, the change in reflectance is smaller in the region of the light control thin film 11 in contact with the region where the hydrogen ion conductivity is low than in other regions. That is, it is possible to determine that visible spots appear in the reflectance of the light control thin film 11 and the hydrogen ion conductivity is non-uniform. If the electrolyte membrane 10 has a local defect of hydrogen ion conductivity, the reflectivity of the light control thin film 11 in contact with the defect region is different from that of other regions, so that the local defect of hydrogen ion conductivity is also directly and quickly. Can be inspected.

欠陥部検査とイオン伝導性検査は、いずれの検査が先行してもよいが、欠陥部検査に合格した電解質膜10にイオン伝導性検査を実施することが好ましい。何故ならば、欠陥部を有さない電解質膜10は、欠陥部検査で反応膜13が水素化しないため、欠陥部検査後ただちにイオン伝導性検査を実施できるからである。もし水素イオン伝導性検査を先行させるときには、水素イオン伝導性検査を実施したことで電解質膜10の反応膜13が水素化するから、欠陥部検査に先立ち、第1の空間21への水素ガスHの供給を停止し、第2の空間に空気等を供給して、電解質膜10の反応膜13を水素化以前の状態に戻せばよい。 The defect inspection and the ion conductivity inspection may be preceded by any inspection, but it is preferable to perform the ion conductivity inspection on the electrolyte membrane 10 that has passed the defect inspection. This is because the electrolyte membrane 10 having no defect portion can be subjected to ion conductivity inspection immediately after the defect portion inspection because the reaction film 13 is not hydrogenated in the defect portion inspection. If the hydrogen ion conductivity inspection is preceded, the reaction film 13 of the electrolyte membrane 10 is hydrogenated by performing the hydrogen ion conductivity inspection. Therefore, prior to the defect inspection, the hydrogen gas H to the first space 21 is hydrogenated. 2 is stopped, air or the like is supplied to the second space, and the reaction membrane 13 of the electrolyte membrane 10 is returned to the state before hydrogenation.

ところで、調光薄膜11と電解質膜10の一方の面10aとの接合は、両膜の間に間隙が全く生じない完全な密着状態を意味するものではない。なぜならば、両膜を接合するときに僅かな間隙が生じたとしても、欠陥部の検査においては、クラック10cで漏洩した水素ガスHは、クラック10cの直近の薄膜層13を水素化できるからである(ポンプ26を用いれば、第1の空間21に供給された水素ガスHが加圧されて水素極14を通過しやすくなるから、欠陥部の検査をより迅速かつ高感度に行うことができる)。また水素イオン伝導性の検査においては、薄膜層13とアノード極16間に生じた電界の作用で、アノード極16で生じた水素イオンH+は、電解質膜10を透過し、さらに調光薄膜11に向け直進するからである。 By the way, the joining of the light control thin film 11 and the one surface 10a of the electrolyte membrane 10 does not mean a complete contact state in which no gap is formed between the two membranes. This is because, even when a slight gap occurs when the two films are joined, in the inspection of the defect portion, the hydrogen gas H 2 leaked through the crack 10c can hydrogenate the thin film layer 13 immediately adjacent to the crack 10c. (If the pump 26 is used, the hydrogen gas H 2 supplied to the first space 21 is pressurized and easily passes through the hydrogen electrode 14, so the defect portion is inspected more quickly and with high sensitivity. Can do). In the hydrogen ion conductivity test, the hydrogen ions H + generated at the anode 16 due to the action of the electric field generated between the thin film layer 13 and the anode 16 are transmitted through the electrolyte membrane 10 and further into the light control thin film 11. It is because it goes straight ahead.

なお本発明は、前記実施例に限定されるものでもなく、その趣旨を逸脱しない範囲において、適宜変形して実施できる。例えば電解質膜は、実施例の平板形状に限定されず、他の平面的な形状であってもよい。また円柱状の電解質膜であっても、円柱の外周面に検知膜を接合等し、円柱の内周面側の空間に水素ガスを供給するなどしてもよい。また目視に代えて、テレビジョンカメラなどで調光薄膜の反射率を電気信号に変換すれば、映像処理装置で反射率の変化を検出して、水素イオン伝導性電解質膜を迅速に検査することができる。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the meaning, it can deform | transform suitably and can be implemented. For example, the electrolyte membrane is not limited to the flat plate shape of the embodiment, and may be another planar shape. Even in the case of a cylindrical electrolyte membrane, a detection film may be joined to the outer peripheral surface of the cylinder, and hydrogen gas may be supplied to the space on the inner peripheral surface side of the cylinder. Also, if the reflectance of the light control thin film is converted into an electrical signal by a television camera or the like instead of visual observation, the change in the reflectance is detected by the video processing device, and the hydrogen ion conductive electrolyte membrane can be inspected quickly. Can do.

検査対象となる電解質膜に調光薄膜および水素極を接合して、電気回路(電源回路)を接続したときの概略構成例を示す図である。It is a figure which shows the example of schematic structure when a light control thin film and a hydrogen electrode are joined to the electrolyte membrane used as test object, and an electric circuit (power supply circuit) is connected. 図1に示す電解質膜等の斜視図である。It is a perspective view of the electrolyte membrane etc. which are shown in FIG. 本発明にかかるイオン伝導性電解質膜の検査装置に電解質膜等を収容するときの概略構成例を示す図である。It is a figure which shows the schematic structural example when accommodating an electrolyte membrane etc. in the test | inspection apparatus of the ion conductive electrolyte membrane concerning this invention. 電解質膜の欠陥部の検査を模式的に説明する図である。It is a figure which illustrates typically the inspection of the defective part of an electrolyte membrane. 電解質膜の水素イオン伝導性を模式的に説明する図である。It is a figure which illustrates typically hydrogen ion conductivity of an electrolyte membrane.

符号の説明Explanation of symbols

10 電解質膜
10a 電解質膜の一方の面
10b 電解質膜の他方の面
10c クラック(欠陥部)
11 調光薄膜
11c 電解質膜の欠陥部に接する調光薄膜の部分
12 触媒膜
13 反応膜
14 水素極
15 水素拡散膜
16 アノード極
17 電源回路(電気回路)
17p 電源回路の正電圧電極
17n 電源回路の負電圧電極
21 第1の空間
H 水素分子
H+ 水素イオン
水素ガス
DESCRIPTION OF SYMBOLS 10 Electrolyte membrane 10a One side of electrolyte membrane 10b The other side of electrolyte membrane 10c Crack (defect part)
DESCRIPTION OF SYMBOLS 11 Light control thin film 11c The part of the light control thin film which touches the defect part of an electrolyte film 12 Catalyst film 13 Reaction film 14 Hydrogen electrode 15 Hydrogen diffusion film 16 Anode electrode 17 Power supply circuit (electric circuit)
17p Positive voltage electrode of power circuit 17n Negative voltage electrode of power circuit 21 First space H Hydrogen molecule H + Hydrogen ion H 2 Hydrogen gas

Claims (9)

イオン伝導性電解質膜の検査方法であって、
前記電解質膜の一方の面に調光薄膜を、前記電解質膜の他方の面に空気極を、それぞれ接合し、
前記調光薄膜と前記水素極との間にスイッチを介して電気回路を接続し、
前記スイッチがオフの状態において水素ガスを前記水素極側の空間に供給して、前記電解質膜にガスの漏洩を生じさせる欠陥部があるときには、前記欠陥部を通じて前記水素ガスを前記水素極側の空間から前記電解質膜の一方の面へと漏洩させて、漏洩した前記水素ガスで前記調光薄膜を水素化して、前記水素化で生じる前記調光薄膜の光学的反射率の変化によって、前記電解質膜の前記欠陥部の有無を検査する工程と、
前記スイッチがオンの状態において水素ガスを前記水素極側の空間に供給して前記水素極によってイオン化し、前記イオン化で生じた電子を前記電気回路経由で前記水素極から前記調光薄膜に供給するとともに、前記イオン化で生じた水素イオンを前記水素極から前記電解質膜を透過させて前記調光薄膜に供給し、前記調光薄膜に到達した前記水素イオンで前記調光薄膜を水素化して、前記水素化で生じる前記調光薄膜の光学的反射率の変化の均一性によって、前記電解質膜の水素イオン伝導性の均一性を検査する工程を有することを特徴とするイオン伝導性電解質膜の検査方法。
An inspection method for an ion conductive electrolyte membrane,
A dimming thin film is bonded to one surface of the electrolyte membrane, and an air electrode is bonded to the other surface of the electrolyte membrane.
An electrical circuit is connected via a switch between the light control thin film and the hydrogen electrode,
When the switch is turned off, hydrogen gas is supplied to the space on the hydrogen electrode side, and when there is a defect portion that causes gas leakage in the electrolyte membrane, the hydrogen gas is supplied to the hydrogen electrode side through the defect portion. The electrolyte is leaked from the space to one surface of the electrolyte membrane, and the dimming thin film is hydrogenated with the leaked hydrogen gas, and the electrolyte reflects the change in optical reflectance of the dimming thin film generated by the hydrogenation. Inspecting the presence or absence of the defective portion of the film;
When the switch is on, hydrogen gas is supplied to the space on the hydrogen electrode side, ionized by the hydrogen electrode, and electrons generated by the ionization are supplied from the hydrogen electrode to the light control thin film via the electric circuit. In addition, hydrogen ions generated by the ionization are transmitted from the hydrogen electrode through the electrolyte membrane and supplied to the light control thin film, and the light control thin film is hydrogenated by the hydrogen ions that have reached the light control thin film, A method for inspecting an ion conductive electrolyte membrane, comprising the step of inspecting the uniformity of hydrogen ion conductivity of the electrolyte membrane based on the uniformity of the change in optical reflectance of the light control thin film caused by hydrogenation .
前記電気回路が電源回路であり、前記水素極が前記電源回路の正電圧電極に電気的に接続され、前記調光薄膜が前記電源回路の負電圧電極に電気的に接続されることを特徴とする請求項1に記載のイオン伝導性電解質膜の検査方法。   The electric circuit is a power supply circuit, the hydrogen electrode is electrically connected to a positive voltage electrode of the power supply circuit, and the dimming thin film is electrically connected to a negative voltage electrode of the power supply circuit. The method for inspecting an ion conductive electrolyte membrane according to claim 1. 前記調光薄膜は触媒層と反応層を有し、
前記反応層が前記電源回路の負電圧電極に電気的に接続され、
前記電解質膜と接する前記触媒層が、前記電解質膜を透過した水素イオンで前記反応層を水素化することを特徴とする請求項2に記載のイオン伝導性電解質膜の検査方法。
The light control thin film has a catalyst layer and a reaction layer,
The reaction layer is electrically connected to a negative voltage electrode of the power supply circuit;
The method for inspecting an ion conductive electrolyte membrane according to claim 2, wherein the catalyst layer in contact with the electrolyte membrane hydrogenates the reaction layer with hydrogen ions that permeate the electrolyte membrane.
前記水素極は水素拡散膜とアノード極を有し、前記アノード極が前記電源回路の正電圧電極に電気的に接続されるとともに前記電解質膜と接することを特徴とする請求項2に記載のイオン伝導性電解質膜の検査方法。   The ion according to claim 2, wherein the hydrogen electrode has a hydrogen diffusion film and an anode electrode, and the anode electrode is electrically connected to a positive voltage electrode of the power supply circuit and is in contact with the electrolyte membrane. Conductive electrolyte membrane inspection method. 前記反応膜はマグネシウム・ニッケル合金、マグネシウム・チタン合金、マグネシウム・ニオブ合金、マグネシウム・バナジウム合金もしくはマグネシウムで形成された反応膜であり、前記触媒膜はパラジウムもしくは白金で形成された触媒膜であることを特徴とする請求項3に記載のイオン伝導性電解質膜の検査方法。   The reaction film is a reaction film formed of magnesium / nickel alloy, magnesium / titanium alloy, magnesium / niobium alloy, magnesium / vanadium alloy or magnesium, and the catalyst film is a catalyst film formed of palladium or platinum. The method for inspecting an ion conductive electrolyte membrane according to claim 3. 前記水素極側の空間における気圧を前記調光薄膜側の空間における気圧よりも高く維持することを特徴とする請求項1に記載のイオン伝導性電解質膜の検査方法。   2. The method for inspecting an ion conductive electrolyte membrane according to claim 1, wherein the pressure in the space on the hydrogen electrode side is maintained higher than the pressure in the space on the light control thin film side. 一方の面に調光薄膜を、他方の面に水素極を接合した水素イオン伝導性電解質膜の検査装置であって、
前記水素極側の空間を形成する容器と、前記調光薄膜と前記水素極との間にスイッチを介して電気的に接続される電気回路とを有し、
前記スイッチがオフの状態において前記水素極側の空間に水素ガスを供給し、前記電解質膜にガスの漏洩を生じさせる欠陥部があるときには、前記欠陥部を通じて前記水素ガスを前記電解質膜の他方の面から前記電解質膜の一方の面へと漏洩させて、漏洩した前記水素ガスで前記調光薄膜を水素化して、前記水素化で生じる前記調光薄膜の光学的反射率の変化によって、前記電解質膜の前記欠陥部の有無を検査し、
前記スイッチがオンの状態において前記水素極側の空間に水素ガスを供給し、前記水素ガスを前記水素極によってイオン化し、前記イオン化で生じた電子を前記電気回路経由で前記水素極から前記調光薄膜に供給するとともに、前記イオン化で生じた水素イオンを前記水素極から前記電解質膜を透過させて前記調光薄膜に供給し、前記調光薄膜に到達した前記水素イオンで前記調光薄膜を水素化して、前記水素化で生じる前記調光薄膜の光学的反射率の変化の均一性によって、前記電解質膜の水素イオン伝導性の均一性を検査することを特徴とするイオン伝導性電解質膜の検査装置。
An inspection apparatus for a hydrogen ion conductive electrolyte membrane having a light control thin film on one surface and a hydrogen electrode on the other surface,
A container forming a space on the hydrogen electrode side, and an electric circuit electrically connected via a switch between the light control thin film and the hydrogen electrode,
When there is a defective portion that supplies hydrogen gas to the space on the hydrogen electrode side in a state where the switch is off and causes leakage of gas in the electrolyte membrane, the hydrogen gas is passed through the defective portion to the other side of the electrolyte membrane. The electrolyte is caused to leak from one surface to one surface of the electrolyte membrane, and the dimming thin film is hydrogenated with the leaked hydrogen gas, and the electrolyte reflects the change in optical reflectance of the dimming thin film generated by the hydrogenation. Inspecting the presence or absence of the defect in the film,
In a state where the switch is on, hydrogen gas is supplied to the space on the hydrogen electrode side, the hydrogen gas is ionized by the hydrogen electrode, and electrons generated by the ionization are dimmed from the hydrogen electrode via the electric circuit. In addition to supplying to the thin film, hydrogen ions generated by the ionization are transmitted from the hydrogen electrode through the electrolyte membrane to the dimming thin film, and the dimming thin film is hydrogenated by the hydrogen ions that have reached the dimming thin film. And inspecting the uniformity of the hydrogen ion conductivity of the electrolyte membrane according to the uniformity of the optical reflectivity change of the light control thin film generated by the hydrogenation. apparatus.
前記電気回路が電源回路であり、前記電源回路の正電圧電極が前記水素極に電気的に接続され、前記電源回路の負電圧電極が前記調光薄膜に電気的に接続されることを特徴とする請求項7に記載のイオン伝導性電解質膜の検査装置。   The electrical circuit is a power supply circuit, a positive voltage electrode of the power supply circuit is electrically connected to the hydrogen electrode, and a negative voltage electrode of the power supply circuit is electrically connected to the dimming thin film. The ion conductive electrolyte membrane inspection apparatus according to claim 7. 請求項7または8に記載のイオン伝導性電解質膜の検査装置において、さらに前記水素極側の空間における気圧を前記調光薄膜側の空間における気圧よりも高く維持する気圧調整手段を備えたことを特徴とするイオン伝導性電解質膜の検査装置。   9. The apparatus for inspecting an ion conductive electrolyte membrane according to claim 7 or 8, further comprising pressure adjusting means for maintaining a pressure in the space on the hydrogen electrode side higher than a pressure in the space on the light control thin film side. Characteristic ion conductive electrolyte membrane inspection device.
JP2007230133A 2007-09-05 2007-09-05 Ion conductive electrolyte membrane inspection method and inspection apparatus Active JP5150173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230133A JP5150173B2 (en) 2007-09-05 2007-09-05 Ion conductive electrolyte membrane inspection method and inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230133A JP5150173B2 (en) 2007-09-05 2007-09-05 Ion conductive electrolyte membrane inspection method and inspection apparatus

Publications (2)

Publication Number Publication Date
JP2009064624A true JP2009064624A (en) 2009-03-26
JP5150173B2 JP5150173B2 (en) 2013-02-20

Family

ID=40559038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230133A Active JP5150173B2 (en) 2007-09-05 2007-09-05 Ion conductive electrolyte membrane inspection method and inspection apparatus

Country Status (1)

Country Link
JP (1) JP5150173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495809B1 (en) 2011-11-25 2015-02-25 고쿠리츠다이가쿠호진 군마다이가쿠 Reaction vessel for raman spectrophotometry, and raman spectrophotometry method using same
JP2016115460A (en) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 Inspection method for fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053542A (en) * 2002-07-24 2004-02-19 National Institute Of Advanced Industrial & Technology Hydrogen sensor using magnesium-nickel alloy thin film and hydrogen concentration measuring method
JP2004325346A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Method of detecting pinhole and method of producing membrane electrode assembly
JP2005292050A (en) * 2004-04-02 2005-10-20 Toyota Motor Corp Method for detecting hole-like defect
JP2007108121A (en) * 2005-10-17 2007-04-26 Atsumi Tec:Kk Hydrogen gas visualization device
JP2007134214A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053542A (en) * 2002-07-24 2004-02-19 National Institute Of Advanced Industrial & Technology Hydrogen sensor using magnesium-nickel alloy thin film and hydrogen concentration measuring method
JP2004325346A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Method of detecting pinhole and method of producing membrane electrode assembly
JP2005292050A (en) * 2004-04-02 2005-10-20 Toyota Motor Corp Method for detecting hole-like defect
JP2007108121A (en) * 2005-10-17 2007-04-26 Atsumi Tec:Kk Hydrogen gas visualization device
JP2007134214A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495809B1 (en) 2011-11-25 2015-02-25 고쿠리츠다이가쿠호진 군마다이가쿠 Reaction vessel for raman spectrophotometry, and raman spectrophotometry method using same
JP2016115460A (en) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 Inspection method for fuel cell
KR101841328B1 (en) 2014-12-12 2018-03-22 도요타지도샤가부시키가이샤 Inspection method of fuel cell

Also Published As

Publication number Publication date
JP5150173B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5049064B2 (en) Ion conductive electrolyte membrane inspection method and inspection apparatus
Tang et al. A degradation study of Nafion proton exchange membrane of PEM fuel cells
WO2004023578A3 (en) Method for detecting electrical defects in membrane electrode assemblies
Tavassoli et al. Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells
WO2013034959A1 (en) Fuel cell inspection method and inspection device
JP5150144B2 (en) Ion conductive electrolyte membrane inspection method
Robert et al. Effects of conjoint mechanical and chemical stress on perfluorosulfonic-acid membranes for fuel cells
JP5150173B2 (en) Ion conductive electrolyte membrane inspection method and inspection apparatus
CN1538548A (en) Operating method of polymer electrlytic fuel battery
JP5049063B2 (en) Ion conductive electrolyte membrane inspection method and inspection apparatus
JP5193733B2 (en) Ion-conducting electrolyte membrane and method for inspecting joined body of ion-conducting electrolyte membrane and hydrogen electrode
KR20180070394A (en) Method and apparatus for detecting the defect of a fuel cell membrane-electrode assembly
Stoll et al. Impacts of bubble defects in proton exchange membranes on fuel cell performance and durability
JP2005134218A (en) Pinhole detection method and pinhole detection device
JP6790422B2 (en) Inspection method of membrane electrode assembly
JP5150174B2 (en) Ion conductive electrolyte membrane inspection method and inspection apparatus
EP2893589B1 (en) Fuel cell limiting the phenomenon of corrosion
Shrivastava et al. Manufacturing defects in slot die coated polymer electrolyte membrane for fuel cell application
KR101294182B1 (en) Apparatus and method for testing electrolyte membrane in fuel cell
CN105510387A (en) Inspection device
JP7090374B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP6957899B2 (en) Evaluation method of electrode catalyst layer
JP2021157872A (en) Sub gasket, fuel cell, and method for inspecting the same
JP2013218859A (en) Fuel cell membrane electrode assembly inspection method and inspection device and membrane electrode assembly inspected by this inspection method
JP2019087385A (en) Fuel cell inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5150173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20181207

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350