JP2009063397A - Apparatus and method for inspecting state of bearing - Google Patents

Apparatus and method for inspecting state of bearing Download PDF

Info

Publication number
JP2009063397A
JP2009063397A JP2007231076A JP2007231076A JP2009063397A JP 2009063397 A JP2009063397 A JP 2009063397A JP 2007231076 A JP2007231076 A JP 2007231076A JP 2007231076 A JP2007231076 A JP 2007231076A JP 2009063397 A JP2009063397 A JP 2009063397A
Authority
JP
Japan
Prior art keywords
bearing
side wheel
capacitance
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007231076A
Other languages
Japanese (ja)
Other versions
JP4912255B2 (en
Inventor
Toru Takahashi
亨 高橋
Kentaro Nishikawa
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007231076A priority Critical patent/JP4912255B2/en
Publication of JP2009063397A publication Critical patent/JP2009063397A/en
Application granted granted Critical
Publication of JP4912255B2 publication Critical patent/JP4912255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for inspecting the state of a bearing capable of accurately and easily determining the state of a lubricant film in a rolling bearing in a non-contact state with a rotation-side ring or a rolling body when lubricant film thickness changes according to the temperature of the bearing and the rotational speed. <P>SOLUTION: In the method, calculated electrostatic capacity is obtained from a lubricant film thickness obtained by computation with a temperature and a rotational speed as parameters, and then, the lubrication state of a bearing is determined from comparison results of the calculated electrostatic capacity with an actually measured electrostatic capacity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、例えば、鉄道車両、自動車、産業機械などの装置に組み込まれた転がり軸受の内部の潤滑剤の劣化状態を検出する軸受状態検査装置および軸受状態検査方法に関する。   The present invention relates to a bearing state inspection device and a bearing state inspection method for detecting a deterioration state of a lubricant inside a rolling bearing incorporated in a device such as a railway vehicle, an automobile, or an industrial machine.

転がり軸受において、内部の潤滑状態を確認することは、軸受寿命にとって極めて重要である。潤滑不良が発生し、軸受の転動体の転動面と内外輪の軌道面の間に形成された潤滑剤による潤滑膜の厚さが通常より薄くなった場合、転動面と軌道面が金属接触を起こし、軸受寿命が短くなることが知られている。
そこで、潤滑膜の状態を観察して軸受寿命を予測することが望まれるが、潤滑膜の状態は直接観察することが不可能なため、潤滑膜の状態を測定する各種の方法が従来より提案されている。その一つの方法は潤滑膜の状態を直流抵抗として測定するもの(特許文献1)であり、他の一つの方法は潤滑膜の厚さを電気容量として測定するもの(特許文献2)である。
また、本件出願人は、非接触で電気容量を測定し、1つの軸受の潤滑膜の状態を推定する方法を提案している。
特開2001−311427号公報 特開2003−214810号公報
In a rolling bearing, it is extremely important for the bearing life to check the internal lubrication state. When lubrication failure occurs and the thickness of the lubricant film formed by the lubricant formed between the rolling surface of the rolling element of the bearing and the raceway surface of the inner and outer rings becomes thinner than usual, the rolling surface and raceway surface are made of metal. It is known to cause contact and shorten the bearing life.
Therefore, it is desirable to observe the state of the lubricating film to predict the bearing life, but since it is impossible to directly observe the state of the lubricating film, various methods for measuring the state of the lubricating film have been proposed in the past. Has been. One method is to measure the state of the lubricating film as a DC resistance (Patent Document 1), and the other method is to measure the thickness of the lubricating film as an electric capacity (Patent Document 2).
Further, the applicant of the present application has proposed a method for estimating the state of the lubricating film of one bearing by measuring the electric capacity without contact.
JP 2001-311427 A JP 2003-214810 A

特許文献1の潤滑膜の状態を直流抵抗として測定する方法の場合、軸受内外輪のいずれかが回転しているため、被測定箇所以外の場所に電気接点が必要となり、その接点の電気抵抗が測定誤差の要因となったり測定結果を不安定なものにするという問題がある。
また、特許文献2の潤滑膜の厚さを電気容量として測定する方法の場合、軸受外輪に孔を開けて電極を取り付ける必要があり、一般の軸受には適用できない。
前述の非接触で電気容量を測定する技術では、温度、回転速度によって潤滑膜厚さは変化するため、静電容量を検出するだけでは、潤滑状態を正確に判定することができない。
In the case of the method of measuring the state of the lubricating film as a DC resistance in Patent Document 1, since one of the inner and outer rings of the bearing is rotating, an electrical contact is required at a place other than the measured part, and the electrical resistance of the contact is There are problems that cause measurement errors and make measurement results unstable.
In the method of measuring the thickness of the lubricating film as the electric capacity in Patent Document 2, it is necessary to make a hole in the outer ring of the bearing and attach an electrode, which is not applicable to a general bearing.
In the above-described technique for measuring electric capacity without contact, the lubricating film thickness varies depending on the temperature and the rotational speed. Therefore, the lubricating state cannot be accurately determined only by detecting the electrostatic capacity.

この発明の目的は、回転側輪や転動体に対して非接触の状態で、転がり軸受における潤滑膜の状態を、軸受温度、回転速度によって潤滑膜厚さが変化する場合に正確にかつ簡単に判定することができる軸受状態検査装置および軸受状態検査方法を提供することである。   An object of the present invention is to accurately and easily change the state of a lubricating film in a rolling bearing in a non-contact state with respect to a rotating side wheel and a rolling element when the lubricating film thickness changes depending on the bearing temperature and rotational speed. A bearing state inspection device and a bearing state inspection method that can be determined are provided.

この発明の軸受状態検査装置は、それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受において、前記内外輪のうちの回転側輪の表面にすき間を隔てて非接触で対向する電極を設け、前記内外輪のうちの固定側輪と前記電極との間に接続されて前記電極と回転側輪との間、回転側輪と転動体との間、および転動体と固定側輪との間の各静電容量の合計値を測定する静電容量測定手段と、前記内輪または外輪の温度を測定する温度測定手段と、前記回転側輪の回転速度を測定する回転速度測定手段と、前記温度測定手段により測定される温度、および前記回転速度測定手段により測定される回転速度を設定して、転動体と内外輪との接触面積および潤滑膜厚さを導出し、導出した接触面積および潤滑膜厚さから静電容量を求め、この求めた静電容量と、前記静電容量測定手段により測定した各静電容量の合計値とを比較して、前記転がり軸受の潤滑状態を判定する判定手段とを有することを特徴とする。   The bearing condition inspection apparatus according to the present invention is a rolling bearing having a conductive outer ring, an inner ring, and a rolling element, respectively, and is provided with electrodes facing each other in a non-contact manner with a gap on the surface of the rotating side ring of the inner and outer rings. , Connected between the fixed side wheel of the inner and outer rings and the electrode, between the electrode and the rotating side wheel, between the rotating side wheel and the rolling element, and between the rolling element and the fixed side wheel. Capacitance measuring means for measuring the total value of the respective capacitances, temperature measuring means for measuring the temperature of the inner ring or outer ring, rotation speed measuring means for measuring the rotation speed of the rotating side wheel, and the temperature The temperature measured by the measuring means and the rotational speed measured by the rotational speed measuring means are set to derive the contact area and lubricating film thickness between the rolling element and the inner and outer rings, and the derived contact area and lubricating film Obtain the capacitance from the thickness, and obtain this Capacitance and, by comparing the total value of the capacitance measured by the capacitance measuring means, characterized by having a determining means for determining the lubrication condition of the rolling bearing.

この構成によると、静電容量測定手段は、前記電極と回転側輪との間の静電容量、回転側輪と転動体との間の静電容量、および転動体と固定側輪との間の各静電容量の合計値を測定する。また、温度測定手段は内輪または外輪の温度を測定し、回転速度測定手段は回転側輪の回転速度を測定する。判定手段は、前記測定される温度および回転速度等を設定して、転動体と内外輪との接触面積および潤滑膜厚さを導出し、この導出した接触面積および潤滑膜厚さから静電容量を求める。さらに、判定手段は、求めた静電容量と、前記測定した各静電容量の合計値とを比較することで、複雑な構造、加工等を用いることなく潤滑状態を判定する。
特に、温度、回転速度をパラメータとして、演算により求めた潤滑膜厚さから計算上の静電容量を求めておき、この計算上の静電容量と実際に測定した静電容量との比較結果から軸受の潤滑状態を正確にかつ簡単に判定することができる。前記判定手段は、計測器や、CPUの他、閾値と比較するだけの簡単な電子回路等によって実現できる。
According to this configuration, the capacitance measuring means includes the capacitance between the electrode and the rotating side wheel, the capacitance between the rotating side wheel and the rolling element, and between the rolling element and the fixed side wheel. The total value of each capacitance is measured. Further, the temperature measuring means measures the temperature of the inner ring or the outer ring, and the rotational speed measuring means measures the rotational speed of the rotating side wheel. The determination means sets the measured temperature, rotation speed, etc., derives the contact area and the lubrication film thickness between the rolling elements and the inner and outer rings, and the capacitance from the derived contact area and lubrication film thickness Ask for. Furthermore, the determination unit determines the lubrication state without using a complicated structure, processing, or the like by comparing the obtained capacitance with the total value of the measured capacitances.
In particular, using the temperature and rotation speed as parameters, the calculated capacitance is calculated from the lubricating film thickness obtained by calculation. From the comparison result between the calculated capacitance and the actually measured capacitance The lubrication state of the bearing can be accurately and easily determined. The determination means can be realized by a measuring instrument, a CPU, a simple electronic circuit that only compares with a threshold value, and the like.

この発明において、前記判定手段は、測定される温度および回転速度を設定すると共に、この軸受で使用する潤滑剤の粘度、および予圧量を設定して前記接触面積および潤滑膜厚さを導出しても良い。潤滑剤の粘度、予圧量により潤滑状態は変化するが、これら潤滑剤の粘度、予圧量をも考慮して接触面積および潤滑膜厚さを導出する場合、軸受の潤滑状態をより正確に判定することができる。   In the present invention, the determination means sets the temperature and rotational speed to be measured, and sets the viscosity and preload amount of the lubricant used in the bearing to derive the contact area and the lubricating film thickness. Also good. Although the lubrication state changes depending on the viscosity and preload amount of the lubricant, when the contact area and the lubrication film thickness are derived in consideration of the viscosity and preload amount of the lubricant, the lubrication state of the bearing is more accurately determined. be able to.

この発明において、前記電極は、リング状のスリップリングからなるものであっても良い。この場合、汎用品であるスリップリングを適用することができ、製造コストの低減を図ることが可能となる。   In the present invention, the electrode may be a ring-shaped slip ring. In this case, a slip ring which is a general-purpose product can be applied, and the manufacturing cost can be reduced.

前記内外輪のうちの回転側輪の表面にすき間を隔てて非接触で対向する電極と、固定側輪と電気的に導通する電極と、これら電極間に電気的に絶縁された絶縁体とが一体の固定側ユニットを前記固定側輪に取付けたものであっても良い。この場合、軸受状態検査装置の組立が容易となり、製造コストの低減を図ることができる。また、固定側ユニットを固定側輪に取付けるだけで、電極は回転側輪の表面に所定すき間を隔てることが可能である。この場合、固定側ユニットの調整、交換等を容易にし、作業工数の低減を図ることができる。   An electrode facing the surface of the rotating side wheel of the inner and outer rings in a non-contact manner with a gap, an electrode electrically connected to the fixed side wheel, and an insulator electrically insulated between the electrodes. An integrated stationary unit may be attached to the stationary wheel. In this case, the assembly of the bearing state inspection device is facilitated, and the manufacturing cost can be reduced. Moreover, the electrode can separate the predetermined gap from the surface of the rotating side wheel only by attaching the fixed side unit to the fixed side wheel. In this case, adjustment and replacement of the fixed unit can be facilitated, and the number of work steps can be reduced.

この発明において、内輪または外輪の温度を測定する温度測定手段と、軸受の回転速度を測定する回転速度測定手段のうちの少なくともいずれか1つが前記固定側ユニットと一体に設けられても良い。この場合、軸受状態検査装置の組立をさらに容易化することができる。   In the present invention, at least one of temperature measuring means for measuring the temperature of the inner ring or outer ring and rotational speed measuring means for measuring the rotational speed of the bearing may be provided integrally with the fixed side unit. In this case, the assembly of the bearing state inspection device can be further facilitated.

この発明の軸受状態検査方法は、それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受の潤滑状態を検査する軸受状態検査方法において、前記内外輪のうちの回転側輪の表面にすき間を隔てて非接触で対向する電極を設け、前記内外輪のうちの固定側輪と前記電極との間に接続されて前記電極と回転側輪との間、回転側輪と転動体との間、および転動体と固定側輪との間の各静電容量の合計値を測定し、前記内輪または外輪の温度を測定し、前記回転側輪の回転速度を測定し、前記測定される温度および回転速度を設定して、転動体と内外輪との接触面積および潤滑膜厚さを導出し、導出した接触面積および潤滑膜厚さから静電容量を求め、この求めた静電容量と、前記測定した各静電容量の合計値とを比較して、前記転がり軸受の潤滑状態を判定することを特徴とする。   The bearing state inspection method of the present invention is a bearing state inspection method for inspecting the lubrication state of a rolling bearing having a conductive outer ring, an inner ring and a rolling element, respectively, and a clearance is formed on the surface of the rotating side ring of the inner and outer rings. Provided with electrodes that are in contact with each other in a non-contact manner, connected between the fixed side wheel and the electrode of the inner and outer rings, and between the electrode and the rotation side wheel, between the rotation side wheel and the rolling element, And the total value of each capacitance between the rolling element and the fixed side wheel, the temperature of the inner ring or the outer ring, the rotational speed of the rotating side wheel, the measured temperature and the rotation The speed is set, the contact area between the rolling elements and the inner and outer rings and the lubricating film thickness are derived, the electrostatic capacity is obtained from the derived contact area and the lubricating film thickness, and the obtained capacitance and the measurement The total value of the respective capacitances And judging the state.

この構成によると、温度、回転速度をパラメータとして、演算により求めた潤滑膜厚さから計算上の静電容量を求めておき、この計算上の静電容量と実際に測定した静電容量との比較結果から軸受の潤滑状態を正確にかつ簡単に判定することができる。これにより、装置のメンテナンス時期を正確に判断することができ、潤滑剤の潤滑状態の異常を予測、または検知することが可能となる。   According to this configuration, the calculated electrostatic capacity is obtained from the lubricating film thickness obtained by calculation using the temperature and the rotational speed as parameters, and the calculated electrostatic capacity and the actually measured electrostatic capacity are calculated. The lubrication state of the bearing can be accurately and easily determined from the comparison result. Thereby, it is possible to accurately determine the maintenance time of the apparatus, and it is possible to predict or detect an abnormality in the lubrication state of the lubricant.

この発明の軸受状態検査装置は、内外輪のうちの固定側輪と前記電極との間に接続されて電極と回転側輪との間、回転側輪と転動体との間、および転動体と固定側輪との間の各静電容量の合計値を測定する静電容量測定手段と、前記内輪または外輪の温度を測定する温度測定手段と、前記回転側輪の回転速度を測定する回転速度測定手段と、前記温度測定手段により測定される温度、および前記回転速度測定手段により測定される回転速度を設定して、転動体と内外輪との接触面積および潤滑膜厚さを導出し、導出した接触面積および潤滑膜厚さから静電容量を求め、この求めた静電容量と、前記静電容量測定手段により測定した各静電容量の合計値とを比較して、前記転がり軸受の潤滑状態を判定する判定手段とを有するため、回転側輪や転動体に対して非接触の状態で、転がり軸受における潤滑膜の状態を、軸受温度、回転速度によって潤滑膜厚さが変化する場合に正確にかつ簡単に判定することができる。   The bearing state inspection device of this invention is connected between the fixed side wheel of the inner and outer rings and the electrode, between the electrode and the rotation side wheel, between the rotation side wheel and the rolling element, and the rolling element. Capacitance measuring means for measuring the total value of each capacitance between the fixed side wheel, temperature measuring means for measuring the temperature of the inner ring or outer ring, and a rotational speed for measuring the rotational speed of the rotating side wheel By setting the measuring means, the temperature measured by the temperature measuring means, and the rotational speed measured by the rotational speed measuring means, the contact area between the rolling element and the inner and outer rings and the lubricating film thickness are derived and derived. The electrostatic capacity is obtained from the contact area and the lubricating film thickness, and the obtained electrostatic capacity is compared with the total value of each electrostatic capacity measured by the electrostatic capacity measuring means to lubricate the rolling bearing. Determination means for determining the state, In a state of non-contact with body, the state of the lubricating film in the rolling bearing can be determined accurately and easily when the bearing temperature, the lubricating film thickness by the rotating speed changes.

この発明の一実施形態を図1ないし図4と共に説明する。この実施形態は、例えば、鉄道車両、自動車、二輪車、産業機械、工作機械などの装置に組み込まれた転がり軸受の内部の潤滑剤の劣化状態を検出する軸受状態検査装置に適用される。ただし、前記装置に限定されるものではない。以下の説明は、軸受状態検査方法についての説明をも含む。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is applied to, for example, a bearing state inspection device that detects a deterioration state of a lubricant inside a rolling bearing incorporated in a device such as a railway vehicle, an automobile, a two-wheeled vehicle, an industrial machine, or a machine tool. However, it is not limited to the said apparatus. The following description also includes a description of the bearing condition inspection method.

内輪回転の場合について説明する。
この軸受状態検査装置は、転がり軸受が回転軸に取り付けられた軸受使用装置1において、転がり軸受2の潤滑膜の潤滑状態を判定するものである。前記軸受状態検査装置は、静電容量測定手段3と、温度測定手段としての温度センサ4と、回転速度測定手段としての回転センサ5と、後述する判定手段6とを有する。
転がり軸受2は、固定側輪である外輪7と、回転軸に嵌合する回転側輪である内輪8と、外輪7の内周面に形成された軌道面7aと内輪8の外周面に形成された軌道面8aとの間に介在する複数個の転動体9とを有する。この場合の転がり軸受2は、前記転動体がボールからなる玉軸受である。
The case of inner ring rotation will be described.
This bearing state inspection device determines the lubrication state of the lubricating film of the rolling bearing 2 in the bearing using device 1 in which the rolling bearing is attached to the rotating shaft. The bearing state inspection device includes a capacitance measuring unit 3, a temperature sensor 4 as a temperature measuring unit, a rotation sensor 5 as a rotational speed measuring unit, and a determination unit 6 to be described later.
The rolling bearing 2 is formed on an outer ring 7 that is a fixed side wheel, an inner ring 8 that is a rotating side wheel that is fitted to a rotation shaft, a raceway surface 7 a that is formed on the inner peripheral surface of the outer ring 7, and an outer peripheral surface of the inner ring 8. And a plurality of rolling elements 9 interposed between the raceway surfaces 8a. The rolling bearing 2 in this case is a ball bearing in which the rolling elements are balls.

この転がり軸受2が正常に回転、つまり内輪回転している場合、外輪7と転動体9との接触面には、1μm以下の厚さの潤滑膜つまり油膜が形成され、外輪7と転動体9とは直接接触することなく潤滑膜10を介して荷重を伝えることが知られている。内輪8と転動体9の接触面にも同様の潤滑膜11が形成される。ここで潤滑膜10を誘電体と考え、外輪7と転動体9を電極と考えると、ここに1つのコンデンサ12が形成される。同様に内輪8と転動体9、潤滑膜11の関係においても、もう1つのコンデンサ13が形成される。   When the rolling bearing 2 rotates normally, that is, when the inner ring rotates, a lubricating film, that is, an oil film having a thickness of 1 μm or less is formed on the contact surface between the outer ring 7 and the rolling element 9. It is known that the load is transmitted through the lubricating film 10 without being in direct contact. A similar lubricating film 11 is also formed on the contact surface between the inner ring 8 and the rolling element 9. Here, when the lubricating film 10 is considered as a dielectric and the outer ring 7 and the rolling element 9 are considered as electrodes, one capacitor 12 is formed here. Similarly, another capacitor 13 is formed in the relationship between the inner ring 8, the rolling elements 9, and the lubricating film 11.

これを模式的に表現すると、図2に示すように、2つのコンデンサCa、Cbが直列に接続された回路構成となる。軸受1個あたりの転動体の個数をnとして、それぞれの転動体9での静電容量が等しいとすると、それらの等しい静電容量のコンデンサCa、Cbが並列に接続された場合を考え、転動体1個当たりの静電容量Ccとすると、軸受全体の静電容量Cおよび静電容量Ccは、次のように表される。
C=n・Cc ……(1)
Cc=Ca・Cb/(Ca+Cb) ……(2)
This is schematically expressed as a circuit configuration in which two capacitors Ca and Cb are connected in series as shown in FIG. Assuming that the number of rolling elements per bearing is n and the electrostatic capacities of the respective rolling elements 9 are equal, the case where the capacitors Ca and Cb having the same electrostatic capacity are connected in parallel is considered. Assuming that the electrostatic capacity Cc per moving body is given, the electrostatic capacity C and the electrostatic capacity Cc of the entire bearing are expressed as follows.
C = n · Cc (1)
Cc = Ca · Cb / (Ca + Cb) (2)

したがって、外輪7から内輪8までの経路の静電容量を測定すれば、1箇所の静電容量Ccを推定することができる。
また、外輪7、転動体9間および転動体9、内輪8間のそれぞれの潤滑膜厚さをda´、db´、接触楕円面積をSa´、Sb´、誘電率をεとすると、転動体1個当たりの静電容量Ca、Cbは次式(3)、(4)のように表される。
Ca=εSa´/da´ ……(3)
Cb=εSb´/db´ ……(4)
Therefore, if the capacitance of the path from the outer ring 7 to the inner ring 8 is measured, the capacitance Cc at one location can be estimated.
Further, when the lubrication film thicknesses between the outer ring 7 and the rolling elements 9 and between the rolling elements 9 and the inner ring 8 are da ′ and db ′, the contact ellipse areas are Sa ′ and Sb ′, and the dielectric constant is ε, the rolling elements Capacitances Ca and Cb per piece are expressed by the following equations (3) and (4).
Ca = εSa ′ / da ′ (3)
Cb = εSb ′ / db ′ (4)

潤滑膜厚さは軸受の荷重、回転速度、潤滑剤などの影響により変化する。本実施形態では、弾性流体潤滑理論つまりEHL理論を用いて、予め潤滑膜厚さと静電容量との関係を求めておくことで、潤滑膜厚さを推定することができる。
具体的にEHL理論では、使用する潤滑剤の粘度、使用回転数、予圧量(荷重)、温度範囲を設定して、転動体9と外輪7および内輪8との接触面積、および潤滑膜厚さを導出している。この求めた接触面積と潤滑膜厚さとを、上記式(3)、(4)に代入することで、転動体1個当たりの静電容量Ca、Cbを求める。
The lubricating film thickness varies depending on the influence of the bearing load, rotation speed, lubricant, and the like. In the present embodiment, the lubricant film thickness can be estimated by obtaining the relationship between the lubricant film thickness and the capacitance in advance using the elastohydrodynamic lubrication theory, that is, the EHL theory.
Specifically, in the EHL theory, the viscosity of the lubricant to be used, the number of rotations used, the amount of preload (load), and the temperature range are set, the contact area between the rolling element 9 and the outer ring 7 and the inner ring 8, and the lubricating film thickness. Is derived. By substituting the obtained contact area and lubricating film thickness into the above formulas (3) and (4), the capacitances Ca and Cb per rolling element are obtained.

この求めた静電容量Ca、Cbと、測定した静電容量とを比較することで、転がり軸受の潤滑状態を判定する。また、実測した静電容量値を上記式(3)、(4)に代入することで、潤滑膜厚さの推定を行うことが可能となる。
具体的に、図4に示すように、実線L1で示す計算値と実際のセンサ出力とを比較し、このセンサ出力と前記計算値との差が少なければ軸受が正常に動作していると判断する。つまり、点線L2,L3が閾値となり、これら点線L2,L3の間に、センサ出力があれば、軸受が正常に動作していると判断する。
センサ出力が点線L2よりも上方にあると、潤滑膜厚さが薄いと判断する。この場合、内外輪とボールとが接触する可能性があり、また異物が軸受内に混入した可能性もある。センサ出力が点線L3よりも下方にあると、潤滑膜厚さが厚いと判断する。この場合、軸受内に異物が混入した可能性がある。
The lubrication state of the rolling bearing is determined by comparing the obtained capacitances Ca and Cb with the measured capacitance. Moreover, it becomes possible to estimate the lubricating film thickness by substituting the actually measured capacitance value into the above formulas (3) and (4).
Specifically, as shown in FIG. 4, the calculated value indicated by the solid line L1 is compared with the actual sensor output, and if the difference between the sensor output and the calculated value is small, it is determined that the bearing is operating normally. To do. That is, the dotted lines L2 and L3 serve as threshold values, and if there is a sensor output between these dotted lines L2 and L3, it is determined that the bearing is operating normally.
If the sensor output is above the dotted line L2, it is determined that the lubricating film thickness is thin. In this case, there is a possibility that the inner and outer rings and the ball come into contact with each other, and there is a possibility that foreign matter is mixed in the bearing. If the sensor output is below the dotted line L3, it is determined that the lubricating film thickness is thick. In this case, foreign matter may have entered the bearing.

前述の静電容量を測定する静電容量測定手段3として、例えば、電気容量計等の市販の計測器を適用しても良い。必要時にこの計測器を、回転側輪である内輪端面に所定すき間δを隔てて設けた電極14、外輪7に電気的に接続して測定する。前記電極14は、例えば、スリップリングによって実現される。なお、軸受専用の静電容量測定手段3を用いて恒常的に静電容量を測定するようにしても良い。
前述の潤滑剤の粘度、使用回転数、予圧量、温度範囲のうち、使用回転数は、この軸受状態検査装置の回転速度測定手段としての回転センサ5等によって測定される。また、前記温度範囲は、同軸受状態検査装置の温度測定手段としての温度センサ4等によって測定される。
As the capacitance measuring means 3 for measuring the capacitance described above, for example, a commercially available measuring instrument such as a capacitance meter may be applied. When necessary, this measuring instrument is electrically connected to the electrode 14 and the outer ring 7 provided with a predetermined gap δ on the end face of the inner ring, which is a rotating side wheel, for measurement. The electrode 14 is realized by, for example, a slip ring. Note that the capacitance may be constantly measured using the capacitance measuring means 3 dedicated to the bearing.
Of the above-described lubricant viscosity, rotational speed, amount of preload, and temperature range, the rotational speed used is measured by a rotation sensor 5 as a rotational speed measuring means of the bearing state inspection device. The temperature range is measured by a temperature sensor 4 or the like as temperature measuring means of the bearing state inspection apparatus.

前記判定手段6は、例えば、計測器や、中央演算処理装置(略称CPU;Central Processing Unit)等の他、簡単な電子回路、例えば閾値と比較するだけの回路等によって実現される。市販の電気容量計等の計測器を適用する場合、この計測器を例の転がり軸受の潤滑状態の計測に使用することができ、計測器自体の兼用性を高めることができる。したがって、軸受状態検査装置の初期導入費用を極力抑えることができる。専用の電子回路等を適用する場合、転がり軸受の潤滑状態を常に判定することができ、潤滑剤の劣化状態をリアルタイムで監視することが可能となる。なお、前記判定手段6と前記静電容量測定手段3とを一体に設けてもよいし、別体に設けても良い。   The determination means 6 is realized by, for example, a measuring instrument, a central processing unit (abbreviated as CPU: Central Processing Unit), or the like, or a simple electronic circuit, for example, a circuit that only compares with a threshold value. When a measuring instrument such as a commercially available electric capacity meter is applied, this measuring instrument can be used for measuring the lubrication state of the rolling bearing of the example, and the combined use of the measuring instrument itself can be improved. Therefore, the initial introduction cost of the bearing state inspection device can be suppressed as much as possible. When a dedicated electronic circuit or the like is applied, the lubrication state of the rolling bearing can always be determined, and the deterioration state of the lubricant can be monitored in real time. The determination unit 6 and the capacitance measuring unit 3 may be provided integrally or separately.

図3は、回転数と静電容量との関係を表す図である。同図において、実線は、前記EHL理論を用いた静電容量の計算値を表し、黒四角のプロットは、回転数等を考慮した静電容量値の実測値を表している。軸受の回転数が高くなるに従って、計算値および実測値とも静電容量は次第に小さくなっており、略一致している。計算値および実測値両者の関係から、前記EHL理論を用いた静電容量の計算値が正しいものと推定することができる。   FIG. 3 is a diagram illustrating the relationship between the rotation speed and the capacitance. In the figure, the solid line represents the calculated value of the capacitance using the EHL theory, and the black square plot represents the measured value of the capacitance value in consideration of the rotational speed and the like. As the number of rotations of the bearing increases, the calculated value and the actually measured value gradually decrease in capacitance and substantially coincide. From the relationship between the calculated value and the actually measured value, it can be estimated that the calculated capacitance value using the EHL theory is correct.

以上説明した軸受状態検査装置によると、特に、温度、回転速度をパラメータとして、演算により求めた潤滑膜厚さから計算上の静電容量を求めておき、この計算上の静電容量と実際に測定した静電容量との比較結果から軸受の潤滑状態を正確にかつ簡単に判定することができる。また、潤滑剤の粘度、予圧量により潤滑状態は変化するが、判定手段6は、これら潤滑剤の粘度、予圧量をも考慮して接触面積および潤滑膜厚さを導出しているので、軸受の潤滑状態をより正確に判定することができる。このような軸受状態検査装置、軸受状態検査方法により、装置のメンテナンス時期を正確に判断することができ、潤滑剤の潤滑状態の異常を予測、または検知することが可能となる。   According to the bearing condition inspection apparatus described above, in particular, the calculated electrostatic capacity is obtained from the lubricating film thickness obtained by calculation using the temperature and rotational speed as parameters. From the result of comparison with the measured capacitance, the lubrication state of the bearing can be determined accurately and easily. Although the lubrication state changes depending on the viscosity and preload amount of the lubricant, the determination means 6 derives the contact area and the lubrication film thickness in consideration of the viscosity and preload amount of the lubricant. It is possible to more accurately determine the lubrication state. By such a bearing state inspection device and a bearing state inspection method, it is possible to accurately determine the maintenance time of the device, and it is possible to predict or detect an abnormality in the lubrication state of the lubricant.

次に、この発明の他の実施形態を図5ないし図8と共に説明する。以下の説明においては、先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。   Next, another embodiment of the present invention will be described with reference to FIGS. In the following description, parts corresponding to the matters described in the preceding embodiments are denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

本実施形態では、回転側輪の表面に所定すき間δを隔てて対向するリング状の検出リング15を設け、この検出リング15と固定側輪間の静電容量を測定することにより、非接触で軸受の静電容量を測定することができる。前記検出リング15の代わりに、リング状でない検出体を回転側輪の表面にすき間δを隔てて設けても良い。
図5に示した内輪回転の軸受で動作原理等を説明する。同図に示すように、転がり軸受の内輪8の側面にすき間δを隔てて対向する検出リング15と、この検出リング15に一方の電極3aが電気的に接続され、固定側輪である外輪7に他方の電極3bが電気的に接続されている。
In the present embodiment, a ring-shaped detection ring 15 that is opposed to the surface of the rotating side wheel with a predetermined gap δ is provided, and the capacitance between the detection ring 15 and the fixed side wheel is measured, thereby making contactless. The electrostatic capacity of the bearing can be measured. Instead of the detection ring 15, a non-ring-shaped detection body may be provided on the surface of the rotating side wheel with a gap δ.
The operation principle and the like will be described with reference to the inner ring rotation bearing shown in FIG. As shown in the figure, a detection ring 15 that faces the side surface of the inner ring 8 of the rolling bearing with a gap δ therebetween, and one electrode 3a is electrically connected to the detection ring 15, and an outer ring 7 that is a fixed side ring. The other electrode 3b is electrically connected.

この場合、固定側輪である外輪7は、図示外の絶縁手段で適切に絶縁され、ハウジング等の他の部材と電気的に非導通状態とされている。この場合の軸受使用装置から検出リング15にまたがる経路の電気的な等価回路は、例えば、図7に示すようになる。すなわち、この場合の電気回路は、静電容量測定手段3の電極3bから軸受の外輪7→転動体9→内輪8→検出リング15→静電容量測定手段3の電極3aの経路で形成される。なお、軸受使用装置の転がり軸受が外輪回転の場合には、同軸受装置から検出リング15にまたがる経路の電気的な等価回路は、例えば、図8のようになる。すなわち、この場合の電気回路は、静電容量測定手段3の一方の電極3aから検出リング15→軸受の外輪7→転動体9→内輪8→静電容量測定手段3の他方の電極3bの経路で形成される。この等価回路は、図6の等価回路と比べて、静電容量Crの位置が内輪8側から外輪7側に入れ代わっているだけで、全体の静電容量Cは同じものとなる。   In this case, the outer ring 7 which is a fixed side wheel is appropriately insulated by an insulating means (not shown), and is not electrically connected to other members such as a housing. An electrical equivalent circuit of a path extending from the bearing using device to the detection ring 15 in this case is as shown in FIG. 7, for example. That is, the electric circuit in this case is formed by the path from the electrode 3b of the capacitance measuring means 3 to the outer ring 7 of the bearing → the rolling element 9 → the inner ring 8 → the detection ring 15 → the electrode 3a of the capacitance measuring means 3. . When the rolling bearing of the bearing using device is an outer ring rotating, an electrical equivalent circuit of a path extending from the bearing device to the detection ring 15 is, for example, as shown in FIG. That is, the electric circuit in this case is a path from one electrode 3a of the capacitance measuring means 3 to the detection ring 15 → the outer ring 7 of the bearing → the rolling element 9 → the inner ring 8 → the other electrode 3b of the capacitance measuring means 3. Formed with. Compared with the equivalent circuit of FIG. 6, this equivalent circuit is the same in the overall capacitance C only by changing the position of the capacitance Cr from the inner ring 8 side to the outer ring 7 side.

前記内輪8と検出リング15の間でコンデンサが構成され、その静電容量Crは、リング間の対面する面積をS、リング間の距離をdとすれば、
Cr=εS/d ……(5)
となる。この静電容量Crの値は予め測定しておくことも可能である。また、転動体1個当たりの静電容量Ccは、
Cc=C・Cr/n(C−Cr) ……(6)
となり、この式(6)により、転動体1個当たりの静電容量Ccを求めることができる。
A capacitor is formed between the inner ring 8 and the detection ring 15, and the electrostatic capacity Cr of the capacitor Cr is defined as S and the distance between the rings is d.
Cr = εS / d (5)
It becomes. The value of the capacitance Cr can be measured in advance. In addition, the capacitance Cc per rolling element is
Cc = C · Cr / n (C-Cr) (6)
From this equation (6), the electrostatic capacity Cc per rolling element can be obtained.

全体の静電容量の測定には、例えば、電気容量計等の計測器を用いることができる。ただし、前述したように、潤滑膜厚さのパラメータに温度、回転数が含まれるため、温度センサ4を、固定側輪に取付けて軸受の固定側輪もしくは回転側輪等の温度を測定すると共に、回転センサ5を固定側輪に取付けて軸受の回転速度を測定する。それぞれの出力から潤滑膜厚さを推定する。このように、温度および回転数をパラメータとして含む潤滑膜厚さ等に基づいて静電容量を求め、この求めた静電容量と、前記計測器により測定した静電容量とを比較することにより、転がり軸受の潤滑状態を正確にかつ簡単に判定することができる。   For example, a measuring instrument such as a capacitance meter can be used to measure the entire capacitance. However, as described above, since the parameter of the lubricating film thickness includes the temperature and the rotational speed, the temperature sensor 4 is attached to the stationary side wheel to measure the temperature of the stationary side wheel or the rotational side wheel of the bearing. The rotation sensor 5 is attached to the fixed side wheel, and the rotational speed of the bearing is measured. The lubricating film thickness is estimated from each output. Thus, by obtaining the capacitance based on the lubricating film thickness and the like including the temperature and the number of revolutions as parameters, and comparing the obtained capacitance with the capacitance measured by the measuring instrument, The lubrication state of the rolling bearing can be determined accurately and easily.

図9は、この発明のさらに他の実施形態に係る軸受状態検査装置等の要部を表す断面図である。本実施形態では、軸受状態検査装置は、回転側輪である内輪端面に所定すき間δを隔てて設けた電極14と、外輪7と電気的に導通する電極31と、これら電極14,31間に電気的に絶縁された絶縁体32とが一体の固定側ユニット33を備えている。この固定側ユニット33は、例えば、ハウジングHにおける転がり軸受2の嵌合孔Haに、段部を介して形成されるユニット嵌合孔Hbに嵌合され、固定側輪である外輪7に取り付けられる。   FIG. 9 is a cross-sectional view showing a main part of a bearing state inspection device and the like according to still another embodiment of the present invention. In the present embodiment, the bearing state inspection apparatus includes an electrode 14 provided on the end surface of the inner ring, which is a rotating side wheel, with a predetermined gap δ, an electrode 31 that is electrically connected to the outer ring 7, and a space between these electrodes 14, 31. The fixed side unit 33 is provided integrally with the insulator 32 that is electrically insulated. For example, the fixed unit 33 is fitted to a fitting hole Ha of the rolling bearing 2 in the housing H in a unit fitting hole Hb formed through a step portion, and is attached to the outer ring 7 which is a fixed side wheel. .

前記固定側ユニット33のうち、半径方向外方側に配置される電極31が、ユニット嵌合孔Hbに嵌合され、かつ外輪端面に固着されて電気的に導通する。この電極31の内周に固着される絶縁体32は、例えば、樹脂等から成り、外輪端面に干渉しないように同外輪端面に軸方向すき間を隔てて設けられている。ただし、絶縁体材料は樹脂に限定されるものではない。この絶縁体32の内周に、前記電極14が固着されている。その他図1に示す実施形態と同様の構成となっている。   Of the fixed-side unit 33, the electrode 31 disposed on the radially outer side is fitted into the unit fitting hole Hb, and is fixed to the end surface of the outer ring to be electrically connected. The insulator 32 fixed to the inner periphery of the electrode 31 is made of, for example, resin, and is provided on the outer ring end face with an axial gap so as not to interfere with the outer ring end face. However, the insulator material is not limited to resin. The electrode 14 is fixed to the inner periphery of the insulator 32. The other configuration is the same as that of the embodiment shown in FIG.

図9に示す固定側ユニット33を設ける場合、軸受状態検査装置の組立が容易になり、製造コストの低減を図ることができる。また、固定側ユニット33を前述のように取付けるだけで、電極14は内輪端面に所定すき間δを隔てることが可能である。この場合、固定側ユニット33の調整、交換等を容易にし、作業工数の低減を図ることができる。その他図1に示す実施形態と同様の作用、効果を奏する。
また、図9の二点鎖線で示すように、前記温度センサ4および回転センサ5の少なくともいずれか一方または両方が、この固定側ユニット33と一体に設けられても良い。この場合、軸受状態検査装置の組立をさらに容易化することができる。
When the fixed side unit 33 shown in FIG. 9 is provided, the assembly of the bearing state inspection device is facilitated, and the manufacturing cost can be reduced. Moreover, the electrode 14 can separate the predetermined gap δ from the inner ring end face only by attaching the fixed side unit 33 as described above. In this case, adjustment and replacement of the fixed side unit 33 can be facilitated, and the number of work steps can be reduced. Other operations and effects similar to those of the embodiment shown in FIG.
Further, as indicated by a two-dot chain line in FIG. 9, at least one or both of the temperature sensor 4 and the rotation sensor 5 may be provided integrally with the fixed unit 33. In this case, the assembly of the bearing state inspection device can be further facilitated.

図10は、軸受状態検査装置における判定手段の一例を表すブロック図である。
判定手段6は、静電容量測定手段3で測定した測定値から、この転がり軸受の潤滑状態を推定するCPU16を有する。前記静電容量測定手段3は、直列接続した発振器17と電流測定手段18とを備え、この電流測定手段18とCPU16とが電気的に接続されている。また、電流測定手段18が電極3aに電気的に接続され、発振器17が電極3bに電気的に接続されている。この軸受使用装置に交流電流を流すことによって、前述の全体の静電容量Cをインピーダンスに換算して測定するようにした例を示す。この場合、測定したインピーダンスから平均静電容量Caを求めることもできる。
FIG. 10 is a block diagram illustrating an example of a determination unit in the bearing state inspection apparatus.
The determination unit 6 includes a CPU 16 that estimates the lubrication state of the rolling bearing from the measurement value measured by the capacitance measurement unit 3. The capacitance measuring means 3 includes an oscillator 17 and a current measuring means 18 connected in series, and the current measuring means 18 and the CPU 16 are electrically connected. Further, the current measuring means 18 is electrically connected to the electrode 3a, and the oscillator 17 is electrically connected to the electrode 3b. An example will be shown in which an alternating current is passed through this bearing-using device, whereby the above-described overall capacitance C is converted into an impedance and measured. In this case, the average capacitance Ca can also be obtained from the measured impedance.

図11は、静電容量測定手段3AがOPアンプ19で構成した発振器20と、この発振器20の発振周波数から静電容量を推定する周波数対応容量推定手段21とでなり、測定した発振器20の周波数により、軸受使用装置全体の静電容量Cを推定するようにした例を示す。この場合の発振器20は、relaxation oscillorと呼ばれ、OPアンプ19に抵抗30Ra,30Rb,30Rt、およびコンデンサ30Ctを接続して構成される。抵抗30Ra,30Rb,30Rtの抵抗値をRa,Rb,Rt、コンデンサ30Ctの静電容量をCtとすると、発振周波数fは、およそ
f=1/(2Rt Ct)
となることが知られている。
ここでは、前記発振器20のコンデンサ30Ctが、軸受使用装置全体の静電容量Cに置き換えられることで、その静電容量Cが推定される。
FIG. 11 shows an oscillator 20 in which the capacitance measuring means 3A is composed of an OP amplifier 19 and a frequency corresponding capacity estimating means 21 for estimating the capacitance from the oscillation frequency of the oscillator 20, and the measured frequency of the oscillator 20 is measured. Shows an example in which the electrostatic capacity C of the entire bearing using device is estimated. The oscillator 20 in this case is called a relaxation oscillator and is configured by connecting resistors 30Ra, 30Rb, 30Rt, and a capacitor 30Ct to the OP amplifier 19. When the resistance values of the resistors 30Ra, 30Rb, and 30Rt are Ra, Rb, and Rt, and the capacitance of the capacitor 30Ct is Ct, the oscillation frequency f is approximately f = 1 / (2Rt Ct).
It is known that
Here, the capacitance C of the oscillator 20 is estimated by replacing the capacitor 30Ct with the capacitance C of the entire bearing using device.

この発明の一実施形態に係る軸受状態検査装置を用いた転がり軸受の検査を示す説明図である。It is explanatory drawing which shows the test | inspection of the rolling bearing using the bearing state inspection apparatus which concerns on one Embodiment of this invention. 同転がり軸受の軸受構造を電気回路として表現した場合の模式図である。It is a schematic diagram at the time of expressing the bearing structure of the rolling bearing as an electric circuit. 回転数と静電容量との関係を表す図である。It is a figure showing the relationship between a rotation speed and an electrostatic capacitance. 回転数と静電容量との関係を表し、閾値判断により軸受が正常に動作しているか否かを説明する図である。It is a figure showing the relationship between a rotation speed and an electrostatic capacitance, and explaining whether a bearing is operating normally by threshold value judgment. この発明の他の実施形態に係る軸受状態検査装置を用いた転がり軸受のうち回転側輪である内輪に、すき間を隔ててスリップリングを設けた構造を表す図である。It is a figure showing the structure which provided the slip ring in the inner ring | wheel which is a rotation side wheel among the rolling bearings using the bearing state inspection apparatus which concerns on other embodiment of this invention through the clearance gap. 同転がり軸受のうち回転側輪である外輪に、すき間を隔ててスリップリングを設けた構造を表す図である。It is a figure showing the structure which provided the slip ring in the outer ring which is a rotation side wheel among the rolling bearings at intervals. 一方の電極から他方の電極にわたる経路の電気的な等価回路図である。It is an electrical equivalent circuit schematic of the path | route from one electrode to the other electrode. この発明の他の実施形態の等価回路図である。It is an equivalent circuit schematic of other embodiment of this invention. この発明のさらに他の実施形態に係る軸受状態検査装置等の要部を表す断面図である。It is sectional drawing showing principal parts, such as a bearing state inspection apparatus which concerns on further another embodiment of this invention. 軸受状態検査装置における判定手段の一例を表すブロック図である。It is a block diagram showing an example of the determination means in a bearing state inspection apparatus. 判定手段の他の例を表すブロック図である。It is a block diagram showing the other example of a determination means.

符号の説明Explanation of symbols

2…転がり軸受
3…静電容量測定手段
4…温度センサ
5…回転センサ
6…判定手段
7…外輪
8…内輪
9…転動体
14…電極
15…検出リング
33…固定側ユニット
δ…すき間
DESCRIPTION OF SYMBOLS 2 ... Rolling bearing 3 ... Capacitance measuring means 4 ... Temperature sensor 5 ... Rotation sensor 6 ... Determination means 7 ... Outer ring 8 ... Inner ring 9 ... Rolling body 14 ... Electrode 15 ... Detection ring 33 ... Fixed side unit delta ... Clearance

Claims (6)

それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受において、
前記内外輪のうちの回転側輪の表面にすき間を隔てて非接触で対向する電極を設け、前記内外輪のうちの固定側輪と前記電極との間に接続されて前記電極と回転側輪との間、回転側輪と転動体との間、および転動体と固定側輪との間の各静電容量の合計値を測定する静電容量測定手段と、
前記内輪または外輪の温度を測定する温度測定手段と、
前記回転側輪の回転速度を測定する回転速度測定手段と、
前記温度測定手段により測定される温度、および前記回転速度測定手段により測定される回転速度を設定して、転動体と内外輪との接触面積および潤滑膜厚さを導出し、導出した接触面積および潤滑膜厚さから静電容量を求め、この求めた静電容量と、前記静電容量測定手段により測定した各静電容量の合計値とを比較して、前記転がり軸受の潤滑状態を判定する判定手段と、
を有することを特徴とする軸受状態検査装置。
In rolling bearings having conductive outer rings, inner rings and rolling elements,
An electrode is provided on the surface of the rotating side wheel of the inner and outer rings that is opposed to the surface of the rotating side wheel in a non-contact manner. The electrode and the rotating side wheel are connected between the fixed side wheel and the electrode of the inner and outer rings. , Capacitance measuring means for measuring the total value of each capacitance between the rotating side wheel and the rolling element, and between the rolling element and the fixed side wheel,
Temperature measuring means for measuring the temperature of the inner ring or the outer ring,
A rotational speed measuring means for measuring the rotational speed of the rotating side wheel;
By setting the temperature measured by the temperature measuring means and the rotational speed measured by the rotational speed measuring means, the contact area between the rolling element and the inner and outer rings and the lubricating film thickness are derived, and the derived contact area and An electrostatic capacity is obtained from the lubricating film thickness, and the obtained electrostatic capacity is compared with the total value of each electrostatic capacity measured by the electrostatic capacity measuring means to determine the lubrication state of the rolling bearing. A determination means;
A bearing state inspection device characterized by comprising:
請求項1において、前記判定手段は、測定される温度および回転速度を設定すると共に、この軸受で使用する潤滑剤の粘度、および予圧量を設定して前記接触面積および潤滑膜厚さを導出する軸受状態検査装置。   2. The determination means according to claim 1, wherein the determination means sets the temperature and rotation speed to be measured, and sets the viscosity and preload amount of the lubricant used in the bearing to derive the contact area and the lubricating film thickness. Bearing condition inspection device. 請求項1または請求項2において、前記電極は、リング状のスリップリングからなる軸受状態検査装置。   3. The bearing state inspection device according to claim 1, wherein the electrode is a ring-shaped slip ring. 請求項1または請求項2において、内外輪のうちの回転側輪の表面にすき間を隔てて非接触で対向する電極と、固定側輪と電気的に導通する電極と、これら電極間に電気的に絶縁された絶縁体とが一体の固定側ユニットを前記固定側輪に取付けた軸受状態検査装置。   3. The electrode according to claim 1 or 2, wherein the surface of the rotating side wheel of the inner and outer rings is opposed to the surface of the rotating side wheel in a non-contact manner, the electrode electrically connected to the fixed side wheel, and the electrical contact between these electrodes. A bearing state inspection device in which a stationary unit integrated with an insulator insulated by a motor is attached to the stationary wheel. 請求項4において、内輪または外輪の温度を測定する温度測定手段と、軸受の回転速度を測定する回転速度測定手段のうちの少なくともいずれか1つが前記固定側ユニットと一体に設けられたことを特徴とする軸受状態検査装置   5. The method according to claim 4, wherein at least one of temperature measuring means for measuring the temperature of the inner ring or outer ring and rotation speed measuring means for measuring the rotation speed of the bearing is provided integrally with the fixed side unit. Bearing condition inspection device それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受の潤滑状態を検査する軸受状態検査方法において、
前記内外輪のうちの回転側輪の表面にすき間を隔てて非接触で対向する電極を設け、前記内外輪のうちの固定側輪と前記電極との間に接続されて前記電極と回転側輪との間、回転側輪と転動体との間、および転動体と固定側輪との間の各静電容量の合計値を測定し、
前記内輪または外輪の温度を測定し、
前記回転側輪の回転速度を測定し、
前記測定される温度および回転速度を設定して、転動体と内外輪との接触面積および潤滑膜厚さを導出し、導出した接触面積および潤滑膜厚さから静電容量を求め、この求めた静電容量と、前記測定した各静電容量の合計値とを比較して、前記転がり軸受の潤滑状態を判定する軸受状態検査方法。
In a bearing state inspection method for inspecting the lubrication state of a rolling bearing having a conductive outer ring, an inner ring, and rolling elements, respectively.
An electrode is provided on the surface of the rotating side wheel of the inner and outer rings that is opposed to the surface of the rotating side wheel in a non-contact manner. The electrode and the rotating side wheel are connected between the fixed side wheel and the electrode of the inner and outer rings. , The total value of each electrostatic capacitance between the rotating side wheel and the rolling element, and between the rolling element and the fixed side wheel,
Measuring the temperature of the inner ring or outer ring,
Measure the rotational speed of the rotating side wheel,
The measured temperature and rotational speed were set, the contact area and the lubrication film thickness between the rolling elements and the inner and outer rings were derived, and the capacitance was obtained from the derived contact area and the lubrication film thickness. A bearing state inspection method for comparing a capacitance and a total value of the measured capacitances to determine a lubrication state of the rolling bearing.
JP2007231076A 2007-09-06 2007-09-06 Bearing state inspection device and bearing state inspection method Expired - Fee Related JP4912255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231076A JP4912255B2 (en) 2007-09-06 2007-09-06 Bearing state inspection device and bearing state inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231076A JP4912255B2 (en) 2007-09-06 2007-09-06 Bearing state inspection device and bearing state inspection method

Publications (2)

Publication Number Publication Date
JP2009063397A true JP2009063397A (en) 2009-03-26
JP4912255B2 JP4912255B2 (en) 2012-04-11

Family

ID=40558098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231076A Expired - Fee Related JP4912255B2 (en) 2007-09-06 2007-09-06 Bearing state inspection device and bearing state inspection method

Country Status (1)

Country Link
JP (1) JP4912255B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159126A (en) * 2011-01-31 2012-08-23 Panasonic Corp Lubrication state determining device and component mounting device
JP2013066252A (en) * 2011-04-27 2013-04-11 Panasonic Corp Motor and electrical apparatus provided with the same
JP2014228378A (en) * 2013-05-22 2014-12-08 ファナック株式会社 Motor controller for estimating degree of electrolytic corrosion of motor bearing and method thereof
EP2952759A1 (en) * 2014-06-05 2015-12-09 Aktiebolaget SKF Rolling bearing and sensor assembly including the same
EP3187768A1 (en) * 2015-12-17 2017-07-05 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
JP2019045280A (en) * 2017-09-01 2019-03-22 ファナック株式会社 Bearing diagnostic device and method for diagnosing bearing
JP2020020385A (en) * 2018-07-31 2020-02-06 株式会社デンソー Lubricant deterioration detection device
DE102020105148B4 (en) 2020-02-27 2022-03-31 Hiwin Technologies Corp. linear actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137054A (en) * 1984-12-07 1986-06-24 Toshiba Corp Apparatus for monitoring damage of rotary machine
JP2001272311A (en) * 2000-03-23 2001-10-05 Ntn Corp Measuring method and measuring device for bearing characteristic of dynamic pressure type bearing
JP2001311427A (en) * 2000-04-28 2001-11-09 Koyo Seiko Co Ltd Monitoring system for components in relative motion
JP2003214810A (en) * 2002-01-17 2003-07-30 Nsk Ltd Measuring device and method for oil film
JP2007192769A (en) * 2006-01-23 2007-08-02 Ntn Corp Lubricant deterioration detector, and bearing with detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137054A (en) * 1984-12-07 1986-06-24 Toshiba Corp Apparatus for monitoring damage of rotary machine
JP2001272311A (en) * 2000-03-23 2001-10-05 Ntn Corp Measuring method and measuring device for bearing characteristic of dynamic pressure type bearing
JP2001311427A (en) * 2000-04-28 2001-11-09 Koyo Seiko Co Ltd Monitoring system for components in relative motion
JP2003214810A (en) * 2002-01-17 2003-07-30 Nsk Ltd Measuring device and method for oil film
JP2007192769A (en) * 2006-01-23 2007-08-02 Ntn Corp Lubricant deterioration detector, and bearing with detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159126A (en) * 2011-01-31 2012-08-23 Panasonic Corp Lubrication state determining device and component mounting device
JP2013066252A (en) * 2011-04-27 2013-04-11 Panasonic Corp Motor and electrical apparatus provided with the same
JP2014228378A (en) * 2013-05-22 2014-12-08 ファナック株式会社 Motor controller for estimating degree of electrolytic corrosion of motor bearing and method thereof
EP2952759A1 (en) * 2014-06-05 2015-12-09 Aktiebolaget SKF Rolling bearing and sensor assembly including the same
EP3187768A1 (en) * 2015-12-17 2017-07-05 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
US10317121B2 (en) 2015-12-17 2019-06-11 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
US11187449B2 (en) 2015-12-17 2021-11-30 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
US11725859B2 (en) 2015-12-17 2023-08-15 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
JP2019045280A (en) * 2017-09-01 2019-03-22 ファナック株式会社 Bearing diagnostic device and method for diagnosing bearing
US10859467B2 (en) 2017-09-01 2020-12-08 Fanuc Corporation Bearing diagnosing device and bearing diagnosing method
JP2020020385A (en) * 2018-07-31 2020-02-06 株式会社デンソー Lubricant deterioration detection device
DE102020105148B4 (en) 2020-02-27 2022-03-31 Hiwin Technologies Corp. linear actuator

Also Published As

Publication number Publication date
JP4912255B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4912255B2 (en) Bearing state inspection device and bearing state inspection method
JP4942496B2 (en) Bearing state inspection device and bearing state inspection method
KR101428829B1 (en) A sensorized bearing unit
EP3567358B1 (en) Method for diagnosing rolling device
US9995344B2 (en) Capacitance measurement in a bearing
US10823638B2 (en) Monitoring method and monitoring apparatus for determining remaining life of a bearing
JP2019211317A (en) Diagnostic method of rolling device
JP4993492B2 (en) Bearing device
JP7200789B2 (en) Preload Diagnosis Method for Rolling Device
JPH0961268A (en) Load measuring apparatus for bearing
US11112348B2 (en) Wear sensors for monitoring seal wear in bearing arrangements
JP2016217485A (en) Rolling bearing including vibration detection device and state detection device
JP5147528B2 (en) Bearing device
KR102611596B1 (en) Diagnosis methods for powertrains
JP4954136B2 (en) Bearing device
JP2007198576A (en) Bearing with internal condition detecting function
JP2007240491A (en) Bearing state inspecting apparatus
JP2007247690A (en) Bearing device for wheel with sensor
JP2007239779A (en) Bearing state inspection device
JP2001311427A (en) Monitoring system for components in relative motion
WO2015146689A1 (en) Bearing component internal defect inspection apparatus and internal defect inspection method
JP7347721B1 (en) Bearing device condition detection method, detection device, and program
WO2023176602A1 (en) Bearing device state detecting method, detecting device, and program
WO2022250060A1 (en) Bearing device state detecting method, detecting device, and program
WO2023199655A1 (en) Bearing device state detection method, detection device, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees