JP2009063358A - Measuring method of resin-curing shrinkage factor - Google Patents

Measuring method of resin-curing shrinkage factor Download PDF

Info

Publication number
JP2009063358A
JP2009063358A JP2007230281A JP2007230281A JP2009063358A JP 2009063358 A JP2009063358 A JP 2009063358A JP 2007230281 A JP2007230281 A JP 2007230281A JP 2007230281 A JP2007230281 A JP 2007230281A JP 2009063358 A JP2009063358 A JP 2009063358A
Authority
JP
Japan
Prior art keywords
resin
volume
measured
air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007230281A
Other languages
Japanese (ja)
Inventor
Ikuma Nariyoshi
郁馬 成吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2007230281A priority Critical patent/JP2009063358A/en
Publication of JP2009063358A publication Critical patent/JP2009063358A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of a resin-curing shrinkage factor which enables easy confirmation of curing behavior, from a stage for selecting resin material by reduced labor. <P>SOLUTION: A resin 20 to be measured is housed in a sealed hermetically closed container 12 which is equipped with a pressure sensor 16 and a temperature sensor 18 in a state where air 22 is made stagnant. Thereafter, the pressure and temperature of the air 22 are measured respectively continuously, until a predetermined time is elapsed while heating the hermetically closed container 12 in a hermetically closed state, and the volume (AV2) with the lapse of time of the air 22 is successively calculated from the respective measured values of the initial pressure (P1), volume (AV1) and temperature (T1) of the air 22 and the pressure (P2) and temperature (T2) with the lapse of time of the air 22. Next, the volume (RV2) of the lapse of time of the resin 20 to be measured is calculated, from the difference between the overall volume in the hermetically closed container 12 and the volume (AV2) with the lapse of time of the air 22, and the volume shrinkage factor with the lapse of time of the resin 20 to be measured is determined by using the initial volume (RV1) of the resin 20 to be measured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱硬化性樹脂についての硬化挙動を観測しつつ硬化収縮率を測定する樹脂の硬化収縮率測定方法に関する。   The present invention relates to a method for measuring the curing shrinkage rate of a resin, which measures the curing shrinkage rate while observing the curing behavior of a thermosetting resin.

エポキシ樹脂やフェノール樹脂等の熱硬化性樹脂の様な硬化後の寸法安定性が重要な樹脂の製品については、予め当該樹脂の材料選定の段階から硬化挙動の確認が必要である。   For resin products in which dimensional stability after curing is important, such as thermosetting resins such as epoxy resins and phenolic resins, it is necessary to confirm the curing behavior in advance from the material selection stage of the resin.

硬化収縮率の測定方法については、既に硬化した材料について比重差を利用した測定方法が知られているが、2液を混合して硬化に至るまでの測定方法については、変性ピクノメータを用いた測定方法がある。この測定方法は、概略、次の工程を経て行う。すなわち、2台のピクノメータの一方のカップに、被測定樹脂である、例えば、エポキシ樹脂の主剤と硬化剤とを収容し混合脱気した後、樹脂の体積変化量を計測するためのシリコーンオイルを注入する。また、ピクノメータの他方のカップにシリコーンオイルのみを注入する。2つのカップをそれぞれピクノメータに組立て並べて加熱槽に入れ所定時間加熱する。加熱しながら各カップ内の温度と加熱時間を監視する。所定時間経過後、一方のカップ内の被測定樹脂の容積変化量と他方のカップ内の容積変化量の差と初期の被測定樹脂の容積とから所望の体積収縮率を算出する。   As for the measurement method of the curing shrinkage rate, a measurement method using the specific gravity difference is known for the already cured material, but the measurement method using a modified pycnometer for the measurement method after mixing the two liquids to cure. There is a way. This measuring method is generally performed through the following steps. That is, in one cup of the two pycnometers, for example, a base resin of epoxy resin and a curing agent are accommodated in a cup to be measured, mixed and deaerated, and then a silicone oil for measuring the volume change amount of the resin is added. inject. Also, only silicone oil is injected into the other cup of the pycnometer. Two cups are assembled and arranged in a pycnometer, placed in a heating tank, and heated for a predetermined time. Monitor the temperature and heating time in each cup while heating. After a predetermined time has elapsed, a desired volume shrinkage is calculated from the difference between the volume change amount of the measured resin in one cup, the volume change amount in the other cup, and the initial volume of the measured resin.

また、従来この種の樹脂の硬化収縮率測定方法として、秤量した液状の樹脂よりなる試料を密閉容器に入れ、この密閉容器と標準容器とを配管を用いて圧力計に接続して標準温度に保持した後、この密閉容器と標準容器を加熱槽により加熱して密閉容器の中の液状の樹脂を硬化させた後、密閉容器と標準容器とを標準温度に戻し、圧力計で両者の空気の圧力差を測って容積減少量を求めた後、先に秤量した液状樹脂量との比をとることで硬化収縮率を測定するという樹脂の硬化収縮率測定方法がある(特許文献1参照)。
特開平7−333034号公報
Conventionally, as a method for measuring the curing shrinkage rate of this type of resin, a weighed sample of liquid resin is placed in a sealed container, and the sealed container and the standard container are connected to a pressure gauge using a pipe to reach a standard temperature. After holding, the sealed container and the standard container are heated by a heating tank to cure the liquid resin in the sealed container, and then the sealed container and the standard container are returned to the standard temperature. There is a method for measuring the curing shrinkage rate of a resin in which the volume shrinkage is determined by measuring the pressure difference and then the curing shrinkage rate is measured by taking the ratio with the previously weighed liquid resin amount (see Patent Document 1).
JP 7-333034 A

上記の従来の技術には、次のような解決すべき課題があった。
前者のピクノメータを用いた樹脂の硬化収縮率測定方法は、測定準備に長時間を要し、かつ煩雑である。さらにこの測定準備中の変化が全体の結果に影響を与えていることが問題となる。測定については常時、変化の様子を見つづける必要があり過大な時間と労力を要する。また、変化が早い段階では読み取り誤差も無視できない等の問題を含んでいる。
The above conventional techniques have the following problems to be solved.
The former method for measuring the curing shrinkage of a resin using a pycnometer requires a long time for measurement preparation and is complicated. Another problem is that this change during measurement preparation affects the overall result. For measurement, it is necessary to keep watching the state of change at all times, and excessive time and labor are required. Further, there is a problem that the reading error cannot be ignored at the early stage of change.

また、後者の樹脂の硬化収縮率測定方法は、測定中に密閉容器と標準容器の温度管理のために加熱槽に出し入れするために、経時的な樹脂の硬化挙動の確認がし難い。   Further, the latter method for measuring the shrinkage of curing of the resin is difficult to confirm the curing behavior of the resin over time because it is taken in and out of the heating tank for temperature control of the sealed container and the standard container during the measurement.

本発明は、上記の課題を解決するためになされたもので、樹脂材料の選定の段階から硬化挙動の確認を少ない労力で容易に行うことができる樹脂の硬化収縮率測定方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a method for measuring the curing shrinkage of a resin, which can easily confirm the curing behavior from the resin material selection stage with little effort. Objective.

以下の構成はそれぞれ上記の課題を解決するための手段である。
〈構成1〉
圧力センサと温度センサとを装備した密閉容器内に、体積収縮率を測定すべき被測定樹脂を空気を滞留させた状態で収容し、この後、上記密閉容器を密閉状態で加熱しながら、上記密閉容器の密閉直後から所定時間経過するまでの間、上記圧力センサと上記温度センサとを使用して上記密閉容器内の空気の圧力と温度をそれぞれ継続して測定し、上記密閉容器内の空気の初期の圧力(P1)、体積(AV1)及び温度(T1)と、上記空気の経時の圧力(P2)及び温度(T2)の各測定値を、次式(1)に代入して上記空気の経時の体積(AV2)の数値を逐次算出し、
次いで、上記密閉容器内の全体積と上記空気の経時の体積(AV2)との数値差から上記被測定樹脂の経時の体積(RV2)の数値を求め、上記被測定樹脂の初期の体積(RV1)を用いて、次式(2)により上記被測定樹脂の経時の体積収縮率を求めることを特徴とする樹脂の硬化収縮率測定方法。
P1×AV1/T1=P2×AV2/T2 ・・・(1)
体積収縮率(%)=(RV1−RV2) /RV1×100 ・・・(2)
The following configurations are means for solving the above-described problems.
<Configuration 1>
In a sealed container equipped with a pressure sensor and a temperature sensor, the measured resin whose volume shrinkage rate is to be measured is accommodated in a state where air is retained, and then the above-mentioned sealed container is heated in a sealed state, The pressure sensor and the temperature sensor are used to measure the pressure and temperature of the air in the airtight container continuously after the airtight container is sealed until a predetermined time elapses. The measured values of the initial pressure (P1), volume (AV1) and temperature (T1), and the time-dependent pressure (P2) and temperature (T2) of the air are substituted into the following equation (1) and the air Sequentially calculates the numerical value of the volume (AV2) over time,
Next, the numerical value of the volume (RV2) of the measured resin over time is obtained from the numerical difference between the total volume in the sealed container and the volume (AV2) of the air over time, and the initial volume (RV1) of the measured resin is obtained. ), The volumetric shrinkage ratio of the resin to be measured over time is obtained by the following formula (2).
P1 × AV1 / T1 = P2 × AV2 / T2 (1)
Volume shrinkage (%) = (RV1-RV2) / RV1 × 100 (2)

初期設定した被測定樹脂や空気の各体積値のデータと圧力センサや温度センサにより経時測定した空気の圧力値や温度値のデータを逐次読取り自動記録することにより、初期段階から所定時間経過後までの被測定樹脂の硬化挙動の確認を、少ない労力で容易に行うことができる。経時測定を自動で行えるので、測定時間の省力化と読取り誤差の低減が可能である。   From the initial stage to the end of a predetermined time by sequentially reading and automatically recording the initial volume data of the measured resin and air and the air pressure and temperature data measured over time by the pressure sensor and temperature sensor. The curing behavior of the resin to be measured can be easily confirmed with little effort. Since time measurement can be performed automatically, the measurement time can be saved and the reading error can be reduced.

〈構成2〉
構成1に記載の樹脂の硬化収縮率測定方法において、上記密閉容器はインバー合金材からなることを特徴とする樹脂の硬化収縮率測定方法。
<Configuration 2>
The method for measuring the curing shrinkage rate of a resin according to Configuration 1, wherein the sealed container is made of an Invar alloy material.

インバー合金材は、ニッケルと鉄からなる低熱膨張合金である。密閉容器をインバー合金材製とすることにより、密閉容器内の空気の圧力をより正確に測定できる。   Invar alloy material is a low thermal expansion alloy made of nickel and iron. By making the sealed container made of Invar alloy material, the pressure of the air in the sealed container can be measured more accurately.

〈構成3〉
構成1又は2に記載の樹脂の硬化収縮率測定方法において、上記圧力センサと上記温度センサとから得られる上記密閉容器内の空気の温度と圧力の経時測定情報をモニタすることを特徴とする樹脂の硬化収縮率測定方法。
<Configuration 3>
In the method for measuring the curing shrinkage of a resin according to Configuration 1 or 2, the time-measurement information on the temperature and pressure of air in the sealed container obtained from the pressure sensor and the temperature sensor is monitored. Curing shrinkage measurement method.

密閉容器内の空気の温度と圧力の経時測定情報が随時自動記録されるので、測定セッテング以降の作業を大幅に省力化できる。   Since time-lapse information on the temperature and pressure of the air in the sealed container is automatically recorded as needed, work after measurement setting can be greatly saved.

以下、本発明の実施の形態を実施例毎に詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail for each example.

図1は実施例1の樹脂の硬化収縮率測定方法の説明図で、(a)は測定開始前の状態を示す断面図、(b)は測定中の状態を示す断面図である。
この樹脂の硬化収縮率測定方法を実行するときには、図1(a)に示す測定装置10を使用する。測定装置10は、上面開放の密閉容器12と、密閉容器12を密閉する蓋体14と、密閉容器12内の空気の圧力と温度を検出する、圧力センサ16および温度センサ18とを備えている。
1A and 1B are explanatory diagrams of a method for measuring the curing shrinkage rate of a resin in Example 1. FIG. 1A is a cross-sectional view showing a state before the start of measurement, and FIG. 1B is a cross-sectional view showing a state during measurement.
When executing this method for measuring the cure shrinkage rate of a resin, a measuring apparatus 10 shown in FIG. The measuring apparatus 10 includes a sealed container 12 having an open top surface, a lid 14 that seals the sealed container 12, and a pressure sensor 16 and a temperature sensor 18 that detect the pressure and temperature of air in the sealed container 12. .

密閉容器12はインバー合金材から構成されている。インバー合金材は低熱膨張合金であり、密閉容器12内の空気22の圧力を継続してより正確に測定できる。圧力センサ16および温度センサ18は、それぞれ空気の圧力と温度を検出すると共にそれを電気的に出力できる機構を備えている。温度センサ18としては熱電対を使用することが好ましい。   The sealed container 12 is made of an Invar alloy material. The Invar alloy material is a low thermal expansion alloy, and the pressure of the air 22 in the sealed container 12 can be continuously measured more accurately. Each of the pressure sensor 16 and the temperature sensor 18 includes a mechanism capable of detecting the pressure and temperature of air and electrically outputting them. It is preferable to use a thermocouple as the temperature sensor 18.

先ず、エポキシ樹脂やフェノール樹脂等の熱硬化性樹脂であって、硬化収縮率を求めようとする被測定樹脂20の初期の体積(RV1)を予め測定記録しておく。この体積測定後、被測定樹脂20を密閉容器12内に収容し蓋体14により密閉する。このとき、密閉容器12内上部に空気22が滞留している。この空気22の初期の圧力(P1)、体積(AV1)及び温度(T1)も予め測定記録しておく。なお、空気22の初期の体積(AV1)は、密閉容器内全体積より被測定樹脂の初期の体積(RV1)を差し引くことで求められる。   First, an initial volume (RV1) of a resin 20 to be measured, which is a thermosetting resin such as an epoxy resin or a phenol resin, and the cure shrinkage rate of which is to be obtained is measured and recorded in advance. After the volume measurement, the measured resin 20 is accommodated in the sealed container 12 and sealed with the lid 14. At this time, air 22 stays in the upper part of the sealed container 12. The initial pressure (P1), volume (AV1) and temperature (T1) of the air 22 are also measured and recorded in advance. The initial volume (AV1) of the air 22 can be obtained by subtracting the initial volume (RV1) of the resin to be measured from the total volume in the sealed container.

密閉状態の密閉容器12を適当な加熱槽(図示せず)に収容し加熱する。加熱槽内で密閉容器12を加熱しながら、圧力センサ16および温度センサ18を用いて空気22の圧力と温度をそれぞれ経時測定する。この経時測定は、所定時間、すなわち、図1(b)に示すように、被測定樹脂20が所定の硬化収縮に至るまで継続して行う。   The sealed container 12 in a sealed state is accommodated in a suitable heating tank (not shown) and heated. While the hermetic container 12 is heated in the heating tank, the pressure and temperature of the air 22 are respectively measured over time using the pressure sensor 16 and the temperature sensor 18. This time-lapse measurement is continuously performed for a predetermined time, that is, until the resin 20 to be measured reaches a predetermined curing shrinkage as shown in FIG.

密閉容器12内の空気22の初期の圧力(P1)、体積(AV1)及び温度(T1)と、空気22の経時の圧力(P2)及び温度(T2)の各測定値が分るので、ボイルシャルルの法則に従う気体の状態式 「P1×AV1/T1=P2×AV2/T2」を利用して密閉容器12内の空気22の経時の体積(AV2)を逐次算出する。   Since the initial pressure (P1), volume (AV1) and temperature (T1) of the air 22 in the sealed container 12 and the measured values of the pressure (P2) and temperature (T2) over time of the air 22 are known, boil The time-dependent volume (AV2) of the air 22 in the hermetic container 12 is sequentially calculated using the equation of state of gas according to Charles' law "P1 * AV1 / T1 = P2 * AV2 / T2."

次に、密閉容器12内の全体積と空気22の経時の体積(AV2)との差から被測定樹脂20の経時の体積(RV2)を求められるので、被測定樹脂20の初期の体積(RV1)を用いて「体積収縮率(%)=(RV1−RV2) /RV1×100の式から、被測定樹脂20の経時の体積収縮率を求めることができる。   Next, since the time-dependent volume (RV2) of the measured resin 20 can be obtained from the difference between the total volume in the sealed container 12 and the time-dependent volume (AV2) of the air 22, the initial volume (RV1) of the measured resin 20 is obtained. ), The volumetric shrinkage ratio of the resin 20 to be measured over time can be obtained from the formula: “volumetric shrinkage ratio (%) = (RV1−RV2) / RV1 × 100”.

ここで、容器内全体積30.000 cm3の密閉容器を用い、30.15gのエポキシ樹脂を用いて体積収縮率を測定した結果を図2に示す。
図2は、次のようにして得た測定値により体積収縮率を求めたものを示している。すなわち、初めに、上記エポキシ樹脂を収容した密閉容器内の空気の初期の温度(T1)と、同空気の初期の圧力(P1)と、同空気の初期の体積(AV1)と、エポキシ樹脂の初期の体積(RV1)をそれぞれ測定記録した。次いで、上記エポキシ樹脂を収容した密閉容器を加熱槽で加温した。加温開始後、30分、1時間、1時間30分、2時間、3時間30分、18時間、21時間30分の各時間経過毎に、同空気の温度(T2)及び圧力(P2)をそれぞれ経時測定した。そして、上記した式 「P1×AV1/T1=P2×AV2/T2」により密閉容器内の空気の経時の体積(AV2)を逐次算出し、さらに、容器内全体積(30.000 cm3)と空気の経時の各体積(AV2)との差からエポキシ樹脂の経時の各体積(RV2)を求め、上記した式 「体積収縮率(%)=(RV1−RV2) /RV1×100 によりエポキシ樹脂の経時の各体積収縮率を求めた。
Here, FIG. 2 shows the results of measuring the volume shrinkage using 30.15 g of epoxy resin using a sealed container having a total volume of 30.000 cm 3 in the container.
FIG. 2 shows the volume shrinkage obtained from the measured values obtained as follows. That is, first, the initial temperature (T1) of the air in the sealed container containing the epoxy resin, the initial pressure (P1) of the air, the initial volume (AV1) of the air, and the epoxy resin The initial volume (RV1) was measured and recorded. Next, the sealed container containing the epoxy resin was heated in a heating tank. After the start of heating, the temperature (T2) and pressure (P2) of the same air every 30 minutes, 1 hour, 1 hour 30 minutes, 2 hours, 3 hours 30 minutes, 18 hours, 21 hours 30 minutes Was measured over time. Then, the time-dependent volume (AV2) of the air in the sealed container is sequentially calculated by the above-described formula “P1 × AV1 / T1 = P2 × AV2 / T2”, and the total volume in the container (30.000 cm 3 ) Each volume (RV2) of the epoxy resin over time is obtained from the difference from each volume of air over time (AV2), and the above formula “volume shrinkage (%) = (RV1−RV2) / RV1 × 100” Each volume shrinkage over time was determined.

初期設定した体積値のデータと圧力センサ16や温度センサ18により測定した圧力値や温度値のデータを逐次読取り自動記録することにより、樹脂材料の選定の初期段階から硬化挙動の確認を逐次行うことができる。測定時間の省力化と読取り誤差の低減が可能である。   By sequentially reading and automatically recording the initially set volume value data and the pressure value and temperature value data measured by the pressure sensor 16 and the temperature sensor 18, the confirmation of the curing behavior is performed sequentially from the initial stage of resin material selection. Can do. It is possible to save the measurement time and reduce the reading error.

圧力センサ16と温度センサ18とから得られる密閉容器12内の温度と圧力の経時測定情報をモニタすることにより、密閉容器12内の温度と圧力の経時の情報が随時記録されるので、測定セッテング以降の作業を大幅に省力化できる。   By monitoring the temperature and pressure aging information in the sealed container 12 obtained from the pressure sensor 16 and the temperature sensor 18, the temperature and pressure aging information in the sealed container 12 is recorded as needed. Subsequent work can be greatly saved.

実施例1の樹脂の硬化収縮率測定方法の説明図である。It is explanatory drawing of the cure shrinkage rate measuring method of resin of Example 1. FIG. エポキシ樹脂の体積収縮率の測定結果を示す図である。It is a figure which shows the measurement result of the volumetric shrinkage rate of an epoxy resin.

符号の説明Explanation of symbols

10 測定装置
12 密閉容器
14 蓋体
16 圧力センサ
18 温度センサ
20 被測定樹脂
22 空気
DESCRIPTION OF SYMBOLS 10 Measuring apparatus 12 Airtight container 14 Lid 16 Pressure sensor 18 Temperature sensor 20 Resin 22 to be measured Air

Claims (3)

圧力センサと温度センサとを装備した密閉容器内に、体積収縮率を測定すべき被測定樹脂を空気を滞留させた状態で収容し、
この後、前記密閉容器を密閉状態で加熱しながら、前記密閉容器の密閉直後から所定時間経過するまでの間、前記圧力センサと前記温度センサとを使用して前記密閉容器内の空気の圧力と温度をそれぞれ継続して測定し、
前記密閉容器内の空気の初期の圧力(P1)、体積(AV1)及び温度(T1)と、前記空気の経時の圧力(P2)及び温度(T2)の各測定値を、次式(1)に代入して前記空気の経時の体積(AV2)の数値を逐次算出し、
次いで、前記密閉容器内の全体積と前記空気の経時の体積(AV2)との数値差から前記被測定樹脂の経時の体積(RV2)の数値を求め、前記被測定樹脂の初期の体積(RV1)を用いて、次式(2)により前記被測定樹脂の経時の体積収縮率を求めることを特徴とする樹脂の硬化収縮率測定方法。
P1×AV1/T1=P2×AV2/T2 ・・・(1)
体積収縮率(%)=(RV1−RV2) /RV1×100 ・・・(2)
In a sealed container equipped with a pressure sensor and a temperature sensor, the resin to be measured whose volume shrinkage rate is to be measured is stored in a state where air is retained,
Thereafter, while the sealed container is heated in a sealed state, the pressure of the air in the sealed container is measured using the pressure sensor and the temperature sensor until a predetermined time elapses after the sealed container is sealed. Measure each temperature continuously,
The measured values of the initial pressure (P1), volume (AV1) and temperature (T1) of the air in the sealed container, and the time-dependent pressure (P2) and temperature (T2) of the air are expressed by the following equation (1). And the numerical value of the volume of air over time (AV2) is sequentially calculated,
Next, a numerical value of the volume (RV2) of the measured resin over time is obtained from a numerical difference between the total volume in the sealed container and the volume (AV2) of the air with time, and an initial volume (RV1) of the measured resin is obtained. ) Is used to determine the volumetric shrinkage ratio of the measured resin over time according to the following equation (2).
P1 × AV1 / T1 = P2 × AV2 / T2 (1)
Volume shrinkage (%) = (RV1-RV2) / RV1 × 100 (2)
請求項1に記載の樹脂の硬化収縮率測定方法において、
前記密閉容器はインバー合金材からなることを特徴とする樹脂の硬化収縮率測定方法。
In the method for measuring the curing shrinkage of the resin according to claim 1,
The method for measuring a curing shrinkage rate of a resin, wherein the sealed container is made of an Invar alloy material.
請求項1又は2に記載の樹脂の硬化収縮率測定方法において、
前記圧力センサと前記温度センサとから得られる前記密閉容器内の温度と圧力の経時測定情報をモニタすることを特徴とする樹脂の硬化収縮率測定方法。
In the method for measuring the curing shrinkage of the resin according to claim 1 or 2,
A method for measuring a curing shrinkage rate of a resin, comprising monitoring time-lapse information of temperature and pressure in the sealed container obtained from the pressure sensor and the temperature sensor.
JP2007230281A 2007-09-05 2007-09-05 Measuring method of resin-curing shrinkage factor Withdrawn JP2009063358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230281A JP2009063358A (en) 2007-09-05 2007-09-05 Measuring method of resin-curing shrinkage factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230281A JP2009063358A (en) 2007-09-05 2007-09-05 Measuring method of resin-curing shrinkage factor

Publications (1)

Publication Number Publication Date
JP2009063358A true JP2009063358A (en) 2009-03-26

Family

ID=40558067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230281A Withdrawn JP2009063358A (en) 2007-09-05 2007-09-05 Measuring method of resin-curing shrinkage factor

Country Status (1)

Country Link
JP (1) JP2009063358A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200204A (en) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp Cure shrinkage measuring apparatus and cure shrinkage measuring method
KR101332641B1 (en) * 2013-02-01 2013-11-25 한국기계연구원 System for measuring percentage of contraction for resin and method using the same
JP2014227817A (en) * 2013-05-20 2014-12-08 綜合計測株式会社 Track deviation measurement system
JP2015140416A (en) * 2014-01-30 2015-08-03 凸版印刷株式会社 Transparent antiblocking resin composition, film laminate and roll state-film laminate
CN105643856A (en) * 2015-12-31 2016-06-08 山东华夏神舟新材料有限公司 Method for testing molding shrinkage rate of fluorinated ethylene-propylene resin
KR20190034739A (en) * 2017-09-25 2019-04-03 주식회사 브이엠테크 Method for Estimating Specific Volume of Synthetic Resin According to the Change of Temperature and Pressure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200204A (en) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp Cure shrinkage measuring apparatus and cure shrinkage measuring method
KR101332641B1 (en) * 2013-02-01 2013-11-25 한국기계연구원 System for measuring percentage of contraction for resin and method using the same
JP2014227817A (en) * 2013-05-20 2014-12-08 綜合計測株式会社 Track deviation measurement system
JP2015140416A (en) * 2014-01-30 2015-08-03 凸版印刷株式会社 Transparent antiblocking resin composition, film laminate and roll state-film laminate
CN105643856A (en) * 2015-12-31 2016-06-08 山东华夏神舟新材料有限公司 Method for testing molding shrinkage rate of fluorinated ethylene-propylene resin
KR20190034739A (en) * 2017-09-25 2019-04-03 주식회사 브이엠테크 Method for Estimating Specific Volume of Synthetic Resin According to the Change of Temperature and Pressure
KR102021847B1 (en) 2017-09-25 2019-09-17 주식회사 브이엠테크 Method for Estimating Specific Volume of Synthetic Resin According to the Change of Temperature and Pressure

Similar Documents

Publication Publication Date Title
JP2009063358A (en) Measuring method of resin-curing shrinkage factor
CN103217351B (en) A kind of measurement mechanism for imbibition capability of film object and measuring method thereof
CN101865865B (en) Noncontact-type test method of early-period thermal expansion coefficient of concrete dam and equipment thereof
CN110455364B (en) Micro-flow and ultra-micro-flow measuring device and method
CN107314950A (en) A kind of method for determining carbon dioxide diffusion coefficient in porous media
CN104374800A (en) In-situ heat conductivity coefficient testing device and method for gas hydrate
CN102830134B (en) Up-and-down constant-temperature parameter identifying method for testing thermal interface material performance
CN103837567B (en) The liquid specific heat capacity measurement device of energy self-equilibrating pressurization and method
CN104749214B (en) A kind of constant temperature hot bath device that liquid thermal conductivity factor is measured based on Adsorbent By Using Transient Plane Source Technique
CN113670778A (en) Shale imbibition experimental apparatus of magnetic suspension measurement
CN110988019A (en) Testing device and testing method for shale thermal expansion coefficient
JP2008060290A (en) Method for impregnating superconducting coil with resin
JP4753244B2 (en) Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container
Yu et al. Thermo-TDR probe for measurement of soil moisture, density, and thermal properties
CN108007822B (en) High-temperature high-shear dynamic viscosity measuring method and measuring instrument
JP2005227254A (en) Temperature compensation method for inspection data error caused by outside air temperature generated at pressure expansion test time for compressed-gas cylinder reinspection
CN109297855A (en) The automatic tester for water ratio of integral type and measurement of water-content coefficient method
US9816951B2 (en) Method for determining a volume thermal expansion coefficient of a liquid
US20160341645A1 (en) Inline multiphase densitometer
CN109655370A (en) Automobile-used LNG gas cylinder static evaporation rate pressure-maintaining test device and test method
JP2937793B2 (en) Insulation temperature rise test equipment for concrete
CN113670777A (en) Imbibition experimental method
CN205786179U (en) A kind of device predicting scaling powder splashing characteristic
WO2008080857A3 (en) Device and method for determining a fill level and a temperature of a fluid
JP2006038607A (en) Measuring method of specific heat at constant pressure of high pressure fluid and device therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207