JP2005262218A - Inspection method of weld zone, welding method and welding equipment - Google Patents

Inspection method of weld zone, welding method and welding equipment Download PDF

Info

Publication number
JP2005262218A
JP2005262218A JP2004073713A JP2004073713A JP2005262218A JP 2005262218 A JP2005262218 A JP 2005262218A JP 2004073713 A JP2004073713 A JP 2004073713A JP 2004073713 A JP2004073713 A JP 2004073713A JP 2005262218 A JP2005262218 A JP 2005262218A
Authority
JP
Japan
Prior art keywords
welding
layer
inspection
ect
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004073713A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsumoto
善博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2004073713A priority Critical patent/JP2005262218A/en
Publication of JP2005262218A publication Critical patent/JP2005262218A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method of a weld zone under multilayer welding, a method which is applicable to a case even where radiographic testing or ultrasonic flaw detection is difficult to perform, and which has a short testing time, easy automation and effective detection for a flaw between or inside welding layers, and also to provide a welding method using this inspection method as well as welding equipment for the implementation of the welding method. <P>SOLUTION: The inspection method of a weld zone under multilayer welding is characterized in that an eddy current flaw detection is performed on a welding layer each time it is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶接部の検査方法、該検査方法を用いた溶接方法、及び該溶接方法の実施に使用される溶接装置に関する。より詳細には、多層溶接施工の溶接部を、渦電流探傷試験(ECT)を適用して検査することを特徴とする溶接部の検査方法、該検査方法を用いた溶接方法、及び該溶接方法の実施に使用される溶接装置に関する。   The present invention relates to a method for inspecting a welded portion, a welding method using the inspection method, and a welding apparatus used for carrying out the welding method. More specifically, a weld inspection method characterized by inspecting a welded portion of multi-layer welding by applying an eddy current test (ECT), a welding method using the inspection method, and the welding method The present invention relates to a welding apparatus used for performing the above.

圧力容器等に使用される厚板ステンレス鋼の溶接では、溶接層を2層以上重ねる多層溶接施工(多層盛)が行われている。多層溶接施工による溶接の体積検査(非破壊検査)法としては、放射線透過試験(RT)が用いられている(特許第2848494号公報)。又、施工現場での溶接のようにRTの適用が困難な場合には、超音波探傷試験(UT)が用いられている。   In the welding of thick plate stainless steel used for a pressure vessel or the like, multilayer welding construction (multilayer deposition) is performed in which two or more weld layers are stacked. As a volume inspection (nondestructive inspection) method for welding by multi-layer welding, a radiation transmission test (RT) is used (Japanese Patent No. 2848494). Further, when RT is difficult to apply, such as welding at a construction site, an ultrasonic flaw detection test (UT) is used.

しかし、オーステナイト系ステンレス鋼の溶接等、材料特性上UTの適用が困難な場合がある。この場合には、溶接施工時の各溶接層に対して浸透探傷試験(PT)を行う多層PTが適用される。ここで、PTとは、検査対象物に浸透液を塗布し、毛管現象で該検査対象物表面の傷内部を該浸透液で満たし、表面の余剰浸透液を拭き取った後、現像粉末を該表面に吹付け指示模様を得て観察する方法であり、検査対象物の表面の開口傷の有無を検査することができる。多層PTは、多層溶接施工時の各溶接層についてこのPTを行い、RTやUTによる体積検査の代替とするものである。   However, there are cases where it is difficult to apply the UT due to material characteristics such as welding of austenitic stainless steel. In this case, a multilayer PT that performs a penetration flaw detection test (PT) on each weld layer at the time of welding is applied. Here, PT means that a penetrating liquid is applied to an inspection target, the inside of the surface of the inspection target is filled with the permeating liquid by capillary action, and the excess permeating liquid on the surface is wiped off. This is a method for obtaining and observing a spraying instruction pattern, and can inspect whether there is an opening flaw on the surface of the inspection object. Multi-layer PT is used as an alternative to volume inspection by RT or UT by performing PT for each weld layer at the time of multi-layer welding.

しかし、PTは検査対象物の表面の開口傷しか検出できず、溶接層毎にPTを行っても各溶接層内の欠陥を検出することができない。従って、十分な体積検査とは言い難い。   However, PT can only detect opening flaws on the surface of the inspection object, and defects in each weld layer cannot be detected even when PT is performed for each weld layer. Therefore, it cannot be said that the volume inspection is sufficient.

さらに、PTには、被検査体に浸透液(浸透探傷剤)を塗布し、汚れを残さないように拭き取る必要があるので、検査時間は長くなり又自動化も困難である。又拭き取り紙等の廃棄物が発生し、拭き取りが不十分な場合は汚れが溶接部に残る問題が発生することもある。さらに又、高温環境下で適用ができない、再現性が困難である、写真等による記録のため記録の保管が煩雑になる、等の問題も指摘されている。   Furthermore, PT needs to be coated with a penetrating liquid (penetration flaw detection agent) on the object to be inspected and wiped off so as not to leave dirt. Therefore, the inspection time becomes long and automation is difficult. In addition, waste such as wiping paper is generated, and when wiping is insufficient, there may be a problem that dirt remains in the welded portion. Furthermore, problems such as inapplicability in a high temperature environment, difficulty in reproducibility, and cumbersome storage of records due to recording with photographs and the like have been pointed out.

金属材料の非破壊検査に用いられる手法としては、前記のRT、UTやPTの他に、渦電流探傷試験(ECT)が知られている。この方法は、交流を流したコイルを検査対象物(誘導体)に近づけ、該検査対象物内に電磁誘導により渦電流を発生させ、この電流の変化を検出することによって、該検査対象物の欠陥の有無を検出する方法であり、薄板の溶接部の検査方法(健全性診断方法)等への適用が知られている(特開平5−223788号公報)。   As a technique used for nondestructive inspection of a metal material, an eddy current test (ECT) is known in addition to the RT, UT and PT. In this method, an alternating current coil is brought close to an inspection object (derivative), an eddy current is generated in the inspection object by electromagnetic induction, and a change in the current is detected to detect defects in the inspection object. It is a method for detecting the presence or absence of a thin film, and its application to an inspection method (soundness diagnosis method) of a welded portion of a thin plate is known (Japanese Patent Laid-Open No. 5-223788).

しかし、ECTの検出可能領域は表面近傍に限られるため、厚板ステンレス鋼等の多層溶接施工後の完成検査としては、検出性の観点から適用が困難とされていた。そこで、RTやUTの適用が困難な場合に適用可能であって、かつ従来の多層PTが有する問題がない溶接部の体積検査方法の開発が望まれていた。
特開平5−223788号公報 特許第2848494号公報
However, since the detectable region of ECT is limited to the vicinity of the surface, it has been considered difficult to apply as a completion inspection after multilayer welding of thick plate stainless steel or the like from the viewpoint of detectability. Therefore, it has been desired to develop a volume inspection method for a welded part that can be applied when RT or UT is difficult and that does not have the problems of conventional multilayer PTs.
JP-A-5-223788 Japanese Patent No. 2848494

本発明は、オーステナイト系ステンレス鋼厚板の溶接の体積検査を施工現場で行う場合のように、RTやUTの適用が困難な場合に用いられる溶接部の検査方法であって、従来の多層PTの有する前記の問題がない、すなわち検査時間が短く自動化が容易であるとともに、各溶接層内部に生じる欠陥の検出にも有効である等のすぐれた特徴を有する溶接部の検査方法を提供することを課題とする。本発明はさらに、該検査方法を用いた溶接方法、及び該溶接方法の実施に使用される溶接装置を提供することを課題とする。   The present invention is a method for inspecting a welded portion used when RT or UT is difficult to apply, such as when performing volume inspection of welding of austenitic stainless steel thick plates at a construction site, and is a conventional multilayer PT To provide a method for inspecting a welded portion having excellent characteristics such as being free from the above-mentioned problems, that is, having a short inspection time and being easy to automate, and being effective in detecting defects occurring in each weld layer. Is an issue. It is another object of the present invention to provide a welding method using the inspection method and a welding apparatus used for carrying out the welding method.

本発明は、多層溶接施工の各溶接層の形成毎に、該溶接層についてECTを行うことを特徴とする構成により、前記の課題を達成するものである。本発明者は、検討の結果、PTに変えてECTを用い、かつ各溶接層の形成毎にECTを行うことにより、前記の従来技術の問題が解決されることを見出し、本発明を完成した。   This invention achieves the said subject by the structure characterized by performing ECT about this welding layer for every formation of each welding layer of multilayer welding construction. As a result of the study, the present inventor found that the problems of the prior art were solved by using ECT instead of PT and performing ECT for each weld layer formation, and completed the present invention. .

本発明は、請求項1において、多層溶接施工の溶接部の検査方法であって、各溶接層の形成毎に、該溶接層についてのECTを行うことを特徴とする溶接部の検査方法を提供する。多層溶接施工とは、同溶接部に溶接施工を繰り返して、多層の溶接層を形成することを特徴とする溶接施工方法を意味し、前記のように圧力容器の製造における厚板ステンレス鋼の溶接等に応用されている。   The present invention provides a method for inspecting a welded part in multi-layer welding according to claim 1, wherein the welded layer is subjected to ECT for each welded layer formation. To do. Multi-layer welding means a welding method characterized in that a multi-layer weld layer is formed by repeating welding on the weld, and as described above, welding of thick stainless steel in the production of pressure vessels Etc.

本発明の溶接部の検査方法は、溶接層の形成毎に該溶接層についてのECTを行うことを特徴とする。ECTの条件は、特に限定されず、薄板の検査に適用される公知の溶接部用のECTと同様な条件で実施可能である。   The method for inspecting a welded portion according to the present invention is characterized in that ECT is performed on the weld layer every time the weld layer is formed. The conditions of ECT are not particularly limited, and can be implemented under the same conditions as known ECT for welds applied to inspection of thin plates.

ECTは、高速かつ簡便な体積検査方法であり、本発明者は、溶接層の形成毎にECTを行っても、検査時間が特に長くなることはなく、又自動化も容易であることを見出した。すなわち、検査時間が長くなる、自動化が困難であるとの、多層PTの問題が解決される。   ECT is a high-speed and simple volume inspection method, and the present inventor has found that even if ECT is performed for each formation of the weld layer, the inspection time is not particularly long and automation is easy. . That is, the problem of the multi-layer PT that the inspection time is long and automation is difficult is solved.

又、多層溶接施工の各溶接層のそれぞれは薄いので、ECTの検出性が問題となることが少ない。すなわち、溶接層毎にECTを行うことにより、検出性の観点から体積検査が困難であるとの従来技術の問題が解決される。   Moreover, since each welding layer of multilayer welding construction is thin, there is little problem of ECT detection. That is, by performing ECT for each weld layer, the problem of the prior art that volume inspection is difficult from the viewpoint of detectability is solved.

さらにECTは、周波数の選択により、深さ方向の感度が調節可能であるとの特徴を有する。そこで、溶接部の厚みに応じて使用周波数を適切に選択することにより、溶接層間の溶け込み不足等各溶接層間に生じる欠陥や溶接層内部に生じる欠陥の検出にも有効である。従って、多層PTの問題、すなわち各溶接層表面の開口傷のみ検出可能であり体積検査としては不十分であるとの問題も解決される。   Furthermore, the ECT has a feature that the sensitivity in the depth direction can be adjusted by selecting the frequency. Therefore, by appropriately selecting the operating frequency in accordance with the thickness of the welded portion, it is also effective in detecting defects that occur between the weld layers, such as insufficient penetration between the weld layers, and defects that occur inside the weld layers. Therefore, the problem of the multilayer PT, that is, the problem that only the opening flaw on the surface of each weld layer can be detected and is insufficient as a volume inspection is solved.

本発明は、請求項2において、溶接層の形成工程、及び該溶接層の形成工程終了毎に該溶接層についてのECTを行う検査工程を、複数回繰り返すことを特徴とする溶接方法を提供する。溶接層の形成工程及び検査工程を複数回繰り返すのであるから、本発明の溶接方法は多層溶接施工を行うものである。   The present invention provides the welding method according to claim 2, wherein the welding layer forming step and the inspection step of performing ECT on the weld layer at the end of the weld layer forming step are repeated a plurality of times. . Since the welding layer forming step and the inspection step are repeated a plurality of times, the welding method of the present invention performs multilayer welding.

本発明の溶接方法は、溶接層の形成毎にECTが行われることを特徴とする前記の溶接部の検査方法を使用するので、該検査方法について述べた効果と同じ効果、すなわち、検査時間が短く自動化が容易である、溶接層間や溶接層内部の欠陥の検出にも有効である等の効果を奏する。従って、本発明の溶接方法により、欠陥の少なく信頼性の高い溶接を、高い生産性で行うことができる。   Since the welding method of the present invention uses the above-described inspection method for welds, in which ECT is performed every time the weld layer is formed, the same effect as the effect described for the inspection method, that is, the inspection time. It is short and easy to automate, and is effective in detecting defects in the weld layer and in the weld layer. Therefore, the welding method of the present invention enables highly reliable welding with few defects and high productivity.

本発明は、請求項3において、多層溶接施工に用いられる溶接装置であって、溶接施工手段及び渦電流探傷試験手段を有することを特徴とする溶接装置を提供する。この装置は、溶接施工手段及び渦電流探傷試験手段を共に有し、溶接施工手段により溶接層を形成し、その後形成された該溶接層のECTを渦電流探傷試験手段により行い、さらにこれを繰り返すことにより、前記の本発明の溶接方法を実施することができる。   According to a third aspect of the present invention, there is provided a welding apparatus for use in multi-layer welding construction, comprising a welding construction means and an eddy current test means. This apparatus has both a welding construction means and an eddy current testing test means, forms a weld layer by the welding construction means, performs ECT of the formed welding layer by the eddy current testing test means, and repeats this. Thus, the welding method of the present invention can be carried out.

溶接施工手段により行われる溶接の種類は、通常の多層溶接施工に用いられるものであれば特に限定されず、アーク溶接、ガス溶接、抵抗溶接、電子ビーム溶接、レーザビーム溶接等が挙げられる。渦電流探傷試験手段とは、通常ECTプローブ及びその付属装置からなるものであるが、該手段は、溶接施工手段により溶接層が形成された後、直ちにECTを行うことができるように配置されることが、施工時間の短縮、生産性の向上のために好ましい。   The type of welding performed by the welding means is not particularly limited as long as it is used for ordinary multilayer welding, and examples include arc welding, gas welding, resistance welding, electron beam welding, and laser beam welding. The eddy current testing means is usually composed of an ECT probe and its attached device, but the means is arranged so that ECT can be performed immediately after the weld layer is formed by the welding construction means. Is preferable for shortening the construction time and improving productivity.

特に、溶接施工手段及び渦電流探傷試験手段が連動するように設けられているものが好ましい。ここで連動するように設けられているとは、溶接施工手段及び渦電流探傷試験手段が一体として動き、溶接施工手段が、ある部分Aを溶接後他の部分の溶接を行うために移動するとき、この溶接施工手段の動きと一体となって渦電流探傷試験手段が部分Aへ移動し、部分AについてECTを行うことができるように、両者が配置されていることを意味する。   In particular, it is preferable that the welding means and the eddy current flaw detection test means are provided in conjunction with each other. Here, the term "provided so as to be linked" means that when the welding construction means and the eddy current flaw detection testing means move together and the welding construction means moves to weld another part after welding a part A, This means that the eddy current flaw detection test means moves to the part A together with the movement of the welding construction means, and both are arranged so that ECT can be performed on the part A.

請求項4は、この好ましい態様に該当するものであり、前記の溶接装置であって、溶接施工手段及び渦電流探傷試験手段が連動するように設けられていることを特徴とする溶接装置を提供するものである。前記のように、ECTは自動化が容易である。そこで、溶接施工手段も自動化されると、溶接部の形成工程及び検査工程が共に自動化され、生産性が大きく向上し好ましい。すなわち、溶接部用ECTプローブと自動溶接機とを組み合わせた装置は、本発明の溶接装置のより好ましい態様である。   Claim 4 corresponds to this preferred embodiment, and provides the welding apparatus as described above, wherein the welding construction means and the eddy current flaw detection test means are provided so as to interlock with each other. To do. As mentioned above, ECT is easy to automate. Therefore, it is preferable to automate the welding construction means because both the weld formation process and the inspection process are automated, and the productivity is greatly improved. That is, the apparatus which combined the ECT probe for welding parts and the automatic welding machine is a more preferable aspect of the welding apparatus of this invention.

本発明の溶接部の検査方法は、RTやUTが適用困難な多層溶接施工の溶接部の検査に適用され、従来の多層PTに代わる体積検査方法であり、検査時間が短く、自動化が容易であるので、溶接の生産性を向上させるものである。又、廃棄物の発生もなく、被検査体とは非接触で検査が行われるので、被検査体に汚れが残る問題もない。   The weld inspection method of the present invention is applied to inspection of welds in multi-layer welding construction where RT and UT are difficult to apply, and is a volume inspection method that replaces the conventional multi-layer PT. The inspection time is short and automation is easy. As a result, the productivity of welding is improved. Further, since no waste is generated and the inspection is performed without contact with the object to be inspected, there is no problem that dirt remains on the object to be inspected.

又、各溶接層表面の開口傷のみではなく、各溶接層間や溶接層内部に生じる欠陥の検出にも有効であり、優れた体積検査法である。   Further, it is effective for detecting not only opening flaws on the surface of each weld layer but also defects occurring in each weld layer or inside the weld layer, and is an excellent volume inspection method.

さらに、多層PTは浸透液を塗布する必要上高温環境下での適用ができなかったが、ECTによる本発明の溶接部の検査方法では、高温環境下での適用が可能である。   Furthermore, the multilayer PT cannot be applied in a high temperature environment due to the necessity of applying a penetrating solution, but the weld inspection method of the present invention by ECT can be applied in a high temperature environment.

本発明の溶接部の検査方法は、さらに、再現性に優れる、検出結果が電気信号として得られるので記録性に優れる等の特徴を有する。   The method for inspecting a welded portion of the present invention further has features such as excellent reproducibility and excellent recordability because a detection result is obtained as an electric signal.

本発明の溶接方法は、この優れた検査方法を使用するものであり、本発明の溶接装置もこの優れた検査方法を実施する手段を有するものであるので、本発明の溶接方法により、又本発明の溶接装置を用いることにより、欠陥の少なく信頼性の高い溶接を、高い生産性で行うことができる。   The welding method of the present invention uses this excellent inspection method, and the welding apparatus of the present invention also has means for carrying out this excellent inspection method. By using the welding apparatus of the invention, highly reliable welding with few defects can be performed with high productivity.

次に、本発明を実施するための最良の形態を、図を用いて説明するが、この形態は本発明の一例であり、本発明の範囲はこの形態に限定されるものではない。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. However, this mode is an example of the present invention, and the scope of the present invention is not limited to this mode.

図1は、本発明の溶接装置の一例を示す概念図である。図1の例の溶接装置は、溶接施工手段としての自動溶接機1と、渦電流探傷試験手段としてのECT装置4を有するものである。自動溶接機1は溶接トーチ2を有し、溶接トーチ2により溶接が行われる。この例において、溶接法は特に限定されないが、例えばアーク溶接の場合は、溶接トーチ2はアーク発生手段であり、電子ビーム溶接の場合は電子ビーム発生手段、ガス溶接の場合はガスバーナーである。自動溶接機1は溶接トーチ2に、アークや電子ビームを発生するための電流やガス溶接のためのガスを供給し、かつその制御をする機能を有する。   FIG. 1 is a conceptual diagram showing an example of a welding apparatus of the present invention. The welding apparatus in the example of FIG. 1 has an automatic welder 1 as welding construction means and an ECT device 4 as eddy current flaw detection testing means. The automatic welding machine 1 has a welding torch 2, and welding is performed by the welding torch 2. In this example, the welding method is not particularly limited. For example, in the case of arc welding, the welding torch 2 is an arc generating means, in the case of electron beam welding, it is an electron beam generating means, and in the case of gas welding, it is a gas burner. The automatic welding machine 1 has a function of supplying a current for generating an arc or electron beam and a gas for gas welding to the welding torch 2 and controlling the same.

ECT装置4は、ECTプローブ3を有し、ECTプローブ3は交流を流すコイルを有し、検査対象物内に渦電流を発生させるとともに、この電流の変化を検出する機能を有するものである。ECT装置4は、ECTプローブ3に渦電流を発生させるための交流を供給し、又ECTプローブ3で検出された信号を処理するものである。   The ECT device 4 has an ECT probe 3, and the ECT probe 3 has a coil for passing an alternating current, and has a function of generating an eddy current in the inspection object and detecting a change in the current. The ECT device 4 supplies alternating current for generating an eddy current to the ECT probe 3 and processes a signal detected by the ECT probe 3.

溶接母材61及び62は、それらの側面が合わされるように配置され、その突き合わされた部分に、溶接線5が置かれ、溶接トーチ2により溶接線5が溶融され固化することにより溶接層が形成される。溶接トーチ2は、溶接線に沿って図中の矢印の方向に走査されるが、溶接トーチ2とECTプローブ3は連動しており、ECTプローブ3も溶接線に沿って図中の矢印の方向に走査され、形成された溶接部についてのECTが行われる。このように、図1の例の溶接装置により、自動溶接による溶接施工と同時に、ECTによる検査が実施され、これを多層溶接施工時の各層に適用することにより、体積検査が可能となる。   The weld base materials 61 and 62 are arranged so that their side surfaces are aligned, and the weld line 5 is placed on the abutted portion, and the weld line 5 is melted and solidified by the welding torch 2 to form a weld layer. It is formed. The welding torch 2 is scanned along the welding line in the direction of the arrow in the figure, but the welding torch 2 and the ECT probe 3 are interlocked, and the ECT probe 3 is also along the welding line in the direction of the arrow in the figure. ECT is performed on the formed weld. As described above, the welding apparatus of the example of FIG. 1 performs the inspection by ECT simultaneously with the welding operation by automatic welding, and the volume inspection becomes possible by applying this to each layer at the time of the multilayer welding operation.

図2は、図1の例の溶接装置に使用されるECTプローブ3の斜視図である。前記のように、ECTプローブ3は、交流を流すコイルを使用して、時間的に変化する磁場を金属等導体からなる被検査材に加えたとき、被検査材に生じる渦電流あるいは磁化が、被検査材に存在する割れ等の欠陥により変化する原理を利用したものである。この場合、コイルと被検査材との間隔であるリフトオフは、渦電流センサの出力特性に影響する重要なパラメータである。従って、リフトオフを一定に保つために、一対のガイドロールを有するセンサ治具(図示されていない)にECTプローブ3は付設され、ガイドロールの下面に対して、所定の高さ上方に底面が位置するようにECTプローブ3を固定している。   FIG. 2 is a perspective view of the ECT probe 3 used in the welding apparatus of the example of FIG. As described above, when the ECT probe 3 uses a coil that passes alternating current and applies a time-varying magnetic field to a material to be inspected made of a conductor such as a metal, eddy current or magnetization generated in the material to be inspected is This is based on the principle that changes due to defects such as cracks existing in the material to be inspected. In this case, the lift-off, which is the distance between the coil and the material to be inspected, is an important parameter that affects the output characteristics of the eddy current sensor. Therefore, in order to keep the lift-off constant, the ECT probe 3 is attached to a sensor jig (not shown) having a pair of guide rolls, and the bottom face is positioned above a predetermined height with respect to the lower face of the guide rolls. Thus, the ECT probe 3 is fixed.

ECTプローブ3は、コア7に、渦電流の変化を検出する検出コイル8と渦電流を発生させるための励磁コイル9とが巻付けられてなるコイルを構成要素として有するものである。又回転型プローブであって、溶接線方向に前進しながら回転して検出を行う。なお、この例ではECTプローブ3と被検査材との間に適当なリフトオフを設けているが、リフトオフを設けずに被検査材と軽く接触させて診断することも可能であり、又回転型プローブに変えて他のプローブ、例えば点接触型のプローブを使用することも可能である。   The ECT probe 3 has a coil in which a detection coil 8 for detecting a change in eddy current and an excitation coil 9 for generating eddy current are wound around a core 7 as constituent elements. Moreover, it is a rotary probe, and it detects by rotating while moving forward in the welding line direction. In this example, an appropriate lift-off is provided between the ECT probe 3 and the material to be inspected, but it is possible to make a diagnosis by lightly contacting the material to be inspected without providing a lift-off. It is also possible to use other probes, for example, point contact type probes.

本発明の溶接装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the welding apparatus of this invention. 本発明に用いられるECTプローブの斜視図である。It is a perspective view of the ECT probe used for this invention.

符号の説明Explanation of symbols

1 自動溶接機
2 溶接トーチ
3 ECTプローブ
4 ECT装置
5 溶接線
61、62 溶接母材
7 コア
8 検出コイル
9 励磁コイル

DESCRIPTION OF SYMBOLS 1 Automatic welding machine 2 Welding torch 3 ECT probe 4 ECT apparatus 5 Welding wire 61, 62 Welding base material 7 Core 8 Detection coil 9 Excitation coil

Claims (4)

多層溶接施工の溶接部の検査方法であって、各溶接層の形成毎に、該溶接層についての渦電流探傷試験を行うことを特徴とする溶接部の検査方法。   A method for inspecting a welded part in a multi-layer welding process, wherein an eddy current flaw detection test is performed on each welded layer every time the welded layer is formed. 溶接層の形成工程、及び該溶接層の形成工程終了毎に該溶接層についての渦電流探傷試験を行う検査工程を、複数回繰り返すことを特徴とする溶接方法。   A welding method characterized by repeating a welding layer forming step and an inspection step of performing an eddy current flaw detection test on the weld layer every time the welding layer forming step is completed. 多層溶接施工に用いられる溶接装置であって、溶接施工手段及び渦電流探傷試験手段を有することを特徴とする溶接装置。   A welding apparatus for use in multi-layer welding, comprising welding means and eddy current testing means. 溶接施工手段及び渦電流探傷試験手段が連動していることを特徴とする請求項3に記載の溶接装置。

The welding apparatus according to claim 3, wherein the welding construction means and the eddy current flaw detection testing means are interlocked.

JP2004073713A 2004-03-16 2004-03-16 Inspection method of weld zone, welding method and welding equipment Withdrawn JP2005262218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073713A JP2005262218A (en) 2004-03-16 2004-03-16 Inspection method of weld zone, welding method and welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073713A JP2005262218A (en) 2004-03-16 2004-03-16 Inspection method of weld zone, welding method and welding equipment

Publications (1)

Publication Number Publication Date
JP2005262218A true JP2005262218A (en) 2005-09-29

Family

ID=35087299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073713A Withdrawn JP2005262218A (en) 2004-03-16 2004-03-16 Inspection method of weld zone, welding method and welding equipment

Country Status (1)

Country Link
JP (1) JP2005262218A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029805A1 (en) 2005-09-09 2007-03-15 Nikon Corporation Projector-equipped electronic device
WO2011025049A1 (en) * 2009-08-26 2011-03-03 Sumitomo Chemical Company, Limited Method for inspecting an austenitic stainless steel weld
CN101672829B (en) * 2009-09-25 2012-07-25 国核电站运行服务技术有限公司 Method for measuring parameter of omega welding seam defect
EP2485046A1 (en) 2011-02-02 2012-08-08 Mitsubishi Heavy Industries, Ltd. Inspection apparatus and inspection method for heat transfer tube
WO2013029581A1 (en) * 2011-08-27 2013-03-07 Mtu Aero Engines Gmbh Method and device for the generative production of a component
US8779762B2 (en) 2009-12-18 2014-07-15 Mitsubishi Heavy Industries, Ltd. Inspection device
US10780523B1 (en) 2015-10-05 2020-09-22 Lockheed Martin Corporation Eddy current monitoring in an additive manufacturing continuous welding system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029805A1 (en) 2005-09-09 2007-03-15 Nikon Corporation Projector-equipped electronic device
WO2011025049A1 (en) * 2009-08-26 2011-03-03 Sumitomo Chemical Company, Limited Method for inspecting an austenitic stainless steel weld
JP2011047736A (en) * 2009-08-26 2011-03-10 Sumitomo Chemical Co Ltd Method of inspecting austenite-based stainless steel welding section
CN102483391A (en) * 2009-08-26 2012-05-30 住友化学株式会社 Method for inspecting an austenitic stainless steel weld
CN101672829B (en) * 2009-09-25 2012-07-25 国核电站运行服务技术有限公司 Method for measuring parameter of omega welding seam defect
US8779762B2 (en) 2009-12-18 2014-07-15 Mitsubishi Heavy Industries, Ltd. Inspection device
EP2485046A1 (en) 2011-02-02 2012-08-08 Mitsubishi Heavy Industries, Ltd. Inspection apparatus and inspection method for heat transfer tube
US9010404B2 (en) 2011-02-02 2015-04-21 Mitsubishi Heavy Industries, Ltd. Inspection apparatus and inspection method for heat transfer tube
WO2013029581A1 (en) * 2011-08-27 2013-03-07 Mtu Aero Engines Gmbh Method and device for the generative production of a component
US10076879B2 (en) 2011-08-27 2018-09-18 MTU Aero Engines AG Method and device for the generative production of a component
US10780523B1 (en) 2015-10-05 2020-09-22 Lockheed Martin Corporation Eddy current monitoring in an additive manufacturing continuous welding system

Similar Documents

Publication Publication Date Title
US20160349215A1 (en) Non-destructive evaluation of additive manufacturing components using an eddy current array system and method
US9839979B2 (en) System for evaluating weld quality using eddy currents
WO2019094171A1 (en) Methods of using nondestructive material inspection systems
JP2009085894A (en) Method and device for detecting weld zone defect
CA1226933A (en) Method for the ultrasonic flaw detection of an electric welded pipe
US6925882B1 (en) Methods for ultrasonic inspection of spot and seam resistance welds in metallic sheets
Kouprianoff et al. Acoustic emission technique for online detection of fusion defects for single tracks during metal laser powder bed fusion
JP2005262218A (en) Inspection method of weld zone, welding method and welding equipment
Srajbr Induction excited thermography in industrial applications
JP2004184306A (en) Method for inspecting butt-welded part of steel sheet
JP4756224B1 (en) Spot welding inspection equipment
JP4619092B2 (en) Inspection method and inspection apparatus for laser welded joint
JP2001047232A (en) Shape of groove in one-side butt welding and inspection method of weld zone in one-side butt welding
Asher et al. Development of a magnetic eddy current in-line inspection tool
JP5504360B2 (en) Welding failure detection method and welding failure detection device
AU2017345361B2 (en) Method for automatically inspecting a weld bead deposited in a chamfer formed between two metal pieces to be assembled
US20210312604A1 (en) Improved characterization and classification of spot welds by ultrasonic diagostic techniques
Song et al. Development of a magnetic phase map for analysis of the internal structure of a spot weld
JPH05223788A (en) Method for diagnosing soundness of weld on sheet
JP2001071137A (en) Build-up welding method
JP4869891B2 (en) Multi-layer non-destructive inspection method
Янченко Magnetic particle inspection for welding defect detection
JP2013160729A (en) Method for determining different material of weld part
JP2010054415A (en) Method for inspecting flaw of tube plate welded part
PRINTS et al. Potential of Active Thermography as a Non-Destructive Testing Method for Quality Assurance of Welded Joints

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605