JP4942496B2 - Bearing state inspection device and bearing state inspection method - Google Patents

Bearing state inspection device and bearing state inspection method Download PDF

Info

Publication number
JP4942496B2
JP4942496B2 JP2007016371A JP2007016371A JP4942496B2 JP 4942496 B2 JP4942496 B2 JP 4942496B2 JP 2007016371 A JP2007016371 A JP 2007016371A JP 2007016371 A JP2007016371 A JP 2007016371A JP 4942496 B2 JP4942496 B2 JP 4942496B2
Authority
JP
Japan
Prior art keywords
ring
fixed
capacitive coupling
rotating
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007016371A
Other languages
Japanese (ja)
Other versions
JP2008185339A (en
Inventor
亨 高橋
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007016371A priority Critical patent/JP4942496B2/en
Publication of JP2008185339A publication Critical patent/JP2008185339A/en
Application granted granted Critical
Publication of JP4942496B2 publication Critical patent/JP4942496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration

Description

この発明は、例えば、鉄道車両、自動車、産業機械などの装置に組み込まれた転がり軸受の内部の潤滑剤の劣化状態を検出する軸受状態検査装置および軸受状態検査方法に関する。   The present invention relates to a bearing state inspection device and a bearing state inspection method for detecting a deterioration state of a lubricant inside a rolling bearing incorporated in a device such as a railway vehicle, an automobile, or an industrial machine.

転がり軸受において、内部の潤滑状態を確認することは、軸受寿命にとって極めて重要である。潤滑不良が発生し、軸受の転動体の転動面と内外輪の軌道面の間に形成された潤滑剤による潤滑膜の厚さが通常より薄くなった場合、転動面と軌道面が金属接触を起こし、軸受寿命が短くなることが知られている。
そこで、潤滑膜の状態を観察して軸受寿命を予測することが望まれるが、潤滑膜の状態は直接観察することが不可能なため、潤滑膜の状態を測定する各種の方法が従来より提案されている。その一つの方法は潤滑膜の状態を直流抵抗として測定するもの(特許文献1)であり、他の一つの方法は潤滑膜の厚さを電気容量として測定するもの(特許文献2)である。
また、本件出願人は、非接触で電気容量を測定し、1つの軸受の潤滑膜の状態を推定する方法を提案している。
特開2001−311427号公報 特開2003−214810号公報
In a rolling bearing, it is extremely important for the bearing life to check the internal lubrication state. When lubrication failure occurs and the thickness of the lubricant film formed by the lubricant formed between the rolling surface of the rolling element of the bearing and the raceway surface of the inner and outer rings becomes thinner than usual, the rolling surface and raceway surface are made of metal. It is known to cause contact and shorten the bearing life.
Therefore, it is desirable to observe the state of the lubricating film to predict the bearing life, but since it is impossible to directly observe the state of the lubricating film, various methods for measuring the state of the lubricating film have been proposed in the past. Has been. One method is to measure the state of the lubricating film as a DC resistance (Patent Document 1), and the other method is to measure the thickness of the lubricating film as an electric capacity (Patent Document 2).
Further, the applicant of the present application has proposed a method for estimating the state of the lubricating film of one bearing by measuring the electric capacity without contact.
JP 2001-311427 A JP 2003-214810 A

特許文献1の潤滑膜の状態を直流抵抗として測定する方法の場合、軸受内外輪のいずれかが回転しているため、被測定箇所以外の場所にスリップリングなどの電気接点が必要となり、その接点の電気抵抗が測定誤差の要因となったり測定結果を不安定なものにするという問題がある。
また、特許文献2の潤滑膜の厚さを電気容量として測定する方法の場合、軸受外輪に孔を開けて電極を取り付ける必要があり、一般の軸受には適用できない。
In the case of the method of measuring the state of the lubricating film as a DC resistance in Patent Document 1, since either the bearing inner or outer ring is rotating, an electrical contact such as a slip ring is required in a place other than the measured part. There is a problem that the electrical resistance of this causes a measurement error and makes the measurement result unstable.
In the method of measuring the thickness of the lubricating film as the electric capacity in Patent Document 2, it is necessary to make a hole in the outer ring of the bearing and attach an electrode, which is not applicable to a general bearing.

前述の非接触で電気容量を測定する技術では、次のような問題がある。
・固定輪と測定リングとのギャップ調整および取り付けが難しい。
・固定輪とハウジング等の他の部材とは電気的に非導通状態とするため、ハウジング等の他の部材が導通状態である場合、固定輪とハウジング等の他の部材との間のギャップ長を、測定に影響を及ぼさない程度とするための非導通部材を介在させる必要がある。
・軸受の固定輪に電極を取り付け、検出回路と電気的に接続しなければならず、組立て難い。
The above-described technique for measuring electric capacity without contact has the following problems.
・ It is difficult to adjust and install the gap between the fixed ring and the measuring ring.
-Since the fixed ring and other members such as the housing are electrically non-conductive, the gap length between the fixed ring and other members such as the housing when other members such as the housing are conductive Therefore, it is necessary to interpose a non-conductive member so that the measurement does not affect the measurement.
-Electrodes must be attached to the bearing ring and electrically connected to the detection circuit, making assembly difficult.

この発明の目的は、回転側輪や転動体に対して非接触の状態で、転がり軸受における潤滑膜の状態を推定できると共に、スリップリング等の電気接点を用いることなく、油膜厚さ等の測定を簡単に行うことができ、装置全体の組立を簡単に行うことができる軸受状態検査装置および軸受状態検査方法を提供することである。   An object of the present invention is to estimate the state of a lubricating film in a rolling bearing in a non-contact state with respect to a rotating side wheel and a rolling element, and measure an oil film thickness and the like without using an electrical contact such as a slip ring. It is an object of the present invention to provide a bearing state inspection device and a bearing state inspection method that can be easily performed, and that the entire apparatus can be easily assembled.

この発明の軸受状態検査装置は、それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受において、内外輪のうちの回転側輪に取付けられ回転側輪に対して電気的に導通した導電性の回転側容量結合体と、前記内外輪のうちの固定側輪に取付けられた固定側ユニットとを備え、前記固定側ユニットは、前記回転側容量結合体に静電容量発生用の隙間を介して対向し前記固定側輪に対して電気的に非導通の固定側容量結合体と、この固定側容量結合体に対して電気的に絶縁されかつ前記固定側輪に対して電気的に導通した接続用電極部材とを有することを特徴とする。   The bearing state inspection device according to the present invention is a rolling bearing having a conductive outer ring, an inner ring, and a rolling element, respectively, and is electrically conductive and electrically connected to the rotating side wheel attached to the rotating side wheel of the inner and outer rings. A rotation-side capacitive coupling body and a stationary-side unit attached to a stationary-side wheel of the inner and outer rings, and the stationary-side unit is connected to the rotation-side capacitive coupling body via a gap for generating capacitance. A fixed-side capacitive coupling body that is opposed to and electrically non-conductive to the fixed-side wheel, and is electrically insulated from the fixed-side capacitive coupling body and electrically connected to the fixed-side wheel. And a connecting electrode member.

この構成によると、固定側ユニットは、固定側容量結合体と接続用電極部材とを有する。これらのうちの固定側容量結合体は、回転側容量結合体に静電容量発生用の隙間を介して対向し固定側輪に対して電気的に非導通である。また、接続用電極部材は、固定側容量結合体に対して電気的に絶縁されかつ固定側輪に対して電気的に導通する。特に、回転側容量結合体と固定側容量結合体とが、静電容量発生用の隙間を介して対向するので、スリップリング等の電気接点を用いることなく、電気容量計等の判定手段の端子を両方とも固定側に接続して潤滑剤の油膜厚さ等を測定できる。また転がり軸受に、固定側ユニットと回転側容量結合体とを取付けるだけで、潤滑状態を検出することが可能となるため、検査装置の組立てが容易となり、また装置に軸受を取り付ける前にキャリブレーションすることが可能となる。   According to this configuration, the fixed side unit includes the fixed side capacitive coupling body and the connection electrode member. Of these, the fixed-side capacitive coupling body is opposed to the rotating-side capacitive coupling body via a gap for generating capacitance, and is electrically non-conductive to the fixed-side wheel. The connection electrode member is electrically insulated from the fixed-side capacitive coupling body and electrically connected to the fixed-side wheel. In particular, since the rotating-side capacitive coupling body and the fixed-side capacitive coupling body are opposed to each other through a gap for generating capacitance, a terminal of a determination unit such as a capacitance meter is used without using an electrical contact such as a slip ring. Both can be connected to the fixed side and the oil film thickness of the lubricant can be measured. In addition, since it is possible to detect the lubrication state by simply attaching the fixed unit and the rotary capacitive coupling to the rolling bearing, it is easy to assemble the inspection device, and calibration before attaching the bearing to the device. It becomes possible to do.

この発明において、前記固定側容量結合体と前記接続用電極部材との間に接続され、前記回転側容量結合体と固定側容量結合体との間、回転側輪と転動体との間、および固定側輪と転動体との間の各静電容量の合計値を測定し、この測定値から前記転がり軸受の潤滑状態を判定する判定手段を設けても良い。   In this invention, it is connected between the fixed-side capacitive coupling body and the connection electrode member, between the rotating-side capacitive coupling body and the fixed-side capacitive coupling body, between the rotating-side wheel and the rolling element, and A determination means may be provided that measures the total value of the electrostatic capacities between the fixed side wheel and the rolling element and determines the lubrication state of the rolling bearing from the measured value.

この場合、判定手段は、回転側容量結合体と固定側容量結合体との間の静電容量、非導通状態にある回転側輪と転動体との間の静電容量、および非導通状態にある固定側輪と転動体との間の静電容量の合計値を測定し、この測定値から潤滑状態を判定する。この判定手段は、計測器や、CPU(Central Processing Unit)の他、簡単な電子回路(閾値と比較するだけの回路)によって実現できる。
市販の電気容量計等の計測器を適用する場合、この計測器を他の転がり軸受の潤滑状態の計測に使用することができ、計測器自体の兼用性を高めることができる。したがって、軸受状態検査装置の初期導入費用を極力抑えることができる。専用の電子回路等を適用する場合、転がり軸受の潤滑状態を常に判定することができ、潤滑剤の劣化状態をリアルタイムで監視することが可能となる。
In this case, the determination means is configured such that the capacitance between the rotating side capacitive coupling body and the fixed side capacitive coupling body, the capacitance between the rotating side wheel and the rolling element in a non-conduction state, and the non-conduction state. The total value of the electrostatic capacitance between a certain fixed side wheel and the rolling element is measured, and the lubrication state is determined from this measured value. This determination means can be realized by a measuring instrument, a CPU (Central Processing Unit), or a simple electronic circuit (a circuit that only compares with a threshold value).
When a measuring instrument such as a commercially available capacitance meter is applied, this measuring instrument can be used for measuring the lubrication state of other rolling bearings, and the combined use of the measuring instrument itself can be improved. Therefore, the initial introduction cost of the bearing state inspection device can be suppressed as much as possible. When a dedicated electronic circuit or the like is applied, the lubrication state of the rolling bearing can always be determined, and the deterioration state of the lubricant can be monitored in real time.

記回転側容量結合体および固定側容量結合体が、それぞれリング状の部材である回転リングおよび固定リングであり、これら回転リングと固定リングとを、径方向または軸方向に対向させている。この場合、回転リングおよび固定リングを、回転側輪、固定側輪の直径寸法等に基づいて設計し、取付け可能にできる。 Before Symbol rotation-side capacitive coupling body and the fixed capacitive coupling member are each rotary ring and the stationary ring is a ring-shaped member and a fixed ring and these rotating ring, which is opposed in the radial direction or the axial direction. In this case, the rotating ring and the fixed ring can be designed and attached based on the diameter and the like of the rotating side wheel and the fixed side wheel.

記回転リングおよび固定リングが前記転がり軸受の側部に位置するものであり、前記回転側容量結合体および前記固定側ユニットが、それぞれ回転側輪および固定側輪に嵌合する取付用の環状の嵌合部を有するものである。この場合、回転側容量結合体を、その環状の嵌合部により回転側輪に簡単に取付けることができる。また、固定側ユニットを、その環状の嵌合部により固定側輪に簡単に取付けることができる。しかも、各環状の嵌合部によって、回転側輪に対する回転側容量結合体の位置決め精度を高めるとともに、固定側輪に対する固定側容量結合体の位置決め精度を高めることが可能となる。 Are those before Symbol rotating ring and a stationary ring is positioned on the side of the rolling bearing, the annular of the rotation-side capacitive coupling member and the stationary unit, for mounting to be fitted to each rotation-side wheel and the stationary ring It has a fitting part . In this case, the rotation-side capacitive coupling body can be easily attached to the rotation-side wheel by the annular fitting portion. Further, the fixed side unit can be easily attached to the fixed side wheel by the annular fitting portion. In addition, each annular fitting portion can increase the positioning accuracy of the rotating side capacitive coupling body with respect to the rotating side wheel, and can increase the positioning accuracy of the fixed side capacitive coupling body with respect to the stationary side wheel.

この発明において、前記回転側輪が内輪であり、前記固定側ユニットが、前記外輪の外径面に嵌合するハウジングと、前記外輪の側方で前記ハウジングの内径面に外径側から順に重なり状態に設けられたリング状の接続用電極部材、リング状の絶縁体、および固定リングからなるものであっても良い。この場合、固定側ユニットを、ハウジングの内径面に外径側から重なり状態のリング状の部材で構成したので、固定側ユニットの取り扱い、組立を容易にし、作業工数の低減を図ることができる。   In this invention, the rotating side wheel is an inner ring, and the fixed side unit is overlapped in order from the outer diameter side to the inner diameter surface of the housing on the side of the outer ring, with the housing fitted to the outer diameter surface of the outer ring. It may consist of a ring-shaped connecting electrode member provided in a state, a ring-shaped insulator, and a fixing ring. In this case, since the fixed unit is configured by a ring-shaped member overlapping the inner diameter surface of the housing from the outer diameter side, handling and assembly of the fixed unit can be facilitated, and the number of work steps can be reduced.

この発明の軸受状態検査方法は、それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受の潤滑状態を検査する軸受状態検査方法において、内外輪のうちの回転側輪に、この回転側輪に対して電気的に導通した導電性のリング状の部材からなる回転リングである回転側容量結合体を取付け、前記内外輪のうちの固定側輪に、前記回転側容量結合体に静電容量発生用の隙間を介して径方向または軸方向に対向し前記固定側輪に対して電気的に非導通のリング状の部材からなる固定リングである固定側容量結合体と、この固定側容量結合体に対して電気的に絶縁されかつ前記固定側輪に対して電気的に導通した接続用電極部材とを取付け、前記回転リングおよび前記固定リングが前記転がり軸受の側部に位置するものであり、前記回転側容量結合体および前記接続用電極部材が、それぞれ回転側輪および固定側輪に嵌合する取付用の環状の嵌合部を有し、
記回転側容量結合体と固定側容量結合体との間、回転側輪と転動体との間、および固定側輪と転動体との間の各静電容量の合計値を、前記固定側容量結合体と前記接続用電極部材との間に接続手段を接続して測定し、この測定値から前記転がり軸受の潤滑状態を判定することを特徴とする。
The bearing state inspection method of the present invention is a bearing state inspection method for inspecting the lubrication state of a rolling bearing having a conductive outer ring, an inner ring and a rolling element, respectively. Install the rotation-side capacitive coupling member is a rotating ring of a ring-shaped electrically conductive member which is electrically conductive with respect to the fixed side wheel of said inner and outer rings, electrostatically to the rotation-side capacitive coupling body a solid Jogawa capacitive coupling member is a fixing ring comprising a ring-shaped member of electrically non-conductive with respect to the radial direction or the axial direction in pairs Muko said stationary wheel via a gap for capacitance generation, the fixed A connecting electrode member electrically insulated from the side capacitive coupling and electrically connected to the fixed side wheel is attached , and the rotating ring and the fixed ring are positioned at the side of the rolling bearing. The rotation-side capacity Coalescence and the connecting electrode member has a fitting portion of the annular mounting for fitting to the respective rotation-side wheel and the stationary ring,
Between the front Symbol rotation-side capacitive coupling member and the fixed capacitive coupling body between the rotation-side ring and the rolling element, and the total value of the capacitance between the fixed-side ring and the rolling element, the fixed-side Measurement is performed by connecting a connecting means between the capacitive coupling body and the connection electrode member, and the lubrication state of the rolling bearing is determined from the measured value.

この構成によると、固定側容量結合体は、回転側容量結合体に静電容量発生用の隙間を介して対向し固定側輪に対して電気的に非導通である。また、接続用電極部材は、固定側容量結合体に対して電気的に絶縁されかつ固定側輪に対して電気的に導通する。これら固定側容量結合体と接続用電極部材との間に測定手段を接続して、回転側容量結合体と固定側容量結合体との間の静電容量、非導通状態にある回転側輪と転動体との間の静電容量、および非導通状態にある固定側輪と転動体との間の各静電容量の合計値を測定する。この測定値から潤滑状態を判定する。特に、固定側容量結合体は、回転側容量結合体に静電容量発生用の隙間を介して対向するので、スリップリング等の電気接点を用いることなく、測定手段の端子を両方とも固定側に接続して潤滑剤の油膜厚さ等を測定できる。このように各静電容量の合計値を測定することで、潤滑状態を判定することができる。したがって、回転側輪や転動体に対して非接触の状態で、転がり軸受における潤滑膜の状態を推定できると共に、スリップリング等の電気接点を用いることなく、油膜厚さ等の測定を簡単に行うことができ、装置全体の組立を簡単に行うことができる。   According to this configuration, the fixed-side capacitive coupling body is opposed to the rotating-side capacitive coupling body via the gap for generating capacitance, and is electrically non-conductive to the fixed-side wheel. The connection electrode member is electrically insulated from the fixed-side capacitive coupling body and electrically connected to the fixed-side wheel. A measuring means is connected between the fixed-side capacitive coupling body and the connection electrode member, and the capacitance between the rotational-side capacitive coupling body and the stationary-side capacitive coupling body, The total value of the electrostatic capacitance between the rolling elements and each electrostatic capacitance between the stationary side wheel and the rolling elements in a non-conducting state is measured. The lubrication state is determined from this measured value. In particular, the fixed-side capacitive coupling body faces the rotating-side capacitive coupling body through a gap for generating capacitance, so that both terminals of the measuring means are on the fixed side without using electrical contacts such as slip rings. By connecting, the oil film thickness of the lubricant can be measured. Thus, the lubrication state can be determined by measuring the total value of the respective capacitances. Therefore, the state of the lubricating film in the rolling bearing can be estimated in a non-contact state with respect to the rotating side wheel and the rolling element, and the oil film thickness and the like can be easily measured without using an electrical contact such as a slip ring. Therefore, the entire apparatus can be easily assembled.

この発明の軸受状態検査装置は、回転側容量結合体と固定側容量結合体とが、静電容量発生用の隙間を介して対向するので、スリップリング等の電気接点を用いることなく、電気容量計等の判定手段の端子を両方とも固定側に接続して潤滑剤の油膜厚さ等を測定できる。また転がり軸受に、固定側ユニットと回転側容量結合体とを取付けるだけで、潤滑状態を検出することが可能となる、つまり前記回転側容量結合体および固定側容量結合体が、それぞれリング状の部材である回転リングおよび固定リングであり、これら回転リングと固定リングとを、径方向または軸方向に対向させ、前記回転リングおよび固定リングが前記転がり軸受の側部に位置するものであり、前記回転側容量結合体および前記固定側ユニットが、それぞれ回転側輪および固定側輪に嵌合する取付用の環状の嵌合部を有する。このため、検査装置の組立てが容易となり、また装置に軸受を取り付ける前にキャリブレーションすることが可能となる。したがって、回転側輪や転動体に対して非接触の状態で、転がり軸受における潤滑膜の状態を推定できると共に、スリップリング等の電気接点を用いることなく、油膜厚さ等の測定を簡単に行うことができ、装置全体の組立を簡単に行うことができる
この発明の軸受状態検査方法は、それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受の潤滑状態を検査する軸受状態検査方法において、内外輪のうちの回転側輪に、この回転側輪に対して電気的に導通した導電性のリング状の部材からなる回転リングである回転側容量結合体を取付け、前記内外輪のうちの固定側輪に、前記回転側容量結合体に静電容量発生用の隙間を介して径方向または軸方向に対向し前記固定側輪に対して電気的に非導通のリング状の部材からなる固定リングである固定側容量結合体と、この固定側容量結合体に対して電気的に絶縁されかつ前記固定側輪に対して電気的に導通した接続用電極部材とを取付け、前記回転リングおよび前記固定リングが前記転がり軸受の側部に位置するものであり、前記回転側容量結合体および前記接続用電極部材が、それぞれ回転側輪および固定側輪に嵌合する取付用の環状の嵌合部を有し、前記回転側容量結合体と固定側容量結合体との間、回転側輪と転動体との間、および固定側輪と転動体との間の各静電容量の合計値を、前記固定側容量結合体と前記接続用電極部材との間に接続手段を接続して測定し、この測定値から前記転がり軸受の潤滑状態を判定する。このため、回転側輪や転動体に対して非接触の状態で、転がり軸受における潤滑膜の状態を推定できると共に、スリップリング等の電気接点を用いることなく、油膜厚さ等の測定を簡単に行うことができ、装置全体の組立を簡単に行うことができる。
In the bearing state inspection device according to the present invention, since the rotating side capacitive coupling body and the fixed side capacitive coupling body are opposed to each other through a gap for generating capacitance, the electrical capacitance can be obtained without using an electrical contact such as a slip ring. By connecting both terminals of determination means such as a meter to the fixed side, the oil film thickness of the lubricant can be measured. Also the rolling bearing, just attaching a fixed-side unit and the rotation-side capacitive coupling body, that Do is possible to detect the lubrication, that the rotation-side capacitive coupling body and the fixed capacitive coupling body, respectively ring A rotating ring and a fixing ring, which are members of the above, wherein the rotating ring and the fixing ring are opposed to each other in a radial direction or an axial direction, and the rotating ring and the fixing ring are located on a side portion of the rolling bearing, The rotation-side capacitive coupling body and the fixed-side unit each have an annular fitting portion for attachment that is fitted to the rotation-side wheel and the fixed-side wheel, respectively. For this reason, the assembly of the inspection apparatus becomes easy, it is possible to calibrate before mounting the bearing device. Therefore, the state of the lubricating film in the rolling bearing can be estimated in a non-contact state with respect to the rotating side wheel and the rolling element, and the oil film thickness and the like can be easily measured without using an electrical contact such as a slip ring. Therefore, the entire apparatus can be easily assembled .
The bearing state inspection method of the present invention is a bearing state inspection method for inspecting the lubrication state of a rolling bearing having a conductive outer ring, an inner ring and a rolling element, respectively. A rotating-side capacitive coupling body, which is a rotating ring made of a conductive ring-shaped member that is electrically conductive with respect to the rotating-side capacitive coupling body, is attached to the stationary-side ring of the inner and outer rings. A fixed-side capacitive coupling body that is a fixed ring formed of a ring-shaped member that is opposed to the fixed-side wheel in a radial direction or an axial direction through a generation gap, and the fixed-side capacitive coupling A connecting electrode member that is electrically insulated from the body and electrically connected to the fixed side wheel is mounted, and the rotating ring and the fixed ring are positioned on the side of the rolling bearing. , Rotation side capacity The combined electrode member and the connecting electrode member each have an annular fitting portion for mounting to be fitted to the rotating side wheel and the fixed side wheel, respectively, and rotate between the rotating side capacitive coupling body and the fixed side capacitive coupling body. A connection means is connected between the fixed-side capacitive coupling body and the connection electrode member for the total value of the capacitances between the side wheel and the rolling element and between the fixed-side wheel and the rolling element. The lubrication state of the rolling bearing is determined from the measured value. Therefore, it is possible to estimate the state of the lubricating film in the rolling bearing in a non-contact state with respect to the rotating side wheel and the rolling element, and easily measure the oil film thickness and the like without using an electrical contact such as a slip ring. And the assembly of the entire apparatus can be easily performed.

この発明の一実施形態を図1ないし図4と共に説明する。この実施形態は、例えば、鉄道車両、自動車、二輪車、産業機械、工作機械などの装置に組み込まれた転がり軸受の内部の潤滑剤の劣化状態を検出する軸受状態検査装置に適用される。ただし、前記装置に限定されるものではない。以下の説明は、軸受状態検査方法についての説明をも含む。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is applied to, for example, a bearing state inspection device that detects a deterioration state of a lubricant inside a rolling bearing incorporated in a device such as a railway vehicle, an automobile, a two-wheeled vehicle, an industrial machine, or a machine tool. However, it is not limited to the said apparatus. The following description also includes a description of the bearing condition inspection method.

この軸受状態検査装置1Aは、図1に示すように、転がり軸受1が回転軸7に取り付けられた軸受使用装置において、転がり軸受1の潤滑膜の潤滑状態を推定するものである。転がり軸受1は、固定側輪である外輪2と、回転軸7に嵌合する回転側輪である内輪3と、外輪2の内周面に形成された軌道面と内輪3の外周面に形成された軌道面との間に介在する複数個の転動体6と、これら転動体6を保持する保持器5と、軸受の一側端部に設けられるシール4とを有する。この場合の転がり軸受1は、前記転動体6がボールからなる玉軸受である。   As shown in FIG. 1, the bearing condition inspection apparatus 1 </ b> A estimates the lubrication state of the lubricating film of the rolling bearing 1 in a bearing using apparatus in which the rolling bearing 1 is attached to the rotary shaft 7. The rolling bearing 1 is formed on an outer ring 2 that is a fixed side wheel, an inner ring 3 that is a rotating side wheel that fits the rotating shaft 7, a raceway surface formed on the inner peripheral surface of the outer ring 2, and an outer peripheral surface of the inner ring 3. A plurality of rolling elements 6 interposed between the raceway surfaces, a cage 5 for holding the rolling elements 6, and a seal 4 provided at one end of the bearing. The rolling bearing 1 in this case is a ball bearing in which the rolling elements 6 are balls.

軸受状態検査装置1Aは、回転側輪である前記内輪3に取り付けられこの内輪3に対して電気的に導通した導電性の回転リング8と、固定側輪である外輪2に取り付けられた固定側ユニット13とを有する。また、軸受状態検査装置1Aは後述する判定手段16とを有する。この固定側ユニット13は、回転リング8に静電容量発生用の隙間δrを介して対向し外輪2に対して電気的に非導通の固定リング8、外輪2の外径面に嵌合するハウジング10、固定リング8に対して電気的に絶縁されかつ外輪2に対して電気的に導通した接続用電極部材である金属部材12、および固定リング9と金属部材12を電気的に絶縁する絶縁体11とを有する。前記回転リング8が回転側容量結合体に相当し、前記固定リング9が固定側容量結合体に相当する。この固定リング9は、回転リング8に対し一定のラジアル方向の隙間δrつまり環状隙間δrを介して、平行になるように、絶縁体11の内周面に固定されている。これら固定リング9と回転リング8とは、径方向に対向させて配設される。   The bearing state inspection apparatus 1A includes a conductive rotating ring 8 attached to the inner ring 3 that is a rotating side wheel and electrically connected to the inner ring 3, and a fixed side that is attached to the outer ring 2 that is a fixed side wheel. Unit 13. Further, the bearing state inspection apparatus 1A includes a determination unit 16 described later. The fixed side unit 13 is a housing that faces the rotating ring 8 via a gap δr for generating capacitance and is electrically non-conductive with the outer ring 2 and is fitted to the outer diameter surface of the outer ring 2. 10, a metal member 12 which is a connecting electrode member electrically insulated from the fixing ring 8 and electrically connected to the outer ring 2, and an insulator which electrically insulates the fixing ring 9 and the metal member 12. 11. The rotating ring 8 corresponds to a rotating side capacitive coupling body, and the fixed ring 9 corresponds to a fixed side capacitive coupling body. The fixing ring 9 is fixed to the inner peripheral surface of the insulator 11 so as to be parallel to the rotating ring 8 through a constant radial gap δr, that is, an annular gap δr. The fixing ring 9 and the rotating ring 8 are disposed to face each other in the radial direction.

ハウジング10の内周面10bに外輪2が嵌合され、この外輪2の端面がハウジング10の段部10aに当接する。前記段部10aの内周面に、金属部材12の大部分が嵌合される。この金属部材12は、外輪2と電気的に導通する導電性を有する導電性部材であり、この金属部材12の大部分をなす大径部12aと、この大径部12aより小径で大径部12aの軸方向一端部から軸受内部側に所定小距離延びる小径部12bとを有する。これら大径部12aと、小径部12bとは一体に形成されている。大径部12aと小径部12bとの間の段部であってラジアル平面をなす一方側段部12cが、外輪2の端面に臨み当接する。小径部12bの外径面は、外輪肩径の内周面に嵌合する。ハウジング10の内周面10b、および金属部材12の小径部12bが、外輪2に嵌合する取付用の環状の嵌合部に相当する。   The outer ring 2 is fitted to the inner peripheral surface 10 b of the housing 10, and the end surface of the outer ring 2 comes into contact with the step portion 10 a of the housing 10. Most of the metal member 12 is fitted to the inner peripheral surface of the stepped portion 10a. The metal member 12 is a conductive member having conductivity that is electrically connected to the outer ring 2, and has a large diameter portion 12 a that constitutes a large portion of the metal member 12, and a large diameter portion that is smaller in diameter than the large diameter portion 12 a. A small-diameter portion 12b extending a predetermined small distance from one axial end portion of 12a toward the bearing inner side. The large diameter portion 12a and the small diameter portion 12b are integrally formed. A stepped portion between the large-diameter portion 12a and the small-diameter portion 12b and forming a radial plane faces the abutment surface of the outer ring 2 and comes into contact therewith. The outer diameter surface of the small diameter portion 12b is fitted to the inner peripheral surface of the outer ring shoulder diameter. The inner peripheral surface 10 b of the housing 10 and the small-diameter portion 12 b of the metal member 12 correspond to an annular fitting portion for attachment that is fitted to the outer ring 2.

前記金属部材12の内周面に、固定リング9と金属部材12とを電気的に絶縁する絶縁体11が嵌合されている。この絶縁体11は、金属部材12の大径部12aに嵌合される絶縁体大径部11aと、金属部材12の小径部12bに嵌合される絶縁体小径部11bとを有する。これら絶縁体大径部11aおよび絶縁体小径部11bは、一体に形成される。絶縁体大径部11aと絶縁体小径部11bとの間のラジアル平面をなす一方側段部11cが、金属部材12の他方側段部12dに臨み当接する。これによって、絶縁体11は、金属部材12に対して相対的に軸方向に位置決めされる。これら段部11c,12dによって、絶縁体11が軸受内部の所定位置よりも不所望に内部に侵入することを確実に防止し得る。   An insulator 11 that electrically insulates the fixing ring 9 and the metal member 12 is fitted to the inner peripheral surface of the metal member 12. The insulator 11 has an insulator large diameter portion 11 a fitted to the large diameter portion 12 a of the metal member 12 and an insulator small diameter portion 11 b fitted to the small diameter portion 12 b of the metal member 12. The insulator large diameter portion 11a and the insulator small diameter portion 11b are integrally formed. One side step portion 11c forming a radial plane between the insulator large diameter portion 11a and the insulator small diameter portion 11b faces the other step portion 12d of the metal member 12 and comes into contact therewith. As a result, the insulator 11 is positioned in the axial direction relative to the metal member 12. These step portions 11c and 12d can surely prevent the insulator 11 from entering the interior more undesirably than a predetermined position inside the bearing.

前記絶縁体11の内周面に固定リング9が嵌合されている。この固定リング9は、絶縁体大径部11aに嵌合される大径リング部9aと、絶縁体小径部11bに嵌合される小径リング部9bとを有する。これら大径リング部9aと小径リング部9bとは一体に形成される。大径リング部9aと小径リング部9bとの間のラジアル平面を成す段部9cが、絶縁体11の他方側段部11dに臨み当接する。これによって、固定リング9は、絶縁体11に対して相対的に軸方向に位置決めされる。これら段部9c,11dによって、固定リング9が軸受内部の所定位置よりも不所望に内部に侵入することを確実に防止し得る。大径リング部9aの内径と小径リング部9bの内径とは同径に、つまり段差なく形成されている。   A fixing ring 9 is fitted to the inner peripheral surface of the insulator 11. The fixing ring 9 has a large-diameter ring portion 9a fitted to the insulator large-diameter portion 11a and a small-diameter ring portion 9b fitted to the insulator small-diameter portion 11b. The large-diameter ring portion 9a and the small-diameter ring portion 9b are integrally formed. A step portion 9c forming a radial plane between the large-diameter ring portion 9a and the small-diameter ring portion 9b faces and contacts the other-side step portion 11d of the insulator 11. Thereby, the fixing ring 9 is positioned in the axial direction relative to the insulator 11. By these step portions 9c and 11d, it is possible to reliably prevent the fixing ring 9 from entering the interior more undesirably than a predetermined position inside the bearing. The inner diameter of the large-diameter ring portion 9a and the inner diameter of the small-diameter ring portion 9b are formed to have the same diameter, that is, without a step.

前記回転リング8は、リング本体8aと嵌合部8bとを有する。リング本体8aの軸方向一端部に嵌合部8bが一体に付設され、この嵌合部8bは、内輪3のシールド肩部に嵌合する。つまり嵌合部8bが軸受内部に入り込み、内輪3に固定される。この嵌合部8bが、内輪3に嵌合する取付け用の環状の嵌合部に相当する。また、内輪端面に臨むリング本体8aの端部は、この内輪3の端面に当接する。これにより、嵌合部8bの軸方向位置が規制され、この嵌合部8bが軸受内部に不所望に侵入することを防止する。   The rotating ring 8 has a ring body 8a and a fitting portion 8b. A fitting portion 8 b is integrally attached to one end of the ring body 8 a in the axial direction, and this fitting portion 8 b is fitted to the shield shoulder portion of the inner ring 3. That is, the fitting portion 8 b enters the bearing and is fixed to the inner ring 3. The fitting portion 8b corresponds to an annular fitting portion for attachment that is fitted to the inner ring 3. Further, the end portion of the ring main body 8 a facing the inner ring end face comes into contact with the end face of the inner ring 3. As a result, the axial position of the fitting portion 8b is restricted, and the fitting portion 8b is prevented from undesirably entering the bearing.

図3(A)は前記転がり軸受の半部断面図を示し、図3(B)は図3(A)の軸受構造を電気回路として表現した模式図を示す。図3(A)において、転がり軸受1が正常に回転している場合、外輪2と転動体6の接触面には1μm以下の厚さの潤滑膜(油膜)が形成され、外輪2と転動体6は直接接触することなく潤滑膜を介して加重を伝えることが知られている。内輪3と転動体6の接触面にも同様の潤滑膜が形成される。外輪2と転動体6の関係において、潤滑膜を誘電体と考え、外輪2と転動体6を電極と考えると、ここに1つのコンデンサが形成される。同様に内輪3と転動体6の関係においても、もう1つのコンデンサが形成される。   FIG. 3A is a half sectional view of the rolling bearing, and FIG. 3B is a schematic diagram expressing the bearing structure of FIG. 3A as an electric circuit. In FIG. 3A, when the rolling bearing 1 is rotating normally, a lubricating film (oil film) having a thickness of 1 μm or less is formed on the contact surface between the outer ring 2 and the rolling element 6, and the outer ring 2 and the rolling element. 6 is known to transmit a load through a lubricating film without direct contact. A similar lubricating film is also formed on the contact surface between the inner ring 3 and the rolling element 6. In the relationship between the outer ring 2 and the rolling element 6, when the lubricating film is considered as a dielectric and the outer ring 2 and the rolling element 6 are considered as electrodes, one capacitor is formed here. Similarly, another capacitor is formed in the relationship between the inner ring 3 and the rolling elements 6.

これを模式的に表現すると、図3(B)に示すように2つのコンデンサ17,18が直列に接続された回路構成となる。ここで、両コンデンサ17,18の静電容量Ca,Cbが等しいとすると、2つのコンデンサ17,18の合計の静電容量はCa/2となる。また軸受1個あたりの転動体6の個数をnとして、それぞれの転動体6でのコンデンサの静電容量が等しいとすると、それらの等しい静電容量のコンデンサが並列に接続された回路構成とみなすことができるので、軸受1個での全体の静電容量はnCa/2となる。したがって、転がり軸受1において、外輪2から内輪3までの経路の静電容量を測定すれば、1箇所の潤滑膜19(20)での静電容量Caを推定することができる。ただし、このままでは、内外輪3,2のいずれかが回転している(図1の場合は内輪3が回転している)ため、潤滑状態を直流抵抗として測定する先述した特許文献1に開示の方法の場合と同様に、被測定箇所以外の部分でスリップリングなどの電気接点が必要になり、測定誤差が生じたり測定結果が不安定になる要因となる。   When this is schematically expressed, a circuit configuration in which two capacitors 17 and 18 are connected in series as shown in FIG. Here, assuming that the capacitances Ca and Cb of the capacitors 17 and 18 are equal, the total capacitance of the two capacitors 17 and 18 is Ca / 2. Also, assuming that the number of rolling elements 6 per bearing is n and the capacitances of the capacitors in each rolling element 6 are equal, it is regarded as a circuit configuration in which capacitors having the same capacitance are connected in parallel. Therefore, the total capacitance of one bearing is nCa / 2. Therefore, if the capacitance of the path from the outer ring 2 to the inner ring 3 in the rolling bearing 1 is measured, the capacitance Ca at one lubricating film 19 (20) can be estimated. However, as it is, either of the inner and outer rings 3 and 2 is rotating (in the case of FIG. 1, the inner ring 3 is rotating). As in the case of the method, an electrical contact such as a slip ring is required at a portion other than the measurement location, which causes a measurement error and a measurement result becoming unstable.

そこで、この実施形態の軸受状態検査装置1Aでは、回転リング8と固定リング9とが成すコンデンサの容量と、転がり軸受1の内外輪3,2と転動体6との接触点にそれぞれ形成される容量との合計値を、前記金属部材12を電極として測定することによって非接触で推定し、その容量の変化から、転がり軸受1の油膜の潤滑状態を検査する。本実施形態において、一方の電極21から他方の電極22にわたる経路の電気的な等価回路は図4のようになる。すなわち、この場合の電気回路は、電極21→金属部材12→外輪2→転動体6→内輪3→回転リング8→固定リング9→電極22の経路で形成される。   Therefore, in the bearing state inspection apparatus 1A of this embodiment, the capacitor formed by the rotating ring 8 and the fixed ring 9 and the contact point between the inner and outer rings 3 and 2 of the rolling bearing 1 and the rolling element 6 are formed. The total value with the capacity is estimated in a non-contact manner by measuring the metal member 12 as an electrode, and the lubrication state of the oil film of the rolling bearing 1 is inspected from the change in the capacity. In the present embodiment, an electrical equivalent circuit of a path extending from one electrode 21 to the other electrode 22 is as shown in FIG. That is, the electric circuit in this case is formed by the path of electrode 21 → metal member 12 → outer ring 2 → rolling element 6 → inner ring 3 → rotating ring 8 → fixing ring 9 → electrode 22.

固定リング9と回転リング8の間でコンデンサが構成され、その静電容量Crは、リング断面積S、固定リング,回転リング間の距離d、誘電率εとすれば、
Cr=εS/d ……(1)
となる。この静電容量Crの値は予め測定しておくことも可能である。
一方、各転動体6と内外輪3,2の間に形成されるコンデンサの静電容量が同じ値Caとすると、軸受側の全体の静電容量Cjは、
Cj=nCa/2 ……(2)
となり、
Ca=2Cj/n ……(3)
となる。
また、固定リング9,回転リング8間のコンデンサの静電容量はCrであるから、前記等価回路の全体の静電容量Cを測定すれば、
C=Cj・Cr/(Cj+Cr) ……(4)
より、
Cj=C・Cr/(C−Cr) ……(5)
となる。したがって、式(3),(5)より、
Ca=2C・Cr/n(C−Cr) ……(6)
として、転動体6と内外輪3,2間に介在する潤滑膜20,19の1箇所あたりの平均静電容量Caを求めることができる。全体の静電容量Cの測定には、電気容量計等の市販の計測器を用いて必要時にこの計測器を接続して測定し、人が判定しても良い。
A capacitor is formed between the fixed ring 9 and the rotating ring 8, and the electrostatic capacity Cr is expressed by a ring cross-sectional area S, a distance d between the fixed ring and the rotating ring, and a dielectric constant ε.
Cr = εS / d (1)
It becomes. The value of the capacitance Cr can be measured in advance.
On the other hand, if the capacitance of the capacitor formed between each rolling element 6 and the inner and outer rings 3 and 2 is the same value Ca, the overall capacitance Cj on the bearing side is:
Cj = nCa / 2 (2)
And
Ca = 2Cj / n (3)
It becomes.
Further, since the capacitance of the capacitor between the fixed ring 9 and the rotating ring 8 is Cr, if the entire capacitance C of the equivalent circuit is measured,
C = Cj · Cr / (Cj + Cr) (4)
Than,
Cj = C · Cr / (C−Cr) (5)
It becomes. Therefore, from equations (3) and (5),
Ca = 2C · Cr / n (C—Cr) (6)
As a result, the average capacitance Ca per location of the lubricating films 20 and 19 interposed between the rolling element 6 and the inner and outer rings 3 and 2 can be obtained. For measurement of the entire capacitance C, a commercially available measuring instrument such as a capacitance meter may be used to connect and measure this measuring instrument when necessary, and a person may make a determination.

前記判定手段16は、金属部材12と固定リング9との間に電気的に接続され、たとえば、計測器や、中央演算処理装置(略称CPU;Central Processing Unit)等の他、簡単な電子回路、例えば閾値と比較するだけの回路等によって実現される。
市販の電気容量計等の計測器を適用する場合、この計測器を他の転がり軸受の潤滑状態の計測に使用することができ、計測器自体の兼用性を高めることができる。したがって、軸受状態検査装置の初期導入費用を極力抑えることができる。専用の電子回路等を適用する場合、転がり軸受の潤滑状態を常に判定することができ、潤滑剤の劣化状態をリアルタイムで監視することが可能となる。
この判定手段16は、前述のように全体の静電容量Cを測定し、その測定値からこの転がり軸受1の潤滑状態を測定する。この判定手段16による転がり軸受1の潤滑状態の判断基準としては、例えば以下のような潤滑状態が挙げられる。
The determination means 16 is electrically connected between the metal member 12 and the fixing ring 9, and includes, for example, a measuring instrument, a central processing unit (abbreviated as CPU: Central Processing Unit), a simple electronic circuit, For example, it is realized by a circuit that only compares with a threshold.
When a measuring instrument such as a commercially available capacitance meter is applied, this measuring instrument can be used for measuring the lubrication state of other rolling bearings, and the combined use of the measuring instrument itself can be improved. Therefore, the initial introduction cost of the bearing state inspection device can be suppressed as much as possible. When a dedicated electronic circuit or the like is applied, the lubrication state of the rolling bearing can always be determined, and the deterioration state of the lubricant can be monitored in real time.
The determination means 16 measures the entire electrostatic capacity C as described above, and measures the lubrication state of the rolling bearing 1 from the measured value. As a criterion for determining the lubrication state of the rolling bearing 1 by the determination means 16, for example, the following lubrication state can be cited.

1.転がり軸受の油膜が形成されない場合、導通状態となり、全体の静電容量はCrのみとなり増加する。
2.転がり軸受の各油膜形成箇所のいずれか1箇所が油膜切れの場合、その部分が導通するため、全体の静電容量がやや増える。
3.軸受使用装置に過大な負荷がかかった場合、油膜の厚みが減るため、全体の静電容量が増加する。
4.転がり軸受における油膜の状態が不安定になると、静電容量の不安定になるので、静電容量の変動をチェックする。
1. When the oil film of the rolling bearing is not formed, the conductive state is established, and the overall capacitance increases only with Cr.
2. When any one of the oil film forming portions of the rolling bearing is out of the oil film, the portion becomes conductive, so that the entire capacitance is slightly increased.
3. When an excessive load is applied to the bearing using device, the thickness of the oil film is reduced, so that the overall capacitance increases.
4). When the oil film state in the rolling bearing becomes unstable, the electrostatic capacity becomes unstable, so the fluctuation of the electrostatic capacity is checked.

これらの判断基準を採用した場合、判定手段16は、測定された全体の静電容量Cの値が通常より増えた場合(所定の閾値を越えた場合)、あるいは静電容量の変動が大きい場合(静電容量の変動幅が所定の閾値を越えた場合)、あるいは両方の条件を満たす場合に潤滑状態不良と判断することになる。
なお、転がり軸受1が停止または低速回転している場合、転がり軸受1は導通状態またはそれに近い状態となるため、全体の静電容量は上記1.の場合と同様に、全体の静電容量はCrのみとなり増加する。
When these determination criteria are adopted, the determination unit 16 determines that the measured value of the overall capacitance C has increased more than usual (when a predetermined threshold value has been exceeded), or if the variation in capacitance is large. It is determined that the lubrication state is defective (when the fluctuation range of the capacitance exceeds a predetermined threshold value) or when both conditions are satisfied.
When the rolling bearing 1 is stopped or rotating at a low speed, the rolling bearing 1 is in a conductive state or a state close thereto. As in the case of, the overall capacitance increases only with Cr.

この実施形態の軸受状態検査装置1Aでは、回転リング8と固定リング9との間、内輪3と転動体6との間、および外輪2と転動体6との間の各静電容量の合計値が、回転側輪である内輪3や転動体6と非接触の状態で測定され、その測定値から転がり軸受1の潤滑状態の良否が判定される。   In the bearing state inspection apparatus 1A of this embodiment, the total value of the electrostatic capacitances between the rotating ring 8 and the fixed ring 9, between the inner ring 3 and the rolling element 6, and between the outer ring 2 and the rolling element 6. However, it is measured in a non-contact state with the inner ring 3 and the rolling elements 6 that are the rotation side wheels, and the quality of the lubrication state of the rolling bearing 1 is determined from the measured values.

特に、回転リング8と固定リング9とが、静電容量発生用の隙間δrを介して対向するので、スリップリング等の電気接点を用いることなく、判定手段16の一方および他方の端子を両方とも固定側に接続して潤滑剤の油膜厚さ等を測定できる。また、転がり軸受1に、固定側ユニット13と回転リングとを取付けるだけで、潤滑状態を検出することが可能となるため、軸受状態検査装置1Aの組立てが容易となり、また装置に軸受を取り付ける前にキャリブレーションすることが可能となる。   In particular, since the rotating ring 8 and the fixed ring 9 are opposed to each other through a gap δr for generating capacitance, both the one and other terminals of the determination means 16 are connected without using an electrical contact such as a slip ring. By connecting to the fixed side, the oil film thickness of the lubricant can be measured. Further, since the lubrication state can be detected simply by attaching the fixed side unit 13 and the rotating ring to the rolling bearing 1, the assembly of the bearing state inspection apparatus 1A is facilitated, and before the bearing is attached to the apparatus. Can be calibrated.

判定手段16として市販の電気容量計等の計測器を適用する場合、この計測器を他の転がり軸受の潤滑状態の計測に使用することができ、計測器自体の兼用性を高めることができる。したがって、軸受状態検査装置の初期導入費用を極力抑えることができる。判定手段16として専用の電子回路等を適用する場合、転がり軸受の潤滑状態を常に判定することができ、潤滑剤の劣化状態をリアルタイムで監視することが可能となる。
また、回転リング8と固定リング9とを、径方向に対向させているが、この場合、これら回転リング8と固定リング9を、内輪3、外輪2の直径寸法等に基づいて設計し、取付け可能にできる。
When a measuring instrument such as a commercially available capacitance meter is applied as the determination means 16, this measuring instrument can be used for measuring the lubrication state of other rolling bearings, and the combined use of the measuring instrument itself can be improved. Therefore, the initial introduction cost of the bearing state inspection device can be suppressed as much as possible. When a dedicated electronic circuit or the like is applied as the determination means 16, the lubrication state of the rolling bearing can always be determined, and the deterioration state of the lubricant can be monitored in real time.
In addition, the rotating ring 8 and the fixing ring 9 are opposed to each other in the radial direction. In this case, the rotating ring 8 and the fixing ring 9 are designed based on the diameter dimensions of the inner ring 3 and the outer ring 2 and attached. It can be made possible.

回転リング8および固定リング9が、転がり軸受1の側部つまり軸方向一方側端部に位置するもので、回転リング8および固定側ユニット13が、それぞれ内輪3および外輪2に嵌合する取付用の環状の嵌合部8bおよび内周面10bを有する。したがって、回転リング8を、その環状の嵌合部8bにより内輪3に簡単に取付けることができ、固定側ユニット13を、その内周面10bにより外輪2に簡単に取付けることができる。しかも、嵌合部8bおよび内周面10bによって、内輪3に対する回転リング8の位置決め精度を高めるとともに、外輪2に対する固定リング9の位置決め精度を高めることが可能となる。   The rotating ring 8 and the fixed ring 9 are located on the side of the rolling bearing 1, that is, one end in the axial direction, and the rotating ring 8 and the fixed side unit 13 are fitted to the inner ring 3 and the outer ring 2, respectively. Having an annular fitting portion 8b and an inner peripheral surface 10b. Therefore, the rotating ring 8 can be easily attached to the inner ring 3 by the annular fitting portion 8b, and the fixed side unit 13 can be easily attached to the outer ring 2 by the inner peripheral surface 10b. In addition, the fitting portion 8 b and the inner peripheral surface 10 b can increase the positioning accuracy of the rotating ring 8 with respect to the inner ring 3 and can increase the positioning accuracy of the fixed ring 9 with respect to the outer ring 2.

また、固定側ユニット13が、外輪2の外径面に嵌合するハウジング10と、外輪2の側方でハウジング10の内径面に外径側から順に重なり状態に設けられたリング状の金属部材12、リング状の絶縁体11、および固定リング9からなるので、固定側ユニット13の取り扱い、組立を容易にし、作業工数の低減を図ることができる。
また、内輪3に取付けた回転リング8に隙間δrを介して、固定側輪である外輪2に取付けた導電性の固定リング9を設けたので、特に回転リング8と固定リング9との間の静電容量の調整を、前述の従来技術よりも容易にし、各静電容量を精度良く測定できる。また、各静電容量の合計値を固定リング9および回転リング8を介して測定できるので、軸受の固定側輪等に直接電極を取り付ける手間等を省略でき、検査装置自体の組立を簡単化することが可能となる。
Further, the housing 10 in which the fixed side unit 13 is fitted to the outer diameter surface of the outer ring 2, and a ring-shaped metal member provided in an overlapping state in order from the outer diameter side on the inner diameter surface of the housing 10 on the side of the outer ring 2. 12, the ring-shaped insulator 11 and the fixed ring 9 make it easy to handle and assemble the fixed-side unit 13 and reduce the number of work steps.
In addition, since the conductive fixing ring 9 attached to the outer ring 2 which is the stationary side wheel is provided in the rotating ring 8 attached to the inner ring 3 via the gap δr, in particular, between the rotating ring 8 and the fixing ring 9. Capacitance adjustment can be made easier than in the prior art, and each capacitance can be measured with high accuracy. Further, since the total value of each capacitance can be measured through the fixed ring 9 and the rotating ring 8, the trouble of directly attaching the electrode to the fixed side ring of the bearing can be omitted, and the assembly of the inspection apparatus itself is simplified. It becomes possible.

また、上記軸受状態検査装置1Aを組み込んだ軸受使用装置、軸受状態検査方法では、転がり軸受1の潤滑膜の状態、負荷の状態をモニターすることができるため、故障の前兆あるいは故障の診断を行い、軸受使用装置1Aの停止や軸受交換が必要なことを知らせることができる。この軸受使用装置1Aが鉄道車両や産業機械である場合、安全性が向上する。また、この軸受使用装置1Aでは、転がり軸受1の寿命や経年変化を予測できるため、転がり軸受1の無駄な交換や時期に遅れた交換がなくなり、経済性が向上する。   Further, in the bearing using device and the bearing state inspection method incorporating the bearing state inspection device 1A, the lubrication film state and load state of the rolling bearing 1 can be monitored. It is possible to notify that the bearing using device 1A needs to be stopped or the bearing needs to be replaced. When this bearing using apparatus 1A is a railway vehicle or an industrial machine, safety is improved. Moreover, in this bearing using apparatus 1A, since the lifetime of a rolling bearing 1 and a secular change can be estimated, the useless replacement | exchange of the rolling bearing 1 or the replacement delayed is eliminated, and economical efficiency improves.

図5は、この発明の他の実施形態を示す。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
FIG. 5 shows another embodiment of the present invention.
In the following description, the same reference numerals are given to portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping description may be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

この実施形態の軸受状態検査装置1Bは、回転リング8Aの一部と固定リング9Aの一部とを軸方向に対面させて構成されている。前述の図1に示す実施形態では、固定リング9の内径が段差なく形成されているが、この実施形態の固定リング9Aは、その軸方向一端部が半径方向内方に突出するように形成されている。この突出部を内方フランジ9Aaと称す。これに対して、回転リング8Aの軸方向一端部は、半径方向外方に突出する外方フランジ8Aaを成す。前記内方フランジ9Aaは、外方フランジ8Aaに対し一定のアキシアル方向の隙間δaを介して平行になるように、絶縁体11の内周面に固定されている。その他図1の実施形態と同様の構成となっている。この実施形態の軸受状態検査装置1Bによると、内輪3に取付けた回転リング8Aに軸方向の隙間δaを介して、固定側輪である外輪2に取付けた導電性の固定リング9Aを設けたので、特に回転リング8Aと固定リング9Aとの間の静電容量の調整を、前述の従来技術よりも容易にし、各静電容量を精度良く測定できる。また、各静電容量の合計値を固定リング9Aおよび回転リング8Aを介して測定できるので、軸受の固定側輪等に直接電極を取り付ける手間等を省略でき、検査装置自体の組立を簡単化することが可能となる。その他図1の実施形態と同様の効果を奏する。   The bearing state inspection apparatus 1B of this embodiment is configured by causing a part of the rotating ring 8A and a part of the fixed ring 9A to face each other in the axial direction. In the embodiment shown in FIG. 1 described above, the inner diameter of the fixing ring 9 is formed without a step, but the fixing ring 9A of this embodiment is formed such that one end portion in the axial direction protrudes radially inward. ing. This protrusion is referred to as an inner flange 9Aa. On the other hand, one axial end portion of the rotating ring 8A constitutes an outer flange 8Aa protruding outward in the radial direction. The inner flange 9Aa is fixed to the inner peripheral surface of the insulator 11 so as to be parallel to the outer flange 8Aa via a certain axial gap δa. The other configuration is the same as that of the embodiment of FIG. According to the bearing state inspection apparatus 1B of this embodiment, the conductive fixing ring 9A attached to the outer ring 2 which is the stationary side wheel is provided on the rotating ring 8A attached to the inner ring 3 via the axial gap δa. In particular, the adjustment of the capacitance between the rotating ring 8A and the fixed ring 9A can be made easier than the above-described conventional technique, and each capacitance can be measured with high accuracy. In addition, since the total value of each capacitance can be measured via the fixed ring 9A and the rotating ring 8A, the trouble of directly attaching the electrode to the fixed side ring of the bearing can be omitted, and the assembly of the inspection apparatus itself is simplified. It becomes possible. Other effects similar to those of the embodiment of FIG.

図6は、この発明のさらに他の実施形態の等価回路図である。この実施形態の軸受状態検査装置は、図1における軸受使用装置の転がり軸受が外輪回転の場合に適用したものである。この転がり軸受の内輪3は、固定軸に嵌合される。また、内輪3の端面に、導電性部材であるリング状の金属部材12Aが取り付けられ、この金属部材12Aの外周面に、絶縁体を介して固定リング9Bが嵌合されている。回転リング8Bは外輪2の端面に取付けられ、固定リング9Bと回転リング8Bとは、径方向に対向させて配設される。   FIG. 6 is an equivalent circuit diagram of still another embodiment of the present invention. The bearing state inspection apparatus of this embodiment is applied when the rolling bearing of the bearing using apparatus in FIG. The inner ring 3 of this rolling bearing is fitted to a fixed shaft. A ring-shaped metal member 12A, which is a conductive member, is attached to the end surface of the inner ring 3, and a fixing ring 9B is fitted to the outer peripheral surface of the metal member 12A via an insulator. The rotating ring 8B is attached to the end face of the outer ring 2, and the fixed ring 9B and the rotating ring 8B are disposed to face each other in the radial direction.

ただしこれらリング9B,8Bを軸方向に対面させて配設しても良い。この場合の電気回路は、電極22→金属部材12A→内輪3→転動体6→外輪2→回転リング8B→固定リング9B→電極21の経路で形成される。この実施形態の軸受状態検査装置でも、回転リング8Bと固定リング9Bとの間、内輪3と転動体6との間、および外輪2と転動体6との間の各静電容量の合計値が、回転側輪である外輪2や転動体6と非接触の状態で測定され、その測定値から転がり軸受の潤滑状態の良否が判定される。その他図1の実施形態と同様の作用、効果を奏する。このように、転がり軸受が外輪回転の場合にも、軸受状態検査装置を適用することができる。   However, these rings 9B and 8B may be arranged facing each other in the axial direction. The electric circuit in this case is formed by a path of electrode 22 → metal member 12A → inner ring 3 → rolling element 6 → outer ring 2 → rotating ring 8B → fixing ring 9B → electrode 21. Also in the bearing state inspection apparatus of this embodiment, the total value of each electrostatic capacitance between the rotating ring 8B and the fixed ring 9B, between the inner ring 3 and the rolling element 6, and between the outer ring 2 and the rolling element 6 is the same. Measured in a non-contact state with the outer ring 2 and the rolling element 6 that are the rotation side wheels, and the quality of the lubrication state of the rolling bearing is determined from the measured value. Other operations and effects similar to those of the embodiment of FIG. As described above, the bearing state inspection device can be applied even when the rolling bearing is rotating the outer ring.

図7は、軸受状態検査装置における判定手段の一例を表すブロック図である。
判定手段16は、静電容量測定手段23と、この静電容量測定手段23で測定した測定値から、この転がり軸受の潤滑状態を推定するCPU24とを有する。これらのうち静電容量測定手段23は、直列接続した発振器25と電流測定手段26とを備え、この電流測定手段26とCPU24とが電気的に接続されている。また、電流測定手段26が電極21に電気的に接続され、発振器25が電極22に電気的に接続されている。この軸受使用装置に交流電流を流すことによって、前述の全体の静電容量Cをインピーダンスに換算して測定するようにした例を示す。この場合、測定したインピーダンスから平均静電容量Caを求めることもできる。
油膜で形成される静電容量は一般に数十pFと小さいことから、本実施形態において発振器25による発振周波数を、例えば100kHzから10MHz程度とすると、高い検出精度が得られる。
FIG. 7 is a block diagram illustrating an example of a determination unit in the bearing state inspection apparatus.
The determination unit 16 includes a capacitance measurement unit 23 and a CPU 24 that estimates the lubrication state of the rolling bearing from the measurement value measured by the capacitance measurement unit 23. Among these, the capacitance measuring means 23 includes an oscillator 25 and a current measuring means 26 connected in series, and the current measuring means 26 and the CPU 24 are electrically connected. Further, the current measuring means 26 is electrically connected to the electrode 21, and the oscillator 25 is electrically connected to the electrode 22. An example will be shown in which an alternating current is passed through this bearing-using device, whereby the above-described overall capacitance C is converted into an impedance and measured. In this case, the average capacitance Ca can also be obtained from the measured impedance.
Since the electrostatic capacitance formed by the oil film is generally as small as several tens of pF, when the oscillation frequency of the oscillator 25 is set to, for example, about 100 kHz to 10 MHz in this embodiment, high detection accuracy can be obtained.

図8は、前記静電容量測定手段23AがOPアンプ27で構成した発振器28と、この発振器28の発振周波数から静電容量を推定する周波数対応容量推定手段29とでなり、測定した発振器28の周波数により、軸受使用装置全体の静電容量Cを推定するようにした例を示す。この場合の発振器28は、relaxation oscillorと呼ばれ、OPアンプ27に抵抗30Ra,30Rb,30Rt、およびコンデンサ30Ctを接続して構成される。抵抗30Ra,30Rb,30Rtの抵抗値をRa,Rb,Rt、コンデンサ30Ctの静電容量をCtとすると、発振周波数fは、およそ
f=1/(2Rt Ct)
となることが知られている。
ここでは、前記発振器28のコンデンサ30Ctが、軸受使用装置全体の静電容量Cに置き換えられることで、その静電容量Cが推定される。
FIG. 8 shows an oscillator 28 in which the capacitance measuring means 23A is composed of an OP amplifier 27 and a frequency corresponding capacity estimating means 29 for estimating the capacitance from the oscillation frequency of the oscillator 28. The example which estimated the electrostatic capacitance C of the whole bearing using apparatus with a frequency is shown. The oscillator 28 in this case is called a relaxation oscillator, and is configured by connecting resistors 30Ra, 30Rb, 30Rt, and a capacitor 30Ct to the OP amplifier 27. When the resistance values of the resistors 30Ra, 30Rb, and 30Rt are Ra, Rb, and Rt, and the capacitance of the capacitor 30Ct is Ct, the oscillation frequency f is approximately f = 1 / (2Rt Ct).
It is known that
Here, the capacitance C is estimated by replacing the capacitor 30Ct of the oscillator 28 with the capacitance C of the entire bearing using device.

この発明の一実施形態に係る軸受状態検査装置を用いた軸受使用装置における転がり軸受の検査を示す説明図である。It is explanatory drawing which shows the test | inspection of the rolling bearing in the bearing using apparatus using the bearing state inspection apparatus which concerns on one Embodiment of this invention. 同軸受状態検査装置等の要部拡大断面図である。It is an important section expanded sectional view of the bearing state inspection device. (A)は転がり軸受の半部断面図、(B)は(A)の軸受構造を電気回路として表現した場合の模式図である。(A) is a half sectional view of a rolling bearing, and (B) is a schematic view when the bearing structure of (A) is expressed as an electric circuit. 一方の電極から他方の電極にわたる経路の電気的な等価回路図である。It is an electrical equivalent circuit schematic of the path | route from one electrode to the other electrode. この発明の他の実施形態に係り、回転リングと固定リングとを軸方向に対面させた軸受状態検査装置の要部拡大断面図である。It is a principal part expanded sectional view of the bearing state inspection apparatus which concerns on other embodiment of this invention, and made the rotating ring and the fixed ring face the axial direction. この発明のさらに他の実施形態の等価回路図である。It is the equivalent circuit schematic of further another embodiment of this invention. 軸受状態検査装置における判定手段の一例を表すブロック図である。It is a block diagram showing an example of the determination means in a bearing state inspection apparatus. 判定手段の他の例を表すブロック図である。It is a block diagram showing the other example of a determination means.

符号の説明Explanation of symbols

1A…軸受状態検査装置
1…転がり軸受
2…外輪
3…内輪
6…転動体
8…回転リング
9…固定リング
10…ハウジング
11…絶縁体
12…金属部材
13…固定側ユニット
16…判定手段
δr…隙間
DESCRIPTION OF SYMBOLS 1A ... Bearing condition inspection apparatus 1 ... Rolling bearing 2 ... Outer ring 3 ... Inner ring 6 ... Rolling body 8 ... Rotating ring 9 ... Fixed ring 10 ... Housing 11 ... Insulator 12 ... Metal member 13 ... Fixed side unit 16 ... Determination means δr ... Gap

Claims (4)

それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受において、
内外輪のうちの回転側輪に取付けられ回転側輪に対して電気的に導通した導電性の回転側容量結合体と、前記内外輪のうちの固定側輪に取付けられた固定側ユニットとを備え、
前記固定側ユニットは、前記回転側容量結合体に静電容量発生用の隙間を介して対向し前記固定側輪に対して電気的に非導通の固定側容量結合体と、この固定側容量結合体に対して電気的に絶縁されかつ前記固定側輪に対して電気的に導通した接続用電極部材とを有し、前記回転側容量結合体および固定側容量結合体が、それぞれリング状の部材である回転リングおよび固定リングであり、これら回転リングと固定リングとを、径方向または軸方向に対向させ、前記回転リングおよび固定リングが前記転がり軸受の側部に位置するものであり、前記回転側容量結合体および前記固定側ユニットが、それぞれ回転側輪および固定側輪に嵌合する取付用の環状の嵌合部を有することを特徴とする軸受状態検査装置。
In rolling bearings having conductive outer rings, inner rings and rolling elements,
A conductive rotation-side capacitive coupling body that is attached to the rotation-side wheel of the inner and outer rings and is electrically connected to the rotation-side wheel; and a fixed-side unit that is attached to the fixed-side wheel of the inner and outer rings. Prepared,
The fixed-side unit is opposed to the rotating-side capacitive coupling body through a gap for generating capacitance, and is electrically non-conductive to the fixed-side wheel, and the fixed-side capacitive coupling. A connecting electrode member that is electrically insulated from the body and electrically connected to the fixed-side wheel, and the rotating-side capacitive coupling body and the fixed-side capacitive coupling body are respectively ring-shaped members. A rotating ring and a fixed ring, wherein the rotating ring and the fixed ring are opposed to each other in a radial direction or an axial direction, and the rotating ring and the fixed ring are located on a side portion of the rolling bearing, A bearing state inspection device , wherein the side capacitive coupling body and the fixed side unit have an annular fitting portion for attachment to be fitted to the rotating side wheel and the fixed side wheel, respectively .
請求項1において、前記固定側容量結合体と前記接続用電極部材との間に接続され、前記回転側容量結合体と固定側容量結合体との間、回転側輪と転動体との間、および固定側輪と転動体との間の各静電容量の合計値を測定し、この測定値から前記転がり軸受の潤滑状態を判定する判定手段を設けた軸受状態検査装置。   In Claim 1, it is connected between the fixed side capacitive coupling body and the connection electrode member, between the rotation side capacitive coupling body and the fixed side capacitive coupling body, between the rotation side wheel and the rolling element, And a bearing state inspection device provided with a determination means for measuring the total value of each capacitance between the fixed side wheel and the rolling element and determining the lubrication state of the rolling bearing from the measured value. 請求項1または請求項2において、前記回転側輪が内輪であり、前記固定側ユニットが、前記外輪の外径面に嵌合するハウジングと、前記外輪の側方で前記ハウジングの内径面に外径側から順に重なり状態に設けられたリング状の接続用電極部材、リング状の絶縁体、および固定リングからなる軸受状態検査装置。 3. The rotating wheel according to claim 1 , wherein the rotating side wheel is an inner ring, the stationary side unit is fitted to an outer diameter surface of the outer ring, and an outer surface of the outer ring is disposed outside the inner diameter surface of the housing. A bearing state inspection device comprising a ring-shaped connecting electrode member, a ring-shaped insulator, and a fixed ring provided in an overlapping state in order from the radial side. それぞれ導電性の外輪と内輪と転動体とを有する転がり軸受の潤滑状態を検査する軸受状態検査方法において、
内外輪のうちの回転側輪に、この回転側輪に対して電気的に導通した導電性のリング状の部材からなる回転リングである回転側容量結合体を取付け、前記内外輪のうちの固定側輪に、前記回転側容量結合体に静電容量発生用の隙間を介して径方向または軸方向に対向し前記固定側輪に対して電気的に非導通のリング状の部材からなる固定リングである固定側容量結合体と、この固定側容量結合体に対して電気的に絶縁されかつ前記固定側輪に対して電気的に導通した接続用電極部材とを取付け、前記回転リングおよび前記固定リングが前記転がり軸受の側部に位置するものであり、前記回転側容量結合体および前記接続用電極部材が、それぞれ回転側輪および固定側輪に嵌合する取付用の環状の嵌合部を有し、
記回転側容量結合体と固定側容量結合体との間、回転側輪と転動体との間、および固定側輪と転動体との間の各静電容量の合計値を、前記固定側容量結合体と前記接続用電極部材との間に接続手段を接続して測定し、この測定値から前記転がり軸受の潤滑状態を判定する軸受状態検査方法。
In a bearing state inspection method for inspecting the lubrication state of a rolling bearing having a conductive outer ring, an inner ring, and rolling elements, respectively.
The rotation-side wheel of the inner and outer rings, mounted electrically conductive with the rotation-side capacitive coupling member is a conductive rotating ring of the ring-shaped member against the rotating race member, one of said inner and outer rings the stationary ring, a ring-shaped member of electrically non-conductive in the radial direction or axial direction relative to the pair Muko said stationary wheel via a gap for capacitance generated in the rotation-side capacitive coupling body a solid Jogawa capacitive coupling member is a fixing ring, attached to the connecting electrode member which is electrically conductive with respect to an electrically insulated and the stationary ring relative to the fixed-side capacitive coupling member, said rotating ring And the fixed ring is located on the side of the rolling bearing, and the rotating-side capacitive coupling body and the connecting electrode member are attached to the rotating-side wheel and the fixed-side wheel, respectively. Have joints,
Between the front Symbol rotation-side capacitive coupling member and the fixed capacitive coupling body between the rotation-side ring and the rolling element, and the total value of the capacitance between the fixed-side ring and the rolling element, the fixed-side A bearing state inspection method in which a connection means is connected between a capacitive coupling body and the connection electrode member, and the lubrication state of the rolling bearing is determined from the measured value.
JP2007016371A 2007-01-26 2007-01-26 Bearing state inspection device and bearing state inspection method Expired - Fee Related JP4942496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016371A JP4942496B2 (en) 2007-01-26 2007-01-26 Bearing state inspection device and bearing state inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016371A JP4942496B2 (en) 2007-01-26 2007-01-26 Bearing state inspection device and bearing state inspection method

Publications (2)

Publication Number Publication Date
JP2008185339A JP2008185339A (en) 2008-08-14
JP4942496B2 true JP4942496B2 (en) 2012-05-30

Family

ID=39728501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016371A Expired - Fee Related JP4942496B2 (en) 2007-01-26 2007-01-26 Bearing state inspection device and bearing state inspection method

Country Status (1)

Country Link
JP (1) JP4942496B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103851995A (en) * 2013-02-25 2014-06-11 洛阳量云精密仪器有限公司 Multifunctional and automatic bearing ring measuring machine and method thereof
WO2018128062A1 (en) 2017-01-06 2018-07-12 日本精工株式会社 Method for diagnosing rolling device
KR20210099121A (en) 2019-01-15 2021-08-11 닛본 세이고 가부시끼가이샤 Diagnostic methods for powertrains
WO2022054352A1 (en) 2020-09-14 2022-03-17 日本精工株式会社 Detection method of state of bearing device, detection device, and program
WO2022250060A1 (en) 2021-05-28 2022-12-01 日本精工株式会社 Bearing device state detecting method, detecting device, and program
KR20240004710A (en) 2021-05-28 2024-01-11 닛뽄 세이꼬 가부시기가이샤 Detection method, detection device, and program for the state of the bearing device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019136A2 (en) * 2009-08-12 2011-02-17 Son Won Joong Electrical insulation apparatus for a bearing
JP6173815B2 (en) * 2013-07-23 2017-08-02 Ntn株式会社 Thin large bearing test equipment
GB2526860A (en) * 2014-06-05 2015-12-09 Skf Ab Rolling bearing and sensor assembly including the same
US20170102292A1 (en) * 2015-10-08 2017-04-13 United Technologies Corporation Systems and methods for monitoring lubricant film thickness of a journal bearing in an epicyclic gear system of an operating gas turbine engine
CN106198022B (en) * 2016-08-11 2018-10-30 大连三环复合材料技术开发股份有限公司 Self-lubricating knuckle bearing monitoring running state device and on-line monitoring system
CN106525432B (en) * 2016-12-26 2022-10-25 河南科技大学 Oil recovery structure of double-rotor bearing testing machine
DE102017212666B4 (en) * 2017-07-24 2023-03-02 Vdeh-Betriebsforschungsinstitut Gmbh Method and device for determining the condition of a mechanical component
CN110940519A (en) * 2018-09-21 2020-03-31 长城汽车股份有限公司 Method and device for determining bearing capacity of vehicle sliding bearing
US11441443B2 (en) 2019-06-06 2022-09-13 Raytheon Technologies Corporation Systems and methods for monitoring and controlling a gas turbine engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151577A (en) * 1974-05-28 1975-12-05
JPS57174796A (en) * 1981-04-18 1982-10-27 Japan Steel Works Ltd Transmitter for signal from revolving body
JP3313441B2 (en) * 1993-02-19 2002-08-12 光洋精工株式会社 Rolling bearing lubricant supply device
JPH0897754A (en) * 1994-09-22 1996-04-12 Dainippon Printing Co Ltd Signal transmitter
JP4674395B2 (en) * 2000-10-20 2011-04-20 日本電産株式会社 Bearing inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103851995A (en) * 2013-02-25 2014-06-11 洛阳量云精密仪器有限公司 Multifunctional and automatic bearing ring measuring machine and method thereof
WO2018128062A1 (en) 2017-01-06 2018-07-12 日本精工株式会社 Method for diagnosing rolling device
US10429373B2 (en) 2017-01-06 2019-10-01 Nsk Ltd. Method for diagnosing rolling device
KR20210099121A (en) 2019-01-15 2021-08-11 닛본 세이고 가부시끼가이샤 Diagnostic methods for powertrains
EP3913245B1 (en) * 2019-01-15 2023-11-29 NSK Ltd. Method for diagnosing rolling device
WO2022054352A1 (en) 2020-09-14 2022-03-17 日本精工株式会社 Detection method of state of bearing device, detection device, and program
WO2022250060A1 (en) 2021-05-28 2022-12-01 日本精工株式会社 Bearing device state detecting method, detecting device, and program
KR20240004710A (en) 2021-05-28 2024-01-11 닛뽄 세이꼬 가부시기가이샤 Detection method, detection device, and program for the state of the bearing device

Also Published As

Publication number Publication date
JP2008185339A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4942496B2 (en) Bearing state inspection device and bearing state inspection method
US8313240B2 (en) Sensorized bearing unit
JP4912255B2 (en) Bearing state inspection device and bearing state inspection method
US20190203773A1 (en) Roller with integrated load detection
US8531672B2 (en) Lubricant deterioration detector and bearing assembly equipped with such detector
US11181443B2 (en) Anti-friction bearing
US7071834B2 (en) Device for monitoring the operating conditions of rolling bearing
JP2009275736A (en) Bearing device
JP4391406B2 (en) Thrust bearing
CN112823271B (en) Bearing device and pre-compression sensor
JP2007240491A (en) Bearing state inspecting apparatus
JP4369692B2 (en) Insulation resistance measurement jig for insulation bearing and measurement method
JP4954136B2 (en) Bearing device
JP2007239779A (en) Bearing state inspection device
US11092194B2 (en) Prestress measurement with load pin
JP2007247690A (en) Bearing device for wheel with sensor
JP2003206925A (en) Pre-load measuring method for bearing, pre-load measuring device, and spindle device
JP5670539B2 (en) Bearing unit with sensor
JP2006312972A (en) Vehicle bearing device
JP4235833B2 (en) Railway vehicle bearing device
WO2015146689A1 (en) Bearing component internal defect inspection apparatus and internal defect inspection method
JP5374890B2 (en) Film thickness / contact state measuring method and apparatus
JP4626078B2 (en) Rolling bearing unit with sensor
JP4200380B2 (en) Railway vehicle bearing device
JP2019152532A (en) Insulated bearings, insulation resistance measuring jig and insulation resistance measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees