JP2007134214A - Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus - Google Patents

Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus Download PDF

Info

Publication number
JP2007134214A
JP2007134214A JP2005327284A JP2005327284A JP2007134214A JP 2007134214 A JP2007134214 A JP 2007134214A JP 2005327284 A JP2005327284 A JP 2005327284A JP 2005327284 A JP2005327284 A JP 2005327284A JP 2007134214 A JP2007134214 A JP 2007134214A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
manufacturing
rotation angle
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005327284A
Other languages
Japanese (ja)
Inventor
Shinobu Sekine
忍 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005327284A priority Critical patent/JP2007134214A/en
Publication of JP2007134214A publication Critical patent/JP2007134214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inspecting fuel cell electrolyte film which can inspect elastic modulus, thickness, and the like efficiently; a method for manufacturing fuel cell electrolyte film which includes an inspection step by the inspecting method; and an apparatus for manufacturing fuel cell electrolyte film, to which the inspecting method and the manufacturing method is applicable. <P>SOLUTION: The method for inspecting fuel cell electrolyte film includes a step for making a polarized light 5 incident to an electrolyte film 11. The inspection of the elastic modulus, the thickness, and the like of the electrolyte film 11 is performed by measuring the rotation angle of a transmitted light 6 having transmitted the electrolyte film 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池用電解質膜の検査方法と当該電解質膜の製造方法及びその製造装置に関する。特に、弾性率や厚さ等を効率良く検査可能な、燃料電池用電解質膜の検査方法、当該検査方法による検査工程を含む燃料電池の製造方法、並びに、当該検査方法及び製造方法に適用可能な燃料電池用電解質膜の製造装置に関する。   The present invention relates to a method for inspecting an electrolyte membrane for a fuel cell, a method for manufacturing the electrolyte membrane, and an apparatus for manufacturing the same. In particular, the present invention is applicable to a method for inspecting an electrolyte membrane for a fuel cell, which can efficiently inspect an elastic modulus, thickness, etc., a method for manufacturing a fuel cell including an inspection step by the inspection method, and the inspection method and manufacturing method. The present invention relates to an apparatus for manufacturing an electrolyte membrane for a fuel cell.

燃料電池は、電解質と、当該電解質の両側に配置される電極(アノード及びカソード)とを備える膜電極接合体(以下において、「MEA(Membrane Electrode Assembly)」と記述する。)における電気化学反応により発生した電気エネルギーを、MEAの両側に配設されるセパレータを介して外部に取り出している。燃料電池の中でも、家庭用コージェネレーション・システムや自動車等に使用される固体高分子型燃料電池(以下において、「PEFC(Polymer Electrolyte Fuel Cell)」と記述する。)は、低温領域での運転が可能である。また、PEFCは、高いエネルギー変換効率を示し、起動時間が短く、かつシステムが小型軽量であることから、電気自動車や携帯用電源の最適な動力源として注目されている。   A fuel cell is based on an electrochemical reaction in a membrane electrode assembly (hereinafter referred to as “MEA (Membrane Electrode Assembly)”) including an electrolyte and electrodes (anode and cathode) disposed on both sides of the electrolyte. The generated electric energy is taken out through separators disposed on both sides of the MEA. Among fuel cells, polymer electrolyte fuel cells (hereinafter referred to as “PEFC (Polymer Electrolyte Fuel Cell)”) used in household cogeneration systems and automobiles, etc., operate at low temperatures. Is possible. In addition, PEFC has attracted attention as an optimal power source for electric vehicles and portable power sources because of its high energy conversion efficiency, short start-up time, and small and lightweight system.

PEFCの単セルは、電解質膜、少なくとも触媒層を備えるアノード及びカソード、並びに、セパレータを含み、その理論起電力は1.23Vである。しかし、かかる低起電力では、電気自動車等の動力源として不十分であるため、通常は、単セルを直列に積層してセル積層体を形成し、このセル積層体における積層方向の両端にエンドプレート等を配置して形成されるスタック形態の燃料電池が使用されている。   A single cell of PEFC includes an electrolyte membrane, an anode and a cathode provided with at least a catalyst layer, and a separator, and its theoretical electromotive force is 1.23V. However, such a low electromotive force is not sufficient as a power source for an electric vehicle or the like, and usually, a single cell is stacked in series to form a cell stack, and ends at both ends in the stacking direction of the cell stack. A stack type fuel cell formed by arranging plates and the like is used.

ところで、PEFCの発電時には、カソード電極内の電気化学反応により水が生成される。かかる水は、電解質膜を加湿し電解質膜の湿潤状態を維持することで当該電解質膜のプロトン伝導性能発現等に寄与し得るが、例えば、カソード電極内で多量の水が生成されると、MEA内の電解質膜や電極等(以下において、単に「電解質膜等」と記述する。)が膨張する。ここで、スタック形態のPEFCには、端部から締結圧力が加えられている。そのため、このようにして電解質膜等が膨張すると、これらの構成部材へと加えられる圧力が増加し、電解質膜等が損傷しやすい。   By the way, at the time of PEFC power generation, water is generated by an electrochemical reaction in the cathode electrode. Such water can contribute to expression of proton conductivity of the electrolyte membrane by humidifying the electrolyte membrane and maintaining the wet state of the electrolyte membrane. For example, when a large amount of water is generated in the cathode electrode, the MEA The inner electrolyte membrane, electrode, etc. (hereinafter simply referred to as “electrolyte membrane etc.”) expand. Here, fastening pressure is applied to the stack-type PEFC from the end. Therefore, when the electrolyte membrane or the like expands in this manner, the pressure applied to these components increases, and the electrolyte membrane or the like is easily damaged.

これに対し、水が生成されない非発電時におけるPEFCの電解質膜等は、乾燥し、収縮しやすい。すなわち、PEFCの発電・停止が繰り返されると、電解質膜の膨張・収縮が繰り返される。ここで、電解質膜はアノード電極にて発生するプロトンをカソード電極へと伝導する役割を担っている。そのため、電解質膜が損傷すると、PEFCの発電性能及び耐久性が低下しやすい。したがって、電解質膜の損傷を防止し、PEFCの発電性能及び耐久性を向上するという観点から、電解質膜は適度な弾性を有することが望ましい。   On the other hand, the PEFC electrolyte membrane and the like during non-power generation where water is not generated are likely to dry and shrink. That is, when the power generation / stop of the PEFC is repeated, the electrolyte membrane is repeatedly expanded and contracted. Here, the electrolyte membrane plays a role of conducting protons generated at the anode electrode to the cathode electrode. Therefore, when the electrolyte membrane is damaged, the power generation performance and durability of the PEFC are likely to deteriorate. Therefore, from the viewpoint of preventing damage to the electrolyte membrane and improving the power generation performance and durability of PEFC, the electrolyte membrane desirably has appropriate elasticity.

他方、良好な発電性能を有するPEFCとする観点から、その製品厚さ及び弾性率等が、一定の基準を満たす電解質膜、を作製することが望ましい。そのため、一般に、PEFCの製造段階では、作製された電解質膜を検査することにより、電解質膜の性質(例えば、厚さ等)を検査し、いわゆる不良品を排除している。そして、例えば、電解質膜の厚さは、作製された電解質膜を切り出し抜き取って、ノギス等により直接測定するのが一般的である。しかし、かかる方法では、検査効率が低下しやすく、弾性率等の物性を評価し難いという問題があった。   On the other hand, from the viewpoint of obtaining a PEFC having good power generation performance, it is desirable to produce an electrolyte membrane that satisfies certain standards for its product thickness, elastic modulus, and the like. Therefore, in general, at the manufacturing stage of PEFC, the manufactured electrolyte membrane is inspected to inspect the properties (for example, thickness) of the electrolyte membrane, and so-called defective products are excluded. For example, the thickness of the electrolyte membrane is generally measured by cutting out the produced electrolyte membrane and directly using a caliper or the like. However, such a method has a problem that the inspection efficiency is liable to be lowered and it is difficult to evaluate physical properties such as elastic modulus.

これまで、電解質膜を始めとする膜状物質の性質の評価を目的とした技術は、いくつか開示されてきている。例えば、特許文献1には、イオン交換膜の周りの湿度を変化させる工程と、前記イオン交換膜に関する異なる湿度条件においてイオン交換膜の小角散乱線図を求める工程とを有することを特徴とするイオン交換膜の評価方法に関する開示されている。かかる技術によれば、広く一般的に用いられている装置であるX線測定装置を用いるだけで、イオン交換膜の分子構造を正確に評価できる、としており、当該技術によれば、電解質膜のイオン伝導度を測定することができる。なお、特許文献1におけるイオン交換膜は、上記電解質膜に相当する。   Until now, several techniques aimed at evaluating the properties of membrane-like substances including electrolyte membranes have been disclosed. For example, Patent Document 1 includes an ion that includes a step of changing the humidity around the ion exchange membrane and a step of obtaining a small-angle scattering diagram of the ion exchange membrane under different humidity conditions related to the ion exchange membrane. An exchange membrane evaluation method is disclosed. According to this technique, it is said that the molecular structure of the ion exchange membrane can be accurately evaluated only by using an X-ray measuring apparatus that is a widely used apparatus. Ionic conductivity can be measured. In addition, the ion exchange membrane in patent document 1 is corresponded to the said electrolyte membrane.

また、特許文献2には、フィルムの側面から光を照射し、フィルムの表面から観察することにより、フィルムに生じた欠点を検出するフィルムの検査方法に関する技術、及び、該検査方法を用いてフィルムに生じた欠点を検出するためのフィルムの検査装置に関する技術が開示されている。かかる技術によれば、欠点が微小であっても容易に発見することのできるフィルムの検査方法および検査装置が提供される、としている。
特開2004−20475号公報 特開2004−150971号公報
Patent Document 2 discloses a technique relating to a film inspection method for detecting defects generated in a film by irradiating light from the side surface of the film and observing from the surface of the film, and a film using the inspection method. A technique relating to a film inspection apparatus for detecting a defect occurring in the above is disclosed. According to this technique, it is said that a film inspection method and inspection apparatus that can be easily found even if the defects are minute are provided.
JP 2004-20475 A JP 2004-150971 A

しかし、特許文献1に開示されている技術では、イオン伝導度を測定することは可能である反面、電解質膜の重要な性質である弾性率等を測定できないという問題があった。また、特許文献2に開示されている技術では、欠点を検出可能である反面、膜の厚さや弾性率等を測定し難いという問題があった。   However, while the technique disclosed in Patent Document 1 can measure the ionic conductivity, it has a problem that it cannot measure the elastic modulus, which is an important property of the electrolyte membrane. In addition, the technique disclosed in Patent Document 2 has a problem that it is difficult to measure a thickness, an elastic modulus, and the like of a film while it can detect a defect.

そこで本発明は、弾性率等に代表される電解質膜の性質を効率良く検査可能な、燃料電池用電解質膜の検査方法、当該検査方法による検査工程を含む燃料電池溶電解質膜の製造方法、当該検査方法及び製造方法に適用可能な燃料電池の製造装置を提供することを課題とする。   Accordingly, the present invention provides a method for inspecting an electrolyte membrane for a fuel cell that can efficiently inspect the properties of an electrolyte membrane typified by elastic modulus and the like, a method for producing a fuel cell electrolyte membrane including an inspection step by the inspection method, It is an object of the present invention to provide a fuel cell manufacturing apparatus applicable to an inspection method and a manufacturing method.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
請求項1に記載の発明は、電解質膜に偏光を入射する工程を含むことを特徴とする、燃料電池用電解質膜の検査方法により、上記課題を解決する。
In order to solve the above problems, the present invention takes the following means. That is,
The invention described in claim 1 solves the above problem by a method for inspecting an electrolyte membrane for a fuel cell, comprising the step of making polarized light incident on the electrolyte membrane.

ここに、本発明にかかる燃料電池用電解質膜は、偏光を透過可能であれば、通常のPEFC等で使用される電解質膜とすることができ、補強層等が備えられる形態であっても良い。   Here, the electrolyte membrane for a fuel cell according to the present invention can be an electrolyte membrane used in a normal PEFC or the like as long as it can transmit polarized light, and may be provided with a reinforcing layer or the like. .

請求項2に記載の発明は、製膜工程と、当該製膜工程によって形成された電解質膜に偏光を入射する工程と、電解質膜を透過した透過光の回転角度を測定する回転角度測定工程と、を含むことを特徴とする、燃料電池用電解質膜の製造方法により、上記課題を解決する。   The invention described in claim 2 is a film forming step, a step of making polarized light incident on an electrolyte membrane formed by the film forming step, a rotation angle measuring step of measuring a rotation angle of transmitted light transmitted through the electrolyte membrane, The above-mentioned problems are solved by a method for producing an electrolyte membrane for a fuel cell.

請求項3に記載の発明は、請求項2に記載の燃料電池用電解質膜の製造方法において、測定された回転角度の値を用いて電解質膜の膜厚を制御する、膜厚制御工程が備えられることを特徴とする。   The invention according to claim 3 includes a film thickness control step for controlling the film thickness of the electrolyte membrane using the measured value of the rotation angle in the method for manufacturing the electrolyte membrane for fuel cell according to claim 2. It is characterized by being able to.

請求項4に記載の発明は、電解質膜へと入射すべき偏光を発する偏光入射手段と、電解質膜を透過した透過光を検知すべき検知手段と、電解質膜の膜厚を制御すべき膜厚制御手段と、を備えることを特徴とする、燃料電池用電解質膜の製造装置により、上記課題を解決する。   The invention according to claim 4 is a polarization incidence means for emitting polarized light to be incident on the electrolyte membrane, a detection means for detecting transmitted light transmitted through the electrolyte membrane, and a film thickness for controlling the thickness of the electrolyte membrane. The above-mentioned problem is solved by an apparatus for producing an electrolyte membrane for fuel cells, comprising a control means.

ここに、膜厚制御手段とは、動作を制御することにより電解質膜の膜厚を制御可能な手段を意味する。膜厚制御手段の具体例としては、原料から電解質膜を製膜して押し出す製膜手段のほか、製膜された電解質膜を引き取る引取り手段や、電解質膜を巻き取る巻取り手段等を挙げることができる。また、膜厚制御手段の動作制御形態例としては、製膜手段から押し出される電解質膜の押出速度、引取り手段の回転速度、又は、巻取り手段の回転速度の、1以上を制御する形態等を挙げることができる。   Here, the film thickness control means means a means capable of controlling the film thickness of the electrolyte membrane by controlling the operation. Specific examples of the film thickness control means include a film forming means for forming and extruding an electrolyte membrane from a raw material, a take-up means for taking up the formed electrolyte film, and a winding means for taking up the electrolyte film. be able to. Further, as an example of the operation control mode of the film thickness control means, a mode in which one or more of the extrusion speed of the electrolyte membrane extruded from the film forming means, the rotation speed of the take-up means, or the rotation speed of the winding means is controlled. Can be mentioned.

請求項1に記載の発明によれば、電解質膜に偏光が入射される。ここで、燃料電池用電解質膜は誘電率が高いため、当該電解質膜を透過した透過光は、その偏光面が回転する。そして、この回転角度の大きさは、電解質膜の厚さや弾性率等と比例関係を有している。したがって、請求項1に記載の発明によれば、電解質膜の厚さや弾性率等を容易に検査することが可能な、燃料電池用電解質膜の検査方法を提供することが可能になる。   According to the first aspect of the invention, polarized light is incident on the electrolyte membrane. Here, since the electrolyte membrane for fuel cells has a high dielectric constant, the plane of polarization of the transmitted light transmitted through the electrolyte membrane rotates. The magnitude of the rotation angle is proportional to the thickness of the electrolyte membrane and the elastic modulus. Therefore, according to the first aspect of the present invention, it is possible to provide a method of inspecting an electrolyte membrane for a fuel cell that can easily inspect the thickness, elastic modulus, and the like of the electrolyte membrane.

請求項2に記載の発明によれば、電解質膜を透過した透過光の回転角度を測定する、回転角度測定工程が備えられている。そのため、電解質膜に偏光を入射し、当該電解質膜を透過した透過光の回転角度を測定することにより、電解質膜を切り出して抜き出すことなく、短時間で、電解質膜の厚さや弾性率等を検査することが可能になる。したがって、請求項2に記載の発明によれば、電解質膜の厚さや弾性率等を効率良く検査し得る、燃料電池用電解質膜の製造方法を提供することが可能になる。   According to the second aspect of the present invention, there is provided a rotation angle measuring step of measuring the rotation angle of the transmitted light that has passed through the electrolyte membrane. Therefore, by injecting polarized light into the electrolyte membrane and measuring the rotation angle of the transmitted light transmitted through the electrolyte membrane, the thickness and elastic modulus of the electrolyte membrane can be inspected in a short time without cutting out and extracting the electrolyte membrane. It becomes possible to do. Therefore, according to the second aspect of the present invention, it is possible to provide a method for manufacturing an electrolyte membrane for a fuel cell that can efficiently inspect the thickness, elastic modulus, and the like of the electrolyte membrane.

請求項3に記載の発明によれば、測定された回転角度の値を用いて電解質膜の膜厚が制御されるので、電解質膜の膜厚を精度良く制御し得る、燃料電池用電解質膜の製造方法を提供することが可能になる。   According to the third aspect of the invention, since the thickness of the electrolyte membrane is controlled using the measured value of the rotation angle, the thickness of the electrolyte membrane can be controlled with high accuracy. A manufacturing method can be provided.

請求項4に記載の発明によれば、検知手段によって検知された偏光の回転角度の値を用いて、膜厚制御手段の動作を制御することが可能になる。したがって、請求項4に記載の発明によれば、電解質膜の厚さや弾性率等を容易に制御し得る、燃料電池用電解質膜の製造装置を提供することが可能になる。   According to the invention described in claim 4, it is possible to control the operation of the film thickness control means using the value of the rotation angle of the polarization detected by the detection means. Therefore, according to the fourth aspect of the present invention, it is possible to provide an apparatus for manufacturing an electrolyte membrane for a fuel cell that can easily control the thickness, elastic modulus and the like of the electrolyte membrane.

PEFCの作動時には水が生成され、PEFCに備えられる通常の燃料電池用電解質膜(以下において、単に「電解質膜」と記述する。)は吸水性を有しているため、当該作動時に、電解質膜が膨張しやすい。一方、PEFCの停止時には水が生成されないことから、電解質膜は乾燥し、収縮しやすい。したがって、作動・停止が繰り返されるPEFCで長期間に亘って耐え得る電解質膜とする観点から、電解質膜は、一定以上の弾性率を有していることが好ましい。そのため、電解質膜の弾性率等を効率良く検査し得る方法が望まれている。   Water is generated during operation of the PEFC, and an ordinary fuel cell electrolyte membrane (hereinafter simply referred to as “electrolyte membrane”) provided in the PEFC has water absorption. Tends to expand. On the other hand, since no water is generated when the PEFC is stopped, the electrolyte membrane is dried and easily contracted. Therefore, from the viewpoint of forming an electrolyte membrane that can withstand a long period of time with PEFC that is repeatedly activated and stopped, the electrolyte membrane preferably has a certain elastic modulus. Therefore, a method capable of efficiently inspecting the elastic modulus and the like of the electrolyte membrane is desired.

他方、出力密度が高く良好な耐久性を有するPEFCとする等の観点から、電解質膜の厚さ(以下において、単に「膜厚」と記述することがある。)は、所定の範囲内であることが好ましい。そのため、電解質膜の製造時には、電解質膜の厚さも検査されている。電解質膜の膜厚検査は、これまで、製造ラインから切り出した電解質膜を抜き出し、ノギス等の器具を電解質膜へ機械的に接触させる等の方法により測定していた。ところが、かかる検査は、電解質膜を切り出して抜き出す必要があるため、工程数がかさみ、検査効率が低下しやすいという問題があった。   On the other hand, the thickness of the electrolyte membrane (hereinafter sometimes simply referred to as “film thickness”) is within a predetermined range from the viewpoint of making PEFC having high output density and good durability. It is preferable. Therefore, the thickness of the electrolyte membrane is also inspected when manufacturing the electrolyte membrane. In the past, the thickness of the electrolyte membrane has been measured by a method such as extracting the electrolyte membrane cut out from the production line and mechanically bringing a tool such as a caliper into contact with the electrolyte membrane. However, this inspection has a problem that the number of processes is increased and the inspection efficiency tends to be reduced because the electrolyte membrane needs to be cut out and extracted.

本発明はかかる観点からなされたものであり、その要旨は、電解質膜に偏光を当て、当該電解質膜を透過した透過光の偏光面の回転角度を測定することで、電解質膜に接触することなくその膜厚を検査可能であるとともに、弾性率等の性質をも調査可能な、燃料電池用電解質膜の検査方法を提供することにある。さらに、かかる検査方法を燃料電池用電解質膜の製造方法に適用することで、検査効率を向上させ得る燃料電池用電解質膜の製造方法を提供する。加えて、上記検査方法及び製造方法に適用可能であって電解質膜を効率良く製造し得る、燃料電池用電解質膜の製造装置を提供する。なお、膜状物質に偏光を当てることにより膜厚を測定する技術は、これまでに開示されてきているが(例えば、特開2005−83834号公報、特開平10−19531号公報)、電解質膜に偏光を当てて当該電解質膜の性質を検査する技術については、開示されていない。偏光を用いた膜厚測定の対象とされてきた従来の部材と比較すると、燃料電池用電解質膜は誘電率が大きいため、透過光の回転角度が大きく、当該回転角度の測定結果を利用した検査等の精度を向上させやすいという特徴を有している。   The present invention has been made from such a viewpoint, and the gist of the present invention is that the polarized light is applied to the electrolyte membrane, and the rotation angle of the polarization plane of the transmitted light transmitted through the electrolyte membrane is measured without contacting the electrolyte membrane. An object of the present invention is to provide a method for inspecting an electrolyte membrane for a fuel cell, which can inspect the film thickness and also investigate properties such as elastic modulus. Furthermore, the manufacturing method of the electrolyte membrane for fuel cells which can improve inspection efficiency by applying this test | inspection method to the manufacturing method of the electrolyte membrane for fuel cells is provided. In addition, the present invention provides an apparatus for manufacturing an electrolyte membrane for a fuel cell that can be applied to the above-described inspection method and manufacturing method and can efficiently manufacture the electrolyte membrane. In addition, although the technique of measuring a film thickness by applying polarized light to a film-like substance has been disclosed so far (for example, JP 2005-83834 A, JP 10-19531 A), an electrolyte film A technique for inspecting the properties of the electrolyte membrane by applying a polarized light to is not disclosed. Compared with conventional members that have been the subject of film thickness measurement using polarized light, the electrolyte membrane for fuel cells has a large dielectric constant, so the rotation angle of transmitted light is large, and inspection using the measurement result of the rotation angle It has a feature that it is easy to improve accuracy.

以下に図面を参照しつつ、本発明の燃料電池用電解質膜の検査方法、燃料電解質膜の製造方法、及び、燃料電池用電解質膜の製造装置について、具体的に説明する。   The fuel cell electrolyte membrane inspection method, fuel electrolyte membrane production method, and fuel cell electrolyte membrane production apparatus of the present invention will be specifically described below with reference to the drawings.

1.燃料電池用電解質膜の検査方法
1.1.第1実施形態
図1は、第1実施形態にかかる本発明の燃料電池用電解質膜の検査方法を示す概略図であり、図1(A)は、電解質膜へと入射される偏光、電解質膜の側面、及び、電解質膜を透過した透過光を概略的に示している。一方、図1(B)及び(C)は、検出機器によって検知される、偏光面及び透過光面を示しており、当該検出機器の視野を概略的に示している。
1. Inspection method of electrolyte membrane for fuel cell 1.1. First Embodiment FIG. 1 is a schematic view showing a method for inspecting an electrolyte membrane for a fuel cell according to the first embodiment of the present invention. FIG. 1 (A) shows polarized light incident on the electrolyte membrane and the electrolyte membrane. The side surface and the transmitted light which permeate | transmitted the electrolyte membrane are shown schematically. On the other hand, FIGS. 1B and 1C show the polarization plane and the transmitted light plane detected by the detection device, and schematically show the field of view of the detection device.

図1(A)に示す電解質膜11は、含フッ素イオン交換樹脂を備えるフッ素系の電解質膜であり、偏光板等を介して形成した可視光の偏光5が、電解質膜11の積層面(電解質膜の両側にアノード電極及びカソード電極を積層してMEAを製造する際の積層方向を、法線方向とする面。以下において同じ。)へ入射している。ここで、図示の電解質膜11は可視光を透過可能であり、さらに、上記含フッ素イオン交換樹脂(以下において、「電解質成分」と記述する。)は光の屈折率が大きい材料である。そのため、偏光5は、その一部が電解質膜11を透過することにより、回転した透過光6となる。   The electrolyte membrane 11 shown in FIG. 1 (A) is a fluorine-based electrolyte membrane provided with a fluorine-containing ion exchange resin, and the visible light polarization 5 formed through a polarizing plate or the like is a laminated surface (electrolyte) of the electrolyte membrane 11. The anode and cathode electrodes are laminated on both sides of the film, and the MEA is produced in the normal direction. The same applies hereinafter. Here, the illustrated electrolyte membrane 11 can transmit visible light, and the fluorine-containing ion exchange resin (hereinafter referred to as “electrolyte component”) is a material having a large refractive index of light. Therefore, a part of the polarized light 5 is transmitted through the electrolyte membrane 11, and becomes a rotated transmitted light 6.

一方、図1(B)及び(C)は、検出機器によって検出される、偏光5の偏光面と、透過光6の面とを概略的に示している。図1(B)及び(C)に示すように、偏光面は、電解質膜11を透過することにより、角度θだけ回転し、図1(C)に示す透過光面となる。この回転角度θは、偏光5の波長に依存するほか、膜厚や誘電率と比例関係があり、電解質成分の誘電率と弾性率との間、及び、当該弾性率と電解質成分の結晶化度との間には、相関がある。したがって、電解質膜11の膜厚が既知である場合には、上記回転角度θを用いて、電解質成分の弾性率や結晶化度等を導出することが可能になる一方、上記回転角度θを用いて膜厚を導出することが可能になる。   On the other hand, FIGS. 1B and 1C schematically show the polarization plane of the polarized light 5 and the plane of the transmitted light 6 detected by the detection device. As shown in FIGS. 1B and 1C, the plane of polarization is transmitted through the electrolyte membrane 11 and thereby rotated by an angle θ to become a transmitted light surface shown in FIG. The rotation angle θ depends on the wavelength of the polarized light 5 and is proportional to the film thickness and the dielectric constant, between the dielectric constant and the elastic modulus of the electrolyte component, and the crystallinity of the elastic modulus and the electrolyte component. There is a correlation. Therefore, when the thickness of the electrolyte membrane 11 is known, it is possible to derive the elastic modulus, crystallinity, etc. of the electrolyte component using the rotation angle θ, while using the rotation angle θ. Thus, the film thickness can be derived.

本発明の検査方法において、その具体的な検査形態は特に限定されるものではない。ただし、膜厚検査を行う場合には、検査効率を向上させる等の観点から、例えば、膜厚が一定の場合における回転角度θと結晶化度との関係、及び、結晶化度一定の場合における回転角度θと膜厚との関係を、予めマッピングしておき、マッピングされたデータを参照しながら、検査することが好ましい。   In the inspection method of the present invention, the specific inspection form is not particularly limited. However, when film thickness inspection is performed, from the viewpoint of improving inspection efficiency, for example, the relationship between the rotation angle θ and the crystallinity when the film thickness is constant, and the case where the crystallinity is constant It is preferable to inspect the relationship between the rotation angle θ and the film thickness in advance while referring to the mapped data.

1.2.第2実施形態
図2は、第2実施形態にかかる本発明の燃料電池用電解質膜の検査方法を示す概略図であり、図2(A)は、電解質膜の積層面へと入射される偏光、電解質膜の側面、及び、電解質膜を透過した透過光を概略的に示している。一方、図2(B)及び(C)は、検出機器によって検出される、偏光及び透過光の偏光面を示しており、当該検出機器の視野を概略的に示している。図2において、図1に示す部材・物質と同様の構成をとる場合には、図1にて使用した符号と同符号を付し、その説明を適宜省略する。
1.2. Second Embodiment FIG. 2 is a schematic view showing an inspection method for an electrolyte membrane for a fuel cell according to a second embodiment of the present invention, and FIG. 2 (A) shows polarized light incident on the laminated surface of the electrolyte membrane. 1 schematically shows a side surface of an electrolyte membrane and transmitted light transmitted through the electrolyte membrane. On the other hand, FIGS. 2B and 2C show polarization planes of polarized light and transmitted light detected by the detection device, and schematically show the field of view of the detection device. 2, when the same configuration as the member / substance shown in FIG. 1 is adopted, the same reference numerals as those used in FIG. 1 are given, and the description thereof is omitted as appropriate.

図2(A)に示す電解質膜12は、含フッ素イオン交換樹脂を備える液状の電解質成分に、補強層12xを浸して引き上げる等の方法により作製される、補強層付き電解質膜であり、光を透過可能なポリエチレン等の多孔性樹脂等により形成される補強層12xの表面には、上記電解質成分がコーティングされている。かかる電解質膜12の積層面に入射された偏光5は、その一部が、角度θだけ回転して補強層12xの一方の面に形成されている電解質成分層を透過し、引き続き、角度φだけ回転して補強層12xを透過し、その後、さらに角度θだけ回転して補強層12xの他方の面に形成されている電解質成分層を透過することにより、透過光7となる(図2(B)、(C)参照)。このように、補強層が光を透過可能であれば、補強層が備えられる電解質膜であっても、本発明の検査方法を適用することが可能になる。   The electrolyte membrane 12 shown in FIG. 2 (A) is an electrolyte membrane with a reinforcing layer produced by a method such as immersing and lifting the reinforcing layer 12x in a liquid electrolyte component including a fluorine-containing ion exchange resin. The electrolyte component is coated on the surface of the reinforcing layer 12x formed of a porous resin such as permeable polyethylene. A part of the polarized light 5 incident on the laminated surface of the electrolyte membrane 12 is rotated by an angle θ and transmitted through the electrolyte component layer formed on one surface of the reinforcing layer 12x. Rotates to pass through the reinforcing layer 12x, and then further rotates by an angle θ to pass through the electrolyte component layer formed on the other surface of the reinforcing layer 12x, resulting in transmitted light 7 (FIG. 2B ) And (C)). As described above, if the reinforcing layer can transmit light, the inspection method of the present invention can be applied even to the electrolyte membrane provided with the reinforcing layer.

2.燃料電池用電解質膜の製造装置
図3は、本発明にかかる燃料電池用電解質膜の製造装置(以下において、単に「製造装置」と記述する。)の形態例を示す概略図であり、引取り手段の回転速度を制御することにより電解質膜の膜厚を制御可能な形態の製造装置を示している。図3において、図1と同じ構成の部材には、図1にて使用した符号と同符号を付し、その説明を適宜省略する。
2. 3. Fuel Cell Electrolyte Membrane Manufacturing Apparatus FIG. 3 is a schematic view showing an embodiment of a fuel cell electrolyte membrane manufacturing apparatus according to the present invention (hereinafter simply referred to as “manufacturing apparatus”). The manufacturing apparatus of the form which can control the film thickness of an electrolyte membrane by controlling the rotational speed of a means is shown. 3, members having the same configuration as in FIG. 1 are denoted by the same reference numerals as those used in FIG. 1, and description thereof is omitted as appropriate.

図示のように、本発明の製造装置100は、燃料電池用電解質膜の原料(例えば、含フッ素イオン交換樹脂を備えるフッ素系の電解質成分等)を混錬し薄膜化して押し出す製膜手段20と、膜を引き取る引取り手段(ピンチロール)30、30、…と、電解質膜11を巻き取る巻取り手段50と、を具備している。そして、さらに、電解質膜11へと入射される偏光5を発すべき偏光入射手段40と、電解質膜11を透過した透過光6を検知すべき検知手段45と、引取り手段30、30、…を駆動すべき駆動手段35、35、…と、が備えられ、当該駆動手段35、35、…の動作は、制御手段60によって制御される。   As shown in the figure, the manufacturing apparatus 100 of the present invention includes a film forming means 20 for kneading, extruding and extruding a raw material of an electrolyte membrane for a fuel cell (for example, a fluorine-based electrolyte component having a fluorine-containing ion exchange resin). , Take-up means (pinch rolls) 30, 30,..., And a take-up means 50 for taking up the electrolyte membrane 11. Further, polarized light incident means 40 that should emit polarized light 5 incident on the electrolyte membrane 11, detection means 45 that should detect the transmitted light 6 transmitted through the electrolyte membrane 11, take-up means 30, 30,. Drive means 35, 35,... To be driven are provided, and the operation of the drive means 35, 35,.

制御手段60には、駆動手段35、35、…の動作制御を実行するCPU61と、このCPU61に対する記憶装置とが設けられている。CPU61は、マイクロプロセッサユニット、及び、その動作に必要な各種周辺回路を組み合わせて構成され、CPU61に対する記憶装置は、例えば、駆動手段35、35、…の動作制御に必要なプログラムや電解質膜11の制御後の膜厚に関するデータ等を記憶するROM62と、CPU61の作業領域として機能するRAM63等を組み合わせて構成される。当該構成に加えて、さらに、CPU61が、ROM62に記憶されたソフトウエアと組み合わされることにより、本発明の製造装置100における制御手段60が機能する。   The control means 60 is provided with a CPU 61 that performs operation control of the drive means 35, 35,... And a storage device for the CPU 61. The CPU 61 is configured by combining a microprocessor unit and various peripheral circuits necessary for its operation, and a storage device for the CPU 61 is, for example, a program required for controlling the operation of the driving means 35, 35,. A ROM 62 that stores data relating to the film thickness after control, a RAM 63 that functions as a work area for the CPU 61, and the like are combined. In addition to the configuration, the CPU 61 is combined with software stored in the ROM 62, whereby the control means 60 in the manufacturing apparatus 100 of the present invention functions.

検知手段45によって検知された、偏光5の回転角度θに関する出力信号は、入力ポート64を介して、入力信号としてCPU61へ到達する。CPU61は、上記入力信号、及びROM62に記憶されたプログラムに基づき、出力ポート65を介して、駆動手段35、35、…に対する動作指令を制御する。駆動手段35、35、…は、CPU61から与えられた動作指令に応じて、引取り手段30、30、…の回転速度を調整する。すなわち、算出された膜厚が適正誤差範囲の上限を超える場合には、回転速度を低減する一方、同膜厚が適正誤差範囲の下限に満たない場合には、回転速度を増大する。   The output signal related to the rotation angle θ of the polarized light 5 detected by the detection unit 45 reaches the CPU 61 as an input signal via the input port 64. The CPU 61 controls an operation command to the driving means 35, 35,... Via the output port 65 based on the input signal and the program stored in the ROM 62. The drive means 35, 35,... Adjust the rotational speed of the take-out means 30, 30,... According to the operation command given from the CPU 61. That is, when the calculated film thickness exceeds the upper limit of the appropriate error range, the rotation speed is reduced. On the other hand, when the film thickness is less than the lower limit of the appropriate error range, the rotation speed is increased.

3.燃料電池用電解質膜の製造方法
図4は、本発明にかかる燃料電池用電解質膜の製造方法(以下において、単に「製造方法」と記述する。)の形態例を、概略的に示すフローチャートである。本発明の製造方法は、電解質膜に偏光を入射して、当該電解質膜を透過した透過光(偏光)の偏光面の回転角度を測定し、測定された当該回転角度を用いて電解質膜を検査する検査工程を備える点に特徴がある。なお、図4では、引取り手段の動作を制御することで電解質膜の膜厚を制御可能な形態の製造方法を示している。以下、図3及び図4を適宜参照しつつ、本発明の製造方法について説明する。
3. Method for Producing Fuel Cell Electrolyte Membrane FIG. 4 is a flowchart schematically showing an example of a method for producing an electrolyte membrane for a fuel cell according to the present invention (hereinafter simply referred to as “manufacturing method”). . In the manufacturing method of the present invention, polarized light is incident on the electrolyte membrane, the rotation angle of the polarization plane of the transmitted light (polarized light) transmitted through the electrolyte membrane is measured, and the electrolyte membrane is inspected using the measured rotation angle. It is characterized by having an inspection process. FIG. 4 shows a manufacturing method in which the film thickness of the electrolyte membrane can be controlled by controlling the operation of the take-up means. Hereinafter, the manufacturing method of the present invention will be described with reference to FIGS. 3 and 4 as appropriate.

図4に示すように、本実施形態にかかる燃料電池用電解質膜の製造方法は、係数算出工程(工程S1)と、膜厚検出工程(工程S2)とを備えている。上述のように、偏光面の回転角度θと膜厚Tとは比例関係にあるため、θとTとの関係は、
T=aθ …(1)
と表すことができる。そこで、本実施形態にかかる工程S1では、予め、上記式(1)の係数aを算出する。そして、その後の工程S2において、工程S1により算出された係数aと、実際に測定される偏光面の回転角度θとを用いることにより、電解質膜11の膜厚を算出する。
As shown in FIG. 4, the method for manufacturing an electrolyte membrane for a fuel cell according to the present embodiment includes a coefficient calculation step (step S1) and a film thickness detection step (step S2). As described above, since the rotation angle θ of the polarization plane and the film thickness T are proportional, the relationship between θ and T is
T = aθ (1)
It can be expressed as. Therefore, in step S1 according to the present embodiment, the coefficient a of the above equation (1) is calculated in advance. In subsequent step S2, the film thickness of the electrolyte membrane 11 is calculated by using the coefficient a calculated in step S1 and the rotation angle θ of the polarization plane actually measured.

本実施形態にかかる工程S1では、本発明の製造方法により製造される電解質膜11と同じ成分の電解質膜(標準試料)を作製し(工程S11)、工程S11により作製された電解質膜の膜厚を、ノギス等により機械的に測定する(工程S12)。その後、工程S12により膜厚を測定された電解質膜に偏光を入射することにより、電解質膜を透過した透過光の回転角度θを計測し(工程S13)、上記工程S11、S12、及びS13を通じて求められた膜厚T及び回転角度θから、係数aを算出する(工程S14)。   In step S1 according to the present embodiment, an electrolyte membrane (standard sample) having the same components as the electrolyte membrane 11 produced by the production method of the present invention is produced (step S11), and the film thickness of the electrolyte membrane produced in step S11. Is measured mechanically with calipers or the like (step S12). Thereafter, the rotation angle θ of the transmitted light that has passed through the electrolyte membrane is measured by making polarized light incident on the electrolyte membrane whose film thickness has been measured in step S12 (step S13), and obtained through the above steps S11, S12, and S13. A coefficient a is calculated from the obtained film thickness T and rotation angle θ (step S14).

上記工程S1により係数aの値を算出した後、本実施形態にかかる製造方法では、以下に示す工程S2において、電解質膜11の膜厚を検出し、当該電解質膜11の良否を検査する。   After calculating the value of the coefficient a in the step S1, the manufacturing method according to this embodiment detects the film thickness of the electrolyte membrane 11 and inspects the quality of the electrolyte membrane 11 in step S2 described below.

本実施形態にかかる工程S2では、まず、原料を混錬して電解質膜を形成し(工程S21)、引取り手段30、30、…で電解質膜を引き取る(工程S22)。次に、工程S22を経た電解質膜11に偏光5を入射し、当該電解質膜11を透過した透過光6の回転角度θを計測する(工程S23)。そして、上記工程S1により算出された係数aと、工程S23で計測された回転角度θとを用いて計算することにより、工程23において偏光を透過させた電解質膜11の膜厚を算出する(工程S24)。このようにして算出された電解質膜11の膜厚に関するデータは、引取り手段30、30、…を駆動する駆動手段35、35、…の動作を制御する制御手段60へと送られ、当該制御手段60において、電解質膜の膜厚が適正誤差範囲内であるか否かが判断される(工程S25)。工程S25において、肯定判断された場合には、電解質膜11が適正誤差範囲内の膜厚であるため、引取り手段30、30、…の動作(回転速度)をそのまま維持しつつ、電解質膜11が巻き取られる(工程S26)。これに対し、工程S25において否定判断された場合には、電解質膜11の膜厚が適正誤差範囲外であるため、制御手段60から駆動手段35、35、…へ動作指令が送られ、電解質膜の膜厚が適正誤差範囲内となるように、その動作が制御される(工程S27)。   In the step S2 according to the present embodiment, first, an electrolyte membrane is formed by kneading the raw materials (step S21), and the electrolyte membrane is taken up by the taking means 30, 30,... (Step S22). Next, the polarized light 5 is incident on the electrolyte membrane 11 that has undergone step S22, and the rotation angle θ of the transmitted light 6 that has passed through the electrolyte membrane 11 is measured (step S23). And the film thickness of the electrolyte membrane 11 which permeate | transmitted polarized light in the process 23 is calculated by calculating using the coefficient a calculated by the said process S1, and the rotation angle (theta) measured by process S23 (process). S24). The data relating to the thickness of the electrolyte membrane 11 calculated in this way is sent to the control means 60 for controlling the operation of the drive means 35, 35,... For driving the take-up means 30, 30,. In means 60, it is determined whether or not the thickness of the electrolyte membrane is within an appropriate error range (step S25). If an affirmative determination is made in step S25, since the electrolyte membrane 11 has a thickness within the appropriate error range, the operation of the take-up means 30, 30,... Is wound up (step S26). On the other hand, if a negative determination is made in step S25, since the film thickness of the electrolyte membrane 11 is outside the appropriate error range, an operation command is sent from the control means 60 to the drive means 35, 35,. The operation is controlled so that the film thickness is within the appropriate error range (step S27).

すなわち、本発明の製造方法によれば、上記係数aを予め算出しておき、かつ、製造される電解質膜へ偏光を入射してその回転角度を測定することにより、電解質膜の製造ラインを停止することなく、その膜厚を制御することが可能になる。したがって、本発明によれば、電解質膜の製造効率を向上可能な、電解質膜の製造方法を提供できる。   That is, according to the manufacturing method of the present invention, the production line of the electrolyte membrane is stopped by calculating the coefficient a in advance and measuring the rotation angle by making polarized light incident on the manufactured electrolyte membrane. The film thickness can be controlled without doing so. Therefore, according to this invention, the manufacturing method of an electrolyte membrane which can improve the manufacturing efficiency of an electrolyte membrane can be provided.

上記製造方法の説明では、測定した偏光面の回転角度θの値を用いて係数aを算出する形態について記述したが、係数aの算出形態はこれに限定されるものではなく、例えば、複屈折等の測定から導出することも可能である。なお、例えば、フッ素系の電解質膜(43μm厚)に、波長590nmのレーザー光線を入射した場合の上記回転角度θは、約84.5°である。   In the above description of the manufacturing method, the mode of calculating the coefficient a using the measured value of the rotation angle θ of the polarization plane is described. However, the mode of calculating the coefficient a is not limited to this. It is also possible to derive from such measurements. For example, the rotation angle θ when a laser beam having a wavelength of 590 nm is incident on a fluorine-based electrolyte membrane (43 μm thick) is about 84.5 °.

上記説明では、電解質膜11の膜厚を算出することで、製造される電解質膜11の良否を判断する形態について記述したが、本発明における偏光の利用は、当該形態に限定されるものではなく、例えば、電解質膜11の誘電率、弾性率、又は、結晶化度が目標とする値の範囲内であるか否かを判断するために利用することも可能である。   In the above description, the mode of determining the quality of the manufactured electrolyte membrane 11 by calculating the thickness of the electrolyte membrane 11 has been described, but the use of polarized light in the present invention is not limited to this mode. For example, it can be used to determine whether or not the dielectric constant, elastic modulus, or crystallinity of the electrolyte membrane 11 is within a target value range.

これまで、引取り手段の回転速度を制御することにより電解質膜の膜厚を制御可能な形態の製造装置、及び、製造方法について説明したが、本発明の製造装置及び製造方法は当該形態に限定されるものではない。他の形態例としては、製膜手段から押し出される電解質膜の押出速度を制御可能な形態、巻取り手段の回転速度を制御可能な形態を挙げることができる。このほか、上記各制御形態の2以上を組み合わせることで、電解質膜の膜厚を制御可能な形態とすることもできる。なお、巻取り手段の回転速度を制御する場合には、当該巻取り手段を駆動させる駆動手段の動作を制御すれば良い。   So far, the manufacturing apparatus and the manufacturing method of the form in which the film thickness of the electrolyte membrane can be controlled by controlling the rotation speed of the take-off means have been described, but the manufacturing apparatus and the manufacturing method of the present invention are limited to the form. Is not to be done. Examples of other forms include a form capable of controlling the extrusion speed of the electrolyte membrane extruded from the film forming means and a form capable of controlling the rotation speed of the winding means. In addition, it can also be set as the form which can control the film thickness of an electrolyte membrane by combining 2 or more of said each control form. Note that when the rotational speed of the winding means is controlled, the operation of the driving means for driving the winding means may be controlled.

さらに、上記説明では、電解質膜の膜厚が制御される形態について記述したが、本発明により制御され得る電解質膜の性質は膜厚に限定されるものではない。引取り手段や巻取り手段の回転速度を変更すれば、引取り手段を経て巻取り手段によって巻き取られる電解質膜の張力が変化する。そのため、本発明によれば、当該電解質膜の弾性率や結晶化度等の性質をも制御することが可能になる。   Further, in the above description, the form in which the thickness of the electrolyte membrane is controlled is described, but the properties of the electrolyte membrane that can be controlled by the present invention are not limited to the thickness. If the rotational speed of the take-up means or the take-up means is changed, the tension of the electrolyte membrane taken up by the take-up means through the take-up means changes. Therefore, according to the present invention, properties such as the elastic modulus and crystallinity of the electrolyte membrane can be controlled.

第1実施形態にかかる本発明の燃料電池用電解質膜の検査方法を示す概略図である。It is the schematic which shows the test | inspection method of the electrolyte membrane for fuel cells of this invention concerning 1st Embodiment. 第2実施形態にかかる本発明の燃料電池用電解質膜の検査方法を示す概略図である。It is the schematic which shows the test | inspection method of the electrolyte membrane for fuel cells of this invention concerning 2nd Embodiment. 本発明にかかる燃料電池用電解質膜の製造装置の形態例を示す概略図である。It is the schematic which shows the example of the form of the manufacturing apparatus of the electrolyte membrane for fuel cells concerning this invention. 本発明にかかる燃料電池用電解質膜の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the electrolyte membrane for fuel cells concerning this invention.

符号の説明Explanation of symbols

5 偏光
6、7 透過光
11、12 電解質膜
12x 補強層
20 製膜手段
30 引取り手段(ピンチロール)
35 駆動手段
40 偏光入射手段
45 検知手段
50 巻取り手段
60 制御手段
100 燃料電池用電解質膜の製造装置
5 Polarized light 6, 7 Transmitted light 11, 12 Electrolyte membrane 12x Reinforcement layer 20 Film forming means 30 Take-up means (pinch roll)
DESCRIPTION OF SYMBOLS 35 Drive means 40 Polarized light incident means 45 Detection means 50 Winding means 60 Control means 100 Manufacturing apparatus of electrolyte membrane for fuel cells

Claims (4)

電解質膜に偏光を入射する工程を含むことを特徴とする、燃料電池用電解質膜の検査方法。 A method for inspecting an electrolyte membrane for a fuel cell, comprising the step of making polarized light incident on the electrolyte membrane. 製膜工程と、該製膜工程によって形成された電解質膜に偏光を入射する工程と、
前記電解質膜を透過した透過光の回転角度を測定する回転角度測定工程と、を含むことを特徴とする、燃料電池用電解質膜の製造方法。
A film forming step, a step of making polarized light incident on the electrolyte membrane formed by the film forming step, and
And a rotation angle measurement step of measuring a rotation angle of transmitted light that has passed through the electrolyte membrane. A method for producing an electrolyte membrane for a fuel cell.
測定された前記回転角度の値を用いて前記電解質膜の膜厚を制御する、膜厚制御工程が備えられることを特徴とする、請求項2に記載の燃料電池用電解質膜の製造方法。 The method for producing an electrolyte membrane for a fuel cell according to claim 2, further comprising a film thickness control step of controlling the thickness of the electrolyte membrane using the measured value of the rotation angle. 電解質膜へと入射すべき偏光を発する偏光入射手段と、前記電解質膜を透過した透過光を検知すべき検知手段と、前記電解質膜の膜厚を制御すべき膜厚制御手段と、を備えることを特徴とする、燃料電池用電解質膜の製造装置。
Polarization incident means for emitting polarized light to be incident on the electrolyte membrane, detection means for detecting transmitted light transmitted through the electrolyte membrane, and film thickness control means for controlling the thickness of the electrolyte membrane An apparatus for producing an electrolyte membrane for a fuel cell.
JP2005327284A 2005-11-11 2005-11-11 Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus Pending JP2007134214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327284A JP2007134214A (en) 2005-11-11 2005-11-11 Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327284A JP2007134214A (en) 2005-11-11 2005-11-11 Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2007134214A true JP2007134214A (en) 2007-05-31

Family

ID=38155701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327284A Pending JP2007134214A (en) 2005-11-11 2005-11-11 Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2007134214A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311060A (en) * 2007-06-14 2008-12-25 Atsumi Tec:Kk Inspection method of ion conductive electrolyte membrane
JP2009064624A (en) * 2007-09-05 2009-03-26 Atsumi Tec:Kk Inspection method and inspection device of ion conductive electrolyte membrane
JP2009064625A (en) * 2007-09-05 2009-03-26 Atsumi Tec:Kk Inspection method and inspection device of ion conductive electrolyte membrane
JP2010261820A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311060A (en) * 2007-06-14 2008-12-25 Atsumi Tec:Kk Inspection method of ion conductive electrolyte membrane
JP2009064624A (en) * 2007-09-05 2009-03-26 Atsumi Tec:Kk Inspection method and inspection device of ion conductive electrolyte membrane
JP2009064625A (en) * 2007-09-05 2009-03-26 Atsumi Tec:Kk Inspection method and inspection device of ion conductive electrolyte membrane
JP2010261820A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Fuel cell system

Similar Documents

Publication Publication Date Title
Qiu et al. Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell
Lai et al. Accelerated stress testing of fuel cell membranes subjected to combined mechanical/chemical stressors and cerium migration
Goulet et al. Mechanical properties of catalyst coated membranes for fuel cells
US20180292464A1 (en) Inspection apparatus and inspection method for membrane electrode assembly
KR101567708B1 (en) Method and apparatus for detecting the defect of a fuel cell membrane-electrode assembly
Hara et al. Temperature dependence of the water distribution inside a Nafion membrane in an operating polymer electrolyte fuel cell. A micro-Raman study
US10109044B2 (en) Apparatus for measuring micro-cracks in a membrane electrode assembly and method for predicting generation of micro-cracks in the same
US20170317365A1 (en) Method for operating a fuel cell system
Bender et al. Detecting and localizing failure points in proton exchange membrane fuel cells using IR thermography
KR101567079B1 (en) Method for testing electrolyte membrane endurance of fuel cell
JP2007134214A (en) Method for inspecting and manufacturing fuel cell electrolyte film, and its manufacturing apparatus
Frieberg et al. Mechanical response of thermally annealed nafion thin films
JP6090869B2 (en) Coextruded ultrathin film
Kamel et al. Characterization and evaluation of Nafion HP JP as proton exchange membrane: transport properties, nanostructure, morphology, and cell performance
Zhang et al. Accelerated lifetime testing for proton exchange membrane fuel cells using extremely high temperature and unusually high load
US20230343979A1 (en) Composite electrolyte membrane
JP2010027544A (en) Potential measuring device for fuel cell and its manufacturing method
US8465882B2 (en) Membrane-electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte fuel cell
JP5461051B2 (en) Fuel cell measuring device
Marrony et al. Lifetime prediction approach applied to the Aquivion™ short side chain perfluorosulfonic acid ionomer membrane for intermediate temperature proton exchange membrane fuel cell application
Bharath et al. Effect of humidity on the interaction of CO2 with alkaline anion exchange membranes probed using the quartz crystal microbalance
Sutor et al. Influence of Compressive Stress on the Water Content of Perfluorosulphonated Membranes: A μ‐Raman Study
JP6170796B2 (en) Fuel cell diagnostic method and operation method
Bessarabov et al. Measurement of gas permeability in SPE membranes for use in fuel cells
JP5152096B2 (en) Method for detecting deterioration of electrolyte membrane