JP2009063335A - 生理活性物質と被験物質との相互作用の測定方法 - Google Patents
生理活性物質と被験物質との相互作用の測定方法 Download PDFInfo
- Publication number
- JP2009063335A JP2009063335A JP2007229661A JP2007229661A JP2009063335A JP 2009063335 A JP2009063335 A JP 2009063335A JP 2007229661 A JP2007229661 A JP 2007229661A JP 2007229661 A JP2007229661 A JP 2007229661A JP 2009063335 A JP2009063335 A JP 2009063335A
- Authority
- JP
- Japan
- Prior art keywords
- substance
- physiologically active
- substrate
- active substance
- interaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/10—Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法において、リガンドである生理活性物質が基板の表面から脱着することによって断続的に発生するマイナス信号が、アナライトである被験物質の結合量を示す測定値に及ぼす影響を排除した測定方法を提供すること。
【解決手段】基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法において、同一の溶液を繰返し測定して得られたベースライン値を使用した較正曲線を作成し、前記較正曲線にて前記被験物質の測定値を較正し、前記被験物質の相互作用信号を得ることを特徴とする測定方法。
【選択図】なし
【解決手段】基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法において、同一の溶液を繰返し測定して得られたベースライン値を使用した較正曲線を作成し、前記較正曲線にて前記被験物質の測定値を較正し、前記被験物質の相互作用信号を得ることを特徴とする測定方法。
【選択図】なし
Description
本発明は、基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法に関する。
現在、臨床検査等で免疫反応など分子間相互作用を利用した測定が数多く行われているが、従来法では煩雑な操作や標識物質を必要とするため、標識物質を必要とすることなく、測定物質の結合量変化を高感度に検出することのできるいくつかの技術が使用されている。例えば、表面プラズモン共鳴(SPR)測定技術、水晶発振子マイクロバランス(QCM)測定技術、金のコロイド粒子から超微粒子までの機能化表面を使用した測定技術である。SPR測定技術はチップの金属膜に接する有機機能膜近傍の屈折率変化を反射光波長のピークシフト又は一定波長における反射光量の変化を測定して求めることにより、表面近傍に起こる吸着及び脱着を検知する方法である。QCM測定技術は水晶発振子の金電極(デバイス)上の物質の吸脱着による発振子の振動数変化から、ngレベルで吸脱着質量を検出できる技術である。また、金の超微粒子(nmレベル)表面を機能化させて、その上に生理活性物質を固定して、生理活性物質間の特異認識反応を行わせることによって、金微粒子の沈降、配列から生体関連物質の検出ができる。
上記した技術においては、いずれの場合も、生理活性物質を固定化する表面が重要である。以下、当技術分野で最も使われている表面プラズモン共鳴(SPR)を例として、説明する。
一般に使用される測定チップは、透明基板(例えば、ガラス)、蒸着された金属膜、及びその上に生理活性物質を固定化できる官能基を有する薄膜からなり、その官能基を介し、金属表面に生理活性物質を固定化する。該生理活性物質と検体物質間の特異的な結合反応を測定することによって、生体分子間の相互作用を分析する。例えば、特許第2815120号には、金基板に自己組織化膜(SAM)を介してデキストランを結合させ、さらにデキストランにカルボキシル基を導入した測定チップが記載されている。
一般にリガンドを表面に固定し、リガンドへのアナライトの結合を信号として検出する装置において、リガンドの表面への固定が不十分な場合がある。この場合、リガンドの表面からの脱着により、マイナス信号が断続的に発生し、これがアナライトの結合を観測する際に影響し、本来得られるはずの値よりも低い信号量しか得られないことがある。特にSPRのように近接場の屈折率変化を検出する装置において、リガンド蛋白に対する低分子アナライトの検出を行う場合、信号は分子量に依存するため、リガンド1分子の脱着が約100分子分のアナライト結合信号に匹敵することがあり、結合信号がマイナスになってしまう問題がある。
本発明は、上記した従来技術の問題点を解消することを解決すべき課題とした。即ち、本発明は、基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法において、リガンドである生理活性物質が基板の表面から脱着することによって断続的に発生するマイナス信号が、アナライトである被験物質の結合量を示す測定値に及ぼす影響を排除した測定方法を提供することを解決すべき課題とした。
本発明者らは上記課題を解決するために鋭意検討した結果、基板の表面に固定された生理活性物質と被験物質との相互作用を測定するバイオセンサーにおいて、同一の溶液を繰返し測定して得られたベースライン値を使用した較正曲線を作成し、前記較正曲線にて前記被験物質の測定値を較正することによって、生理活性物質が基板の表面から脱着することによって断続的に発生するマイナス信号が、アナライトである被験物質の結合量を示す測定値に及ぼす影響を排除できることを見出し、本発明を完成するに至った。
即ち、本発明によれば、基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法において、同一の溶液を繰返し測定して得られたベースライン値を使用した較正曲線を作成し、前記較正曲線にて前記被験物質の測定値を較正し、前記被験物質の相互作用信号を得ることを特徴とする測定方法に関する。
好ましくは、較正曲線が、ベースライン値を最小自乗法で近似された曲線である。
好ましくは、較正曲線が、一次指数曲線式(線形近似)、二次指数曲線式、三次指数曲線式、又は指数近似である。
好ましくは、較正曲線を作成するために使用するベースライン値の数は、4以上1000以下である。
好ましくは、較正曲線が、一次指数曲線式(線形近似)、二次指数曲線式、三次指数曲線式、又は指数近似である。
好ましくは、較正曲線を作成するために使用するベースライン値の数は、4以上1000以下である。
好ましくは、生理活性物質と被験物質との相互作用を屈折率変化として検出する。
好ましくは、生理活性物質と被験物質との相互作用を表面共鳴プラズモン分析により検出する。
好ましくは、生理活性物質と被験物質との相互作用を表面共鳴プラズモン分析により検出する。
本発明の方法によれば、同一のリガンド固定表面に、アナライトを連続送液して測定し、各アナライトのベース信号の変動を考慮して補正曲線を作成し、アナライト信号値を補正することによって、ポジティブ信号の精度を向上させることができる。
本発明の方法は、基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法において、同一の溶液を繰返し測定して得られたベースライン値を使用した較正曲線を作成し、前記較正曲線にて前記被験物質の測定値を較正し、前記被験物質の相互作用信号を得ることを特徴とする。
本発明の測定方法を行う際には、例えば、生理活性物質が固定化された基板の表面に対して、被験物質を含む液と被験物質を含まない液とを交互に流し、被験物質を含まない液を流している時の信号をベースライン値として取得することができる。時間の経過に従って基板の表面に固定化された生理活性物質が離脱し、その結果、取得されるベースラインライン値も、時間の経過に従って低下していく傾向を示すことが多い。このようにして取得されたベースラインの値を用いて、較正曲線を取得することができる。
通常、ベースラインは信号変化に対する基準のために測定するものであるが、ベースラインそのものが連続的に変化しており、かつ検出したい信号変化に対してベースラインの変化が大きい場合は、単純にベースラインとの差し引きでは幾ら時間差が小さくてもその影響は避けられず、正確な信号が検出できないが、本発明では、ベースラインの繰返し測定によって得られる変化の傾向から、ベースライン測定時と被験物質の測定時の時間差による影響を補正することを特徴とする。
通常、ベースラインは信号変化に対する基準のために測定するものであるが、ベースラインそのものが連続的に変化しており、かつ検出したい信号変化に対してベースラインの変化が大きい場合は、単純にベースラインとの差し引きでは幾ら時間差が小さくてもその影響は避けられず、正確な信号が検出できないが、本発明では、ベースラインの繰返し測定によって得られる変化の傾向から、ベースライン測定時と被験物質の測定時の時間差による影響を補正することを特徴とする。
ベースライン値を取得するために用いる同一の溶液とは、被験物質を含まない同一の組成の溶液を指す。組成が同じであれば、いかなる方法で調製された溶液を使用して良いが、蒸発や汚染等の組成変化を防止するような密閉系の容器に入れた溶液を繰返し使用する方法が好ましい。同一の溶液とは、塩濃度の誤差が1%未満、その他の溶質の濃度誤差が10%未満の組成の液を指す。
較正曲線は、ベースライン値を最小自乗法で近似された曲線であることが好ましい。最小自乗法とは、「パソコンによるデータ分析」(大西正和編著、建帛社)第4章1.傾向変動の分析、に詳しく記載されている方法であり、回帰式からのズレの自乗和が最も小さくなるように回帰式の係数を求める方法である。
本発明の較正曲線は、一次指数曲線式(線形近似)、二次指数曲線式、三次指数曲線式、指数近似、のいずれかを使用することが好ましい。これらの較正曲線は、Excel(Microsoft社)の機能を使用することで容易に得ることができる。
本発明の較正曲線を得るために使用するベースライン値は、センサー表面を同一の溶液にて繰返し測定することにより得られた値である。較正曲線は近似式であり、ベースライン値の数は多いほど精度が上がるため好ましい。ベースライン値の数は、4以上1000以下が好ましく、10以上500以下が更に好ましい。
本発明においては、較正曲線にて被験物質の測定値を較正する。較正曲線にて被験物質の測定値を較正するためには、被験物質の測定値から、較正曲線との差分を取り、補正データを取得すればよい。
本発明で用いる生理活性物質を固定するための基板は、金属表面又は金属膜を有することが好ましい。金属表面あるいは金属膜を構成する金属としては、例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、表面プラズモン共鳴が生じ得るようなものであれば特に限定されない。好ましくは金、銀、銅、アルミニウム、白金等の自由電子金属が挙げられ、特に金が好ましい。それらの金属は単独又は組み合わせて使用することができる。また、上記担体への付着性を考慮して、担体と金属からなる層との間にクロム等からなる介在層を設けてもよい。
金属膜の膜厚は任意であるが、例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、0.1nm以上500nm以下であるのが好ましく、特に1nm以上200nm以下であるのが好ましい。500nmを超えると、媒質の表面プラズモン現象を十分検出することができない。また、クロム等からなる介在層を設ける場合、その介在層の厚さは、0.1nm以上10nm以下であるのが好ましい。
金属膜の形成は常法によって行えばよく、例えば、スパッタ法、蒸着法、イオンプレーティング法、電気めっき法、無電解めっき法等によって行うことができる。
金属膜は好ましくは基板上に配置されている。ここで、「基板上に配置される」とは、金属膜が基板上に直接接触するように配置されている場合のほか、金属膜が基板に直接接触することなく、他の層を介して配置されている場合をも含む意味である。本発明で使用することができる基板としては例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、一般的にはBK7等の光学ガラス、あるいは合成樹脂、具体的にはポリメチルメタクリレート、ポリエチレンテレフタレート、ポリカーボネート、シクロオレフィンポリマーなどのレーザー光に対して透明な材料からなるものが使用できる。このような基板は、好ましくは、偏光に対して異方性を示さずかつ加工性の優れた材料が望ましい。
本発明における基板は、好ましくは、反応基を有する親水性高分子で被覆された担体である。反応基を有する親水性高分子は、上記したような金属表面又は金属膜に対して、直接又は中間層を介して結合することができる。
親水性高分子化合物としては、例えば多糖類(例えばアガロース、デキストラン、カラギーナン、アルギン酸、デンプン、セルロース)、または合成高分子化合物(例えばポリビニルアルコール)などを挙げることができる。本発明においては、多糖類が好ましく用いられ、デキストランが最も好ましい。
本発明においては、好ましくは、平均分子量1万以上200万以下の親水性高分子が用いられる。好ましくは2万以上200万以下、さらに好ましくは3万以上100万以下、最も好ましくは20万以上80万以下の親水性高分子を用いることができる。
センサー表面に固定する親水性高分子化合物は、水溶液中の膜厚が1nm以上300nm以下であることが好ましい。膜厚が薄いと生理活性物質固定量が減少し、またセンサー表面の水和層が薄くなるため生理活性物質自身の変性で被検体物質との相互作用が検出しにくくなる。膜厚が厚いと被検体物質が膜内に拡散する障害となり、また特にセンサー基板の親水性高分子化合物固定面の反対側から相互作用を検出する場合は検出表面から相互作用形成部までの距離が長くなり、検出感度が低くなる。水溶液中の親水性高分子化合物膜厚はAFM、エリプソメトリーなどで評価することができる。
親水性高分子の一例であるポリヒドロキシ化合物は、例えば塩基性条件下でブロモ酢酸と反応させることでカルボキシ化できる。反応条件の制御により、ポリヒドロキシ化合物が初期状態で含有するヒドロキシ基の一定の割合をカルボキシ化できる。本発明においては例えば、1〜90%のヒドロキシ基をカルボキシ化することができる。なお、任意のポリヒドロキシ高分子化合物で表面被覆された表面について、例えば、以下の方法でカルボキシ化率を算出することができる。膜表面をジ−tert−ブチルカルボジイミド/ピリジン触媒を用いてトリフルオロエタノールで50℃、16時間、気相修飾し、ESCA(electron spectroscopy for chemical analysis)でトリフルオロエタノール由来のフッ素量を測定し、膜表面の酸素量との比率(以下、F/O値と呼ぶ)を算出する。全てのヒドロキシ基がカルボキシ化された場合の理論的なF/O値をカルボキシ化率100%とし、任意の条件でカルボキシ化した時のF/O値を測定することで、その時のカルボキシ化率を算出することができる。
カルボキシル基を含有するポリマーを活性化する方法としては、公知の手法、例えば、水溶性カルボジイミドである1-(3-Dimethylaminopropyl)-3 ethylcarbodiimide(EDC)とN-Hydroxysuccinimide(NHS)により活性化する方法、EDC単独で活性化する方法を好ましく用いることができる。この手法で活性化されたカルボキシル基を含有するポリマーを、アミノ基を有する基板と反応させることで、本発明のバイオセンサーを製造することが可能となる。
生理活性物質の固定化基として、ポリマーに導入する反応基は、カルボキシル基やアミノ基の他に、例えば、ビオチン結合性タンパク(アビジン、ストレプトアビジン、ニュートラアビジン等)、プロテインA、プロテインG、抗原、抗体(例えば、抗GST抗体等の公知のtag抗体)などの生理活性物質をあらかじめ固定した態様が可能である。また、ポリマーにアルカンを導入した固定化層を用いれば、脂質などの膜構造を有した生理活性物質を固定することが可能になる。また、用途に応じて、ポリマー鎖の長さ、ポリマーの厚み、ポリマーの密度、あるいは、ポリマーに導入する反応基の量を調整することにより、多様な蛋白に対応することが可能になる。またポリマーに固定基として、NTA(nitrilotriacetic acid)等などを導入すれば、金属キレートを介してHis-tagリガンド等を固定することができる。
本発明において、反応基を有する親水性高分子は、金属表面又は金属膜に、直接又は中間層を介して結合することができる。ここで言う中間層としては、疎水性高分子化合物又は自己組織化膜から成る層などを使用することができる。以下、疎水性高分子化合物、及び自己組織化膜について説明する。
疎水性高分子化合物とは、吸水性を有しない高分子化合物であり、水への溶解度(25℃)が10%以下、より好ましくは1%以下、最も好ましくは0.1%以下である。
疎水性高分子化合物を形成する疎水性単量体としては、ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類、オレフィン類、スチレン類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、アリル化合物類、ビニルエーテル類、ビニルケトン類等から任意に選ぶことができる。疎水性高分子化合物としては、1種類のモノマーから成るホモポリマーでも、2種類以上のモノマーから成るコポリマーでもよい。
本発明で好ましく用いられる疎水性高分子化合物としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリビニルクロライド、ポリメチルメタクリレート、ポリエステル、ナイロンなどが挙げられる。
疎水性高分子化合物の担体へのコーティングは常法によって行うことができ、例えば、スピン塗布、エアナイフ塗布、バー塗布、ブレード塗布、スライド塗布、カーテン塗布、さらにはスプレー法、蒸着法、キャスト法、浸漬法等によって行うことができる。
疎水性高分子化合物のコーティング厚さは特に限定されないが、好ましくは0.1nm以上500nm以下であり、特に好ましくは1nm以上300nm以下である。
次に、自己組織化膜について説明する。チオールやジスルフィド類などの硫黄化合物は金等の貴金属基板上に自発的に吸着し単分子サイズの超薄膜を与える。またその集合体は基板の結晶格子や吸着分子の分子構造に依存した配列を示すことから自己組織化膜と呼ばれている。即ち、本発明においては、親水性高分子は、有機分子X1−R1−Y1を介して金属膜に付着させることができる。有機分子X1−R1−Y1について詳細に説明する。
X1は金属膜に対する結合性を有する基である。具体的には、非対称又は対称スルフィド(−SSR11Y11、−SSR1Y1)、スルフィド(−SR11Y11、−SR1Y1)、ジセレニド(−SeSeR11Y11、−SeSeR1Y1)、セレニド(SeR11Y11、−SeR1Y1)、チオール(−SH)、ニトリル(−CN)、イソニトリル、ニトロ(−NO2)、セレノール(−SeH)、3価リン化合物、イソチオシアネート、キサンテート、チオカルバメート、ホスフィン、チオ酸またはジチオ酸(−COSH、−CSSH)が好ましく用いられる。
R1(とR11)は場合によりヘテロ原子により中断されており、好ましくは適当に密な詰め込みのため直鎖(枝分かれしていない)であり、場合により二重及び/又は三重結合を含む炭化水素鎖である。鎖の長さは10原子を越えることが好ましい。炭素鎖は場合により過弗素化されることができる。
Y1とY11はポリヒドロキシ高分子化合物を結合させるための基である。Y1とY11は好ましくは同一であり、ポリヒドロキシ高分子化合物に直接又は活性化後結合できるような性質を持つ。具体的にはヒドロキシル、カルボキシル、アミノ、アルデヒド、ヒドラジド、カルボニル、エポキシ、又はビニル基などを用いることができる。
本発明では、例えば、自己組織化化合物として、7−カルボキシ−1−ヘプタンチオール、10-カルボキシ-1-デカンチオール、4,4'-ジチオジブチリックアシッド、11-ヒドロキシ-1-ウンデカンチオール、11-アミノ-1-ウンデカンチオールなどを使用することができる。
本発明において金属膜は、アミノ基を有する有機層で被覆された後、活性化されたカルボキシル基を含有するポリマーを上記有機層と反応させることにより、生理活性物質を固定化し得るヒドロゲルを作製することができる。
本発明においてアミノ基を有する有機層で金属膜を被覆する方法は、公知の方法を使用することができるが、操作が簡便なことから、自己組織化膜(SAMs)を用いた被覆法が好ましい。自己組織化膜(SAMs)を用いた金属膜の被覆法は、ハーバード大のWhitesides教授らにより精力的に展開されており、その詳細は例えばChemical Review, 105, 1103-1169 (2005)に報告されている。金属として金を用いた場合、有機層形成化合物として一般式A−1(一般式A−1において、nは3から20の整数を示し、Xは官能基を示す)に示すアルカンチオール誘導体を用いることにより、Au-S結合とアルキル鎖同士のvan der Waals力に基づき、配向性を持つ単分子膜が自己組織的に形成される。自己組織化膜は、アルカンチオール誘導体の溶液中に金基板を浸漬するという極めて簡便な手法で作成される。一般式A−1においてX=NH2である化合物を用いて自己組織化膜を形成させることで、アミノ基を有する有機層で金表面を被覆することが可能となる。
末端にアミノ基を有するアルカンチオールは、アルキル鎖を介してチオール基とアミノ基が連結している化合物(一般式A−2)(一般式A−2において、nは3から20の整数を示す)でもよく、末端にカルボキシル基を有するアルカンチオール(一般式A−3、A−4)(一般式A−3においてnは3から20の整数を示し、一般式4においてnはそれぞれ独立に1から20の整数を示す)と大過剰のヒドラジドまたはジアミンを反応させた化合物でもよい。末端にカルボキシル基を有するアルカンチオールと大過剰のヒドラジドまたはジアミンとの反応は、溶液状態で行ってもよく、また、末端にカルボキシル基を有するアルカンチオールを基板表面に結合した後、大過剰のヒドラジドまたはジアミンを反応させてもよい。
A-2〜A-4のアルキル基の繰返し数は、3以上20以下が好ましく、さらに3以上16以下が好ましく、4以上8以下が最も好ましい。アルキル鎖が短いと自己組織化膜を形成しにくく、アルキル鎖が長いと水溶性が低下し、ハンドリングが困難になる。
本発明に用いるジアミンとしては、任意の化合物を用いることが可能であるが、バイオセンサー表面に用いる場合、水溶性ジアミンが好ましい。水溶性ジアミンとしては具体的に、エチレンジアミン、テトラエチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ピペラジン、トリエチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、ジヘキサメチレントリアミン、1.4−ジアミノシクロヘキサン等の脂肪族ジアミン、パラフェニレンジアミン、メタフェニレンジアミン、パラキシリレンジアミン、メタキシリレンジアミン、4,4’−ジアモノビフェニル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルスルホン酸等の芳香族ジアミンが挙げられる。バイオセンサー表面の親水性を向上させるという観点から、2つのアミノ基をエチレングリコールユニットで連結した化合物(一般式5)を用いることも可能である。本発明に用いるジアミンとしては、好ましくはエチレンジアミンまたは一般式A−5(一般式A−5において、n及びmは、それぞれ独立に1から20の整数を示す)で表される化合物であり、より好ましくは、エチレンジアミンまたは1,2-ビス(アミノエトキシ)エタン(一般式A−5において、n=2,m=1)である。
アミノ基を有するアルカンチオールは、単独で自己組織化膜を形成することも可能であり、また、他のアルカンチオールと混合して自己組織化膜を形成することも可能である。バイオセンサー表面に用いる場合、他のアルカンチオールとしては、生理活性物質の非特異吸着を抑制可能な化合物を用いることが好ましい。生理活性物質の非特異吸着を抑制可能な自己組織化膜に関しては、前述のWhitesides教授らにより詳細に検討されており、親水性基を有するアルカンチオールから形成された自己組織化膜が非特異吸着抑制に有効であることが報告されている(Langmuir,17,2841-2850, 5605-5620, 6336-6343 (2001))。本発明において、アミノ基を有するアルカンチオールと混合単分子膜を形成するアルカンチオールは、前記論文に記載された化合物を好ましく用いることが可能である。非特異吸着抑制能に優れ、入手が容易であることから、アミノ基を有するアルカンチオールと混合単分子膜を形成するアルカンチオールとしては、水酸基を有するアルカンチオール(一般式A−6)あるいはエチレングルコールユニットを有するアルカンチオール(一般式A−7)(一般式A−6において、nは3から20の整数を示し、一般式A−7において、n及びmは、それぞれ独立に1から20の整数を示す)を用いることが好ましい。
アミノ基を有するアルカンチオールを他のアルカンチオールと混合して自己組織化膜を形成する場合、A-2〜A-4のアルキル基の繰返し数は、4以上20以下が好ましく、さらに4以上16以下が好ましく、4以上10以下が最も好ましい。また、A-6,A-7のアルキル基の繰返し数は、3以上16以下が好ましく、さらに3以上12以下が好ましく、3以上8以下が最も好ましい。
本発明において、アミノ基を有するアルカンチオールと親水性基を有するアルカンチオールは、任意の割合で混合することが可能であるが、アミノ基を有するアルカンチオールの割合が少ない場合には活性化されたカルボキシル基含有ポリマーの結合量が低下し、親水性基を有するアルカンチオールの割合が少ない場合には非特異吸着抑制能が減少する。それゆえ、アミノ基を有するアルカンチオールと親水性基を有するアルカンチオールの混合比は、1/1〜1/1,000,000の範囲であることが好ましく、1/4〜1/10,000の範囲であることがより好ましく、1/10〜1/1,000の範囲であることがさらに好ましい。活性化されたカルボキシル基を含有するポリマーと反応する場合の立体障害低減の観点から、アミノ基を有するアルカンチオールの分子長は、親水性基を有するアルカンチオールの分子長よりも長いことが好ましい。
本発明で用いるアルカンチオールは、Northwestern大学のGrzybowski教授らによる総説(Curr. Org. Chem., 8, 1763-1797(2004).)およびその引用文献に基づいて合成された化合物を用いても良く、また市販の化合物を用いてもよい。これらの化合物は、同仁化学(株)、Aldrich社、SensoPath Technologies社、Frontier Scientific Inc.社等から購入可能である。本発明においてアルカンチオールの酸化生成物であるジスルフィド化合物は、アルカンチオールと同様に用いることが可能である。
本発明において基板に固定化される生理活性物質としては、測定対象物と相互作用するものであれば特に限定されず、例えば免疫蛋白質、酵素、微生物、核酸、低分子有機化合物、非免疫蛋白質、免疫グロブリン結合性蛋白質、糖結合性蛋白質、糖を認識する糖鎖、脂肪酸もしくは脂肪酸エステル、あるいはリガンド結合能を有するポリペプチドもしくはオリゴペプチドなどが挙げられる。
免疫蛋白質としては、測定対象物を抗原とする抗体やハプテンなどを例示することができる。抗体としては、種々の免疫グロブリン、即ちIgG、IgM、IgA、IgE、IgDを使用することができる。具体的には、測定対象物がヒト血清アルブミンであれば、抗体として抗ヒト血清アルブミン抗体を使用することができる。また、農薬、殺虫剤、メチシリン耐性黄色ブドウ球菌、抗生物質、麻薬、コカイン、ヘロイン、クラック等を抗原とする場合には、例えば抗アトラジン抗体、抗カナマイシン抗体、抗メタンフェタミン抗体、あるいは病原性大腸菌の中でO抗原26、86、55、111 、157 などに対する抗体等を使用することができる。
酵素としては、測定対象物又は測定対象物から代謝される物質に対して活性を示すものであれば、特に限定されることなく、種々の酵素、例えば酸化還元酵素、加水分解酵素、異性化酵素、脱離酵素、合成酵素等を使用することができる。具体的には、測定対象物がグルコースであれば、グルコースオキシダーゼを、測定対象物がコレステロールであれば、コレステロールオキシダーゼを使用することができる。また、農薬、殺虫剤、メチシリン耐性黄色ブドウ球菌、抗生物質、麻薬、コカイン、ヘロイン、クラック等を測定対象物とする場合には、それらから代謝される物質と特異的反応を示す、例えばアセチルコリンエステラーゼ、カテコールアミンエステラーゼ、ノルアドレナリンエステラーゼ、ドーパミンエステラーゼ等の酵素を使用することができる。
微生物としては、特に限定されることなく、大腸菌をはじめとする種々の微生物を使用することができる。
核酸としては、測定の対象とする核酸と相補的にハイブリダイズするものを使用することができる。核酸は、DNA(cDNAを含む)、RNAのいずれも使用できる。DNAの種類は特に限定されず、天然由来のDNA、遺伝子組換え技術により調製した組換えDNA、又は化学合成DNAの何れでもよい。
低分子有機化合物としては通常の有機化学合成の方法で合成することができる任意の化合物が挙げられる。
核酸としては、測定の対象とする核酸と相補的にハイブリダイズするものを使用することができる。核酸は、DNA(cDNAを含む)、RNAのいずれも使用できる。DNAの種類は特に限定されず、天然由来のDNA、遺伝子組換え技術により調製した組換えDNA、又は化学合成DNAの何れでもよい。
低分子有機化合物としては通常の有機化学合成の方法で合成することができる任意の化合物が挙げられる。
非免疫蛋白質としては、特に限定されることなく、例えばアビジン(ストレプトアビジン)、ビオチン又はレセプターなどを使用できる。
免疫グロブリン結合性蛋白質としては、例えばプロテインAあるいはプロテインG、リウマチ因子(RF)等を使用することができる。
糖結合性蛋白質としては、レクチン等が挙げられる。
脂肪酸あるいは脂肪酸エステルとしては、ステアリン酸、アラキジン酸、ベヘン酸、ステアリン酸エチル、アラキジン酸エチル、ベヘン酸エチル等が挙げられる。
免疫グロブリン結合性蛋白質としては、例えばプロテインAあるいはプロテインG、リウマチ因子(RF)等を使用することができる。
糖結合性蛋白質としては、レクチン等が挙げられる。
脂肪酸あるいは脂肪酸エステルとしては、ステアリン酸、アラキジン酸、ベヘン酸、ステアリン酸エチル、アラキジン酸エチル、ベヘン酸エチル等が挙げられる。
生理活性物質が抗体や酵素などの蛋白質又は核酸である場合、その固定化は、生理活性物質のアミノ基、チオール基等を利用し、基板上の反応基に共有結合させることで行うことができる。
被験物質としては例えば、上記した生理活性物質と相互作用する物質を含む試料などを使用することができる。
生理活性物質を含む溶液(塗布液)の濃度は、基板表面に固定する生理活性物質の濃度が高い方が好ましい。生理活性物質により異なるが、0.1mg/mLから10mg/mL
で使用することが好ましく、さらに好ましくは1mg/mLから10mg/mLである。
で使用することが好ましく、さらに好ましくは1mg/mLから10mg/mLである。
生理活性物質を含む溶液の乾燥過程において、生理活性物質は塗布した溶液の外周部または、塗布液が乾固直前まで液が残った部分に析出する傾向がある。これにより基板表面に固定される生理活性物質の量に分布が発生し好ましくない。基板表面の生理活性物質固定量を均一にするため、塗布液の粘度は生理活性物質の基板表面への結合を阻害しない範囲で高くすることが好ましい。塗布液粘度を高くすることで、乾燥過程における塗布液中の生理活性物質の基板表面に対して水平方向の移動が抑えられ、結果として生理活性物質固定量のばらつきを抑えられる。乾燥過程における塗布液の粘度は0.9cP以上に保つことが好ましい。
本発明の乾燥する工程とは、生理活性物質を含む溶液の塗布後、その溶液を、静置することによる自然乾燥や、加熱や送風などによって溶液が乾燥する速度を上げ、意図的に乾燥させる工程をいう。ここで、生理活性物質を含む溶液(塗布液)の乾燥速度を上げることは生理活性物質固定量のばらつきを抑えることに効果がある。乾燥速度を上げ、生理活性物質の水平方向の移動速度に対して、十分早く乾燥を終了させることで、生理活性物質が実質的に移動する前に乾燥が終了し、ばらつきを抑えることが可能となる。乾燥速度を上げる方法は特に限定されないが、塗布液温度、乾燥環境温度を上げる、赤外線、レーザーなどの照射で蒸発エネルギーを加える、送風などで乾燥時の溶媒蒸気圧を下げる、溶液を薄層塗布して塗布量に対する蒸発面積を大きくするなどの方法が挙げられる。特に、塗布液が水を含む場合、乾球温度と湿球温度差の大きい環境で乾燥させることで乾燥速度は早くなる。乾球温度と湿球温度との温度差が7℃以上の環境で乾燥させることが好ましく、さらに好ましくは10℃以上、さらに好ましくは13.5℃以上である。また、製造工程上、乾燥時間としては10分以内が好ましく、より好ましくは5分以内、特に好ましくは1分以内である。
生理活性物質を含む溶液を塗布する方法としては、特に塗布液を定量吐出するディスペンサーを使用する方法が挙げられる。ディスペンサーの吐出口を基板上で一定速度、一定間隔で動作させることで基板上の任意の場所に均一塗布することが可能である。ディスペンサーで塗布する場合、基板と吐出口の間隔を極力狭くし、塗布液厚みを薄くすることで生理活性物質の厚みを均一にすることができ、また乾燥速度を上げることができ、好ましい。また生理活性物質を含む溶液を塗布する好ましい方法として、スピンコートも挙げられる。この方法は、特に塗布膜厚を薄くする場合に好ましい。均一厚みの溶液を形成した後に乾燥させるため、スピンコーターは回転中の溶媒の蒸発を防ぐことが好ましい。このため、回転時に基板を密閉容器に入れておくなどの方法で、基板周辺の溶媒濃度が高い環境に保つことで、回転中の薄膜形成と薄膜形成後の乾燥速度を制御できるため、特に好ましい。これらの塗布工程後、温度・湿度を一定に保った条件下で乾燥させることが好ましい。
生理活性物質と被検体物質との相互作用を検出する場合、センサー表面の生理活性物質の固定量の変動は相互作用の定量的、速度論的評価の誤差の原因となる。この誤差を最小限に抑える目的で、生理活性物質の固定量を均一にすることが好ましい。相互作用の検出に使用される基板表面の生理活性物質の固定量のばらつきがCV値(変動係数)(標準偏差/平均値)で15%以下が好ましく、さらに好ましくは10%以下である。CV値は、基板表面の少なくとも2点以上、好ましくは10点以上、さらに好ましくは100点以上の固定量から算出することができる。均一性は、生理活性物質を固定する前後のセンサー基板上の物質の量を定量することでも評価可能であるが、生理活性物質と結合することが知られている物質を蛍光標識して、この標識物質をセンサー基板に固定した後に蛍光顕微鏡などを用いて蛍光強度を測定することでも可能である。また、SPRイメージャー、エリプソメーター、TOF−SIMS、ATR−IR装置などで生理活性物質の定量も可能である。
一般に蛋白質などの生理活性物質は水溶液中で水分子が配位することで三次元構造を維持しているが、乾燥されると三次元構造を保持できず失活する。また、基板表面の親水性高分子中に担持されている場合には、乾燥されることで生理活性物質同士が接近し凝集が発生する。本発明の水素結合を形成しうる残基を有する化合物(以下化合物Sと言う)は、水分子に代って生理活性物質の三次元構造を保持することで失活を抑制、または生理活性物質を被覆して立体効果で凝集を抑制する目的で使用することができる。
本発明において水素結合を形成しうる残基を有する化合物Sは、水溶液で基板上の生理活性物質を固定した層に添加することが好ましい。添加方法としては、生理活性物質との混合溶液として基板表面に塗布しても良く、生理活性物質を基板表面に固定した後オーバーコートなどによりして添加しても良い。化合物Sと生理活性物質との混合溶液として塗布した場合、生理活性物質の固定量ばらつきを抑えることもできる。化合物S水溶液は薄膜状態で基板に添加することが好ましい。基板上に薄膜を形成させる方法は、公知の方法を用いることが可能であるが、具体的には、エクストルージョンコート法、カーテンコート法、キャスティング法、スクリーン印刷法、スピンコート法、スプレーコート法、スライドビードコート法、スリットアンドスピン方式、スリットコート方式、ダイコート法、ディップコート法、ナイフコート法、ブレードコート法、フローコート法、ロールコート法、ワイヤバーコート方式、転写印刷法、等を用いることが可能である。膜厚制御された塗布膜を簡便に作成可能であることから、本発明において基板上に薄膜を形成させる方法としては、スプレーコート法またはスピンコート法が好ましく、スピンコート法がさらに好ましい。
化合物Sの塗布液濃度は塗布性、生理活性物質を含む層への浸透の問題がない範囲で特に限定されないが、0.1重量%以上5重量%以下であることが好ましい。また、塗布液は、塗布性、pH調整の観点で界面活性剤、緩衝剤、有機溶剤、塩などを添加してもよい。
水素結合を形成しうる残基を有する化合物Sとしては、常温常圧で不揮発性のものが好ましく、平均分子量が350より大きく500万より小さいものが好ましく、さらに好ましくは1200以上200万以下であり、最も好ましくは1200以上7万以下である。分子内に水酸基を含む化合物Sは糖類が好ましく、糖類は、単糖、多糖類でも良い。n糖類の場合nが4以上1200以下であることが好ましく、さらに好ましくはnが20以上600以下である。
化合物Sの平均分子量が低いと基板表面で結晶化して、生理活性物質を固定した親水性高分子層の破壊および生理活性物質の三次元構造の破壊の原因となり、反対に平均分子量が高いと生理活性物質の基板への固定の障害となったり、生理活性物質を含む層に含浸できない、層分離を発生するなどの問題が発生する。
基板上に固定した生理活性物質の劣化を抑制する目的で、前記水素結合を形成しうる残基を有する化合物Sは、デキストラン骨格、又はポリエチレンオキシド骨格を有することが好ましく、本発明の目的を達成する範囲において、どの置換基を使用してもよい。また、基板上に固定した生理活性物質の劣化を抑制する目的で、解離性基を有しないノニオン性化合物であることが好ましい。また、前記水素結合を形成しうる残基を有する化合物Sは水分子との親和性の高い化合物が好ましく、水とn-オクタノールとの分配係数Log
P値が1以上であることが好ましい。LogP値は、JIS規格のZ7260−107(2000)「分配係数(1-オクタノール/水)の測定―振とう法」などに記載の方法で測
定することができる。
P値が1以上であることが好ましい。LogP値は、JIS規格のZ7260−107(2000)「分配係数(1-オクタノール/水)の測定―振とう法」などに記載の方法で測
定することができる。
具体的な水素結合を形成しうる残基を有する化合物Sとしては、ポリビニルアルコールなど多価アルコール類、コラーゲン、ゼラチン、アルブミンなどのタンパク質、ヒアルロン酸、キチン、キトサン、デンプン、セルロース、アルギン酸、デキストランなど多糖類、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリプロピレンオキシド、プルロニックなどポリエチレンキシ-ポリプロピレンオキシド縮合物などのポリエーテル類、トゥイーン20、トゥイーン40、トゥイーン60、トゥイーン80などの2種以上の残基から成る化合物、またはこれら化合物の誘導体および重合体などが挙げられる。多糖類、ポリエーテル類が好ましく、多糖類がより好ましい。具体的には、デキストラン、セルロース、トゥイーン20、トゥイーン40、トゥイーン60、トゥイーン80が好ましく用いられる。さらに、特開2006−170832に記載の不揮発性モノマー、不揮発性水溶性オリゴマーを用いることもできる。例えば不揮発性モノマーとしては水酸基が保護基で保護されていてもよいテトロース、ペントース、ヘプトース、ヘキトース及びそのグリコキシドでも良く、メチルグルコシドや水酸基が保護基で保護されていてもよいサイクリトール類でもよい。また不揮発性水溶性オリゴマーが、式(1)、(2)または(3) -[CH2-CH(CONH2)-]n- (1) -[CH2-CH2-O-]n- (2) -[CH2-CH(OH)-]n- (3)(式(1)〜(3)中、nは10〜200のいずれかの整数を示す。)で表されるオリゴマー、水酸基が保護基で保護されていてもよいn糖(但し、2≦n≦10)のオリゴ糖を用いることもできる。さらに、US2003/0175827、DE20306476A1に記載の糖類、例えば、トレハロース、スクロース、マルトース、ラクトース、キシリトール、フルクトース、マニトール、グルコース、キシロール、マルトデキストラン、サッカロース、ポリビニルピロリドンなどを使用しても良い。また、これらの化合物Sは使用している親水性高分子の基本骨格と実質同一であることが好ましい。ここで、基本骨格とは、例えば、糖の環構造のことをいい、官能基や長さが異なっていても、環構造が同一であれば、実質同一であるという。
本発明の測定方法は、市販の測定装置をそのまま用いて行うことができる。例えばSPR解析の場合、GEヘルスケア社(Biacore社)製、Biacore3000, 2000, 1000, A100, T100, S51, X, Jや株式会社モリテックス社製、SPR-670、SPR-MACS、東洋紡績株式会社製MulriSPRinter、GWC Technologies社製SPR Imagerなどを挙げることができる。また、コーニング社製Epic System、Farfield Scientific社製AnaLight、株式会社アルバック社(株式会社イニシアム社)製AFFINIXなどを利用することができる。また、特許公報特開2006-194624 段落25〜段落62に記載の装置を利用することもできる。
本発明の測定方法は、バイオセンサーを用いて行うことができる。本発明で言うバイオセンサーとは最も広義に解釈され、生体分子間の相互作用を電気的信号等の信号に変換して、対象となる物質を測定・検出するセンサーを意味する。通常のバイオセンサーは、検出対象とする化学物質を認識するレセプター部位と、そこに発生する物理的変化又は化学的変化を電気信号に変換するトランスデューサー部位とから構成される。生体内には、互いに親和性のある物質として、酵素/基質、酵素/補酵素、抗原/抗体、ホルモン/レセプターなどがある。バイオセンサーでは、これら互いに親和性のある物質の一方を基板に固定化して分子認識物質として用いることによって、対応させるもう一方の物質を選択的に計測するという原理を利用している。
本発明では、生理活性物質と被験物質との相互作用を非電気化学的方法により検出及び/又は測定することが好ましい。非電気化学的方法としては、表面プラズモン共鳴(SPR)測定技術、水晶発振子マイクロバランス(QCM)測定技術、金のコロイド粒子から超微粒子までの機能化表面を使用した測定技術などが挙げられる。
本発明の好ましい態様によれば、バイオセンサーは、例えば、透明基板上に配置される金属膜を備えていることを特徴とする表面プラズモン共鳴用バイオセンサーとして用いることができる。
表面プラズモン共鳴用バイオセンサーとは、表面プラズモン共鳴バイオセンサーに使用されるバイオセンサーであって、該センサーより照射された光を透過及び反射する部分、並びに生理活性物質を固定する部分とを含む部材を言い、該センサーの本体に固着されるものであってもよく、また脱着可能なものであってもよい。
表面プラズモン共鳴の現象は、ガラス等の光学的に透明な物質と金属薄膜層との境界から反射された単色光の強度が、金属の出射側にある試料の屈折率に依存することによるものであり、従って、反射された単色光の強度を測定することにより、試料を分析することができる。
表面プラズモンが光波によって励起される現象を利用して、被測定物質の特性を分析する表面プラズモン測定装置としては、Kretschmann配置と称される系を用いるものが挙げられる(例えば特開平6−167443号公報の段落番号0011参照)。上記の系を用いる表面プラズモン測定装置は基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されて試料液などの被測定物質に接触させられる金属膜と、光ビームを発生させる光源と、上記光ビームを誘電体ブロックに対して、該誘電体ブロックと金属膜との界面で全反射条件が得られるように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して表面プラズモン共鳴の状態、つまり全反射減衰の状態を検出する光検出手段とを備えてなるものである。
なお上述のように種々の入射角を得るためには、比較的細い光ビームを入射角を変化させて上記界面に入射させてもよいし、あるいは光ビームに種々の角度で入射する成分が含まれるように、比較的太い光ビームを上記界面に収束光状態であるいは発散光状態で入射させてもよい。前者の場合は、入射した光ビームの入射角の変化に従って、反射角が変化する光ビームを、上記反射角の変化に同期して移動する小さな光検出器によって検出したり、反射角の変化方向に沿って延びるエリアセンサによって検出することができる。一方後者の場合は、種々の反射角で反射した各光ビームを全て受光できる方向に延びるエリアセンサによって検出することができる。
上記構成の表面プラズモン測定装置において、光ビームを金属膜に対して全反射角以上の特定入射角で入射させると、該金属膜に接している被測定物質中に電界分布をもつエバネッセント波が生じ、このエバネッセント波によって金属膜と被測定物質との界面に表面プラズモンが励起される。エバネッセント光の波数ベクトルが表面プラズモンの波数と等しくて波数整合が成立しているとき、両者は共鳴状態となり、光のエネルギーが表面プラズモンに移行するので、誘電体ブロックと金属膜との界面で全反射した光の強度が鋭く低下する。この光強度の低下は、一般に上記光検出手段により暗線として検出される。なお上記の共鳴は、入射ビームがp偏光のときにだけ生じる。したがって、光ビームがp偏光で入射するように予め設定しておく必要がある。
この全反射減衰(ATR)が生じる入射角、すなわち全反射減衰角(θSP)より表面プラズモンの波数が分かると、被測定物質の誘電率が求められる。この種の表面プラズモン測定装置においては、全反射減衰角(θSP)を精度良く、しかも大きなダイナミックレンジで測定することを目的として、特開平11−326194号公報の段落番号0025〜0037に示されるように、アレイ状の光検出手段を用いることが考えられている。この光検出手段は、複数の受光素子が所定方向に配設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設されたものである。
そしてその場合は、上記アレイ状の光検出手段の各受光素子が出力する光検出信号を、該受光素子の配設方向に関して微分する微分手段が設けられ、この微分手段が出力する微分値に基づいて全反射減衰角(θSP)を特定し、被測定物質の屈折率に関連する特性を求めることが多い。
また、全反射減衰(ATR)を利用する類似の測定装置として、例えば「分光研究」第47巻 第1号(1998)の第21〜23頁および第26〜27頁に記載がある漏洩モード測定装置も知られている。この漏洩モード測定装置は基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されたクラッド層と、このクラッド層の上に形成されて、試料液に接触させられる光導波層と、光ビームを発生させる光源と、上記光ビームを上記誘電体ブロックに対して、該誘電体ブロックとクラッド層との界面で全反射条件が得られるように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して導波モードの励起状態、つまり全反射減衰状態を検出する光検出手段とを備えてなるものである。
上記構成の漏洩モード測定装置において、光ビームを誘電体ブロックを通してクラッド層に対して全反射角以上の入射角で入射させると、このクラッド層を透過した後に光導波層においては、ある特定の波数を有する特定入射角の光のみが導波モードで伝搬するようになる。こうして導波モードが励起されると、入射光のほとんどが光導波層に取り込まれるので、上記界面で全反射する光の強度が鋭く低下する全反射減衰が生じる。そして導波光の波数は光導波層の上の被測定物質の屈折率に依存するので、全反射減衰が生じる上記特定入射角を知ることによって、被測定物質の屈折率や、それに関連する被測定物質の特性を分析することができる。
なおこの漏洩モード測定装置においても、全反射減衰によって反射光に生じる暗線の位置を検出するために、前述したアレイ状の光検出手段を用いることができ、またそれと併せて前述の微分手段が適用されることも多い。
また、上述した表面プラズモン測定装置や漏洩モード測定装置は、創薬研究分野等において、所望のセンシング物質に結合する特定物質を見いだすランダムスクリーニングへ使用されることがあり、この場合には前記薄膜層(表面プラズモン測定装置の場合は金属膜であり、漏洩モード測定装置の場合はクラッド層および光導波層)上に上記被測定物質としてセンシング物質を固定し、該センシング物質上に種々の被検体が溶媒に溶かされた試料液を添加し、所定時間が経過する毎に前述の全反射減衰角(θSP)の角度を測定している。
試料液中の被検体が、センシング物質と結合するものであれば、この結合によりセンシング物質の屈折率が時間経過に伴って変化する。したがって、所定時間経過毎に上記全反射減衰角(θSP)を測定し、該全反射減衰角(θSP)の角度に変化が生じているか否か測定することにより、被検体とセンシング物質の結合状態を測定し、その結果に基づいて被検体がセンシング物質と結合する特定物質であるか否かを判定することができる。このような特定物質とセンシング物質との組み合わせとしては、例えば抗原と抗体、あるいは抗体と抗体が挙げられる。具体的には、ウサギ抗ヒトIgG抗体をセンシング物質として薄膜層の表面に固定し、ヒトIgG抗体を特定物質として用いることができる。
なお、被検体とセンシング物質の結合状態を測定するためには、全反射減衰角(θSP)の角度そのものを必ずしも検出する必要はない。例えばセンシング物質に試料液を添加し、その後の全反射減衰角(θSP)の角度変化量を測定して、その角度変化量の大小に基づいて結合状態を測定することもできる。前述したアレイ状の光検出手段と微分手段を全反射減衰を利用した測定装置に適用する場合であれば、微分値の変化量は、全反射減衰角(θSP)の角度変化量を反映しているため、微分値の変化量に基づいて、センシング物質と被検体との結合状態を測定することができる(本出願人による特開2003−172694号参照)。このような全反射減衰を利用した測定方法および装置においては、底面に予め成された薄膜層上にセンシング物質が固定されたカップ状あるいはシャーレ状の測定チップに、溶媒と被検体からなる試料液を滴下供給して、上述した全反射減衰角(θSP)の角度変化量の測定を行っている。
さらに、ターンテーブル等に搭載された複数個の測定チップの測定を順次行うことにより、多数の試料についての測定を短時間で行うことができる全反射減衰を利用した測定装置が、特開2001−330560号公報に記載されている。
本発明のバイオセンサーは、例えば基板表面に導波路構造を保持した、屈折率変化を導波路を用いて検出するバイオセンサーとして用いることができる。この場合、基板表面の導波構造物は、回折格子と場合によっては付加層とを有している、この導波構造物は、薄い誘電層からなる平面的な導波体から成る。導波体に集光された光線は全反射によりこの薄い層内に導かれる。この導かれる光波(以降モードと呼ぶ)の伝播速度は、C/Nの値をとる。ここでCは、真空中での光速であり、Nは導波体内を導かれるモードの有効屈折率である。有効屈折率Nは、一面では導波体の構成により、他面では薄い導波層に隣接する媒体の屈折率により決まる。光波の伝導は、薄い平面層内のみでなく、別の導波構造物、特にストリップ状の導波体によっても行われる。その場合は、導波構造物はストリップ状のフィルムの形状にされる。有効屈折率Nの変化は、導波層に隣接する媒体の変化と導波層自身もしくは導波層に隣接する付加層の屈折率および厚さの変化とにより生じることがバイオセンサーにとって重要な要素である。
この方式のバイオセンサーの構成については、例えば特公平6−27703号公報4ページ48行目から14ページ15行目および第1図から第8図に記載されている。
例えば、一つの実施形態として、薄層が平面状の導波路層が基材(たとえばパイレックス(登録商標)・ガラス)上に設けられている構造がある。導波路層と基材とは、一緒にいわゆる導波体を形成する。導波路層は、たとえば酸化物層(SiO2,SnO2、Ta2O5,TiO2,TiO2-SiO2,HfO2,ZrO2,Al2O3,Si3N4,HfON,SiON,酸化スカンジウムまたはこれらの混合物)、プラスチック層(例えばポリスチレン、ポリエチレン、ポリカーボネートなど)、など多層の積層体が可能である。光線が全反射により導波路層内を伝播するには、導波路層の屈折率が隣接媒体(たとえば基材や後述の付加層)の屈折率より大でなければならない。基材もしくは測定物質に向いた導波路層表面もしくは導波路層体積内には、回折格子が配置されている。回折格子は、型押し、ホログラフィまたはその他の方法によって基板内に形成することができる。次いでより高い屈折率を有する薄い導波路膜を回折格子の上表面に被覆する。回折格子は導波路層への入射光線を集束したり、既に導波路層内を導かれているモードを放出したり、そのモードの一部を進行方向へ透過させ、一部を反射させたりする機能を持つ。導波路層は、格子域を付加層でカバーしておく。付加層は必要に応じて多層膜とすることができる。この付加層は、測定物質に含まれている物質の選択的検知を可能にする機能を持たせることができる。好ましい態様として付加層の最表面に、検知機能を持つ層を設けることができる。このような検知機能を持つ層として、生理活性物質を固定化し得る層を用いることができる。
別の実施形態として、回折格子導波路のアレイがマイクロプレートのウェル内に組み込まれる形態も可能である(特表2007-501432)。すなわち回折格子導波路がマイクロプレートのウェル底面にアレイ状に配列されていれば、スループットの高い薬物または化学物質のスクリーニングを可能にすることができる。
回折格子導波路は、回折格子導波路の上層(検知領域)上の生理活性物質検出を可能にするために、入射光線、および反射光を検出して屈折特性の変化を検出する。この目的のため、1つまたはそれより多くの光源(例えば、レーザ、ダイオード)及び1つまたはそれより多くの検出器(例えば、分光計、CCDカメラまたはその他の光検出器)を用いることができる。屈折率変化を測定するための方法として、2つの異なる動作モード−分光法、及び角度法がある。分光法においては、入射光として広帯域ビームが回折格子導波路に送られ、反射光が集められて、例えば分光計で測定される。共鳴波長(ピーク)のスペクトル位置を観測することにより、回折格子導波路の表面またはその近傍での屈折率変化すなわち結合を測定することができる。また、角度法においては、公称上単一波長の光がある範囲の照射角を生じるように集束されて、回折格子導波路内に向けられる。反射光がCCDカメラまたはその他の光検出器によって測定される。回折格子導波路によって反射された共鳴角の位置を測定することにより、回折格子導波路の表面またはその近傍での屈折率変化すなわち結合を測定することができる。
以下の実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
実施例1
水溶解性の高いSAM化合物を用いて蛋白を固定できるヒドロゲル膜を作成し、蛋白質の固定量、および非特異吸着性能を評価した。
水溶解性の高いSAM化合物を用いて蛋白を固定できるヒドロゲル膜を作成し、蛋白質の固定量、および非特異吸着性能を評価した。
(1)基板の作成
6-Amino-1-octanethiol, hydrochloride(同仁化学社製)の1mM水溶液を作成した。この溶液をA液と呼ぶ。
6-Amino-1-octanethiol, hydrochloride(同仁化学社製)の1mM水溶液を作成した。この溶液をA液と呼ぶ。
次に、ゼオネックス(日本ゼオン社製)を射出成型して得られたプラスチックプリズムの上面に以下の方法で金薄膜を製膜した。
スパッタ装置の基板ホルダにプリズムを取付け、真空(ベースプレッシャー1×10−3-3Pa以下)に引いてからArガスを導入し(1Pa)、基板ホルダを回転(20rpm)させながら、基板ホルダにRFパワー(0.5kW)を約9分間印加してプリズム表面をプラズマ処理(基板エする。次に、Arガスを止めて真空に引き、Arガスを再び導入し(0.5Pa)、基板ホルダを回転(10〜40rpm)させながら、8inchのCrターゲットにDCパワー(0.2kW)を約30秒間印加して2nmのCr薄膜を成膜する。次に。Arガスを止めて再び真空に引き、Arガスを再び導入し、(0.5Pa)、基板ホルダを回転(20rpm)させながら、8inchのAuターゲットにDCパワー(1kW)を約50秒間印加して50nm程度のAu薄膜を成膜する。
スパッタ装置の基板ホルダにプリズムを取付け、真空(ベースプレッシャー1×10−3-3Pa以下)に引いてからArガスを導入し(1Pa)、基板ホルダを回転(20rpm)させながら、基板ホルダにRFパワー(0.5kW)を約9分間印加してプリズム表面をプラズマ処理(基板エする。次に、Arガスを止めて真空に引き、Arガスを再び導入し(0.5Pa)、基板ホルダを回転(10〜40rpm)させながら、8inchのCrターゲットにDCパワー(0.2kW)を約30秒間印加して2nmのCr薄膜を成膜する。次に。Arガスを止めて再び真空に引き、Arガスを再び導入し、(0.5Pa)、基板ホルダを回転(20rpm)させながら、8inchのAuターゲットにDCパワー(1kW)を約50秒間印加して50nm程度のAu薄膜を成膜する。
上記で得られたAu薄膜を成膜したBセンサースティックを、A液に40℃1時間浸漬し、超純水で5回洗浄した。
(2)CMD(カルボキシメチルデキストラン)の活性エステル化
1重量%のCMD(名糖産業製:分子量100万、置換度0.65)溶液10gを溶解した後、0.02M EDC(1-Ethyl-3-[3-Dimethylaminopropyl]carbodiimide Hydrochloride)、87.5mM HOBt(1-Hydroxybenzotriazole)の混合水溶液10mlを加え、室温で1分間撹拌後、1時間静置した。
1重量%のCMD(名糖産業製:分子量100万、置換度0.65)溶液10gを溶解した後、0.02M EDC(1-Ethyl-3-[3-Dimethylaminopropyl]carbodiimide Hydrochloride)、87.5mM HOBt(1-Hydroxybenzotriazole)の混合水溶液10mlを加え、室温で1分間撹拌後、1時間静置した。
(3)CMDの基板への結合反応
(1)で作成された基板の上に、(2)で作成された活性エステル化されたCMD溶液を1ml滴下し、1000 rpmで45 秒スピンコートすることで、アミノ基を有する基板上に活性エステル化されたカルボキシメチルデキストラン薄膜を形成させた。室温で15分間反応させた後、1 N NaOH水溶液に30分浸漬し、超純水で5回洗浄することで、CMD固定基板を得た。
(1)で作成された基板の上に、(2)で作成された活性エステル化されたCMD溶液を1ml滴下し、1000 rpmで45 秒スピンコートすることで、アミノ基を有する基板上に活性エステル化されたカルボキシメチルデキストラン薄膜を形成させた。室温で15分間反応させた後、1 N NaOH水溶液に30分浸漬し、超純水で5回洗浄することで、CMD固定基板を得た。
(4)CMD固定基板へのNeutrAvidinの結合反応
(3)で作成された基板を表面プラズモン共鳴装置にセットした。基板の上に0.2M EDC、0.05M NHS(N-Hydroxysuccinimide)の混合水溶液を乗せ、7分間静置した。基板表面をAcetate5.0(BIACORE製)で洗浄、エアブローした後、0.15mg/ml NeutrAvidin(PIERCE製)のAcetate5.0溶液を乗せ、15分静置した。基板表面を1M Ethanolamine水溶液(pH8.5に調整したもの)で洗浄し、そのまま7分静置した。さらに表面を(10mM NaOH水溶液に1分浸漬後、1×PBS(pH7.4)で洗浄)という操作を2回繰返し、NeutrAvidinが固定された基板を得た。
(3)で作成された基板を表面プラズモン共鳴装置にセットした。基板の上に0.2M EDC、0.05M NHS(N-Hydroxysuccinimide)の混合水溶液を乗せ、7分間静置した。基板表面をAcetate5.0(BIACORE製)で洗浄、エアブローした後、0.15mg/ml NeutrAvidin(PIERCE製)のAcetate5.0溶液を乗せ、15分静置した。基板表面を1M Ethanolamine水溶液(pH8.5に調整したもの)で洗浄し、そのまま7分静置した。さらに表面を(10mM NaOH水溶液に1分浸漬後、1×PBS(pH7.4)で洗浄)という操作を2回繰返し、NeutrAvidinが固定された基板を得た。
NeutrAvidinの固定前後の信号を表面プラズモン共鳴装置で測定したところ、NeutrAvidinの固定量は平均11000RVであった。ここでは、DMSO1%あたりの共鳴角の差を1500RVと表す。
(5)CAのBiotin化
2mg/ml Carbonic Anhydrase(SIGMA製:以下CAと略す)の1×PBS(pH7.4)溶液が0.5ml入った1.5mlマイクロチューブに0.045mg/ml SNHS-LC-LC-Biotin(PIERCE製) の1×PBS(pH7.4)溶液0.5mlを4℃で加え、4℃で2時間反応させた。反応液をマイクロチューブ上に載せたMicroconフィルター(Millipore製YM-10)に0.5ml入れ、4℃/14000g/60分遠心させた。マイクロチューブに落ちた溶液を捨て、フィルター上に0.2mlの1×PBS(pH7.4)を入れ、4℃/14000g/30分遠心させた。マイクロチューブに落ちた溶液を捨て、フィルター上に0.2mlの1×PBS(pH7.4)を入れ、4℃/14000g/30分遠心させた。フィルターを上下反転させて新しいマイクロチューブにセットし、4℃/1000g/3分遠心させてフィルター上に残った溶液を回収した。更にフィルターに0.1mlの1×PBS(pH7.4)を入れ、4℃/1000g/3分遠心させた。回収した溶液を合わせ、Biotin化CA溶液を得た。Microconフィルター操作により、未反応のBiotin化試薬が除かれる。蛋白の回収率はおよそ70%であった。
2mg/ml Carbonic Anhydrase(SIGMA製:以下CAと略す)の1×PBS(pH7.4)溶液が0.5ml入った1.5mlマイクロチューブに0.045mg/ml SNHS-LC-LC-Biotin(PIERCE製) の1×PBS(pH7.4)溶液0.5mlを4℃で加え、4℃で2時間反応させた。反応液をマイクロチューブ上に載せたMicroconフィルター(Millipore製YM-10)に0.5ml入れ、4℃/14000g/60分遠心させた。マイクロチューブに落ちた溶液を捨て、フィルター上に0.2mlの1×PBS(pH7.4)を入れ、4℃/14000g/30分遠心させた。マイクロチューブに落ちた溶液を捨て、フィルター上に0.2mlの1×PBS(pH7.4)を入れ、4℃/14000g/30分遠心させた。フィルターを上下反転させて新しいマイクロチューブにセットし、4℃/1000g/3分遠心させてフィルター上に残った溶液を回収した。更にフィルターに0.1mlの1×PBS(pH7.4)を入れ、4℃/1000g/3分遠心させた。回収した溶液を合わせ、Biotin化CA溶液を得た。Microconフィルター操作により、未反応のBiotin化試薬が除かれる。蛋白の回収率はおよそ70%であった。
(6)NeutrAvidin固定基板へのBiotin化CAの結合反応
(4)で作成されたNeutravidinが固定された基板を表面プラズモン共鳴装置にセットした。1×PBS(pH7.4)を注入し、10分間静置してベースラインを確認した後(10分後の共鳴角を基準点とする)、0.2mg/ml Biotin化CA((5)で作成したもの)の1×PBS(pH7.4)溶液を注入し、30分間静置した。静置後、1×PBS(pH7.4)を注入し1分静置し、この時の共鳴角と原点の共鳴角の差をBiotin化CA結合量とした。結合量は7450RVであった。
(4)で作成されたNeutravidinが固定された基板を表面プラズモン共鳴装置にセットした。1×PBS(pH7.4)を注入し、10分間静置してベースラインを確認した後(10分後の共鳴角を基準点とする)、0.2mg/ml Biotin化CA((5)で作成したもの)の1×PBS(pH7.4)溶液を注入し、30分間静置した。静置後、1×PBS(pH7.4)を注入し1分静置し、この時の共鳴角と原点の共鳴角の差をBiotin化CA結合量とした。結合量は7450RVであった。
同様に、Biotin化CAの濃度を0.05mg/ml, 0.02mg/mlにしてBiotin化CAを処理することで、それぞれ7000RV、1600RVの固定量を得た。
比較例1 Biotin化CA固定基板への化合物の結合反応
(6)で作成されたBiotin化CAが固定された基板を表面プラズモン共鳴装置にセットした。以下の順でバッファと化合物溶液を交互に注入した。各化合物の結合信号は、直前のバッファの信号との差分で求めた。
(6)で作成されたBiotin化CAが固定された基板を表面プラズモン共鳴装置にセットした。以下の順でバッファと化合物溶液を交互に注入した。各化合物の結合信号は、直前のバッファの信号との差分で求めた。
0. 1×PBS(pH7.4)
1. 100nM Hydrochlorothiazide(SIGMA) in 1×PBS(pH7.4)
2. 1×PBS(pH7.4)
3. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
4. 1×PBS(pH7.4)
5. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
6. 1×PBS(pH7.4)
7. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
8. 1×PBS(pH7.4)
9. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
10. 1×PBS(pH7.4)
11. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
12. 1×PBS(pH7.4)
13. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
14. 1×PBS(pH7.4)
15. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
16. 1×PBS(pH7.4)
17. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
18. 1×PBS(pH7.4)
19. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
20. 1×PBS(pH7.4)
21. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
22. 1×PBS(pH7.4)
23. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
1. 100nM Hydrochlorothiazide(SIGMA) in 1×PBS(pH7.4)
2. 1×PBS(pH7.4)
3. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
4. 1×PBS(pH7.4)
5. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
6. 1×PBS(pH7.4)
7. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
8. 1×PBS(pH7.4)
9. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
10. 1×PBS(pH7.4)
11. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
12. 1×PBS(pH7.4)
13. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
14. 1×PBS(pH7.4)
15. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
16. 1×PBS(pH7.4)
17. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
18. 1×PBS(pH7.4)
19. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
20. 1×PBS(pH7.4)
21. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
22. 1×PBS(pH7.4)
23. 100nM Nicotinic acid(SIGMA) in 1×PBS(pH7.4)
ここで、Hydrochlorothiazideは、CAに対するpositive controlであり、結合信号が観測された。CAとHydrochlorothiazideが1対1結合であるとして、分子量換算を行い、Hydrochlorothizideの結合活性を求めた。また、Nicotinic acidはnegative controlであり、いずれの基板においても結合は観測されなかった。各試料におけるHydrochlorothiazide結合量、結合活性、平均値、CV値を表1に示す。
実施例2 ベースラインの近似補正
比較例1によって得られたそれぞれのバッファ(1×PBS)における信号の絶対値12点をプロットしたところ、徐々にマイナスにシフトしていた(図1)。この点をExcelの「近似曲線の追加」機能を使用し、3次曲線で近似した。各信号から、この近似式との差分を取り、補正データを得た。補正データより、(7)と同様に各化合物の結合信号、及び結合活性を求めた。各試料におけるHydrochlorothiazide結合量、結合活性、平均値、CV値を表1に示す。
比較例1によって得られたそれぞれのバッファ(1×PBS)における信号の絶対値12点をプロットしたところ、徐々にマイナスにシフトしていた(図1)。この点をExcelの「近似曲線の追加」機能を使用し、3次曲線で近似した。各信号から、この近似式との差分を取り、補正データを得た。補正データより、(7)と同様に各化合物の結合信号、及び結合活性を求めた。各試料におけるHydrochlorothiazide結合量、結合活性、平均値、CV値を表1に示す。
本発明の補正を行った信号量は、比較例に比べバラツキが少ない。Biotin化CAの脱離と考えられるマイナスドリフトが発生しているため、Hydrochlorothizideの結合量がドリフトの度合いによってばらついてしまうものと考えられる。本発明により、ドリフトの度合いが異なる基板を用いても、基板間のバラツキの少ないデータを得ることができることが分かる。
Claims (6)
- 基板の表面に固定された生理活性物質と被験物質との相互作用を測定する方法において、同一の溶液を繰返し測定して得られたベースライン値を使用した較正曲線を作成し、前記較正曲線にて前記被験物質の測定値を較正し、前記被験物質の相互作用信号を得ることを特徴とする測定方法。
- 較正曲線が、ベースライン値を最小自乗法で近似された曲線である、請求項1に記載の方法。
- 較正曲線が、一次指数曲線式(線形近似)、二次指数曲線式、三次指数曲線式、又は指数近似である、請求項1又は2に記載の方法。
- 較正曲線を作成するために使用するベースライン値の数が、4以上1000以下である、請求項1から3の何れかに記載の方法。
- 生理活性物質と被験物質との相互作用を屈折率変化として検出する、請求項1から4の何れかに記載の方法。
- 生理活性物質と被験物質との相互作用を表面共鳴プラズモン分析により検出する、請求項1から5の何れかに記載の方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007229661A JP2009063335A (ja) | 2007-09-05 | 2007-09-05 | 生理活性物質と被験物質との相互作用の測定方法 |
EP08015602A EP2034313A1 (en) | 2007-09-05 | 2008-09-04 | Method for measuring interaction between physiologically active substance and test substance |
US12/204,640 US20090068746A1 (en) | 2007-09-05 | 2008-09-04 | Method for measuring interaction between physiologically active substance and test substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007229661A JP2009063335A (ja) | 2007-09-05 | 2007-09-05 | 生理活性物質と被験物質との相互作用の測定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009063335A true JP2009063335A (ja) | 2009-03-26 |
Family
ID=39876520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007229661A Abandoned JP2009063335A (ja) | 2007-09-05 | 2007-09-05 | 生理活性物質と被験物質との相互作用の測定方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090068746A1 (ja) |
EP (1) | EP2034313A1 (ja) |
JP (1) | JP2009063335A (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013186672A2 (en) * | 2012-06-10 | 2013-12-19 | Bio-Rad Laboratories Inc. | Optical detection system for liquid samples |
EP2811300A1 (en) | 2013-06-07 | 2014-12-10 | Roche Diagniostics GmbH | Calibration for multi-component assays |
CN106471372B (zh) * | 2014-01-29 | 2019-10-11 | 通用电气健康护理生物科学股份公司 | 用于相互作用分析的方法和系统 |
CN111912974B (zh) * | 2019-05-09 | 2022-02-18 | 深圳市帝迈生物技术有限公司 | 一种免疫试剂定标方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001357405A (ja) * | 2000-06-12 | 2001-12-26 | Advantest Corp | データ処理装置及びデータ処理方法 |
JP2002541459A (ja) * | 1999-04-02 | 2002-12-03 | シークエノム・インコーポレーテツド | 自動処理 |
JP2003508748A (ja) * | 1999-08-30 | 2003-03-04 | ユーロ−セルティーク,エス.エイ. | 投与形態から物質の放出を測定するためのイン・サイチュー方法 |
JP2005513496A (ja) * | 2001-08-30 | 2005-05-12 | クラクカンプ, スコット エル. | 結合アフィニティを決定するための改良された方法 |
JP2006220605A (ja) * | 2005-02-14 | 2006-08-24 | Fuji Photo Film Co Ltd | 測定方法および測定装置 |
JP2007163323A (ja) * | 2005-12-14 | 2007-06-28 | Fujifilm Corp | 測定方法、及び、バイオセンサー |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0226604B1 (de) | 1985-05-29 | 1991-08-21 | Artificial Sensing Instruments ASI AG | Optischer sensor zum selektiven nachweis von substanzen und zum nachweis von brechzahländerungen in messubstanzen |
SE462454B (sv) | 1988-11-10 | 1990-06-25 | Pharmacia Ab | Maetyta foer anvaendning i biosensorer |
JPH06167443A (ja) | 1992-10-23 | 1994-06-14 | Olympus Optical Co Ltd | 表面プラズモン共鳴を利用した測定装置 |
JP3399836B2 (ja) | 1998-05-21 | 2003-04-21 | 富士写真フイルム株式会社 | 表面プラズモンセンサー |
JP2001330560A (ja) | 2000-03-16 | 2001-11-30 | Fuji Photo Film Co Ltd | 全反射減衰を利用した測定方法および装置 |
US6576430B1 (en) * | 2000-11-20 | 2003-06-10 | Becton, Dickinson And Company | Detection of ligands by refractive surface methods |
JP3783131B2 (ja) | 2000-12-27 | 2006-06-07 | 富士写真フイルム株式会社 | 全反射減衰を利用したセンサー |
US20030175827A1 (en) | 2002-03-14 | 2003-09-18 | Stillman Brett A. | Stable thin film dried protein composition or device and related methods |
DE20306476U1 (de) | 2003-04-22 | 2003-09-25 | Levin, Felix, Dr., 41236 Mönchengladbach | Stabilisierte universell einsetzbare Testformulierung und Testkit zur Eiweißbestimmung in biologischen Flüssigkeiten |
US6985664B2 (en) | 2003-08-01 | 2006-01-10 | Corning Incorporated | Substrate index modification for increasing the sensitivity of grating-coupled waveguides |
US6829073B1 (en) | 2003-10-20 | 2004-12-07 | Corning Incorporated | Optical reading system and method for spectral multiplexing of resonant waveguide gratings |
US7417737B2 (en) * | 2003-12-02 | 2008-08-26 | Fujilfilm Corporation | Method for measuring surface plasmon resonance |
US7470549B2 (en) * | 2004-05-26 | 2008-12-30 | Fujifilm Corporation | Measurement method using biosensor |
JP4580291B2 (ja) * | 2005-06-30 | 2010-11-10 | 富士フイルム株式会社 | バイオセンサーを用いた測定方法 |
JP4535975B2 (ja) * | 2005-09-21 | 2010-09-01 | 日本電信電話株式会社 | 表面プラズモン共鳴スペクトル測定装置におけるデータ校正方法 |
JP2008107315A (ja) * | 2006-09-29 | 2008-05-08 | Fujifilm Corp | 生体分子の固定化方法 |
US7751052B2 (en) * | 2006-12-04 | 2010-07-06 | Electronics And Telecommunications Research Institute | Surface plasmon resonance sensor capable of performing absolute calibration |
-
2007
- 2007-09-05 JP JP2007229661A patent/JP2009063335A/ja not_active Abandoned
-
2008
- 2008-09-04 US US12/204,640 patent/US20090068746A1/en not_active Abandoned
- 2008-09-04 EP EP08015602A patent/EP2034313A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002541459A (ja) * | 1999-04-02 | 2002-12-03 | シークエノム・インコーポレーテツド | 自動処理 |
JP2003508748A (ja) * | 1999-08-30 | 2003-03-04 | ユーロ−セルティーク,エス.エイ. | 投与形態から物質の放出を測定するためのイン・サイチュー方法 |
JP2001357405A (ja) * | 2000-06-12 | 2001-12-26 | Advantest Corp | データ処理装置及びデータ処理方法 |
JP2005513496A (ja) * | 2001-08-30 | 2005-05-12 | クラクカンプ, スコット エル. | 結合アフィニティを決定するための改良された方法 |
JP2006220605A (ja) * | 2005-02-14 | 2006-08-24 | Fuji Photo Film Co Ltd | 測定方法および測定装置 |
JP2007163323A (ja) * | 2005-12-14 | 2007-06-28 | Fujifilm Corp | 測定方法、及び、バイオセンサー |
Also Published As
Publication number | Publication date |
---|---|
EP2034313A1 (en) | 2009-03-11 |
US20090068746A1 (en) | 2009-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4270511B2 (ja) | バイオセンサー | |
JP4053579B2 (ja) | バイオセンサー | |
JP5026815B2 (ja) | バイオセンサー及び生理活性物質の固定化方法 | |
JP2009075016A (ja) | バイオセンサーの製造方法及びバイオセンサー | |
JP2008107315A (ja) | 生体分子の固定化方法 | |
JP2009063335A (ja) | 生理活性物質と被験物質との相互作用の測定方法 | |
JP4231888B2 (ja) | バイオセンサーの製造方法 | |
JP4538395B2 (ja) | バイオセンサー | |
JP2008249502A (ja) | 生理活性物質を固定化した固体基板 | |
EP1953553A2 (en) | Biosensor substrate | |
JP2008185494A (ja) | 生理活性物質固定化基板 | |
JP2008209379A (ja) | バイオセンサー用基板 | |
EP1953554B1 (en) | A method for production of a surface plasmon resonance device. | |
JP2007085970A (ja) | バイオセンサー | |
JP5021408B2 (ja) | バイオセンサー | |
JP2006266742A (ja) | バイオセンサー | |
JP4943888B2 (ja) | バイオセンサーの製造方法 | |
JP5255247B2 (ja) | 基質の結合と反応生成物を同時に検出できるバイオセンサー | |
JP4568174B2 (ja) | バイオセンサー及び生理活性物質の固定化方法 | |
JP4372142B2 (ja) | バイオセンサーの製造方法 | |
JP2009014622A (ja) | バイオセンサーを用いた測定方法 | |
JP4037428B2 (ja) | センサー用基板 | |
JP2008209378A (ja) | バイオセンサー基板 | |
JP2008304235A (ja) | 低分子有機化合物のスクリーニング方法 | |
JP2004286538A (ja) | バイオセンサー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20111013 |