JP2009063441A - Device and method for measuring internal structure of magnetic body - Google Patents

Device and method for measuring internal structure of magnetic body Download PDF

Info

Publication number
JP2009063441A
JP2009063441A JP2007231861A JP2007231861A JP2009063441A JP 2009063441 A JP2009063441 A JP 2009063441A JP 2007231861 A JP2007231861 A JP 2007231861A JP 2007231861 A JP2007231861 A JP 2007231861A JP 2009063441 A JP2009063441 A JP 2009063441A
Authority
JP
Japan
Prior art keywords
current
excitation
pattern
magnetic
internal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007231861A
Other languages
Japanese (ja)
Other versions
JP5149569B2 (en
Inventor
Yuji Kawazoe
裕司 川副
Masahiro Nishio
匡弘 西尾
Takuto Minamide
拓人 南出
Takashi Kimura
孝 木村
Tsuneto Shiyounai
恒人 鎗内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Magnegraph Co Ltd
Original Assignee
Toyota Motor Corp
Magnegraph Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Magnegraph Co Ltd filed Critical Toyota Motor Corp
Priority to JP2007231861A priority Critical patent/JP5149569B2/en
Publication of JP2009063441A publication Critical patent/JP2009063441A/en
Application granted granted Critical
Publication of JP5149569B2 publication Critical patent/JP5149569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device capable of measuring an welded condition of a magnetic body such as steel, and an internal structure thereof, such as an internal defect, with a nondestructive means, without being influenced by a surface condition, and to provide a method therefor. <P>SOLUTION: A fluctuating external magnetic field is applied to a spot welding place 92 of steel sheets 90, 91 of magnetic bodies to be measured. However, the external magnetic field is applied to the extent that magnetization of steel sheets 90, 91 do not become stabilized. This reflects the internal structure of the welding location to be measured that is sensitive to the extent of progress of magnetization. The return value is detected by measuring the return quantity of the magnetization, after current cutoff. The difference between such a return values is determined, which is measured by using two types of exciting patterns, having different developing magnetizabilities. This method enables proper measurement of the internal structure of the welding location, without being influenced by the surface conditions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,鋼板等の磁性体の溶接状態や内部欠陥等の内部構造を測定する装置および方法に関する。さらに詳細には,対象物である磁性体を非破壊で,かつ,表面状態の影響をなるべく受けずに内部構造を測定できる装置および方法に関するものである。   The present invention relates to an apparatus and a method for measuring an internal structure such as a weld state and internal defects of a magnetic material such as a steel plate. More specifically, the present invention relates to an apparatus and method that can measure the internal structure of a magnetic material that is an object in a non-destructive manner and with as little influence as possible from the surface state.

従来から,鋼板等の磁性体が,自動車はじめ各種の工業製品の構造材として多用されている。ここで,構造材である鋼板等は,製品としての必要から,スポット溶接されて使用される場合がある。鋼板のスポット溶接部は通常,ナゲット部と呼ばれる箇所を有している。これは,溶接時に一旦溶融してその後凝固することにより溶着した箇所である。このナゲット部の径,すなわちナゲット径は,スポット溶接の良否を示す重要な指標である。また,スポット溶接部においては通常,その表面部分が周囲に比べて少し凹んでいる。溶接時に受けた加圧のためである。   Conventionally, magnetic materials such as steel plates have been widely used as structural materials for various industrial products including automobiles. Here, a steel plate or the like, which is a structural material, may be used by spot welding because of the necessity as a product. A spot welded portion of a steel plate usually has a portion called a nugget portion. This is a place where welding was performed by melting once and then solidifying during welding. The diameter of the nugget portion, that is, the nugget diameter is an important index indicating the quality of spot welding. Further, in a spot welded portion, the surface portion is usually slightly recessed compared to the surroundings. This is because of the pressurization received during welding.

このようなスポット溶接部など,磁性体の内部構造を非破壊で測定する従来の技術としては,特許文献1に記載されたものが挙げられる。特許文献1に記載された技術では基本的に,被測定物である磁性体への静磁界の印加により,被測定物の内部構造に関する情報を取得する。このような手法により内部構造に関する情報を取得できるのは,ナゲット部のような顕著な熱履歴を経験した箇所とそうでない箇所とでは,磁気特性が大きく異なるからである。このため,同一の条件の静磁界を印加しても,それによる被測定物の磁化の状況は,内部構造の影響を受けるのである。
特許第3098193号公報
As a conventional technique for nondestructively measuring the internal structure of a magnetic material such as a spot welded part, one described in Patent Document 1 can be cited. In the technique described in Patent Document 1, basically, information on the internal structure of the object to be measured is acquired by applying a static magnetic field to the magnetic body that is the object to be measured. The reason why information on the internal structure can be obtained by such a method is that the magnetic characteristics are greatly different between a part that experienced a remarkable thermal history such as a nugget part and a part that does not. For this reason, even when a static magnetic field of the same condition is applied, the state of magnetization of the object to be measured is affected by the internal structure.
Japanese Patent No. 3098193

しかしながら前記した従来の技術には,次のような問題点があった。すなわち,測定結果が,内部構造ばかりでなく表面状態にも影響されてしまうのである。このため,測定結果から表面状態に起因する部分を除去して純粋に内部構造に起因する部分を取り出すことが難しい。特許文献1では,表面形状とナゲット径と等を分離して別々に測定できると述べているが,そこにおけるナゲット径の測定にしても,表面形状の影響自体は排除しがたい。   However, the conventional techniques described above have the following problems. In other words, the measurement results are affected not only by the internal structure but also by the surface state. For this reason, it is difficult to remove the part caused by the surface state from the measurement result and to take out the part purely caused by the internal structure. In Patent Document 1, it is stated that the surface shape and the nugget diameter can be separated and measured separately. However, even if the nugget diameter is measured there, it is difficult to eliminate the influence of the surface shape itself.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,鋼板等の磁性体の溶接状態や内部欠陥等の内部構造を,非破壊で,かつ,表面状態の影響をなるべく受けずに内部構造を測定できる装置および方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. In other words, the problem is to provide an apparatus and method that can measure the internal structure of a magnetic material such as a steel plate, such as the welded state and internal defects, nondestructively and without being affected by the surface state as much as possible. There is to do.

この課題の解決を目的としてなされた本発明に係る磁性体の内部構造測定装置は,測定対象の磁性体に印加する磁界を発生する励磁コイルと,励磁コイルにより測定対象の磁性体に印加される磁界の経路に配置された磁気検出センサと,励磁コイルに電流を印加する電流印加部と,磁気検出センサの出力を取得するセンサ出力取得部とを有する装置であって,電流印加部は,励磁コイルに,第1の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するとともに,励磁コイルに,第1の励磁パターンによる印加電流が遮断された後に,第1の励磁パターンとは異なる第2の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するものであり,センサ出力取得部は,第1の励磁パターンによる印加電流が遮断されるときの磁気検出センサの出力を取得するとともに,第2の励磁パターンによる印加電流が遮断されるときの磁気検出センサの出力を取得するものであり,第1および第2の励磁パターンの少なくとも一方が,電流の遮断時に至っても測定対象の磁性体の磁化の程度を安定させるに至らないパターンであるものである。なお,内部構造とは,機械的な構造の他,磁気的性質や化学組成,結晶組織の場所による相違を含む。   An apparatus for measuring the internal structure of a magnetic body according to the present invention, which has been made for the purpose of solving this problem, is applied to a magnetic body to be measured by an excitation coil that generates a magnetic field to be applied to the magnetic body to be measured, and the excitation coil An apparatus having a magnetic detection sensor arranged in a magnetic field path, a current application unit for applying a current to an excitation coil, and a sensor output acquisition unit for acquiring an output of the magnetic detection sensor. A current that changes with time according to the first excitation pattern is applied to the coil, and then the current is cut off. After the applied current according to the first excitation pattern is cut off to the excitation coil, the first excitation pattern A current that changes with time is applied in accordance with a second excitation pattern different from that of the first excitation pattern, and then the current is interrupted. The output of the magnetic detection sensor when the applied current due to the current is interrupted is acquired, and the output of the magnetic detection sensor when the applied current due to the second excitation pattern is interrupted is acquired. At least one of the two excitation patterns is a pattern that does not stabilize the degree of magnetization of the magnetic substance to be measured even when the current is interrupted. The internal structure includes not only the mechanical structure but also the magnetic properties, chemical composition, and crystal structure location.

また,本発明に係る磁性体の内部構造測定方法は,測定対象の磁性体に印加する磁界を発生する励磁コイルと,励磁コイルにより測定対象の磁性体に印加される磁界の経路に配置された磁気検出センサとを用いて行われる。すなわち,励磁コイルに,第1の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するとともに,電流が遮断されるときの磁気検出センサの出力を取得し,励磁コイルに,第1の励磁パターンによる印加電流が遮断された後に,第1の励磁パターンとは異なる第2の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するとともに,電流が遮断されるときの磁気検出センサの出力を取得する。ここで,第1および第2の励磁パターンの少なくとも一方として,電流の遮断時に至っても測定対象の磁性体の磁化の程度を安定させるに至らないパターンを用いる。   In addition, the method for measuring the internal structure of a magnetic material according to the present invention is arranged in an excitation coil that generates a magnetic field to be applied to the magnetic material to be measured, and a path of the magnetic field applied to the magnetic material to be measured by the excitation coil. This is performed using a magnetic detection sensor. That is, a current that changes with time according to the first excitation pattern is applied to the excitation coil, and then the current is interrupted, and the output of the magnetic detection sensor when the current is interrupted is obtained. After the applied current due to the first excitation pattern is cut off, a current that changes with time is applied according to a second excitation pattern different from the first excitation pattern, and then the current is cut off and the current is cut off. The output of the magnetic detection sensor is acquired. Here, as at least one of the first and second excitation patterns, a pattern that does not stabilize the degree of magnetization of the magnetic substance to be measured even when the current is interrupted is used.

本発明においては,第1または第2の励磁パターンにより,変動する磁界を測定対象の磁性体に印加する。これにより,測定対象の磁性体の磁化を進展させる。このときの磁化の進展の程度は,測定対象の内部構造に左右される。すなわち,磁化されやすい組織を多く含む構造であれば,磁化の進展の程度は大きい。一方,磁化されにくい組織を多く含む構造であれば,磁化の進展の程度は小さい。しかも,この違いはかなり敏感に現れる。第1および第2の励磁パターンの少なくとも一方が,電流の遮断時に至っても測定対象の磁性体の磁化の程度を安定させるに至らないパターンだからである。   In the present invention, a varying magnetic field is applied to the magnetic material to be measured by the first or second excitation pattern. Thereby, the magnetization of the magnetic substance to be measured is advanced. The degree of progress of magnetization at this time depends on the internal structure of the object to be measured. That is, if the structure contains a lot of easily magnetized structures, the degree of magnetization progress is large. On the other hand, if the structure contains a lot of hard-to-magnetize structures, the degree of magnetization progress is small. Moreover, this difference appears quite sensitive. This is because at least one of the first and second excitation patterns is a pattern that does not stabilize the degree of magnetization of the magnetic substance to be measured even when the current is interrupted.

また当然,第1および第2の励磁パターンの,対象物を磁化させる能力にも左右される。励磁パターンによる違いは,特に,測定対象が,磁化されにくい組織を多く含む構造である場合に顕著に表れる。これに対し,磁化されやすい組織を多く含む構造である場合には,励磁パターンによる違いはさほど現れない。このため,第1および第2の励磁パターンによる磁化の進展度合の差は,測定対象の磁化のされやすさを表していると言える。そこで,両励磁パターンによる電流を遮断したときの磁気検出センサの出力をそれぞれ取得する。これにより磁化の戻り量を測定できる。よって,両励磁パターン後の戻り量を対比することで,測定対象が内部に,磁化されにくい組織を多く含むか少ししか含まないかを測定できるのである。   Of course, it also depends on the ability of the first and second excitation patterns to magnetize the object. The difference due to the excitation pattern is particularly prominent when the object to be measured has a structure containing many tissues that are difficult to be magnetized. On the other hand, in the case of a structure containing a lot of easily magnetized structures, the difference due to the excitation pattern does not appear so much. For this reason, it can be said that the difference in the degree of progress of magnetization due to the first and second excitation patterns represents the ease of magnetization of the measurement object. Therefore, the output of the magnetic detection sensor when the current due to both excitation patterns is interrupted is acquired. Thereby, the return amount of magnetization can be measured. Therefore, by comparing the return amounts after both excitation patterns, it is possible to measure whether the measurement object contains a lot of hard-to-magnetize tissues or little.

本発明で主として測定対象とするのは,鋼板のスポット溶接箇所である。この場合,第1の励磁パターンの電流印加後の遮断時の磁気検出センサの出力と,第2の励磁パターンの電流印加後の遮断時の前記磁気検出センサの出力との差により,スポット溶接箇所のナゲット形成状況を測定することができる。   In the present invention, the object of measurement is mainly the spot welded portion of the steel sheet. In this case, the spot welding location is determined by the difference between the output of the magnetic detection sensor when the first excitation pattern is interrupted after application of current and the output of the magnetic detection sensor when the second excitation pattern is interrupted after application of current. The nugget formation status can be measured.

ここにおいて,第1の励磁パターンの好ましい例として,パターン初期からパターン終期まで電流値を増加させ続けるパターンが挙げられる。その場合の第2の励磁パターンの好ましい例として,第1の励磁パターンの後半にパルスを付加したパターンが挙げられる。   Here, a preferable example of the first excitation pattern is a pattern in which the current value is continuously increased from the initial pattern to the final pattern. A preferable example of the second excitation pattern in that case is a pattern in which a pulse is added to the latter half of the first excitation pattern.

本発明によれば,鋼板等の磁性体の溶接状態や内部欠陥等の内部構造を,非破壊で,かつ,表面状態の影響をなるべく受けずに内部構造を測定できる装置および方法を提供することにある。   According to the present invention, there is provided an apparatus and a method capable of measuring an internal structure of a magnetic material such as a steel plate, such as a welded state and internal defects, in a nondestructive manner and without being affected by the surface state as much as possible. It is in.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,2枚の薄鋼板を重ね合わせてスポット溶接により接合した接合部の内部構造を測定する測定装置およびその測定装置による測定方法として,本発明を具体化したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. The present embodiment embodies the present invention as a measuring device for measuring the internal structure of a joint portion obtained by superposing two thin steel plates and joining them by spot welding and a measuring method using the measuring device.

本形態に係る内部構造測定装置は,図1に示すように構成されている。図1の内部構造測定装置は,鉄心21と,鉄心21に巻回された励磁コイル22と,鉄心21の一方の磁極11の面上に配置された磁気センサアレイ3とを有している。磁気センサアレイ3は,多数のコイルを2次元的に配置したものである。個々のコイルが,当該箇所における磁界強度の変化率に比例する電流を出力するようになっている。すなわち,磁気センサアレイ3は位置分解能を有している。本形態の内部構造測定装置はさらに,励磁コイル22に電流を印加する電流印加部4,その電流印加のパターンを記憶するパターン記憶部5,磁気センサアレイ3の出力を取得するデータ取得部6を有している。   The internal structure measuring apparatus according to this embodiment is configured as shown in FIG. The internal structure measuring apparatus of FIG. 1 has an iron core 21, an excitation coil 22 wound around the iron core 21, and a magnetic sensor array 3 arranged on the surface of one magnetic pole 11 of the iron core 21. The magnetic sensor array 3 has a large number of coils arranged two-dimensionally. Each coil outputs a current that is proportional to the rate of change of the magnetic field strength at that location. That is, the magnetic sensor array 3 has position resolution. The internal structure measuring apparatus of this embodiment further includes a current applying unit 4 for applying current to the exciting coil 22, a pattern storing unit 5 for storing the current application pattern, and a data acquiring unit 6 for acquiring the output of the magnetic sensor array 3. Have.

本形態で測定対象となる磁性体は,薄鋼板である。より詳細には,2枚の薄鋼板90,91を重ね合わせてスポット溶接により接合したスポット溶接部92が,本形態の測定対象箇所である。スポット溶接部92の内部には,ナゲット部100が存在している。また,スポット溶接部92における薄鋼板90,91は,図1では分からない程度であるが,表面93,94がわずかに凹んでいる。   The magnetic body to be measured in this embodiment is a thin steel plate. More specifically, a spot welded portion 92 in which two thin steel plates 90 and 91 are overlapped and joined by spot welding is a measurement target portion of this embodiment. A nugget portion 100 exists inside the spot welded portion 92. In addition, the thin steel plates 90 and 91 in the spot welded portion 92 are slightly indented on the surfaces 93 and 94, although not apparent in FIG.

ナゲット部100においては,その熱履歴のため,結晶組織が,薄鋼板90,91の本来の結晶組織とは大きく異なっている。具体的には,結晶粒が細かく,配向がランダムとなっている。このためナゲット部100では,ナゲット部100以外の部分と比較して,磁界が掛かったときに磁化が進行しにくい。また磁界の印加を遮断したときにも磁化が戻りにくい。このためナゲット部100は,ナゲット部100以外の部分と比較して,透磁率が低く残留磁化が高い。   In the nugget portion 100, the crystal structure is significantly different from the original crystal structure of the thin steel plates 90 and 91 due to the thermal history. Specifically, the crystal grains are fine and the orientation is random. For this reason, in the nugget portion 100, compared to portions other than the nugget portion 100, magnetization is less likely to proceed when a magnetic field is applied. Also, the magnetization is difficult to return even when the application of the magnetic field is interrupted. For this reason, the nugget part 100 has a lower magnetic permeability and a higher residual magnetization than parts other than the nugget part 100.

本形態では,図1に示すように,電流印加部4により励磁コイル22に通電することにより鉄心21から発せられる磁界Hを,測定対象箇所であるスポット溶接部92に印加する。そして,励磁コイル22への通電を遮断した後における,磁極11と薄鋼板90との間の磁界の状況を,磁気センサアレイ3によりモニタするのである。具体的には,図2に示すように,励磁コイル22への印加電流(以下,コイル電流という)を,ゼロからピーク電流Iまで増加させる。そしてコイル電流を急激に減少させるのである。   In this embodiment, as shown in FIG. 1, a magnetic field H generated from the iron core 21 by energizing the excitation coil 22 by the current application unit 4 is applied to a spot weld 92 that is a measurement target location. Then, the magnetic sensor array 3 monitors the state of the magnetic field between the magnetic pole 11 and the thin steel plate 90 after the energization of the exciting coil 22 is cut off. Specifically, as shown in FIG. 2, the current applied to the exciting coil 22 (hereinafter referred to as coil current) is increased from zero to the peak current I. Then, the coil current is rapidly reduced.

ここで,コイル電流の印加開始からピーク電流Iに達するまでの時間(励磁時間,時刻t0〜時刻t1)は,0.3〜4.0ミリ秒程度(好ましくは0.3〜1.5ミリ秒程度)とする。ピーク電流Iは,測定対象の薄鋼板90,91が飽和磁化に達しない程度の電流とする。励磁コイル22の巻き数などの要因にもよるが,ここでは例えば,0.5〜1.5アンペア程度の値とする。コイル電流がピーク電流Iからゼロに戻るまでの時間(遮断時間,時刻t1〜時刻t2)は,励磁時間より圧倒的に短く,0.5〜1.5マイクロ秒程度である。つまり図2のグラフ中の横軸は,時刻t1より右側では大幅に拡大して示されているのである。   Here, the time from the start of application of the coil current to the peak current I (excitation time, time t0 to time t1) is about 0.3 to 4.0 milliseconds (preferably 0.3 to 1.5 milliseconds). Seconds). The peak current I is a current that does not reach the saturation magnetization of the thin steel plates 90 and 91 to be measured. Although it depends on factors such as the number of turns of the exciting coil 22, the value here is, for example, about 0.5 to 1.5 amperes. The time until the coil current returns from the peak current I to zero (breaking time, time t1 to time t2) is much shorter than the excitation time, and is about 0.5 to 1.5 microseconds. That is, the horizontal axis in the graph of FIG. 2 is greatly enlarged on the right side from the time t1.

このように本形態ではスポット溶接部92に,まず,時刻t0〜時刻t1の励磁時間において,変動磁界を印加する。そしてその終了時(時刻t1)における印加磁界の強さは,薄鋼板90,91を飽和磁化に至らせない程度の強さである。このため,時刻t1における薄鋼板90,91の励磁状態は,安定するには至っていない。時刻t1における薄鋼板90,91の内部は,未だ,印加磁界の影響による磁化の進展の途上にある。   As described above, in this embodiment, first, a varying magnetic field is applied to the spot welded portion 92 during the excitation time from time t0 to time t1. The strength of the applied magnetic field at the end (time t1) is such a strength that the thin steel plates 90 and 91 do not reach saturation magnetization. For this reason, the excitation state of the thin steel plates 90 and 91 at time t1 has not been stabilized. The inside of the thin steel plates 90 and 91 at the time t1 is still in the process of progressing magnetization due to the influence of the applied magnetic field.

よって,時刻t1における薄鋼板90,91の実際の磁化の程度は,主として,次の2つの要因に支配される。1つは,薄鋼板90,91における磁化のしやすさである。ここに,スポット溶接部92の内部構造の影響が現れる。もう1つは,図2のグラフ中の励磁時間における電流波形である。電流波形如何により,磁化が実際に進行する程度が異なるからである。その一方で,薄鋼板90,91の表面93,94の状態にはあまり左右されない。   Therefore, the actual degree of magnetization of the thin steel plates 90 and 91 at time t1 is mainly governed by the following two factors. One is the ease of magnetization in the thin steel plates 90 and 91. Here, the influence of the internal structure of the spot welded portion 92 appears. The other is the current waveform at the excitation time in the graph of FIG. This is because the degree of actual magnetization varies depending on the current waveform. On the other hand, it is not greatly affected by the state of the surfaces 93 and 94 of the thin steel plates 90 and 91.

そこで本形態ではさらに,励磁時間におけるコイル電流のパターンとして,2種類の励磁パターンを使用する。図2に示したのはそのうちの第1の励磁パターンの1例である。第2の励磁パターンは,種々あり得るが例えば図3に示すものが挙げられる。図3の励磁パターンでは,ピーク電流Iの値や励磁時間の長さは図2中のものと同じである。しかし,励磁時間の途中でスパイク状のパルスPが存在する点で図2の励磁パターンと異なる。図3の励磁パターンでは,パルスPの時点でのコイル電流はピーク電流Iを超えている。このことは,それによって時刻t1の時点で薄鋼板90,91の励磁状態が安定してしまうのでない限り,問題ない。この,コイル電流の励磁パターンは,パターン記憶部5に記憶されている。   Therefore, in this embodiment, two types of excitation patterns are used as the coil current pattern in the excitation time. FIG. 2 shows an example of the first excitation pattern. There are various second excitation patterns, but examples include the one shown in FIG. In the excitation pattern of FIG. 3, the value of the peak current I and the length of the excitation time are the same as those in FIG. However, it differs from the excitation pattern of FIG. 2 in that spike-like pulses P exist during the excitation time. In the excitation pattern of FIG. 3, the coil current at the time of the pulse P exceeds the peak current I. This is not a problem unless the excited state of the thin steel plates 90 and 91 is stabilized at the time t1. The excitation pattern of the coil current is stored in the pattern storage unit 5.

そして本形態では,コイル電流を時刻t1で遮断した後の遮断時間(時刻t1〜時刻t2)にわたり,磁気センサアレイ3の出力をデータ取得部6で取得してこれを積分する。遮断時間におけるコイル電流の減少のパターンおよび所要時間は,励磁時間における励磁パターンに関わらず一定とする。これにより,時刻t1と時刻t2とでの,薄鋼板90,91の磁化の差が検出される。むろんこの間,薄鋼板90,91の磁化は減衰していく途上にある。つまり,コイル電流の磁界により進展した磁化の戻り量が検出されるのである。これを,第1の励磁パターンによる励磁後と第2の励磁パターンによる励磁後とのそれぞれにおいて行うのである。   In this embodiment, the output of the magnetic sensor array 3 is acquired by the data acquisition unit 6 and integrated over the interruption time (time t1 to time t2) after the coil current is interrupted at time t1. The coil current decrease pattern and required time during the cut-off time are constant regardless of the excitation pattern during the excitation time. Thereby, the difference in magnetization of the thin steel plates 90 and 91 at time t1 and time t2 is detected. Of course, the magnetization of the thin steel plates 90 and 91 is on the way to decay. That is, the amount of return of magnetization developed by the magnetic field of the coil current is detected. This is performed after excitation by the first excitation pattern and after excitation by the second excitation pattern.

ここで両励磁パターン後の遮断時の電流パターンが同じであることから,ここでの磁気センサアレイ3の出力のうち,鉄心21から発せられる外部磁界Hの減少に起因する部分は同じである。よって,両励磁パターン間での磁気センサアレイ3の出力の差は,薄鋼板90,91の磁化の減少量の差に起因するのである。   Here, since the current pattern at the time of interruption after both excitation patterns is the same, the part resulting from the decrease in the external magnetic field H emitted from the iron core 21 is the same among the outputs of the magnetic sensor array 3 here. Therefore, the difference in the output of the magnetic sensor array 3 between the two excitation patterns is due to the difference in the amount of decrease in magnetization of the thin steel plates 90 and 91.

本形態の方法では,時刻t1の時点で,両励磁パターンともに,測定対象物の磁化状態が未だ安定するに至っていない。このため,この時点での磁化の進展量には,そこに至るまでの励磁のパターンの違いの影響がまともに現れるのである。そしてそれがそのまま,遮断後の磁化の戻り量として測定にかかるのである。こうして本形態の方法では,内部構造の違いがより敏感に測定結果に現れるのである。このため,測定対象物の表面に仮に凹みがあったとしても,その影響は従来の方法の場合に比して相対的に小さいことになる。こうして,表面状態の情報よりも主として内部構造の情報を得ることができるのである。   In the method of this embodiment, at the time t1, the magnetization state of the measurement object has not yet been stabilized for both excitation patterns. For this reason, the influence of the difference in the excitation pattern up to that point appears in the amount of progress of magnetization at this point. And it is taken as it is as a return amount of magnetization after interruption. Thus, in the method of this embodiment, the difference in internal structure appears more sensitively in the measurement result. For this reason, even if there is a dent on the surface of the object to be measured, the effect is relatively small compared to the case of the conventional method. In this way, it is possible to obtain mainly internal structure information rather than surface state information.

なお,本形態では,少なくとも一方の励磁パターンにて励磁後の磁化状態が安定に至っていなければ,従来の方法に比して一応の利点はある。ただし,両方の励磁パターンの双方ともにそうであった方がさらによい。   In the present embodiment, if the magnetized state after excitation is not stable with at least one of the excitation patterns, there is an advantage over the conventional method. However, it is even better if both excitation patterns are the same.

ここで,本形態で主として測定対象とする薄鋼板90,91のスポット溶接部92には,次のような因子による種々の種類がある。例えば,鋼板の厚さおよびその組み合わせ,鋼板の鋼種およびその組み合わせ,鋼板の表面処理の種類およびその組み合わせ,鋼板の圧延方向同士がなす角,周辺の加工状況,スポット溶接時の電極のサイズや電流量,などである。さらにいえば本形態の内部構造測定装置は,薄鋼板90,91のスポット溶接部92に限らず,磁性体であれば他の物でも測定対象としうるものである。   Here, there are various types of spot welds 92 of the thin steel plates 90 and 91 that are mainly measured in this embodiment, due to the following factors. For example, steel sheet thickness and combination, steel sheet type and combination, steel sheet surface treatment type and combination, angle formed by the rolling direction of the steel sheet, surrounding processing conditions, electrode size and current during spot welding Quantity, etc. Furthermore, the internal structure measuring apparatus of the present embodiment is not limited to the spot welded portion 92 of the thin steel plates 90 and 91, and any other object can be used as a measurement target as long as it is a magnetic material.

ただ,図2および図3に例示した励磁パターンの組み合わせが,上記のような種々の種類の測定対象のいずれに対しても有効であるとは限らない。測定対象の種類によっては,図2および図3の励磁パターンの組み合わせでは良好な測定結果が得られないこともある。そのような場合でも,別の励磁パターンを用いることにより,良好な測定結果が得られることもある。つまり,測定対象の種類に応じて,励磁パターンの組み合わせを選択すべきなのである。   However, the combination of the excitation patterns illustrated in FIGS. 2 and 3 is not necessarily effective for any of the various types of measurement objects as described above. Depending on the type of measurement object, a good measurement result may not be obtained with the combination of the excitation patterns shown in FIGS. Even in such a case, a good measurement result may be obtained by using another excitation pattern. In other words, a combination of excitation patterns should be selected according to the type of measurement target.

測定対象の種類と励磁パターンの好ましい組み合わせとの関係は,理論的に解明できているわけではないが,トライアルアンドエラーにより,好ましい組み合わせを選択することが可能である。すなわち,同一の種類の測定対象について,実際のナゲット径が既知でありかつ異なる種々のサンプルを用意しておく。これらのサンプルの実ナゲット径とその測定結果との相関関係のよい組み合わせが,その種類の測定対象にとって好ましい組み合わせなのである。   The relationship between the type of measurement object and the preferred combination of excitation patterns is not theoretically elucidated, but a preferred combination can be selected by trial and error. That is, for the same type of measurement object, various samples having different actual nugget diameters are prepared. A combination having a good correlation between the actual nugget diameter of these samples and the measurement result is a preferable combination for the type of measurement object.

以上詳細に説明したように本実施の形態では,測定対象の磁性体である薄鋼板のスポット溶接箇所に,変動する外部磁界を印加する。ただし,薄鋼板の磁化が安定するには至らない程度とする。これにより,磁化の進展度合に測定対象の内部構造が敏感に反映されるようにしている。これを,電流遮断後の磁化の戻り量を測定することにより検出する。さらにこれを,磁化を進展させる能力に差がある2種類の励磁パターンにて行いその差を取ることで,表面状態にあまり影響されずに磁性体の内部構造を適切に測定できるようにしている。   As described above in detail, in the present embodiment, a varying external magnetic field is applied to a spot welded portion of a thin steel plate that is a magnetic body to be measured. However, the magnetization of the thin steel plate should not be stabilized. As a result, the internal structure of the object to be measured is sensitively reflected in the degree of magnetization. This is detected by measuring the return of magnetization after current interruption. Furthermore, this is done with two types of excitation patterns that have a difference in the ability to develop magnetization, and the difference is taken so that the internal structure of the magnetic material can be measured appropriately without being affected by the surface condition. .

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,鉄心1の形状は図示の通りには限らない。測定対象の形状が許せば,2つの磁極で測定対象を表裏から挟み込むようなものとすることも可能である。第1および第2の励磁パターンの印加の順序は逆でもよい。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the shape of the iron core 1 is not limited to that illustrated. If the shape of the measurement object permits, it is possible to sandwich the measurement object from the front and back with two magnetic poles. The order of application of the first and second excitation patterns may be reversed.

実施の形態に係る内部構造測定装置を示す構成図である。It is a block diagram which shows the internal structure measuring apparatus which concerns on embodiment. 実施の形態における励磁パターンの1つの例を示すグラフである。It is a graph which shows one example of the excitation pattern in embodiment. 実施の形態における励磁パターンの別の例を示すグラフである。It is a graph which shows another example of the excitation pattern in embodiment.

符号の説明Explanation of symbols

21 鉄心
22 励磁コイル
3 磁気センサアレイ
4 電流印加部
5 パターン記憶部
6 データ取得部
21 Iron core 22 Excitation coil 3 Magnetic sensor array 4 Current application unit 5 Pattern storage unit 6 Data acquisition unit

Claims (4)

測定対象の磁性体に印加する磁界を発生する励磁コイルと,
前記励磁コイルにより測定対象の磁性体に印加される磁界の経路に配置された磁気検出センサと,
前記励磁コイルに電流を印加する電流印加部と,
前記磁気検出センサの出力を取得するセンサ出力取得部とを有する磁性体の内部構造測定装置において,
前記電流印加部は,
前記励磁コイルに,第1の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するとともに,
前記励磁コイルに,前記第1の励磁パターンによる印加電流が遮断された後に,前記第1の励磁パターンとは異なる第2の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するものであり,
前記センサ出力取得部は,
前記第1の励磁パターンによる印加電流が遮断されるときの前記磁気検出センサの出力を取得するとともに,
前記第2の励磁パターンによる印加電流が遮断されるときの前記磁気検出センサの出力を取得するものであり,
前記第1および第2の励磁パターンの少なくとも一方が,電流の遮断時に至っても測定対象の磁性体の磁化の程度を安定させるに至らないパターンであることを特徴とする磁性体の内部構造測定装置。
An exciting coil that generates a magnetic field to be applied to the magnetic material to be measured;
A magnetic detection sensor disposed in a path of a magnetic field applied to a magnetic material to be measured by the excitation coil;
A current application unit for applying a current to the excitation coil;
In the internal structure measuring device for a magnetic body having a sensor output acquisition unit for acquiring an output of the magnetic detection sensor,
The current application unit is:
Applying a current that changes over time according to the first excitation pattern to the excitation coil, and then interrupting the current,
After the applied current by the first excitation pattern is cut off to the excitation coil, a current that changes with time is applied according to a second excitation pattern different from the first excitation pattern, and then the current is cut off To do,
The sensor output acquisition unit
Obtaining an output of the magnetic detection sensor when an applied current by the first excitation pattern is interrupted;
Obtaining an output of the magnetic detection sensor when an applied current due to the second excitation pattern is interrupted;
At least one of the first and second excitation patterns is a pattern that does not stabilize the degree of magnetization of the magnetic substance to be measured even when the current is cut off. .
測定対象の磁性体に印加する磁界を発生する励磁コイルと,
前記励磁コイルにより測定対象の磁性体に印加される磁界の経路に配置された磁気検出センサとを用いて行う磁性体の内部構造測定方法において,
前記励磁コイルに,第1の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するとともに,電流が遮断されるときの前記磁気検出センサの出力を取得し,
前記励磁コイルに,前記第1の励磁パターンによる印加電流が遮断された後に,前記第1の励磁パターンとは異なる第2の励磁パターンに従って時間とともに変化する電流を印加して,その後に電流を遮断するとともに,電流が遮断されるときの前記磁気検出センサの出力を取得し,
前記第1および第2の励磁パターンの少なくとも一方として,電流の遮断時に至っても測定対象の磁性体の磁化の程度を安定させるに至らないパターンを用いることを特徴とする磁性体の内部構造測定方法。
An exciting coil that generates a magnetic field to be applied to the magnetic material to be measured;
In the method for measuring the internal structure of a magnetic material, which is performed using a magnetic detection sensor disposed in a magnetic field path applied to the magnetic material to be measured by the excitation coil,
Applying a current that changes with time according to a first excitation pattern to the excitation coil, and then interrupting the current and obtaining an output of the magnetic detection sensor when the current is interrupted,
After the applied current by the first excitation pattern is cut off to the excitation coil, a current that changes with time is applied according to a second excitation pattern different from the first excitation pattern, and then the current is cut off And obtaining the output of the magnetic detection sensor when the current is interrupted,
A method for measuring the internal structure of a magnetic material, wherein at least one of the first and second excitation patterns uses a pattern that does not stabilize the degree of magnetization of the magnetic material to be measured even when the current is interrupted. .
請求項2に記載の磁性体の内部構造測定方法において,
鋼板のスポット溶接箇所を測定対象とし,
前記第1の励磁パターンの電流印加後の遮断時の前記磁気検出センサの出力と,前記第2の励磁パターンの電流印加後の遮断時の前記磁気検出センサの出力との差により,スポット溶接箇所のナゲット形成状況を測定することを特徴とする磁性体の内部構造測定方法。
The method for measuring the internal structure of a magnetic body according to claim 2,
The spot welded part of the steel plate is the object of measurement,
The spot welding location is determined by the difference between the output of the magnetic detection sensor when the first excitation pattern is interrupted after application of current and the output of the magnetic detection sensor when the second excitation pattern is interrupted after application of current. A method for measuring the internal structure of a magnetic material, comprising measuring a nugget formation state of the magnetic material.
請求項2または請求項3に記載の磁性体の内部構造測定方法において,
前記第1の励磁パターンが,パターン初期からパターン終期まで電流値を増加させ続けるパターンであり,
前記第2の励磁パターンが,前記第1の励磁パターンの後半にパルスを付加したパターンであることを特徴とする磁性体の内部構造測定方法。
In the internal structure measuring method of the magnetic body according to claim 2 or claim 3,
The first excitation pattern is a pattern that continuously increases the current value from the initial pattern to the final pattern,
The method for measuring the internal structure of a magnetic material, wherein the second excitation pattern is a pattern obtained by adding a pulse to the second half of the first excitation pattern.
JP2007231861A 2007-09-06 2007-09-06 Apparatus and method for measuring internal structure of magnetic material Active JP5149569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231861A JP5149569B2 (en) 2007-09-06 2007-09-06 Apparatus and method for measuring internal structure of magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231861A JP5149569B2 (en) 2007-09-06 2007-09-06 Apparatus and method for measuring internal structure of magnetic material

Publications (2)

Publication Number Publication Date
JP2009063441A true JP2009063441A (en) 2009-03-26
JP5149569B2 JP5149569B2 (en) 2013-02-20

Family

ID=40558142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231861A Active JP5149569B2 (en) 2007-09-06 2007-09-06 Apparatus and method for measuring internal structure of magnetic material

Country Status (1)

Country Link
JP (1) JP5149569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192509A (en) * 2008-02-18 2009-08-27 Magnegraph:Kk Measuring device and method
JP2012503209A (en) * 2009-11-20 2012-02-02 韓国産業技術大学 校産学協力団 Estimation method of threshold current density of superconducting wire using measurement of magnetization loss
JP5607822B2 (en) * 2011-04-12 2014-10-15 本田技研工業株式会社 Nondestructive inspection equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372257A (en) * 1989-08-11 1991-03-27 Sumitomo Metal Ind Ltd Eddy current flaw detection method
JP3011090U (en) * 1994-11-11 1995-05-16 株式会社キョクトー Spot welding nugget inspection equipment
JP3098193B2 (en) * 1996-07-11 2000-10-16 株式会社マグネグラフ Method and apparatus for measuring internal structure of magnetic body
WO2003027660A1 (en) * 2001-09-25 2003-04-03 Daihatsu Motor Co., Ltd. Non-destructive inspection device and non-destructive inspection method
WO2003027661A1 (en) * 2001-09-25 2003-04-03 Daihatsu Motor Co., Ltd. Non-destructive inspection method
JP2007218801A (en) * 2006-02-17 2007-08-30 Magnegraph:Kk Measuring device and measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372257A (en) * 1989-08-11 1991-03-27 Sumitomo Metal Ind Ltd Eddy current flaw detection method
JP3011090U (en) * 1994-11-11 1995-05-16 株式会社キョクトー Spot welding nugget inspection equipment
JP3098193B2 (en) * 1996-07-11 2000-10-16 株式会社マグネグラフ Method and apparatus for measuring internal structure of magnetic body
WO2003027660A1 (en) * 2001-09-25 2003-04-03 Daihatsu Motor Co., Ltd. Non-destructive inspection device and non-destructive inspection method
WO2003027661A1 (en) * 2001-09-25 2003-04-03 Daihatsu Motor Co., Ltd. Non-destructive inspection method
JP2007218801A (en) * 2006-02-17 2007-08-30 Magnegraph:Kk Measuring device and measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192509A (en) * 2008-02-18 2009-08-27 Magnegraph:Kk Measuring device and method
JP2012503209A (en) * 2009-11-20 2012-02-02 韓国産業技術大学 校産学協力団 Estimation method of threshold current density of superconducting wire using measurement of magnetization loss
JP5607822B2 (en) * 2011-04-12 2014-10-15 本田技研工業株式会社 Nondestructive inspection equipment
KR101522487B1 (en) * 2011-04-12 2015-05-21 혼다 기켄 고교 가부시키가이샤 Non-destructive testing device
US9541526B2 (en) 2011-04-12 2017-01-10 Honda Motor Co., Ltd. Non-destructive testing device for testing a welded region of a workpiece

Also Published As

Publication number Publication date
JP5149569B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4184963B2 (en) Nondestructive inspection method
Lundin et al. Ferrite-fissuring relationship in austenitic stainless steel weld metals
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
US9541526B2 (en) Non-destructive testing device for testing a welded region of a workpiece
CA2584471A1 (en) Device for testing material and measuring thickness on a test object having at least electrically conducting and ferromagnetic material parts
JPH0148503B2 (en)
JP5149569B2 (en) Apparatus and method for measuring internal structure of magnetic material
US7084623B2 (en) Non-destructive inspection device and method utilizing a magnetic field and sensor coil array
JP2001324479A (en) Method for nondestructive measuring of spot welded part
JP2004184306A (en) Method for inspecting butt-welded part of steel sheet
JP5526627B2 (en) Processed layer detection device
JP5445054B2 (en) Processed alteration layer detection apparatus and processing alteration layer detection method
JP2523379B2 (en) Metal foreign layer detector
JP5699793B2 (en) Steel plate having artificial space, method for producing the same, and method for evaluating leakage magnetic flux flaw detector using the same
JP2005345307A (en) Sectional shape measuring method for spot weld zone
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
JP7048028B2 (en) Eddy current flaw detection system and eddy current flaw detection method
JP3755403B2 (en) Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material
JP2532503Y2 (en) Pass / fail judgment of spot welds
JP2005262218A (en) Inspection method of weld zone, welding method and welding equipment
JP2006029882A (en) Spot welding part inspection device
JPH02253152A (en) Method and device for flaw detection
Augustyniak et al. Progress in Post Weld Residual Stress Evaluation Using Barkhausen Effect Meter with a Novel Rotating Magnetic Field Probe
JPH11194005A (en) Method for detecting welding joint part
JP5450175B2 (en) Nondestructive inspection equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090805

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R151 Written notification of patent or utility model registration

Ref document number: 5149569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350