JP2009060823A - Method for producing purified green tea extract - Google Patents

Method for producing purified green tea extract Download PDF

Info

Publication number
JP2009060823A
JP2009060823A JP2007230463A JP2007230463A JP2009060823A JP 2009060823 A JP2009060823 A JP 2009060823A JP 2007230463 A JP2007230463 A JP 2007230463A JP 2007230463 A JP2007230463 A JP 2007230463A JP 2009060823 A JP2009060823 A JP 2009060823A
Authority
JP
Japan
Prior art keywords
tea extract
green tea
mass
synthetic adsorbent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007230463A
Other languages
Japanese (ja)
Inventor
Masateru Sugiyama
征輝 杉山
Eizo Maruyama
栄造 丸山
Keiji Shibata
啓二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007230463A priority Critical patent/JP2009060823A/en
Publication of JP2009060823A publication Critical patent/JP2009060823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tea And Coffee (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a purified green tea extract, by which the purified green tea extract reduced in impurities such as caffeine, having a reduced bitter taste and an improved hue, and containing non-polymer catechin compounds in a high concentration can be produced, while reducing non-recyclable wastes such as activated carbon. <P>SOLUTION: This method for producing the purified green tea extract containing the non-polymer catechin compounds in a concentration of 25 to 90 mass% based on the solid contents of the green tea extract comprises making a synthetic adsorbent to adsorb a green tea extract, contacting the synthetic adsorbent with a basic aqueous solution to elute the non-polymer catechin compounds, adjusting the pH of the eluted solution to ≤7, adjusting the concentration of the non-polymer catechin compounds to 0.1 to 4.0 mass%, filtering the adjusted eluted solution with a fine pore diameter membrane, and then contacting the filtrate with activated carbon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、色相が改善された精製緑茶抽出物の製造方法に関する。   The present invention relates to a method for producing a purified green tea extract with improved hue.

カテキンの生理効果としてはαアミラーゼ活性阻害作用などが報告されている(例えば、特許文献1参照)。このような生理効果を発現させるためには、より簡便に大量のカテキンを摂取することが必要であることから、飲料にカテキンを高濃度配合する方法が望まれていた。   As a physiological effect of catechin, an α-amylase activity inhibitory action and the like have been reported (for example, see Patent Document 1). In order to express such a physiological effect, since it is necessary to ingest a large amount of catechin more simply, a method of blending catechin with a high concentration in a beverage has been desired.

この方法の一つとして、緑茶抽出物の濃縮物(特許文献2)などの茶抽出物を利用して、カテキンを飲料に溶解状態で添加する方法が用いられている。しかしながら、この方法によりカテキンを高濃度に配合する対象となる飲料の種類によっては、例えば紅茶抽出液や炭酸飲料にカテキンを添加する場合など、カフェイン及び緑茶由来の苦渋みの残存が飲料の商品価値を大きく損ねることがわかっている。   As one of the methods, a method of adding catechin to a beverage in a dissolved state using a tea extract such as a concentrate of green tea extract (Patent Document 2) is used. However, depending on the type of beverage for which catechin is to be blended at a high concentration by this method, for example, when catechin is added to black tea extract or carbonated beverage, the bitterness remaining from caffeine and green tea may be a beverage product. It has been found to greatly detract from value.

緑茶抽出物から、カフェイン等の夾雑物を取り除く方法としては、吸着法(特許文献2〜4)、抽出法(特許文献5〜6)等が知られている。
上記方法において、緑茶抽出物中の非重合体カテキン類含有率を上げる場合には、有機溶媒の使用が必要となるが、工業的に見た場合には、回収率が低いという課題があった。また、アルカリ性水溶液を使用する場合には、飲料に配合したときに、茶葉由来の水不溶性成分が残存するという課題があり、これに対する有効な手段が無かった。
As a method for removing impurities such as caffeine from the green tea extract, an adsorption method (Patent Documents 2 to 4), an extraction method (Patent Documents 5 to 6), and the like are known.
In the above method, when increasing the content of non-polymer catechins in the green tea extract, it is necessary to use an organic solvent. However, when viewed industrially, there is a problem that the recovery rate is low. . Moreover, when using alkaline aqueous solution, when mix | blending with a drink, there existed a subject that the water-insoluble component derived from a tea leaf remained, and there was no effective means with respect to this.

緑茶抽出物の色調を改善する方法としては、茶抽出液にサイクロデキストリンの存在下に活性炭を作用させ、着色成分等を活性炭に吸着させ除去してなる抗菌脱臭剤(特許文献7)が知られているが、飲料用のカテキン製剤への使用は、困難であった。また、活性炭処理により、カテキン製剤の精製できるが、活性炭の使用量が増大し、かつ、その廃棄活性炭の使用量が多くなり、産業廃棄物低減の課題が生じていた。
特開平3−133928号公報 特開平5−153910号公報 特開平8―109178号公報 特開2002−335911号公報 特開平1−289447号公報 特開昭59−219384号公報 特開2001−299887号公報
As a method for improving the color tone of a green tea extract, an antibacterial deodorant (Patent Document 7) is known, which is obtained by allowing activated carbon to act on a tea extract in the presence of cyclodextrin and adsorbing and removing colored components on the activated carbon. However, its use in beverage catechin preparations has been difficult. Moreover, although the catechin preparation can be purified by the activated carbon treatment, the amount of activated carbon used is increased and the amount of waste activated carbon used is increased, resulting in the problem of reducing industrial waste.
JP-A-3-133828 JP-A-5-153910 JP-A-8-109178 JP 2002-335911 A JP-A-1-289447 JP 59-219384 A JP 2001-299887 A

本発明の目的は、カフェイン等の夾雑物が除去され、苦味が抑制され、かつ色相の改善(450nmの吸収の低減化)した、高濃度の非重合体カテキンを含有する精製緑茶抽出物の製造方法を提供することにある。
また、第二の目的としては、活性炭量の低減を行うことにある。
It is an object of the present invention to provide a purified green tea extract containing a high concentration of non-polymer catechins in which impurities such as caffeine are removed, bitterness is suppressed, and hue is improved (absorption at 450 nm is reduced). It is to provide a manufacturing method.
The second purpose is to reduce the amount of activated carbon.

本発明者らは、緑茶抽出物中の非重合体カテキン類精製処理を検討した結果、緑茶抽出物を合成吸着剤に通液し、一旦、合成吸着剤に吸着させ、次いで、吸着した非重合体カテキン類を塩基性水溶液により溶出させた後、溶出液のpHを7以下に調整し、次いで非重合体カテキン類濃度が0.1〜4.0質量%に調整した溶出液を微小孔径膜で濾過し、更に、活性炭と接触させることにより、非重合体カテキン類濃度が高く、カフェイン含量を低減させた呈味と色相の改善された精製緑茶抽出物が得られることを見出した。   As a result of examining the purification treatment of non-polymer catechins in the green tea extract, the present inventors passed the green tea extract through the synthetic adsorbent, once adsorbed to the synthetic adsorbent, and then adsorbed non-heavy After eluting the union catechins with a basic aqueous solution, the pH of the eluate was adjusted to 7 or less, and then the eluate whose non-polymer catechins concentration was adjusted to 0.1 to 4.0% by mass was obtained as a microporous membrane. It was found that a purified green tea extract having a high non-polymer catechins concentration and a reduced caffeine content and improved taste and hue can be obtained by contacting with activated carbon.

すなわち、本発明は、緑茶抽出物を合成吸着剤に吸着させ、合成吸着剤に塩基性水溶液を接触させて非重合体カテキン類を溶出させた後、溶出液のpHを7以下に調整し、次いで非重合体カテキン類濃度が0.1〜4.0質量%に調整した溶出液を微小孔径膜で濾過し、その後活性炭処理を行うことにより、緑茶抽出物の固形分に対して非重合体カテキン類を25〜90質量%含有する精製茶抽出物の製造方法を提供するものである。   That is, the present invention adsorbs the green tea extract to a synthetic adsorbent, contacts the synthetic adsorbent with a basic aqueous solution to elute non-polymer catechins, and then adjusts the pH of the eluate to 7 or less. Next, the eluate whose non-polymer catechin concentration is adjusted to 0.1 to 4.0% by mass is filtered through a microporous membrane, and then subjected to activated carbon treatment, so that the non-polymer relative to the solid content of the green tea extract is obtained. The present invention provides a method for producing a purified tea extract containing 25 to 90% by mass of catechins.

本発明によれば、カフェイン等の夾雑物が除去され、苦味が抑制され、かつ色相の改善した、高濃度の非重合体カテキン類を含有する精製緑茶抽出物が、工業的に有利に得られる。また、後処理で用いる活性炭量が少なく、工業的に特に有用である。   According to the present invention, a purified green tea extract containing a high concentration of non-polymer catechins in which impurities such as caffeine are removed, bitterness is suppressed, and the hue is improved is advantageously obtained industrially. It is done. Further, the amount of activated carbon used in the post-treatment is small, which is particularly useful industrially.

本発明で非重合体カテキン類とは、カテキン、ガロカテキン、カテキンガレート、ガロカテキンガレートなどの非エピ体カテキン及びエピカテキン、エピガロカテキン、エピカテキンガレート、エピガロカテキンガレートなどのエピ体カテキンをあわせての総称である。   In the present invention, the non-polymer catechins include non-epi catechins such as catechin, gallocatechin, catechin gallate and gallocatechin gallate and epi-catechins such as epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate. It is a general term.

本発明で非重合体カテキンガレート体とは、カテキンガレート、ガロカテキンガレート、エピカテキンガレート、エピガロカテキンガレートなどをあわせての総称である。   In the present invention, the non-polymer catechin gallate body is a general term including catechin gallate, gallocatechin gallate, epicatechin gallate, epigallocatechin gallate and the like.

本発明で用いる緑茶抽出物としては、緑茶葉から得られた抽出液が挙げられる。使用する茶葉としては、より具体的には、Camellia属、例えばC.sinensis、C.assamica及びやぶきた種又はそれらの雑種等から得られる茶葉から製茶された茶葉が挙げられる。製茶された茶葉には、煎茶、番茶、玉露、てん茶、釜炒り茶等の緑茶類がある。また、超臨界状態の二酸化炭素接触処理を施した茶葉を用いてもよい。   Examples of the green tea extract used in the present invention include an extract obtained from green tea leaves. More specifically, the tea leaves used include tea leaves made from tea leaves obtained from the genus Camellia, for example, C. sinensis, C. assamica, and camellia seeds or hybrids thereof. The tea leaves produced include green teas such as sencha, bancha, gyokuro, tencha, and kettle roasted tea. Moreover, you may use the tea leaf which gave the carbon dioxide contact process of the supercritical state.

緑茶葉からの抽出は、抽出溶媒として水又は水溶性有機溶媒又はそれらの混合物を使用し、攪拌抽出等により行われる。抽出の際、水又は水溶性有機溶媒又はそれらの混合物にあらかじめアスコルビン酸ナトリウム等の有機酸塩類又は有機酸を添加してもよい。また、煮沸脱気や窒素ガス等の不活性ガスを通気して溶存酸素を除去しつつ、いわゆる非酸化的雰囲気下で抽出する方法を併用してもよい。このようにして得られた抽出液は、そのままでも、乾燥、濃縮しても本発明に使用できる。緑茶抽出物の形態としては、液体、スラリー、半固体、固体の状態が挙げられる。   Extraction from green tea leaves is performed by stirring extraction or the like using water or a water-soluble organic solvent or a mixture thereof as an extraction solvent. In the extraction, an organic acid salt such as sodium ascorbate or an organic acid may be added in advance to water or a water-soluble organic solvent or a mixture thereof. Moreover, you may use together the method of extracting in so-called non-oxidative atmosphere, ventilating inert gas, such as boiling deaeration and nitrogen gas, and removing dissolved oxygen. The extract thus obtained can be used in the present invention as it is, even if it is dried and concentrated. Examples of the green tea extract include liquid, slurry, semi-solid, and solid state.

本発明に使用する緑茶抽出物には、緑茶葉から抽出した抽出液を使用する代わりに、緑茶抽出物の濃縮物を水又は有機溶媒に溶解又は水又は有機溶媒に希釈して用いても、緑茶葉からの抽出液と緑茶抽出物の濃縮物とを併用してもよい。
ここで、緑茶抽出物の濃縮物とは、緑茶葉から熱水又は水溶性有機溶媒により抽出された抽出物を濃縮したものであり、例えば、特開昭59−219384号公報、特開平4−20589号公報、特開平5−260907号公報、特開平5−306279号公報等に記載されている方法により調製したものをいう。具体的には、市販の東京フードテクノ社製「ポリフェノン」、伊藤園社製「テアフラン」、太陽化学社製「サンフェノン」等の粗カテキン製剤を固体の緑茶抽出物として用いることもできる。
For the green tea extract used in the present invention, instead of using the extract extracted from the green tea leaves, the concentrate of the green tea extract may be dissolved in water or an organic solvent or diluted in water or an organic solvent, You may use together the extract from a green tea leaf, and the concentrate of a green tea extract.
Here, the concentrate of green tea extract is obtained by concentrating an extract extracted from green tea leaves with hot water or a water-soluble organic solvent. For example, JP-A-59-219384, JP-A-4- This refers to those prepared by the methods described in JP-A-20589, JP-A-5-260907, JP-A-5-306279, and the like. Specifically, commercially available crude catechin preparations such as “Polyphenone” manufactured by Tokyo Food Techno Co., “Theafuran” manufactured by ITO EN, “Sunphenon” manufactured by Taiyo Kagaku Co., Ltd. can be used as the solid green tea extract.

また、緑茶抽出物は、合成吸着剤に吸着させる前に加水分解処理しておくのが、非重合体カテキン類中のガレート体率を低下させ、苦味を低減する点から好ましい。加水分解による非重合体カテキン類中の非重合体カテキンガレート体の濃度減少は、呈味改善の点から5質量%以上、更に7質量%以上、特に10質量%以上が好ましい。加水分解の方法は、酵素類による処理、酸処理、アルカリ処理等により行なわれる。酵素類としては、タンナーゼ活性を有する酵素、菌体又は培養液、酸としては、塩酸、硫酸、リン酸、アルカリとしては苛性ソーダなどが好ましい。その中でも反応制御の点から酵素類での加水分解が好ましい。ここでタンナーゼ活性を有するとは、タンニンを分解する活性を有することを意味し、本活性を有すれば任意の酵素、菌体、培養液が使用できる。   Moreover, it is preferable that the green tea extract is hydrolyzed before being adsorbed to the synthetic adsorbent from the viewpoint of reducing the gallate content in non-polymer catechins and reducing bitterness. The concentration reduction of the non-polymer catechin gallate body in the non-polymer catechins by hydrolysis is preferably 5% by mass or more, more preferably 7% by mass or more, and particularly preferably 10% by mass or more from the viewpoint of improving taste. The hydrolysis method is carried out by treatment with enzymes, acid treatment, alkali treatment or the like. As the enzyme, an enzyme having tannase activity, a bacterial cell or a culture solution, hydrochloric acid, sulfuric acid, phosphoric acid as the acid, and caustic soda as the alkali are preferable. Among them, hydrolysis with enzymes is preferable from the viewpoint of reaction control. Here, having tannase activity means having activity of degrading tannin, and any enzyme, fungus body, or culture solution can be used as long as it has this activity.

具体的には、タンナーゼ活性を有する酵素として市販品では、ペクチナーゼPLアマノ(天野エンザイム社製)、ヘミセルラーゼアマノ90(天野エンザイム社製)、タンナーゼKTFH(キッコーマン社製)等が利用できる。その中でもタンナーゼが好ましい。例えば、アスペルギルス属、ペニシリウム属、リゾプス属のタンナーゼ生産菌を培養して得られるタンナーゼが挙げられる。このうちアスペルギルス オリーゼ由来のものが好ましい。
タンナーゼ活性を有する菌体とは、タンナーゼ活性を有する酵素を産生することができる菌体であり、麹菌等があげられる。例えば、アスペルギルス属、ペニシリウム属等が挙げられ、このうちアスペルギルス オリーゼが好ましい。
タンナーゼ活性を有する培養液とは、アスペルギルス属、ペニシリウム属、リゾプス属のタンナーゼ生産菌を培養して得られる培養液である。好ましくは、タンニン酸を唯一の炭素源として培養して得られる培養液を挙げることができ、精製品であっても未精製なものであっても用いることができる。
風味劣化の抑制及び生産性の点から加水分解を極力短時間で終了するのが好ましく、それには酵素又は培養液を利用することが好ましい。
本発明で使用するタンナーゼ活性を有する酵素又は培養液は、500〜100,000U/gの酵素活性を有することが好ましく、500U/g以上であると工業的に限られた時間内で処理することが可能であり、100,000U/g以下であると酵素反応速度を制御することができる。ここで1Unitは30℃の水中においてタンニン酸に含まれるエステル結合を1マイクロモル加水分解する酵素量を示す。
Specifically, pectinase PL Amano (manufactured by Amano Enzyme), hemicellulase amano 90 (manufactured by Amano Enzyme), tannase KTFH (manufactured by Kikkoman), etc. can be used as commercially available enzymes having tannase activity. Of these, tannase is preferred. For example, tannase obtained by culturing tannase-producing bacteria belonging to the genus Aspergillus, Penicillium or Rhizopus. Of these, those derived from Aspergillus oryzae are preferred.
The microbial cell having tannase activity is a microbial cell capable of producing an enzyme having tannase activity, and examples thereof include koji molds. For example, Aspergillus genus, Penicillium genus and the like can be mentioned, among which Aspergillus oryzae is preferable.
The culture solution having tannase activity is a culture solution obtained by culturing a tannase-producing bacterium of the genus Aspergillus, Penicillium, or Rhizopus. Preferably, a culture solution obtained by culturing tannic acid as the sole carbon source can be mentioned, and it can be used regardless of whether it is a purified product or an unpurified product.
Hydrolysis is preferably completed in a short time as much as possible from the viewpoint of suppression of flavor deterioration and productivity, and it is preferable to use an enzyme or a culture solution.
The enzyme or culture solution having tannase activity used in the present invention preferably has an enzyme activity of 500 to 100,000 U / g, and is treated within a limited time industrially as 500 U / g or more. The enzyme reaction rate can be controlled to be 100,000 U / g or less. Here, 1 Unit represents the amount of enzyme that hydrolyzes 1 micromole of an ester bond contained in tannic acid in water at 30 ° C.

タンナーゼ活性を有する酵素及び培養液による処理を行うときの非重合体カテキン類濃度は、好ましくは0.1〜22質量%、更に好ましくは0.1〜15質量%、特に好ましくは0.5〜10質量%、殊更好ましくは0.5〜3質量%である。0.1質量%以下ではこの後の合成吸着剤への吸着時に吸着量が増加し、22質量%以下では、加水分解処理が短縮され、生産性及び緑茶抽出物の味の点から好ましい。
呈味を改善した非重合体カテキンガレート体率を得るため、緑茶抽出物中の非重合体カテキン類に対して酵素又は培養液を0.01〜10質量%の範囲になるように添加することが好ましい。酵素失活の工程を含め、上記加水分解処理を工業的に最適な酵素反応時間である2時間以内で終了させるためには、酵素又は培養液濃度が0.01〜7質量%、更に0.03〜5質量%であることが好ましい。
緑茶抽出物中の非重合体カテキン類に対してタンナーゼ活性を有する酵素又は培養液を、好ましくは1〜300Unit/g−非重合体カテキン、更に好ましくは3〜200Unit/g−非重合体カテキン、特に好ましくは5〜150Unit/g−非重合体カテキンになるように添加する。
酵素又は培養液による処理の温度は、最適な酵素活性が得られる0〜70℃が好ましく、更に好ましくは0〜60℃、特に好ましくは5〜50℃である。
The concentration of non-polymer catechins when performing treatment with an enzyme having tannase activity and a culture solution is preferably 0.1 to 22% by mass, more preferably 0.1 to 15% by mass, and particularly preferably 0.5 to It is 10% by mass, particularly preferably 0.5 to 3% by mass. If it is 0.1% by mass or less, the amount of adsorption increases at the time of subsequent adsorption to the synthetic adsorbent, and if it is 22% by mass or less, the hydrolysis treatment is shortened, which is preferable in terms of productivity and the taste of the green tea extract.
In order to obtain a non-polymer catechin gallate ratio with improved taste, an enzyme or a culture solution is added to the non-polymer catechins in the green tea extract so as to be in the range of 0.01 to 10% by mass. Is preferred. In order to complete the hydrolysis treatment within 2 hours, which is an industrially optimal enzyme reaction time, including the enzyme deactivation step, the enzyme or culture solution concentration is 0.01 to 7% by mass, and further, It is preferable that it is 03-5 mass%.
An enzyme having a tannase activity with respect to non-polymer catechins in a green tea extract or a culture solution, preferably 1 to 300 Unit / g-non-polymer catechin, more preferably 3 to 200 Unit / g-non-polymer catechin, Especially preferably, it adds so that it may become 5-150Unit / g-non-polymer catechin.
The treatment temperature with the enzyme or the culture solution is preferably 0 to 70 ° C., more preferably 0 to 60 ° C., and particularly preferably 5 to 50 ° C. at which the optimum enzyme activity can be obtained.

酵素又は培養液での加水分解反応を終了させるには、酵素を失活させる必要がある。酵素失活は、加熱することにより達成される。酵素失活温度は、70〜100℃が好ましく、70℃未満では酵素を短時間で充分に失活することが困難であるため加水分解反応が進行しる。酵素反応の失活方法は、バッチ式もしくはプレート型熱交換機のような連続式で加熱を行うことで停止することができる。又、タンナーゼの失活終了後、遠心分離などの操作により茶抽出物を清澄化することができる。   In order to terminate the hydrolysis reaction with the enzyme or the culture solution, it is necessary to deactivate the enzyme. Enzyme inactivation is achieved by heating. The enzyme deactivation temperature is preferably 70 to 100 ° C. If it is less than 70 ° C., it is difficult to deactivate the enzyme sufficiently in a short time, so that the hydrolysis reaction proceeds. The deactivation method of the enzyme reaction can be stopped by heating in a batch system or a continuous system such as a plate heat exchanger. In addition, after completion of inactivation of tannase, the tea extract can be clarified by an operation such as centrifugation.

菌体として例えば麹菌を利用する場合は、非重合体カテキン類の濃度が、好ましくは0.1〜22質量%、更に好ましくは0.1〜15質量%、特に好ましくは0.5〜15質量%である茶抽出物に麹菌を入れ加水分解処理を行なう。麹菌は、その種類等により大幅に特性が異なるが、茶抽出物中の非重合体カテキン類に対して通常0.5質量%〜10質量%の範囲内、特に1.0質量%〜5質量%の範囲内で添加される。温度条件としては、45℃〜70℃、更に50〜60℃が好ましい。醗酵時間は通常12時間〜20日間、更に1日〜10日間で行われることが好ましい。麹菌の酵素活性の失活は、酵素又は培養液での加水分解反応を終了させる時と同様である。   When, for example, gonococcus is used as the bacterial cell, the concentration of non-polymer catechins is preferably 0.1 to 22% by mass, more preferably 0.1 to 15% by mass, and particularly preferably 0.5 to 15% by mass. % Is added to the tea extract and hydrolyzed. Aspergillus oryzae has characteristics that vary greatly depending on its type, etc., but usually in the range of 0.5% by mass to 10% by mass, especially 1.0% by mass to 5% by mass with respect to the non-polymer catechins in the tea extract. % Is added. As temperature conditions, 45 to 70 degreeC, Furthermore, 50 to 60 degreeC is preferable. The fermentation time is usually 12 hours to 20 days, and preferably 1 day to 10 days. The inactivation of the enzyme activity of Aspergillus is the same as when the hydrolysis reaction with the enzyme or the culture solution is terminated.

本発明においては、まず、緑茶抽出物を合成吸着剤に吸着させ、次いで塩基性水溶液を接触させて非重合体カテキン類を溶出させる。当該合成吸着剤処理により、カフェインや没食子酸が低減できる。
吸着後、塩基性水溶液を接触させる前に、合成吸着剤を洗浄し、合成吸着剤中の没食子酸や不純物を除去するのが好ましい。
合成吸着剤は、一般に不溶性の三次元架橋構造ポリマーでイオン交換基のような官能基を実質的に持たないものである。好ましくは、イオン交換基が1meq/g未満のものを用いることができる。本発明に用いる合成吸着剤としては、その母体がスチレン系、例えばアンバーライトXAD4、XAD16HP、XAD1180、XAD2000、(米国ローム&ハース社);ダイヤイオンHP20、HP21(三菱化学社製);セパビーズSP850、SP825、SP700、SP70(三菱化学社製);VPOC1062(Bayer社製)、臭素原子を核置換して吸着力を強めた修飾スチレン系、例えばセパビーズSP205、SP206、SP207(三菱化学社製)、メタクリル系、例えばダイヤイオンHP1MG、HP2MG(三菱化学社製)、フェノール系、例えばアンバーライトXAD761(ロームアンドハース社製)、アクリル系、例えばアンバーライトXAD7HP(ロームアンドハース社製)、ポリビニル系、例えばTOYOPEARL、HW−40C(東ソー社製)、デキストラン系、例えばSEPHADEX、LH−20(ファルマシア社製)等が使用できる。
合成吸着剤としては、その母体がスチレン系、メタクリル系、アクリル系、ポリビニル系が好ましく、特にスチレン系がカテキンとカフェインとの分離性の点から好ましい。
In the present invention, first, a green tea extract is adsorbed on a synthetic adsorbent, and then a basic aqueous solution is contacted to elute non-polymer catechins. Caffeine and gallic acid can be reduced by the synthetic adsorbent treatment.
After adsorption, it is preferable to wash the synthetic adsorbent and remove gallic acid and impurities in the synthetic adsorbent before contacting the basic aqueous solution.
Synthetic adsorbents are generally insoluble three-dimensional crosslinked structure polymers that are substantially free of functional groups such as ion exchange groups. Preferably, those having an ion exchange group of less than 1 meq / g can be used. As the synthetic adsorbent used in the present invention, the matrix is styrene, such as Amberlite XAD4, XAD16HP, XAD1180, XAD2000 (Rohm & Haas, USA); Diaion HP20, HP21 (Mitsubishi Chemical); Sepabead SP850, SP825, SP700, SP70 (manufactured by Mitsubishi Chemical Corporation); VPOC1062 (manufactured by Bayer Corporation), modified styrene series in which the bromine atom is replaced with a nucleus to enhance the adsorptive power, such as Sepabeads SP205, SP206, SP207 (manufactured by Mitsubishi Chemical Corporation), methacrylic Systems such as Diaion HP1MG, HP2MG (Mitsubishi Chemical), phenols such as Amberlite XAD761 (Rohm and Haas), acrylics such as Amberlite XAD7HP (Rohm and Haas), polyvinyl, If example TOYOPEARL, HW-40C (manufactured by Tosoh Corporation), dextran-based, for example SEPHADEX, LH-20 (manufactured by Pharmacia), and the like can be used.
As the synthetic adsorbent, the matrix is preferably styrene, methacrylic, acrylic, or polyvinyl, and styrene is particularly preferable from the viewpoint of separability between catechin and caffeine.

緑茶抽出物を合成吸着剤に吸着させる手段としては、緑茶抽出物に合成吸着剤を添加、撹拌し吸着後、ろ過操作により合成吸着剤を回収するバッチ方法又は合成吸着剤を充填したカラムを用いて連続処理により吸着処理を行なうカラム方法が採用されるが、生産性の点からカラムによる連続処理方法が好ましい。
合成吸着剤が充填されたカラムは、予めSV(空間速度)=0.5〜10[h-1]、合成吸着剤に対する通液倍数として2〜10[v/v]の通液条件で95vol%エタノール水溶液による洗浄を行い、合成吸着剤の原料モノマーや原料モノマー中の不純物等を除去するのが好ましい。そして、その後SV=0.5〜10[h-1]、合成吸着剤に対する通液倍数として1〜60[v/v]の通液条件により水洗を行い、エタノールを除去して合成吸着剤の含液を水系に置換する方法により非重合体カテキン類の吸着能が向上する。
As a means for adsorbing green tea extract to synthetic adsorbent, use a batch method in which synthetic adsorbent is added to green tea extract, stirred and adsorbed, and then recovered by filtration, or a column packed with synthetic adsorbent is used. A column method in which adsorption treatment is performed by continuous treatment is employed, but a continuous treatment method using a column is preferred from the viewpoint of productivity.
The column packed with the synthetic adsorbent is preliminarily SV (space velocity) = 0.5 to 10 [h −1 ], and 95 vol under a liquid passing condition of 2 to 10 [v / v] as the liquid passing ratio with respect to the synthetic adsorbent. It is preferable to remove the raw material monomer of the synthetic adsorbent, impurities in the raw material monomer, etc. by washing with a% ethanol aqueous solution. Then, SV = 0.5 to 10 [h −1 ], and a water passage condition of 1 to 60 [v / v] as a liquid passage ratio with respect to the synthetic adsorbent is performed to remove ethanol and remove the synthetic adsorbent. The ability to adsorb non-polymer catechins is improved by replacing the liquid-containing solution with an aqueous system.

緑茶抽出物を合成吸着剤に吸着させる手段としては、合成吸着剤が充填されたカラムに当該茶抽出物を通液するのが好ましい。緑茶抽出物を合成吸着剤の充填したカラムに通液する条件としては、SV(空間速度)=0.5〜10[h-1]の通液速度で、合成吸着剤に対する通液倍数として0.5〜20[v/v]で通液するのが好ましい。10[h-1]以上の通液速度や20[v/v]以上の通液量であると非重合体カテキン類の吸着が不充分又は不安定となる場合がある。 As a means for adsorbing the green tea extract onto the synthetic adsorbent, it is preferable to pass the tea extract through a column packed with the synthetic adsorbent. The conditions for passing the green tea extract through the column filled with the synthetic adsorbent were SV (space velocity) = 0.5 to 10 [h −1 ], and 0 as the passage ratio for the synthetic adsorbent. It is preferable to pass through at 5 to 20 [v / v]. Adsorption of non-polymer catechins may be insufficient or unstable when the flow rate is 10 [h -1 ] or more and the flow rate is 20 [v / v] or more.

更に、緑茶抽出物を合成吸着剤に吸着させた後、水又は有機溶媒水溶液で洗浄して、合成吸着剤に付着した没食子酸や不純物を除去するのが好ましい。洗浄に使用する水溶液としては、カテキンの回収率の点からpH7以下が好ましく、有機溶媒としては水溶性有機溶媒が使用できる。水溶性有機溶媒としては、アセトン、メタノール、エタノールなどが挙げられ、食品への使用の観点から、エタノールが好ましい。含有する有機溶媒の濃度は、0〜20質量%、好ましくは0.1〜10質量%、より好ましくは1〜5質量%がカテキンの回収率の点から好ましい。
SV(空間速度)=0.5〜10[h-1]の通液速度で、合成吸着剤に対する通液倍数として1〜10[v/v]で、合成吸着剤に付着した没食子酸や不純物を除去するのが好ましい。更にSV=0.5〜5[h-1] の通液速度で、通液倍数として1〜5[v/v] で洗浄することが没食子酸や不純物の除去及び非重合体カテキン類の回収率の点から好ましい。
Furthermore, after adsorbing the green tea extract on the synthetic adsorbent, it is preferable to remove the gallic acid and impurities adhering to the synthetic adsorbent by washing with water or an organic solvent aqueous solution. The aqueous solution used for washing is preferably pH 7 or less from the viewpoint of catechin recovery, and a water-soluble organic solvent can be used as the organic solvent. Examples of the water-soluble organic solvent include acetone, methanol, ethanol and the like, and ethanol is preferable from the viewpoint of use in foods. The concentration of the organic solvent to be contained is preferably 0 to 20% by mass, preferably 0.1 to 10% by mass, and more preferably 1 to 5% by mass from the viewpoint of catechin recovery.
Gallic acid and impurities adhering to the synthetic adsorbent at a liquid passing speed of SV (space velocity) = 0.5 to 10 [h −1 ] and 1 to 10 [v / v] as the liquid passing ratio with respect to the synthetic adsorbent. Is preferably removed. Furthermore, it is possible to remove gallic acid and impurities and to recover non-polymer catechins by washing at a flow rate of SV = 0.5 to 5 [h −1 ] and a flow rate of 1 to 5 [v / v]. It is preferable in terms of rate.

非重合体カテキン類の溶出に用いる塩基性水溶液としては、アルカリ金属塩、アルカリ土類のアルカリ水溶液、好ましくは、ナトリウム系のアルカリ性水溶液、例えば水酸化ナトリウム水溶液、炭酸ナトリウム水溶液等を好適に用いることができる。また、アルカリ性水溶液のpHは7〜14の範囲が好ましい。非重合体カテキン類回収率の点から9〜13.8、特に10〜13.5が好ましい。pH7〜14のナトリウム系水溶液としては、4%以下の水酸化ナトリウム水溶液、4%以下の炭酸ナトリウム水溶液等が挙げられる。塩基性水溶液に、水溶性有機溶媒が含まれていてもよい。有機溶媒の濃度としては、カフェインとカテキンの分離性の点から0〜90質量%の範囲が好ましく、0.1〜50質量%がより好ましく、1〜20質量%が更に好ましい。   As the basic aqueous solution used for elution of non-polymer catechins, alkali metal salts, alkaline earth alkaline aqueous solutions, preferably sodium-based alkaline aqueous solutions such as sodium hydroxide aqueous solution and sodium carbonate aqueous solution are preferably used. Can do. The pH of the alkaline aqueous solution is preferably in the range of 7-14. From the point of non-polymer catechin recovery, 9 to 13.8, particularly 10 to 13.5 is preferable. Examples of the sodium-based aqueous solution having a pH of 7 to 14 include a 4% or less sodium hydroxide aqueous solution and a 4% or less sodium carbonate aqueous solution. The basic aqueous solution may contain a water-soluble organic solvent. As a density | concentration of an organic solvent, the range of 0-90 mass% is preferable from the point of the separability of caffeine and catechin, 0.1-50 mass% is more preferable, 1-20 mass% is still more preferable.

溶出工程においては、溶出に用いる塩基性水溶液として互いにpHが異なる2種以上の塩基性水溶液を用い、これら塩基性水溶液をpHが低い順に合成吸着剤に接触させることができる。それぞれのpH区分で異なる非重合体カテキン類や他の成分を脱着することができる。   In the elution step, two or more basic aqueous solutions having different pH values are used as the basic aqueous solution used for elution, and these basic aqueous solutions can be brought into contact with the synthetic adsorbent in order of decreasing pH. Different non-polymer catechins and other components can be desorbed in each pH category.

本発明で使用される合成吸着剤は本発明実施後に再使用できる。再生処理としては、具体的には、エタノールのような有機溶媒を通液し合成吸着剤上に吸着したカフェイン等の不溶分を脱着させる。又は水酸化ナトリウムのようなアルカリ水溶液を通液・洗浄し、合成吸着剤上に残存する水溶性成分をすべて脱着させるなどの方法が挙げられる。更に水蒸気による洗浄を組み合わせても良い。   The synthetic adsorbent used in the present invention can be reused after the practice of the present invention. Specifically, as the regeneration treatment, an insoluble component such as caffeine adsorbed on the synthetic adsorbent is passed through an organic solvent such as ethanol. Alternatively, a method of passing and washing an alkaline aqueous solution such as sodium hydroxide and desorbing all the water-soluble components remaining on the synthetic adsorbent can be used. Further, cleaning with water vapor may be combined.

非重合体カテキン類の溶出液は、塩基性水溶液で溶出したため塩基性であり、非重合カテキン類の安定性の観点から、溶出液のpHを7以下に調整する。具体的には酸による中和、電気透析によるアルカリ金属イオンの除去、又はカチオン交換樹脂によるアルカリ金属イオンの除去が利用できる。イオン交換樹脂としては特にH型のカチオン交換樹脂を用いるのが好ましい。プロセスの簡便性からイオン交換樹脂によるpH調整が好ましい。カチオン交換樹脂としては、具体的には、アンバーライト200CT、IR120B、IR124、IR118、ダイヤイオンSK1B、SK1BH、SK102、PK208、PK212等を用いることができる。   The eluate of non-polymer catechins is basic because it is eluted with a basic aqueous solution, and the pH of the eluate is adjusted to 7 or less from the viewpoint of the stability of the non-polymer catechins. Specifically, neutralization with an acid, removal of alkali metal ions by electrodialysis, or removal of alkali metal ions by a cation exchange resin can be used. As the ion exchange resin, it is particularly preferable to use an H-type cation exchange resin. From the simplicity of the process, pH adjustment with an ion exchange resin is preferred. Specifically, Amberlite 200CT, IR120B, IR124, IR118, Diaion SK1B, SK1BH, SK102, PK208, PK212, etc. can be used as the cation exchange resin.

pHを7以下に調整された溶出液は、そのまま膜濾過に付してもよいが、溶出液のpH調整終了後、濃縮し、次いで析出懸濁物を固液分離除去した上澄み液を稀釈した後に膜濾過に付すのが好ましい。
ここで、濃縮は、呈味及び析出物の分離性の点から非重合体カテキン類0.1〜70質量%、更に0.2〜50質量%、特に0.3〜25質量%、殊更に0.5〜10質量%、圧力1.3kPa〜20kPa、温度30〜60℃の条件で、非重合体カテキン類は析出せず、不純物が析出するまで行うのが好ましい。かかる濃縮率は、呈味及び析出物の分離性の点から2〜500倍、更に2〜250倍、特に2〜125倍が好ましい。得られた析出懸濁物は、通常の手段により固液分離するのが好ましい。ここで固液分離手段としては、粗分離を目的とした精密濾過膜による濾過及び/又は遠心分離処理が挙げられる。固液分離した上澄み液を稀釈した後、微小孔径膜の濾過に付す。ここで稀釈液中の非重合体カテキン類濃度は0.1〜4.0質量%、さらに0.2〜3.5質量%、特に0.3〜3.0質量%、殊更に0.5〜2.0質量%とするのが膜脱色率の改善の点で好ましい。
The eluate whose pH is adjusted to 7 or less may be subjected to membrane filtration as it is, but after completion of pH adjustment of the eluate, it is concentrated, and then the supernatant obtained by separating and removing the precipitated suspension is diluted. Subsequent membrane filtration is preferred.
Here, the concentration is from 0.1 to 70% by mass, more preferably from 0.2 to 50% by mass, especially from 0.3 to 25% by mass, especially from the viewpoint of taste and separation of precipitates. Non-polymer catechins are preferably not precipitated under the conditions of 0.5 to 10% by mass, a pressure of 1.3 kPa to 20 kPa, and a temperature of 30 to 60 ° C. until impurities are precipitated. The concentration rate is preferably 2 to 500 times, more preferably 2 to 250 times, and particularly preferably 2 to 125 times from the viewpoint of taste and separability of precipitates. The resulting precipitate suspension is preferably subjected to solid-liquid separation by ordinary means. Here, examples of the solid-liquid separation means include filtration with a microfiltration membrane for the purpose of rough separation and / or centrifugation. The supernatant liquid after solid-liquid separation is diluted and then subjected to filtration of a microporous membrane. Here, the concentration of non-polymer catechins in the diluting solution is 0.1 to 4.0% by mass, more preferably 0.2 to 3.5% by mass, particularly 0.3 to 3.0% by mass, and particularly 0.5 It is preferable to set it to -2.0 mass% in terms of improving the film decolorization rate.

pH調整後の溶出液の膜濾過に用いる微小孔径膜としては、膜の分画分子量が100〜500000、さらに200〜100000、特に300〜50000、殊更に500〜30000である膜が好ましく、さらに限外濾過膜又は逆浸透膜を用いるのが好ましい。
用いられる限外濾過膜としては、SEP−3013、ACP−3013、AHP−3013、ACP−0013、SEP−0013(旭化成製)、FE10−FUS−5082(ダイセン・メンブレン・システムズ製)などの一般的な膜が挙げられる。また、逆浸透膜としては、NTR−7410HG、NTR−7430HG、NTR−7450HGなどの一般的な膜が挙げられる。用いられる膜としてはスパイラル、中空糸型のような連続処理型の膜が好ましい。当該膜濾過により、色相が改善し、得られる精製緑茶抽出物を、スポーツドリンク、アイソトニック飲料等の飲料に用いる場合に特に好ましい。
As the microporous membrane used for membrane filtration of the effluent after pH adjustment, a membrane having a fractional molecular weight of 100 to 500,000, more preferably 200 to 100,000, particularly 300 to 50,000, particularly 500 to 30,000 is preferable. It is preferable to use an outer filtration membrane or a reverse osmosis membrane.
As an ultrafiltration membrane to be used, SEP-3013, ACP-3013, AHP-3013, ACP-0013, SEP-0013 (manufactured by Asahi Kasei), FE10-FUS-5082 (manufactured by Daisen Membrane Systems), etc. A suitable membrane. Moreover, as a reverse osmosis membrane, common membranes, such as NTR-7410HG, NTR-7430HG, NTR-7450HG, are mentioned. The membrane used is preferably a continuous treatment type membrane such as a spiral or hollow fiber type. The membrane filtration improves the hue, and the purified green tea extract obtained is particularly preferable when used in beverages such as sports drinks and isotonic beverages.

膜濾過して得られる精製緑茶抽出物は、そのまま飲料の製造に用いることもできるが、さらに活性炭と接触させることで、色調改善、風味改善の効果が得られる。   The purified green tea extract obtained by membrane filtration can also be used as it is for the production of beverages, but when brought into contact with activated carbon, effects of color tone improvement and flavor improvement can be obtained.

用いる活性炭の原料としては、ヤシ殻、木質、石炭があげられるが、木質のものが好ましい。活性炭の賦活方法としては、水蒸気賦活法、ガス賦活法、薬品賦活法があげられるが、薬品賦活法が好ましい。例えば、ZN−50、Y−10S、GS-1、GS-B(味の素ファインテクノ製)、クラレコールGLC、クラレコールPK−D、クラレコールPW−D、クラレコールGW、クラレコールGA、クラレコールGA−D、クラレコールRP−15(クラレケミカル社製)、白鷺AW50、白鷺A、白鷺P、白鷺KL、白鷺M、白鷺C、カルボラフィン、WH2C(日本エンバイロケミカルズ製)、GM130A、CW130A、CW130AR、CW350AR、GL130A、SG、SGA、SGP(フタムラ化学製)、ヤシコール、MAS印、梅蜂印、梅蜂F印(太平化学産業製)、CPG、CAL、S80A(三菱化学カルゴン製)等の市販品を用いることができる。
製品の色調を改善する点、活性炭の使用量を低減する点、回収率を向上する点から、活性炭としては以下のものが好ましい。平均細孔径は0.5〜10nm(ナノメーター)、さらに、1.0〜9.0nm、特に2.0〜8.0nmのものが好ましい。細孔容積は0.01〜2.5mL/g、さらに0.1〜2.0mL/g、特に0.5〜1.7mL/gのものが好ましい。また、比表面積は800〜2000m2/g、さらに900〜1600m2/g、特に1000〜1500m2/gの範囲のものが好ましい。なお、これらの物性値は窒素吸着法に基づく値である。
Examples of the raw material for the activated carbon include coconut shell, wood, and coal, with wood being preferred. Examples of the activated carbon activation method include a steam activation method, a gas activation method, and a chemical activation method, and the chemical activation method is preferable. For example, ZN-50, Y-10S, GS-1, GS-B (manufactured by Ajinomoto Fine Techno), Kuraray Coal GLC, Kuraray Coal PK-D, Kuraray Coal PW-D, Kuraray Coal GW, Kuraray Coal GA, Kuraray Coal GA-D, Kuraray Coal RP-15 (manufactured by Kuraray Chemical Co., Ltd.), white birch AW50, white birch A, white birch P, white birch KL, white birch M, white birch C, carborane, WH2C (manufactured by Nippon Envirochemicals), GM130A, CW130A, CW130AR , CW350AR, GL130A, SG, SGA, SGP (manufactured by Phutamura Chemical), coconut, MAS mark, plum bee mark, plum bee F mark (manufactured by Taihei Chemical Sangyo), CPG, CAL, S80A (manufactured by Mitsubishi Chemical Calgon), etc. Product can be used.
From the viewpoint of improving the color tone of the product, reducing the amount of activated carbon used, and improving the recovery rate, the following are preferable as the activated carbon. The average pore diameter is preferably 0.5 to 10 nm (nanometer), more preferably 1.0 to 9.0 nm, and particularly preferably 2.0 to 8.0 nm. The pore volume is preferably 0.01 to 2.5 mL / g, more preferably 0.1 to 2.0 mL / g, and particularly preferably 0.5 to 1.7 mL / g. The specific surface area is 800~2000m 2 / g, further 900~1600m 2 / g, particularly preferably in the range of 1000~1500m 2 / g. These physical property values are values based on the nitrogen adsorption method.

活性炭は、微小孔径膜による濾過後の溶出液(非重合体カテキン類4%溶液)100質量部に対して0.2〜3.0質量部、さらに0.3〜2.5重量部、特に0.5〜2.0質量部添加するのが好ましい。活性炭の添加量が少なすぎると、カフェインや、色相改善効率が悪くなり、また多すぎるとろ過工程におけるケーク抵抗が大きく、廃棄物が多くなり好ましくない。   Activated carbon is 0.2 to 3.0 parts by weight, more preferably 0.3 to 2.5 parts by weight, especially 100 to 100 parts by weight of the eluate after filtration through a microporous membrane (non-polymer catechins 4% solution). It is preferable to add 0.5 to 2.0 parts by mass. If the amount of activated carbon added is too small, caffeine and hue improvement efficiency will deteriorate, and if it is too large, the cake resistance in the filtration step will be large and waste will increase, which is not preferable.

濾過液と活性炭との接触処理は、バッチ式、カラムによる連続処理等のいずれの方法で行ってもよい。一般には、粉末状の活性炭等を添加、撹拌し、カフェイン等の不純物を選択的に吸着後、ろ過操作により不純物を除去した濾液を得る方法、又は顆粒状の活性炭等を充填したカラムを用いて連続処理により不純物を選択的に吸着する方法等が採用される。活性炭カラムによる連続処理等の方法で行うのがよい。   The contact treatment between the filtrate and activated carbon may be performed by any method such as a batch method or a continuous treatment using a column. In general, powdered activated carbon etc. is added and stirred, and after selectively adsorbing impurities such as caffeine, a method of obtaining a filtrate from which impurities have been removed by filtration operation, or a column packed with granular activated carbon etc. is used. For example, a method of selectively adsorbing impurities by continuous treatment is employed. It is good to carry out by a method such as continuous treatment using an activated carbon column.

濾過液と活性炭との接触処理は、一連の精製操作は10〜60℃、さらに20〜40℃の温度で行うのが好ましい。   The contact treatment between the filtrate and the activated carbon is preferably carried out at a temperature of 10 to 60 ° C. and further 20 to 40 ° C. in a series of purification operations.

本発明によって得られる精製緑茶抽出物は、その固形分中に、非重合体カテキン類を25〜90質量%含有するが、40〜95質量%、更に50〜90質量%、特に55〜80質量%含有するのが好ましい。   The purified green tea extract obtained by the present invention contains 25 to 90% by mass of non-polymer catechins in the solid content, but it is 40 to 95% by mass, more preferably 50 to 90% by mass, particularly 55 to 80% by mass. % Content is preferable.

また、本発明により得られる精製緑茶抽出物中のカテキンガレート、エピカテキンガレート、ガロカテキンガレート及びエピガロカテキンガレートからなるガレート体の全非重合体カテキン類中での割合は、0〜60質量%、更に5〜55質量%であるのが、非重合体カテキン類の苦味低減の点で好ましい。   Moreover, the ratio in the total non-polymer catechins of the gallate body which consists of catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate in the refined green tea extract obtained by this invention is 0-60 mass%. Further, it is preferably 5 to 55% by mass from the viewpoint of reducing the bitterness of non-polymer catechins.

本発明で得られる精製緑茶抽出物中のカフェイン濃度は、非重合体カテキン類に対して、カフェイン/非重合体カテキン類(質量比)=0〜0.15、更に0〜0.1、特に0〜0.05、殊更に0〜0.035であるのが呈味改善の点で好ましい。   The concentration of caffeine in the purified green tea extract obtained in the present invention is such that caffeine / non-polymer catechins (mass ratio) = 0 to 0.15, more preferably 0 to 0.1 relative to non-polymer catechins. In particular, 0 to 0.05, particularly 0 to 0.035 is preferable in terms of improving taste.

また、本発明で得られる精製緑茶抽出物中の没食子酸濃度は、苦味、酸味等の呈味の点から、非重合体カテキン類に対して、没食子酸/非重合体カテキン類(質量比)=0〜0.1、更に好ましくは0〜0.07、特に0〜0.05が好ましい。   The concentration of gallic acid in the purified green tea extract obtained in the present invention is gallic acid / non-polymer catechins (mass ratio) with respect to non-polymer catechins in terms of taste such as bitterness and sourness. = 0 to 0.1, more preferably 0 to 0.07, and particularly preferably 0 to 0.05.

本発明で得られる精製緑茶抽出物としては、固形分中に非重合体カテキン類を25〜90質量%、非重合体カテキンガレート体率0〜60質量%、没食子酸/非重合体カテキン類(質量比)0〜0.1であり、カフェイン/非重合体カテキン類(質量比)が0〜0.15であるものが、呈味改善の点で好ましい。   The purified green tea extract obtained by the present invention includes 25 to 90% by mass of non-polymer catechins in the solid content, 0 to 60% by mass of non-polymer catechin gallate body, gallic acid / non-polymer catechins ( A mass ratio of 0 to 0.1 and a caffeine / non-polymer catechin (mass ratio) of 0 to 0.15 are preferred in terms of taste improvement.

本発明で得られた精製緑茶抽出物はそのままで使用できる。また、減圧濃縮、薄膜濃縮などの方法により溶媒を除去してもよい。また緑茶抽出物の製品形態として粉体が望ましい場合は、噴霧乾燥や凍結乾燥等の方法により粉体化できる。   The purified green tea extract obtained in the present invention can be used as it is. Further, the solvent may be removed by a method such as vacuum concentration or thin film concentration. When powder is desirable as the product form of the green tea extract, it can be pulverized by a method such as spray drying or freeze drying.

本発明で得られた精製緑茶抽出物は容器詰飲料(緑茶飲料、スポーツドリンク、アイソトニック飲料等)に配合できる。使用される容器は一般の飲料と同様にポリエチレンテレフタレートを主成分とする成形容器(いわゆるPETボトル)、金属缶、金属箔やプラスチックフィルムと複合された紙容器、瓶などの通常の形態で提供することができる。ここでいう容器詰飲料とは希釈せずに飲用できるものをいう。   The purified green tea extract obtained in the present invention can be blended into a container-packed beverage (green tea beverage, sports drink, isotonic beverage, etc.). Containers to be used are provided in ordinary forms such as molded containers (so-called PET bottles) mainly composed of polyethylene terephthalate, metal cans, paper containers combined with metal foil or plastic film, bottles, etc., as with general beverages. be able to. The term “packaged beverage” as used herein means a beverage that can be drunk without dilution.

また上記の容器詰飲料は、例えば、金属缶のように容器に充填後、加熱殺菌できる場合にあっては食品衛生法に定められた殺菌条件で製造される。PETボトル、紙容器のようにレトルト殺菌できないものについては、あらかじめ上記と同等の殺菌条件、例えばプレート式熱交換器などで高温短時間殺菌後、一定の温度迄冷却して容器に充填する等の方法が採用される。また無菌下で、充填された容器に別の成分を配合して充填してもよい。   Moreover, said container-packed drink is manufactured on the sterilization conditions prescribed | regulated to the food hygiene law, for example, when it can heat-sterilize after filling a container like a metal can. For PET bottles and paper containers that cannot be sterilized by retort, sterilize under the same conditions as above, for example, after sterilizing at high temperature and short time with a plate heat exchanger, etc. The method is adopted. Moreover, you may mix | blend another component with the filled container under aseptic conditions.

(カテキン、カフェイン及び没食子酸の測定法)
試料溶液をフィルター(0.45μm)で濾過し、島津製作所製、高速液体クロマトグラフ(型式SCL−10AVP)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラムL−カラムTM ODS(4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法で行った。カテキン類の標準品としては、三井農林製のものを使用し、検量線法で定量した。移動相A液は酢酸を0.1mol/L含有の蒸留水溶液、B液は酢酸を0.1mol/L含有のアセトニトリル溶液とし、試料注入量は20μL、UV検出器波長は280nmの条件で行った。
(Measurement method of catechin, caffeine and gallic acid)
The sample solution was filtered with a filter (0.45 μm), and a high performance liquid chromatograph (model SCL-10AVP) manufactured by Shimadzu Corporation was used to pack an octadecyl group-introduced packed column L-column TM ODS (4.6 mmφ × 250 mm). : Chemical Substance Evaluation Research Organization) and a gradient method at a column temperature of 35 ° C. As a standard product of catechins, a product manufactured by Mitsui Norin was used and quantified by a calibration curve method. The mobile phase A solution was a distilled aqueous solution containing 0.1 mol / L of acetic acid, the B solution was an acetonitrile solution containing 0.1 mol / L of acetic acid, the sample injection amount was 20 μL, and the UV detector wavelength was 280 nm. .

(タンナーゼ活性の測定法)
試薬A:pH5.5クエン酸緩衝溶液50mmol:蒸留水800mLにクエン酸10.5gを溶解し、1NのNaOH溶液でpH5.5に調整し、1000mLに希釈する。
試薬B:0.35質量%基質水溶液(タンニン酸):50mLクエン酸緩衝溶液(試薬A)にタンニン酸175mgを溶解する。
試薬C:90vol%エタノール溶液。
測定方法
1.試験管に基質溶液(試薬B)を1.0mL採取し、30℃で5分間保つ。
2.試料溶液0.25mL添加し、15分間30℃で培養する。ブランク溶液は、試料溶液の代わりにクエン酸緩衝溶液(試薬A)を加える。
3.酵素反応を停止するため試料溶液とブランク溶液に5.0mLのエタノール溶液(試薬C)を加える。
4.310nmの吸光度を測定する[試料:As、ブランク:A0]。
次の計算式により活性を計算する。
体積当たりの活性(U/mL)=(As−A0)×20.3×1.0(mL)×1.04×df/(0.71×0.25(mL)×15(min))=ΔA×7.93×df
質量当たりの活性(U/g)=(U/mL)×1/C
20.3:基質溶液(試薬B)の1.0mL中に含まれるタンニン酸のμmol。
0.71:分析条件下での20.3μmolのタンニン酸が完全に加水分解した後の吸光度の変化量、1.04:換算係数、df:希釈係数、C:サンプル(g/mL)中のタンナーゼ濃度。
(Measurement method of tannase activity)
Reagent A: pH 5.5 citrate buffer solution 50 mmol: 10.5 g of citric acid is dissolved in 800 mL of distilled water, adjusted to pH 5.5 with 1N NaOH solution, and diluted to 1000 mL.
Reagent B: 0.35 mass% substrate aqueous solution (tannic acid): 175 mg of tannic acid is dissolved in 50 mL of citrate buffer solution (reagent A).
Reagent C: 90 vol% ethanol solution.
Measuring method 1. Collect 1.0 mL of the substrate solution (reagent B) in a test tube and keep at 30 ° C. for 5 minutes.
2. Add 0.25 mL of sample solution and incubate at 30 ° C. for 15 minutes. In the blank solution, a citrate buffer solution (reagent A) is added instead of the sample solution.
3. Add 5.0 mL of ethanol solution (reagent C) to the sample solution and blank solution to stop the enzyme reaction.
4. Measure absorbance at 310 nm [sample: A s , blank: A 0 ].
The activity is calculated by the following formula.
Activity per volume (U / mL) = (A s −A 0 ) × 20.3 × 1.0 (mL) × 1.04 × df / (0.71 × 0.25 (mL) × 15 (min )) = ΔA × 7.93 × df
Activity per mass (U / g) = (U / mL) × 1 / C
20.3: μmol of tannic acid contained in 1.0 mL of the substrate solution (reagent B).
0.71: Change in absorbance after complete hydrolysis of 20.3 μmol of tannic acid under analytical conditions, 1.04: conversion factor, df: dilution factor, C: in sample (g / mL) Tannase concentration.

(色調の評価)
HITACHIの分光光度計(型式U−2001型)を用い、ガラスセルにサンプル中の非重合体カテキン類の濃度が0.175質量%の水溶液になるようにイオン交換水で希釈して測定した。分析時の分光光度計の測定波長は450nmに設定した。
(Evaluation of color tone)
Using a spectrophotometer of HITACHI (model U-2001 type), measurement was performed by diluting with ion-exchanged water so that the concentration of non-polymer catechins in the sample was 0.175% by mass in a glass cell. The measurement wavelength of the spectrophotometer at the time of analysis was set to 450 nm.

(膜脱色率)
上記色調の評価に基づく方法で測定した「膜濾過後液の色調」を「膜濾過前液の色調(膜未処理液)」で除することにより求める。
(Membrane decolorization rate)
The “color tone of the solution after membrane filtration” measured by the method based on the evaluation of the color tone is divided by the “color tone of the solution before membrane filtration (membrane untreated solution)”.

(精製物の評価)
各実施例で得られた精製茶抽出物を非重合体カテキン類含有率が0.175%[w/v]となるように脱イオン水で希釈し、その40mLを50mLの耐圧製ガラス容器に入れた。そこにアスコルビン酸Naを0.1質量%添加し、5%重炭酸Na水溶液でpHを6.4に調整し、窒素置換を行い、オートクレーブで121℃、10分間加熱滅菌した。その後、評価パネラー5名によって後味についての苦味、酸味及び色相の評価を行った。苦味の評価は硫酸キニーネ法にて行った。
(Evaluation of purified product)
The purified tea extract obtained in each example was diluted with deionized water so that the non-polymer catechins content was 0.175% [w / v], and 40 mL thereof was put into a 50 mL pressure-resistant glass container. I put it in. Thereto was added 0.1% by mass of Na ascorbate, the pH was adjusted to 6.4 with a 5% aqueous sodium bicarbonate solution, nitrogen substitution was performed, and the mixture was sterilized by heating in an autoclave at 121 ° C. for 10 minutes. Then, the evaluation panelists evaluated the bitterness, sourness, and hue of the aftertaste. The bitterness was evaluated by the quinine sulfate method.

(硫酸キニーネ法(等価濃度試験法)による苦味評価)
硫酸キニーネ2水和物を表に記載の苦味強度に対応した濃度に調整した。評価サンプルを試飲した後、標準苦味溶液のどのサンプルと苦味の強さが等しいか判断した。評価パネラー5名によって苦味強度の確認を行った。(参考文献:新版官能検査ハンドブック 日科技連官能検査委員会p448-449、Perception & Psychophysics,5,1696,347-351)
(Evaluation of bitterness by quinine sulfate method (equivalent concentration test method))
Quinine sulfate dihydrate was adjusted to a concentration corresponding to the bitterness intensity described in the table. After tasting the evaluation sample, it was determined which sample of the standard bitterness solution had the same bitterness intensity. The bitterness intensity was confirmed by five evaluation panelists. (Reference: New edition Sensory Test Handbook, Nikkatsu Rensen Sensory Test Committee p448-449, Perception & Psychophysics, 5, 1696, 347-351)

Figure 2009060823
Figure 2009060823

実施例1
タンナーゼ処理した緑茶抽出物316gを4784gのイオン交換水に溶解させ「吸着原料液1」を得る。「吸着原料液1」には非重合体カテキン類1.87質量%が含まれており、非重合体カテキン類組成物のガレート体率は31.3質量%であった。又、カフェイン0.37質量%、没食子酸/非重合体カテキン類(質量比)は0.107であった。茶抽出物の固形分中の非重合体カテキン類30.2質量%であった。
次いで、ステンレスカラム1(内径110mm×高さ230mm、容積2185mL)に合成吸着剤SP−70(三菱化学(株)製)を2039mL充填した。ステンレスカラム2(内径38mm×高さ770mm、278容積mL)にイオン交換樹脂SK1BH(三菱化学(株)製)を814mL充填した。予め両カラム共にSV=5(h-1)で95%(v/v)エタノールを4倍容積量(対充填樹脂)通液後、水を10倍容積量(対充填樹脂)通液して洗浄した。その後、得られた「吸着原料液1」5098g(2.5倍容積対合成吸着剤)をSV=1(h-1)でカラム1に通液し透過液は廃棄した。次いでSV=1(h-1)で2039mL(1倍容積対合成吸着剤)のイオン交換水で洗浄した。水洗後、0.4質量%水酸化ナトリウム水溶液(pH11.6)をSV=3(h-1)で15293mL通液した(7.5倍容積対合成吸着剤)。溶出液は連続でカラム2に通液して、脱イオンを行い、非重合体カテキン類組成物14720g(pH3.8)の「樹脂処理品1」を得た。この抽出物中には非重合体カテキン類0.50質量%(濁度18NTU)が含まれており、非重合体カテキン類組成物のガレート体率は39.2質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.008、400nmにおける色調は0.65であった。茶抽出物の固形分中の非重合体カテキン類66.1質量%であった。
次いで、「樹脂処理品1」をそのまま限外濾過膜(ACP−0013 分画分子量13000)で濾過させ、「膜処理品1」を得た。この液の非重合体カテキン類組成物のガレート体率は38.4質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.008、400nmにおける色調は0.46であった。
次いで、「膜処理品1」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に活性炭(フタムラ化学製 SGP)0.50gに接触させた後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物1」を得た。精製物の色調(OD450nm 0.09)は良好で、苦味・酸味が少なかった。
Example 1
316 g of tannase-treated green tea extract is dissolved in 4784 g of ion-exchanged water to obtain “adsorption raw material liquid 1”. “Adsorption raw material liquid 1” contained 1.87% by mass of non-polymer catechins, and the gallate content of the non-polymer catechins composition was 31.3% by mass. Moreover, 0.37 mass% of caffeine and gallic acid / non-polymer catechins (mass ratio) were 0.107. It was 30.2 mass% of non-polymer catechins in the solid content of the tea extract.
Next, 2039 mL of a synthetic adsorbent SP-70 (manufactured by Mitsubishi Chemical Corporation) was packed in a stainless steel column 1 (inner diameter 110 mm × height 230 mm, volume 2185 mL). A stainless steel column 2 (inner diameter 38 mm × height 770 mm, 278 volume mL) was charged with 814 mL of ion exchange resin SK1BH (manufactured by Mitsubishi Chemical Corporation). In both columns, SV = 5 (h −1 ) and 95% (v / v) ethanol through 4 times volume (vs. packed resin), and then 10 times volume (vs. filled resin) of water. Washed. Thereafter, 5098 g (2.5 times volume vs. synthetic adsorbent) of the obtained “adsorption raw material liquid 1” was passed through the column 1 at SV = 1 (h −1 ), and the permeate was discarded. Then, it was washed with 2039 mL (1 volume vs. synthetic adsorbent) of ion exchange water at SV = 1 (h −1 ). After washing with water, 15293 mL of 0.4 mass% aqueous sodium hydroxide solution (pH 11.6) was passed at SV = 3 (h −1 ) (7.5 times volume vs. synthetic adsorbent). The eluate was continuously passed through the column 2 and deionized to obtain “resin-treated product 1” of 14720 g (pH 3.8) of a non-polymer catechin composition. This extract contained 0.50% by mass of non-polymer catechins (turbidity of 18 NTU), and the gallate content of the non-polymer catechins composition was 39.2% by mass. Moreover, 0 mass% of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.008, and the color tone at 400 nm was 0.65. It was 66.1% by mass of non-polymer catechins in the solid content of the tea extract.
Next, “resin-treated product 1” was directly filtered through an ultrafiltration membrane (ACP-0013 molecular weight cut off 13000) to obtain “membrane-treated product 1”. The gallate content of the non-polymer catechin composition in this liquid was 38.4% by mass. Further, 0% by mass of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.008, and the color tone at 400 nm was 0.46.
Next, after adjusting the concentration and dilution of “membrane treated product 1” to 4.0% by weight of catechin and 20% of ethanol, the resulting solution was brought into contact with 0.50 g of activated carbon (SGP manufactured by Phthamura Chemical Co., Ltd.) Ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “Purified Green Tea Extract 1”. The color tone (OD450nm 0.09) of the purified product was good, and there was little bitterness and sourness.

実施例2
緑茶抽出物32kgを968kgの水道水に溶解させ「吸着原料液2」を得る。「吸着原料液2」には非重合体カテキン類0.99質量%が含まれており、非重合体カテキン類組成物のガレート体率は54.4質量%であった。又、カフェイン0.17質量%、没食子酸/非重合体カテキン類(質量比)0.022であった。茶抽出物の固形分中の非重合体カテキン類34.3質量%であった。
次いで、ステンレスカラム3(内径700mm×高さ1358mm、容積524L)に合成吸着剤SP−70(三菱化学(株)製)を250L充填した。ステンレスカラム4(内径400mm×高さ1160mm、容積131L)にイオン交換樹脂SK1BH(三菱化学(株)製)を75L充填した。予め両カラム共にSV=1.5(h-1)で水を5倍容積量(対充填樹脂)通液し、95(v/v)エタノールを10倍容積量(対充填樹脂)通液後、水を10倍容積量(対充填樹脂)通液して洗浄した。その後、得られた「吸着原料液2」1000kg(4.0倍容積対合成吸着剤)をSV=1(h-1)でカラム1に通液し透過液は廃棄した。次いでSV=1(h-1)で250L(1倍容積対合成吸着剤)の水道水で洗浄した。水洗後、0.1質量%水酸化ナトリウム水溶液(pH12.6)をSV=3(h-1)で2500L通液した(10倍容積対合成吸着剤)。溶出液は連続でカラム4に通液して、脱イオンを行い、非重合体カテキン類組成物2500kg(pH1.2)の「樹脂処理品2」を得た。この抽出物中には非重合体カテキン類0.41質量%が含まれており、非重合体カテキン類組成物のガレート体率は52.7質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.004、茶抽出物の固形分中の非重合体カテキン類67.6質量%であった。
更に、「樹脂処理品2」を減圧濃縮(2.6kPa、40℃)で非重合体カテキン類濃度6.71重量%(濁度542NTU)濃縮処理を行い、次いで、遠心分離(8000rpm、15℃、15分間)を行い、懸濁物を固液分離(濁度38NTU/OD450nm 0.20)して、「緑茶抽出物清澄液1」を得る。
次いで、「緑茶抽出物清澄液1」をイオン交換水でカテキン濃度を0.46重量%に希釈を行った後、限外濾過膜(ACP−0013 分画分子量13000)で濾過させ、「膜処理品2」を得た。この液の非重合体カテキン類組成物のガレート体率は50.5質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.004、450nmにおける色調は0.12であった。
次いで、「膜処理品2」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に対して活性炭(フタムラ化学製 SGP)0.42gに接触させ後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物2」を得た。精製物の色調(OD450nm 0.07)は良好で、酸味が少なかった。
Example 2
32 kg of green tea extract is dissolved in 968 kg of tap water to obtain “adsorption raw material liquid 2”. “Adsorption raw material liquid 2” contained 0.99% by mass of non-polymer catechins, and the gallate content of the non-polymer catechins composition was 54.4% by mass. Moreover, they were 0.17 mass% of caffeine and 0.022 gallic acid / non-polymer catechins (mass ratio). It was 34.3 mass% of non-polymer catechins in the solid content of the tea extract.
Next, 250 L of a synthetic adsorbent SP-70 (manufactured by Mitsubishi Chemical Corporation) was packed in a stainless steel column 3 (inner diameter 700 mm × height 1358 mm, volume 524 L). A stainless steel column 4 (inner diameter 400 mm × height 1160 mm, volume 131 L) was charged with 75 L of ion exchange resin SK1BH (manufactured by Mitsubishi Chemical Corporation). In both columns, after SV = 1.5 (h −1 ), water was passed 5 times volume (vs. packed resin) and 95 (v / v) ethanol was passed 10 times volume (vs. filled resin). Then, water was washed by passing 10 times volume (vs. filled resin). Thereafter, 1000 kg (4.0 times volume vs. synthetic adsorbent) of the obtained “adsorption raw material liquid 2” was passed through the column 1 at SV = 1 (h −1 ), and the permeate was discarded. Then, it was washed with 250 L (1 volume vs. synthetic adsorbent) of tap water at SV = 1 (h −1 ). After rinsing with water, 2500 L of 0.1 mass% sodium hydroxide aqueous solution (pH 12.6) was passed at SV = 3 (h −1 ) (10 times volume vs. synthetic adsorbent). The eluate was continuously passed through the column 4 and deionized to obtain “resin-treated product 2” of 2500 kg (pH 1.2) of the non-polymer catechin composition. This extract contained 0.41% by mass of non-polymer catechins, and the gallate content of the non-polymer catechins composition was 52.7% by mass. The content of caffeine was 0% by mass, gallic acid / non-polymer catechins (mass ratio) were 0.004, and the non-polymer catechins in the solid content of the tea extract were 67.6% by mass.
Furthermore, “resin-treated product 2” was subjected to concentration treatment under reduced pressure (2.6 kPa, 40 ° C.) with a non-polymer catechin concentration of 6.71% by weight (turbidity 542 NTU), and then centrifuged (8000 rpm, 15 ° C.). 15 minutes), and the suspension is subjected to solid-liquid separation (turbidity 38 NTU / OD450 nm 0.20) to obtain “green tea extract clarified liquid 1”.
Next, the “green tea extract clarified liquid 1” was diluted with ion-exchanged water to a catechin concentration of 0.46% by weight and then filtered through an ultrafiltration membrane (ACP-0013 molecular weight cut off 13000). Product 2 "was obtained. The gallate content of the non-polymer catechin composition in this liquid was 50.5% by mass. Moreover, 0 mass% of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.004, and the color tone at 450 nm was 0.12.
Next, after “Membrane treated product 2” was concentrated and diluted to 4.0% by weight of catechin and 20% of ethanol, and adjusted to 30 g of ethanol, 0.42 g of activated carbon (SGP manufactured by Phthamura Chemical Co., Ltd.) was contacted The ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “Purified Green Tea Extract 2”. The color tone (OD450nm 0.07) of the purified product was good and the acidity was low.

実施例3
実施例2で得られた「緑茶抽出物清澄液1」をイオン交換水でカテキン濃度を1.86重量%に希釈を行った後、限外濾過膜(ACP−0013 分画分子量13000)で濾過させ、「膜処理品3」を得た。この液の非重合体カテキン類組成物のガレート体率は50.9質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.003、450nmにおける色調は0.16であった。
次いで、「膜処理品3」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に対して活性炭(フタムラ化学製 SGP)0.55gに接触させ後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物3」を得た。精製物の色調(OD450nm 0.07)は良好で、酸味が少なかった。
Example 3
The “green tea extract clarified liquid 1” obtained in Example 2 was diluted with ion-exchanged water to a catechin concentration of 1.86% by weight, and then filtered through an ultrafiltration membrane (ACP-0013 molecular weight cut off 13,000). To obtain “Membrane treated product 3”. The gallate content of the non-polymer catechin composition in this liquid was 50.9% by mass. Moreover, 0 mass% of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.003, and the color tone at 450 nm was 0.16.
Next, after concentrating and diluting “Membrane treated product 3” to 4.0% by weight of catechin and 20% ethanol as a solvent, 30 g of the adjustment liquid was brought into contact with 0.55 g of activated carbon (SGP manufactured by Phthamura Chemical). Then, ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “Purified Green Tea Extract 3”. The color tone (OD450nm 0.07) of the purified product was good and the acidity was low.

実施例4
実施例2で得られた「緑茶抽出物清澄液1」をイオン交換水でカテキン濃度を0.49重量%に希釈を行った後、限外濾過膜(SEP−0013 分画分子量3000)で濾過させ、「膜処理品4」を得た。この液の非重合体カテキン類組成物のガレート体率は50.7質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.003、450nmにおける色調は0.14であった。
次いで、「膜処理品4」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に対して活性炭(フタムラ化学製 SGP)0.44gに接触させ後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物4」を得た。精製物の色調(OD450nm 0.07)は良好で、酸味が少なかった。
Example 4
The “green tea extract clarified liquid 1” obtained in Example 2 was diluted with ion-exchanged water to a catechin concentration of 0.49% by weight, and then filtered through an ultrafiltration membrane (SEP-0013 molecular weight cut off 3000). To obtain “Film-treated product 4”. The gallate content of the non-polymer catechin composition in this liquid was 50.7% by mass. Moreover, 0 mass% of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.003, and the color tone at 450 nm was 0.14.
Next, after “Membrane treated product 4” was concentrated and diluted to 4.0% by weight of catechin and 20% of the solvent, ethanol was contacted with 0.44 g of activated carbon (SGP manufactured by Phthamura Chemical Co.) with respect to 30 g of the adjustment liquid. Then, ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “Purified Green Tea Extract 4”. The color tone (OD450nm 0.07) of the purified product was good and the acidity was low.

実施例5
実施例2で得られた「緑茶抽出物清澄液1」をイオン交換水でカテキン濃度を0.49重量%に希釈を行った後、逆浸透膜(NTR−7410HG−S2F 分画分子量500)で濾過させ、「膜処理品5」を得た。この液の非重合体カテキン類組成物のガレート体率は46.7質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.005、450nmにおける色調は0.13であった。
次いで、「膜処理品5」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に対して活性炭(フタムラ化学製 SGP)0.45gに接触させ後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物5」を得た。精製物の色調(OD450nm 0.07)は良好で、苦味が若干少なく、酸味が少なかった。
Example 5
The “green tea extract clarified liquid 1” obtained in Example 2 was diluted with ion exchange water to a catechin concentration of 0.49% by weight, and then reverse osmosis membrane (NTR-7410HG-S2F molecular weight cut off 500). Filtration was performed to obtain “Membrane treated product 5”. The gallate content of the non-polymer catechin composition in this liquid was 46.7% by mass. Further, 0% by mass of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.005, and the color tone at 450 nm was 0.13.
Next, after “Membrane treated product 5” was concentrated and diluted to 4.0% by weight of catechin and 20% of ethanol, and adjusted to 30 g of ethanol, 0.45 g of activated carbon (SGP manufactured by Phthamura Chemical Co., Ltd.) was brought into contact with 30 g of the adjustment liquid. Then, ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “Purified Green Tea Extract 5”. The color tone (OD450nm 0.07) of the purified product was good, the bitterness was slightly less, and the acidity was less.

比較例1
実施例2で得られた「緑茶抽出物清澄液1」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に対して活性炭(フタムラ化学製 SGP)0.71gに接触させ後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物6」を得た。精製物の色調(OD450nm 0.07)は良好で、酸味が少ないが、活性炭使用量が多く、廃棄物量が増加する。
Comparative Example 1
After concentrating and diluting “green tea extract clarified liquid 1” obtained in Example 2 to 4.0% by weight of catechin and adjusting the solvent to 20% of ethanol, activated carbon (SGP manufactured by Phthamura Chemical Co., Ltd.) was added to 30 g of the adjusted liquid. After contacting with 0.71 g, ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “purified green tea extract 6”. The color tone (OD450nm 0.07) of the purified product is good and the acidity is small, but the amount of activated carbon used is large and the amount of waste increases.

比較例2
実施例2で得られた「樹脂処理品2」を減圧濃縮(2.6kPa、40℃)で非重合体カテキン類濃度5.41重量%(濁度436NTU)濃縮処理を行い、次いで、遠心分離(8000rpm、15℃、15分間)を行い、懸濁物を固液分離(濁度38NTU/OD450nm 0.19)して、「緑茶抽出物清澄液2」を得る。
次いで、「緑茶抽出物清澄液2」を限外濾過膜(ACP−0013 分画分子量13000)で濾過させ、「膜処理品7」を得た。この液の非重合体カテキン類組成物のガレート体率は51.0質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.003、450nmにおける色調は0.18であった。
次いで、「膜処理品7」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に対して活性炭(フタムラ化学製 SGP)0.67gに接触させ後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物7」を得た。精製物の色調(OD450nm 0.07)は良好で、酸味が少ないが、活性炭使用量が多く、廃棄物量が増加する。
Comparative Example 2
“Resin-treated product 2” obtained in Example 2 was subjected to concentration treatment under reduced pressure (2.6 kPa, 40 ° C.) with a non-polymer catechin concentration of 5.41% by weight (turbidity 436 NTU), and then centrifuged. (8000 rpm, 15 ° C., 15 minutes), and the suspension is subjected to solid-liquid separation (turbidity 38 NTU / OD450 nm 0.19) to obtain “green tea extract clarified liquid 2”.
Next, “green tea extract clarified liquid 2” was filtered through an ultrafiltration membrane (ACP-0013 molecular weight cut off 13000) to obtain “membrane treated product 7”. The gallate content of the non-polymer catechin composition in this liquid was 51.0% by mass. Moreover, 0 mass% of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.003, and the color tone at 450 nm was 0.18.
Next, after “Membrane treated product 7” was concentrated and diluted to 4.0% by weight of catechin and 20% of ethanol, and adjusted to 30 g of ethanol, 0.67 g of activated carbon (SGP manufactured by Phthamura Chemical Co., Ltd.) was brought into contact with 30 g of the adjustment liquid. Then, ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “Purified Green Tea Extract 7”. The color tone (OD450nm 0.07) of the purified product is good and the acidity is small, but the amount of activated carbon used is large and the amount of waste increases.

比較例3
実施例1で得られた「樹脂処理品1」を減圧濃縮(2.6kPa、40℃)で非重合体カテキン類濃度6.56重量%(濁度325NTU)濃縮処理を行い、「緑茶抽出物濃縮液」を得る。
次いで、「緑茶抽出物濃縮液」をイオン交換水でカテキン濃度を0.5重量%に希釈を行った後、精密濾過膜(精密濾過膜 平膜孔径0.2μm)で濾過させ、「清澄液8」を得た。
この液の非重合体カテキン類組成物のガレート体率は39.0質量%であった。又、カフェイン0質量%、没食子酸/非重合体カテキン類(質量比)は0.006、450nmにおける色調は0.52であった。
次いで、「清澄液8」をカテキン4.0重量%、溶媒をエタノール20%に濃縮及び希釈調整した後、30gの調整液に対して活性炭(フタムラ化学製 SGP)0.60gに接触させ後、減圧濃縮(2.6kPa、40℃)によりエタノールを留去させ、「精製緑茶抽出物8」を得た。精製物の色調(OD450nm 0.09)は良好で、酸味が少ないが、活性炭使用量が多く、廃棄物量が増加する。
Comparative Example 3
The “resin-treated product 1” obtained in Example 1 was subjected to concentration treatment under reduced pressure (2.6 kPa, 40 ° C.) with a non-polymer catechin concentration of 6.56% by weight (turbidity: 325 NTU). A concentrate is obtained.
Next, the “green tea extract concentrate” was diluted with ion-exchanged water to a catechin concentration of 0.5% by weight and then filtered through a microfiltration membrane (microfiltration membrane, flat membrane pore size 0.2 μm). 8 ”was obtained.
The gallate content of the non-polymer catechin composition in this liquid was 39.0% by mass. Moreover, 0 mass% of caffeine, gallic acid / non-polymer catechins (mass ratio) were 0.006, and the color tone at 450 nm was 0.52.
Next, after concentrating and diluting the “clarified liquid 8” to 4.0% by weight of catechin and adjusting the solvent to 20% of ethanol, 30 g of the adjusted liquid was contacted with 0.60 g of activated carbon (SGP manufactured by Phthamura Chemical), Ethanol was distilled off by concentration under reduced pressure (2.6 kPa, 40 ° C.) to obtain “Purified Green Tea Extract 8”. The refined product has a good color tone (OD450nm 0.09) and has a low acidity, but the amount of activated carbon used is large and the amount of waste increases.

実施例1〜6、比較例1〜3記載の緑茶抽出物を食品衛生法に基づく殺菌処理をし、風味を評価した。その結果も表2に示す。   The green tea extracts described in Examples 1 to 6 and Comparative Examples 1 to 3 were sterilized based on the Food Sanitation Law, and the flavor was evaluated. The results are also shown in Table 2.

実施例1〜5では処理前後における非重合体カテキン類の回収率が高く、カフェイン濃度が低減し、かつ色相の改善した緑茶抽出物を少量の活性炭を使用することにより得られ、比較例1では、膜濾過を行わない点から、活性炭処理前の色相が濃く、比較例2では、高濃度のまま微小孔径膜による濾過を行う点から、膜脱色率が低く、比較例3では、膜脱色率が低く、比較例1〜3では活性炭による脱色は可能であるものの、多量の活性炭が必要となり、廃棄物量が多くなる。   In Examples 1 to 5, a green tea extract having a high recovery rate of non-polymer catechins before and after the treatment, a reduced caffeine concentration, and an improved hue was obtained by using a small amount of activated carbon. Comparative Example 1 Then, the hue before activated carbon treatment is dark because no membrane filtration is performed, and in Comparative Example 2, the membrane decolorization rate is low from the point of performing filtration through a microporous membrane while maintaining a high concentration. Although the rate is low and decolorization with activated carbon is possible in Comparative Examples 1 to 3, a large amount of activated carbon is required and the amount of waste increases.

Figure 2009060823
Figure 2009060823

Claims (5)

緑茶抽出物を合成吸着剤に吸着させ、合成吸着剤に塩基性水溶液を接触させて非重合体カテキン類を溶出させた後、溶出液のpHを7以下に調整し、次いで非重合体カテキン類濃度が0.1〜4.0質量%に調整した溶出液を微小孔径膜で濾過し、濾液を活性炭と接触させる、緑茶抽出物の固形分に対して非重合体カテキン類を25〜90質量%含有する精製茶抽出物を得る、精製茶抽出物の製造方法。   The green tea extract is adsorbed on a synthetic adsorbent, and a basic aqueous solution is contacted with the synthetic adsorbent to elute non-polymer catechins. Then, the pH of the eluate is adjusted to 7 or less, and then the non-polymer catechins are obtained. The eluate adjusted to a concentration of 0.1 to 4.0% by mass is filtered through a microporous membrane, and the filtrate is brought into contact with activated carbon. The manufacturing method of the refined tea extract which obtains the refined tea extract containing%. 吸着工程終了後、合成吸着剤を水又は有機溶媒水溶液で洗浄し、次いで合成吸着剤に塩基性水溶液を接触させる請求項1記載の製造法。   The method according to claim 1, wherein after completion of the adsorption step, the synthetic adsorbent is washed with water or an organic solvent aqueous solution, and then the basic aqueous solution is contacted with the synthetic adsorbent. 微小孔径膜が限外濾過膜又は逆浸透膜である請求項1又は2記載の製造法。   The production method according to claim 1 or 2, wherein the microporous membrane is an ultrafiltration membrane or a reverse osmosis membrane. 溶出液のpH調整終了後、濃縮し、次いで析出懸濁物を固液分離除去した上澄み液を希釈して微小孔径膜の濾過に付す請求項1〜3のいずれか1項記載の製造法。   The production method according to any one of claims 1 to 3, wherein after the pH adjustment of the eluate is completed, the supernatant liquid obtained by concentrating and then separating and removing the precipitate suspension is diluted and subjected to filtration of a microporous membrane. 緑茶抽出物が、加水分解処理して得られるものである請求項1〜4のいずれか1項記載の製造方法。   The method according to any one of claims 1 to 4, wherein the green tea extract is obtained by hydrolysis treatment.
JP2007230463A 2007-09-05 2007-09-05 Method for producing purified green tea extract Pending JP2009060823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230463A JP2009060823A (en) 2007-09-05 2007-09-05 Method for producing purified green tea extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230463A JP2009060823A (en) 2007-09-05 2007-09-05 Method for producing purified green tea extract

Publications (1)

Publication Number Publication Date
JP2009060823A true JP2009060823A (en) 2009-03-26

Family

ID=40556023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230463A Pending JP2009060823A (en) 2007-09-05 2007-09-05 Method for producing purified green tea extract

Country Status (1)

Country Link
JP (1) JP2009060823A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060824A (en) * 2007-09-05 2009-03-26 Kao Corp Method for producing purified green tea extract
JP2011015657A (en) * 2009-07-10 2011-01-27 Kao Corp Method for producing purified tea extract
JP2012115231A (en) * 2010-12-03 2012-06-21 Kao Corp Method for producing purified green tea extract
JP2012115229A (en) * 2010-12-03 2012-06-21 Kao Corp Purified tea extract
JP2013138635A (en) * 2011-12-28 2013-07-18 Kao Corp Green tea extract
JP2015080471A (en) * 2013-10-24 2015-04-27 キリンビバレッジ株式会社 Method for producing beverage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060824A (en) * 2007-09-05 2009-03-26 Kao Corp Method for producing purified green tea extract
JP2011015657A (en) * 2009-07-10 2011-01-27 Kao Corp Method for producing purified tea extract
JP2012115231A (en) * 2010-12-03 2012-06-21 Kao Corp Method for producing purified green tea extract
JP2012115229A (en) * 2010-12-03 2012-06-21 Kao Corp Purified tea extract
JP2013138635A (en) * 2011-12-28 2013-07-18 Kao Corp Green tea extract
JP2015080471A (en) * 2013-10-24 2015-04-27 キリンビバレッジ株式会社 Method for producing beverage

Similar Documents

Publication Publication Date Title
JP4902655B2 (en) Tea extract
JP5517412B2 (en) Purified green tea extract
KR101436645B1 (en) Process for producing purified tea extract
JP4244230B2 (en) Method for producing purified tea extract
JP4977523B2 (en) Containerized tea beverage
JP5081028B2 (en) Method for producing purified green tea extract containing non-polymer catechins
JP4242908B2 (en) Method for producing purified tea extract
JP4327707B2 (en) Method for producing non-polymer catechins composition
JP2009060823A (en) Method for producing purified green tea extract
JP5162594B2 (en) Method for producing purified tea extract
JP4927137B2 (en) Tea extract
JP5336340B2 (en) Method for producing purified tea extract
JP4242877B2 (en) Production method of green tea extract
JP4866815B2 (en) Method for producing purified green tea extract
JP4242891B2 (en) Method for producing purified tea extract
JP5427499B2 (en) Method for producing purified tea extract
JP4751113B2 (en) Method for producing non-polymer catechins composition
JP5480940B2 (en) Method for producing purified green tea extract containing non-polymer catechins
JP5307649B2 (en) Method for producing purified tea extract