JP2009059988A - 電気光学装置用基板及び電気光学装置、並びに電気光学装置用基板の製造方法 - Google Patents

電気光学装置用基板及び電気光学装置、並びに電気光学装置用基板の製造方法 Download PDF

Info

Publication number
JP2009059988A
JP2009059988A JP2007227381A JP2007227381A JP2009059988A JP 2009059988 A JP2009059988 A JP 2009059988A JP 2007227381 A JP2007227381 A JP 2007227381A JP 2007227381 A JP2007227381 A JP 2007227381A JP 2009059988 A JP2009059988 A JP 2009059988A
Authority
JP
Japan
Prior art keywords
substrate
along
electro
liquid crystal
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007227381A
Other languages
English (en)
Inventor
Ryusuke Amano
隆祐 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007227381A priority Critical patent/JP2009059988A/ja
Publication of JP2009059988A publication Critical patent/JP2009059988A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】液晶装置等の電気光学装置を構成する電気光学装置用基板のサイズを所望のサイズに形成する。
【解決手段】液晶装置1における画像表示面において、画像表示領域10aは、X方向及びY方向の夫々に沿って一定のピッチで配列された複数の画素PXから構成されている。TFTアレイ基板10上における画像表示領域10aに重なる画素回路形成領域10bのうち非素子形成領域425によって互いに隔てられた複数の素子形成領域401領域に、複数の画素PXの夫々に対応するトランジスタ素子Trが形成されている。
【選択図】図13

Description

本発明は、例えば、レーザ光等のエネルギービームをシリコン層等の半導体層に照射することによって形成されたポリシリコン層等の多結晶化部分を活性層として用いる画素スイッチング用TFTを備えた電気光学装置用基板、及びそのような電気光学装置用基板を備えた電気光学装置、並びに電気光学装置用基板の製造方法の技術分野に関する。
この種の基板の製造方法の一例では、ガラス基板上に形成されたシリコン層に線状のレーザ光を照射することによって当該シリコン層からポリシリコン層を形成し、当該ポリシリコン層を活性層として用いた画素スイッチング用TFTによって画素部を駆動可能なアクティブマトリクス基板の製造方法が開示されている(例えば、特許文献1参照。)。特許文献1に開示された技術によれば、複数の線状レーザ光のような複数の線状エネルギービームが相互に重なる領域、線状エネルギービームが照射されない領域、及び複数の線状エネルギービームの夫々が均一な照射強度で照射された領域の夫々では、照射強度の違いに応じて互いに結晶性が異なるため、線状エネルギービームが照射されたシリコン層のうち、複数の線状エネルギービームが相互に重なる領域と、線状エネルギービームが照射されない領域との夫々に延びる部分は、TFT等のトランジスタ素子の活性層として使用可能な程度に結晶化が均一、且つ十分に進んでいない。特許文献1に開示された技術によれば、基板上に設けられるトランジスタ素子のレイアウトに合わせて、基板上のシリコン層に選択的に線状エネルギービームが照射されている。より具体的には、線状エネルギービームの照射強度が均一である範囲でのみ半導体層が均一に多結晶化されるため、TFT等のトランジスタ素子の活性層として使用可能な多結晶部分が基板上においてトランジスタ素子が配置されるべき領域に形成されるように、即ち、画素スイッチング用TFT、及び周辺駆動回路の夫々が形成される領域に照射強度が均一なビーム部分が照射されるように、照射領域が選択されて線状エネルギービームが照射される。
特開2002−164548号公報
しかしながら、基板上に形成された半導体層を多結晶化することを目的として複数の線状エネルギービームをこれらエネルギービームの長軸方向に沿って相互にずらして半導体層に照射した場合、より具体的には、基板及び当該基板上に形成されたシリコン層等の半導体層からなる大型のマザー基板に線条エネルギービームを照射することによって、画素スイッチング用TFTの活性層となる多結晶層を形成する場合、画素スイッチング用TFT等のトランジスタ素子の活性層として使用可能な多結晶化部分は、線状エネルギービームの長軸方向に沿って照射強度が均一な範囲内で一様に多結晶化された部分に制限されてしまう。
より具体的には、例えば、線状エネルギービームの長軸方向に沿って当該エネルギービームの端の部分に相当するビーム部分であって、当該エネルギービームの外側に向かって照射強度が裾を引いて低下するビーム部分が照射された半導体部分、及びエネルギービームが全く照射されない半導体部分の夫々は、活性層としての使用に耐えうる程度の結晶性を有していない。したがって、基板上の表示領域を構成する複数の画素毎について当該画素に重なる領域に画素スイッチング用TFTを形成するように基板上における画素スイッチング用TFTのレイアウトを設計した場合、TFT等のトランジスタ素子の活性層として使用可能な多結晶化部分を形成可能な領域内、即ち、線状エネルギービームの照射強度が均一な範囲内を最大のサイズとして一枚の電気光学装置用基板を形成できるだけである。
このため、線状エネルギービームの照射強度が不均一、或いはエネルギービームが全く照射されていない領域を超えて各画素に対応する画素スイッチング用TFT等のトランジスタ素子を形成し、一枚の電気光学装置用基板を製造すること、或いは電気光学装置における表示領域のサイズに応じて電気光学装置用基板のサイズを所望のサイズに形成することは技術的に困難である。
したがって、半導体層に照射される線状エネルギービームの照射強度が当該エネルギービームの長軸に沿って均一になる範囲を広げない限り、一枚の大型のマザー基板から製造可能な電気光学装置用基板のサイズを大きくすることは困難であるうえ、電気光学装置の設計に応じて大型のマザー基板から所望のサイズの電気光学装置用基板を製造することは困難である。
よって、本発明は上記問題点等に鑑みてなされたものであり、例えば、半導体層を多結晶化する際に照射される線状エネルギービームのうち照射強度が均一なビーム部分のサイズに制限されることなく、より大きなサイズに、或いは所望のサイズに形成可能な電気光学装置基板、及びそのような電気光学装置用基板を備えた電気光学装置、並びにこのような電気光学装置用基板を製造可能な電気光学装置用基板の製造方法を提供することを課題とする。
本発明に係る電気光学装置用基板は上記課題を解決するために、基板と、前記基板上の表示領域を構成し、且つ前記基板上の一の方向に沿って第1ピッチで配列される複数の画素の夫々に各々設けられており、前記複数の画素の夫々に対応して前記基板上に設けられる複数の表示素子を各々駆動する複数の駆動電極と、前記一の方向に沿った長軸を各々有し、且つ前記一の方向に沿って相互にずらして前記基板上の半導体層に照射された複数の線状エネルギービームのうち前記一の方向に沿って各々の照射強度が均一である複数のビーム部分の夫々によって前記半導体層を多結晶化してなる複数の多結晶化部分の夫々を活性層として各々用い、且つ前記複数の駆動電極の夫々に各々電気的に接続されており、前記複数の表示素子の夫々の駆動を各々制御する複数のトランジスタ素子とを備える。
本発明に係る電気光学装置用基板によれば、「表示素子」は、例えば、EL素子等の自発光素子、或いは光を変調する液晶素子等の光学素子である。当該電気光学装置用基板を有する電気光学装置では、複数の駆動電極の夫々を介して複数の表示素子の各々が駆動されることによって、当該駆動に応じた画像を表示領域に表示可能である。このような駆動電極は、例えば、「表示素子」が液晶素子である場合には、画像信号線を介してデータ信号が供給される画素電極であり、「表示素子」がEL素子等の自発光素子である場合には、駆動電流を当該自発光素子の発光層に供給するために発光層に電気的に接続された電流供給電極である。
複数の画素の夫々に各々設けられた複数の表示素子は、当該電気光学装置用基板を含んで電気光学装置が組み上げられた状態において、基板上の一の方向に沿って第1ピッチで配列される複数の画素に対応して設けられているため、複数の駆動電極は、基板上において複数の表示素子の配列パターンと同様に基板上の表示領域に配列されている。より具体的には、複数の駆動電極は、複数の画素と同様に、一の方向に沿って第1ピッチで配列されている。尚、複数の画素は、例えば、基板上において一の方向、及び一の方向に交わる他の方向に沿って配列されることによって、2次元的に画像を表示可能な表示領域を構成する。
当該電気光学装置用基板の製造時において、複数の線状エネルギービームの夫々は、基板上の一の方向に沿った長軸を各々有しており、一の方向に沿って相互にずらして基板上の半導体層に同時に、或いは相前後して照射される。加えて、このような複数の線状エネルギービームの夫々は、例えば、基板上において、一の方向に交わる他の方向に沿って走査されながら、或いは順次照射領域をずらしながら半導体層に面状に照射される。その結果、半導体層のうち線状エネルギービームが照射された部分が線状エネルギービームの照射エネルギーによって多結晶化される。より具体的には、例えば、シリコン層からなる半導体層のうち線状エネルギービームが照射された部分が、ポリシリコン層に結晶化される。
ここで、半導体層に照射される複数の線状エネルギービームの夫々の照射強度は、基板上においてこれら線状エネルギービームの長軸が延びる一の方向に沿って必ずしも均一にならない。より具体的には、例えば、一の方向に沿って照射される線状のレーザ光等の線状エネルギービームの両端では、エネルギービームの照射強度が一の方向に沿って当該エネルギービームの外側に向かって裾を引くように低下する。半導体層のうち当該照射強度が裾を引いて低下するビーム部分が照射された部分は、活性層としての使用に耐えうる程度に十分に結晶化されないため、線状エネルギービームの両端において照射強度が裾を引いて低下するビーム部分と、これら両端に挟まれ、且つ照射強度が均一であるビーム部分とでは、半導体層のうちこれらビーム部分の夫々によって多結晶化された部分の結晶性が互いに異なる。例えば、半導体層のうち複数の線状エネルギービームのうち照射強度が一の方向に沿って各々均一である複数のビーム部分が照射されることによって半導体層を多結晶化してなる複数の多結晶化部分の夫々は、トランジスタ素子の活性層として使用可能な程度に正常に、且つ均一に成長した結晶粒からなる多結晶化部分になる。
また、半導体層のうち照射強度が各々不均一であるビーム部分が照射されることによって結晶化された部分は、活性層として使用可能な程度に均一な結晶化が進んでいない部分となる。半導体層のうち一の方向に沿って線状エネルギービームがまったく照射されなかった部分は、多結晶化が全く進んでいないため、活性層として用いられない。
ここで、「照射強度が一の方向に沿って各々均一である」とは、一本の線状エネルギービームに注目した場合に、当該線状エネルギービームの任意の部分の照射強度と、一の方向に沿って当該任意の部分の前後に位置する夫々の部分における照射強度とが、多結晶部分を活性層として使用可能な程度に相互に揃っていることをいう。したがって、一の方向に沿って線状エネルギービームの端を占めるビーム部分、即ち当該エネルギービームの外側に向かって裾を引いて照射強度が低下するビーム部分は、照射強度が一の方向に沿って各々均一である複数のビーム部分に含まれない。
複数のトランジスタ素子は、上述のように半導体層に照射された複数の線状エネルギービームのうち一の方向に沿って各々の照射強度が均一である複数のビーム部分の夫々によって半導体層を多結晶化してなる複数の多結晶化部分の夫々を活性層として各々用いて構成されている。言い換えれば、複数のトランジスタ素子は、一の方向に沿って複数の画素が配列される第1ピッチと同様のピッチで基板上に形成されているのではなく、基板上において、活性層として各々用いられることが可能な複数の多結晶部分が形成された領域に形成されていることになる。より具体的には、複数の多結晶部分が形成された領域は、基板上の表示領域となるべき領域の一部に重なる領域を各々構成しており、複数の駆動電極が形成されるに先んじて、複数のトランジスタ素子が当該一部に重なる領域に形成されている。
したがって、本発明に係る電気光学装置用基板によれば、基板上に形成された半導体層のうち不均一な照射強度を有するビーム部分が照射された部分が形成されている領域、線状エネルギービームが全く照射されなかった部分が形成されている領域、或いはこれら領域の夫々を含んでなる領域から構成され、基板上において複数の多結晶部分が形成されていない領域を介して隔てられた領域の夫々に複数のトランジスタ素子が形成されていることになる。よって、本発明に係る電気光学装置用基板によれば、照射強度が均一なビーム部分が照射された範囲を超えて、即ち、複数の多結晶化部分の夫々が形成された複数の領域の夫々に、複数の画素の夫々に対応する複数の画素スイッチング用TFT等の複数のトランジスタ素子が形成されていることになる。
加えて、このような複数のトランジスタ素子は、複数の駆動電極の夫々に配線層等の電気的接続手段を介して各々電気的に接続されており、複数の表示素子の夫々の駆動を各々制御する。したがって、本発明に係る電気光学装置用基板によれば、当該電気光学装置用基板を備えた電気光学装置の動作時に、基板上の一方向に沿って第1ピッチで配列された複数の画素から構成される表示領域に画像を表示可能である。
このように、本発明に係る電気光学装置用基板によれば、複数の駆動電極の夫々に各々電気的に接続された複数のトランジスタ素子は、基板上において一本のエネルギービームのうち照射強度が均一なビーム部分の長さのサイズを超えた領域に渡って形成されていることになり、大型のマザー基板から所望のサイズで形成されることが可能である。加えて、本発明に係る電気光学装置用基板によれば、当該電気光学装置用基板を備えて組み上げられた電気光学装置の動作時に、一の方向に沿って第1ピッチで配列された複数の画素からなる表示領域に画像を表示可能である。
本発明に係る電気光学装置用基板の一の態様では、前記複数の多結晶化部分は、前記一の方向に沿って前記第1ピッチより広い幅を有し、且つ前記トランジスタ素子が設けられない非素子形成領域によって互いに隔てられた複数の素子形成領域に形成されており、前記複数のトランジスタ素子は、前記複数の素子形成領域において前記一の方向に沿って配列されており、前記複数のトランジスタ素子のうち前記素子形成領域及び前記非素子形成領域の境界から前記一の方向に沿って前記素子形成領域に向かって並ぶ所定の個数のトランジスタ素子は、前記第1ピッチより狭い第2ピッチで配列されていてもよい。
この態様によれば、複数の多結晶化部分は、一の方向に沿って第1ピッチより広い幅を有し、且つトランジスタ素子が設けられない非素子形成領域によって互いに隔てられた複数の素子形成領域に形成されているため、複数の多結晶層の夫々を活性層として各々用いる複数のトランジスタ素子は、基板上において複数の多結晶層の夫々が形成された複数の素子形成領域に形成されていることになる。この態様によれば、基板上の表示領域において複数の画素の夫々の配列状態に対応させて複数のトランジスタ素子を配列するのではなく、基板上において複数の多結晶層の夫々が形成された複数の素子形成領域の夫々に限定して複数のトランジスタ素子が形成されているため、これらトランジスタ素子の一の方向に沿ったピッチは、複数の画素の第1ピッチと一致しない部分が生じる。
そこで、この態様では、複数の素子形成領域の夫々において、複数のトランジスタ素子のうち素子形成領域及び非素子形成領域の境界から一の方向に沿って素子形成領域に向かって並ぶ所定の個数のトランジスタ素子が、第1ピッチより狭い第2ピッチで配列されていることによって、複数の素子形成領域の夫々に限定して複数のトランジスタ素子が形成されていても、複数の画素の夫々に対応する個数のトランジスタ素子が基板上に形成されていることになる。
より具体的には、例えば、第1ピッチが100μmであり、且つ一の方向に沿った非素子形成領域の幅を500μmにする場合、即ち、均一、且つ十分な結晶性を有する多結晶部分が形成されない領域の幅が500μmになる場合、当該非素子形成領域によって相互に隔てられた複数の素子形成領域の夫々では、各素子形成領域のうち非素子形成領域に近い側の領域において5列分だけトランジスタ素子のピッチを100μmから50μmに短くすることによって、一の方向に沿って100μmのピッチで複数のトランジスタ素子を配列する場合に比べて、500μmの幅を有する非素子形成領域を基板上に確保できる。言い換えれば、元々複数の画素の第1ピッチと同様のピッチで配列されるべき複数のトランジスタ素子のピッチを部分的に縮めることによって、多結晶部分が形成された素子形成領域に複数のトランジスタ素子のすべてが作り込まれているのである。
したがって、この態様によれば、画素スイッチング用TFT等のトランジスタ素子の動作特性は、不均一、或いは全く結晶化されていない半導体層の一部を活性層として用いる場合に比べて高められているため、照射強度が均一なビーム部分のサイズを超えて電気光学装置用基板のサイズが大型化可能になっていると共に、当該電気光学装置用基板を備えた電気光学装置の表示性能も高めること可能である。
この態様では、前記第2ピッチは、前記一の方向に沿って前記素子形成領域の中央から前記境界に近いほど狭くてもよい。
この態様によれば、所定の個数のトランジスタ素子の夫々に対応する駆動電極と、これら所定の個数のトランジスタ素子との平面的な距離を近づけることができるため、トランジスタ素子及び駆動電極間の配線等の電気的に接続手段の引き回し、及び形成が容易になる。
本発明に係る電気光学装置は上記課題を解決するために上述した本発明の電気光学装置用基板を具備してなる。
本発明に係る電気光学装置によれば、本発明の電気光学装置用基板を具備してなるので、表示性能に優れ、且つ所望のサイズの表示領域を有する電気光学装置を提供することができる。
本発明に係る電気光学装置用基板の製造方法は上記課題を解決するために、基板上に半導体層を形成する第1工程と、前記基板上の一の方向に沿った長軸を各々有する複数の線状エネルギービームを前記一の方向に沿って相互にずらして前記半導体層に照射することによって、前記半導体層のうち前記複数の線状エネルギービームの夫々の照射強度が前記一の方向に沿って均一である複数の照射領域の夫々に重なる複数の半導体部分の夫々を多結晶化する第2工程と、該第2工程によって形成された複数の多結晶化部分の夫々を活性層として各々用いた複数のトランジスタ素子を形成する第3工程と、前記複数の多結晶化部分を前記一の方向に沿って相互に隔てる領域の幅より狭い第1ピッチで前記一の方向に沿って配列され、且つ前記基板上の表示領域を構成する複数の画素の夫々に対応して設けられており、前記複数の画素の夫々に対応して前記基板上に各々設けられる複数の表示素子を各々駆動可能なように前記複数のトランジスタ素子の夫々に電気的に接続された複数の駆動電極を形成する第4工程とを備える。
本発明に係る電気光学装置用基板の製造方法によれば、上述の電気光学装置用基板と同様に、複数の駆動電極の夫々に各々電気的に接続された複数のトランジスタ素子を、基板上において一本のエネルギービームのうち照射強度が均一なビーム部分の長さのサイズを超えた領域に渡って形成できることになり、大型のマザー基板から所望のサイズの電気光学装置用基板を製造可能である。
本発明のこのような作用及び他の利得は次に説明する実施形態から明らかにされる。
以下、図面を参照しながら本発明に係る電気光学装置基板、及びこれを具備してなる電気光学装置、並びに、電気光学装置用基板の製造方法の各実施形態を説明する。尚、本実施形態では、本発明に係る電気光学装置の一例として、画素スイッチング用TFT等のトランジスタ素子を備えた反射型液晶装置を挙げる。尚、本発明に係る電気光学装置は、液晶装置に限定されるものではなく、EL素子等の自発光素子を具備してなる表示装置であってもよい。このような自発光素子を具備してなる電気光学装置では、各自発光素子に駆動電流を供給する電流供給電極が、本発明の「駆動電極」の一例になる。
<1:液晶装置>
先ず、図1及び図2を参照しながら、本実施形態に係る液晶装置1の全体構成を説明する。図1は、TFTアレイ基板をその上に形成された各構成要素と共に対向基板の側から見た液晶装置1の平面図であり、図2は、図1のII−II´断面図である。本実施形態に係る液晶装置1は、駆動回路内蔵型のTFTアクティブマトリクス駆動方式で駆動され、表示面20s側から液晶装置に入射した光を本発明の「駆動電極」の一例である画素電極9aによって反射し、表示面20sから光を出射することによって画像を表示可能な反射型表示装置である。
図1及び図2において、液晶装置1では、本発明に係る電気光学装置用基板における「基板」の一例であるTFTアレイ基板10と、対向基板20とが対向配置されている。TFTアレイ基板10及び対向基板20間に液晶層50が封入されており、TFTアレイ基板10及び対向基板20は、複数の画素部が設けられる表示領域たる画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。
シール材52は、両基板を貼り合わせるための、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、製造プロセスにおいてTFTアレイ基板10上に塗布された後、紫外線照射、加熱等により硬化させられたものである。シール材52中には、TFTアレイ基板10と対向基板20との間隔(基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材が散布されている。
シール材52が配置されたシール領域の内側に並行して、画像表示領域10aの額縁領域を規定する遮光性の額縁遮光膜53が、対向基板20側に設けられている。但し、このような額縁遮光膜53の一部又は全部は、TFTアレイ基板10側に内蔵遮光膜として設けられてもよい。尚、画像表示領域10aの周辺に位置する周辺領域が存在する。言い換えれば、本実施形態においては特に、TFTアレイ基板10の中心から見て、この額縁遮光膜53より以遠が周辺領域として規定されている。
周辺領域のうち、シール材52が配置されたシール領域の外側に位置する領域には、データ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられている。走査線駆動回路104は、この一辺に隣接する2辺に沿い、且つ、額縁遮光膜53に覆われるようにして設けられている。更に、このように画像表示領域10aの両側に設けられた二つの走査線駆動回路104間をつなぐため、TFTアレイ基板10の残る一辺に沿い、且つ、額縁遮光膜53に覆われるようにして複数の配線105が設けられている。
TFTアレイ基板10上の周辺領域には、タッチパネル機能を確保するために画素部に設けられた光センサを含むセンサ部(不図示)を制御するためのセンサ制御回路部201が形成されている。外部回路接続端子102は、外部回路及び液晶装置1を電気的に接続する接続手段の一例であるフレキシブル基板200に設けられた接続端子に接続されている。尚、センサ制御回路部201は、液晶装置1に内蔵されていてもよいし、液晶装置1の外部に形成されていてもよい。
対向基板20の4つのコーナー部には、両基板間の上下導通端子として機能する上下導通材106が配置されている。他方、TFTアレイ基板10にはこれらのコーナー部に対向する領域において上下導通端子が設けられている。これらにより、TFTアレイ基板10と対向基板20との間で電気的な導通をとることができる。
図2において、TFTアレイ基板10上には、画素スイッチング用のTFTや走査線、データ線等の配線が形成された後の複数の画素電極9a上に、配向膜が形成されている。他方、対向基板20上には、対向電極21の他、格子状又はストライプ状の遮光膜、更には最上層部分に配向膜23が形成されている。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。液晶装置1によって表示される画像は、対向基板20の両面のうち液晶層50に面しない側の表示面20sに表示される。
尚、本実施形態では、説明の便宜上、偏光板及びカラーフィルタの図示を省略しており、対向基板20上に偏光板及びカラーフィルタが配置されている場合には、図中において、液晶装置1の最上面が表示面になる。また、液晶装置1は、表示面20s側から入射した光を、画素電極9aによって反射し、当該反射光を液晶層50によって変調することによって所望の画像を表示する。図2において、液晶装置1のうちTFTアレイ基板10側に設けられた配向膜より下層側の部分が、本発明の「電気光学装置用基板」の一例である液晶装置用基板600を構成している。
図1及び図2に示したTFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等の駆動回路に加えて、画像信号線上の画像信号をサンプリングしてデータ線に供給するサンプリング回路、複数のデータ線に所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
次に、図3を参照しながら、液晶装置1の回路構成を説明する。図3は、液晶装置1の画像表示領域10aを構成するマトリクス状に形成された複数の画素の夫々に対応する画素部における各種素子、配線等の等価回路である。
図3において、液晶装置1の画像表示領域10aを構成するマトリクス状に形成された複数の画素部72を備えている。画素部72は、画素電極9a、本発明の「トランジスタ素子」の一例であるトランジスタ素子Tr、及び、本発明の「表示素子」の一例である液晶素子50aを備えている。トランジスタ素子Trは、画像信号が供給されるデータ線6aと、画素電極9aとに電気的に接続されており、液晶装置1の動作時に画素電極9aをスイッチング制御する画素スイッチング用TFTである。データ線6aに書き込む画像信号S1、S2、・・・、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。
トランジスタ素子Trのゲートに走査線3aが電気的に接続されており、液晶装置1は、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、・・・、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、トランジスタ素子Trのドレインに電気的に接続されており、スイッチング素子であるトランジスタ素子Trを一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、・・・、Snが所定のタイミングで書き込まれる。画素電極9aを介して液晶に書き込まれた所定レベルの画像信号S1、S2、・・・、Snは、対向基板に形成された対向電極との間で一定期間保持される。
液晶層50に含まれる液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能とする。ノーマリーホワイトモードであれば、各サブ画素部の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各サブ画素部の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として液晶装置1からは画像信号に応じたコントラストをもつ光が出射される。蓄積容量70は、固定電位線300に電気的に接続されており、画像信号がリークすることを防ぐために、画素電極9aと対向電極との間に形成される液晶素子50aと並列に付加されている。
次に、図4乃至図17を参照しながら、液晶装置用基板600の製造方法の一工程の例を説明しつつ、当該製造方法によって製造される液晶装置用基板に生じる不利益を説明し、その上で、液晶装置用基板600を具備してなる液晶装置1の特徴を説明する。図4は、液晶装置用基板の製造方法における一部の工程を図式的に示した工程平面図であり、図5は、図4のV−V´断面図である。図6は、ポリシリコン層を形成するために用いられる線状レーザ光の照射強度分布を図式的に示したグラフである。図7は、図4における領域400を詳細に示した部分平面図である。図8は、線状レーザ光及びこれによって形成されるポリシリコン層の形成領域の関係を示す概念図であって、図7のVIII−VIII´断面図と共に、線状レーザ光の照射強度分布を示した図である。図9は、図4における領域400を詳細に示した部分平面図の他の例である。図10は、線状レーザ光及びこれによって形成されるポリシリコン層の形成領域の関係を示す概念図であって、図9のX−X´断面図と共に、線状レーザ光の照射強度分布を示した図である。図11は、図4における領域400を詳細に示した部分平面図の他の例である。図12は、線状レーザ光及びこれによって形成されるポリシリコン層の形成領域の関係を示す概念図であって、図11のXII−XII´断面図と共に、線状レーザ光の照射強度分布を示した図である。図13は、本実施形態に係る液晶装置を、画像表示面(図13(a))と、画素回路形成面(図13(b))とに分けて夫々を図式的に示した平面図である。図14は、本実施形態に係る液晶装置の比較例に係る液晶装置を、画像表示面(図14(a))と、画素回路形成面(図14(b))とに分けて夫々図式的に示した平面図である。
図4及び図5に示すように、画素スイッチング用TFTとして用いられるトランジスタ素子Trを備えた液晶装置用基板600を製造する際には、先ず、ガラス基板等からなる大型基板500上にシリコン層等の半導体層501を形成し、複数の線状レーザ光Rを大型基板500上の一の方向であるX方向に沿って相互にずらして同時に、或いは相前後してY方向に沿って照射することによってポリシリコン層等の多結晶化部分510を形成し、当該多結晶化部分510をトランジスタ素子の活性層として用いる。
ここで、図6に示すように、線状レーザ光Rは、X方向に長軸を有しており、X方向に沿って照射強度が均一であるビーム部分B1と、レーザ光Rの両端の夫々において当該レーザ光Rの外側に向かって照射強度が裾を引いて低下するビーム部分B2とから構成されている。
図6に示した線状レーザ光Rの照射強度の分布を踏まえつつ、図7乃至図12を参照しながら、レーザ光Rの照射によって形成される多結晶化部分の各態様を詳細に説明する。図7及び図8において、X方向に沿って相互に隣り合うレーザ光Rのビーム部分B2が相互に重なった状態で複数の線状レーザ光Rが半導体層501に照射された場合、半導体層501のうちビーム部分B1が照射された部分が、本発明の「多結晶化部分」の一例である多結晶化部分510として均一、且つ十分に成長した多結晶層になる。半導体層501のうち、相互に重なるビーム部分B2から構成されるビーム部分B3が照射された多結晶部分520aと、ビーム部分B2が照射された多結晶部分520bとは、活性層としての使用耐えうる程度の結晶性を有していない。したがって、基板500上において、多結晶化部分510が形成された領域が、画素スイッチング用TFT等のトランジスタ素子Trを形成可能な素子形成領域401となり、基板500上において多結晶部分520a及び520bが形成された領域は、トランジスタ素子Trを形成できない非素子形成領域420a及び420bとなる。このような非素子形成領域420a及び420bが、本発明の「非素子形成領域」の一例を構成している。
次に、図9及び図10を参照しながら、基板500上に形成される多結晶化部分の他の態様を説明する。
図9及び図10において、基板500上においてX方向に沿って相互に隣接して照射される線状レーザ光Rが、各々のビーム部分B2が相互に接するように半導体層501に照射された場合には、多結晶化部分510に挟まれた多結晶部分521aと、多結晶部分520bとの夫々は、多結晶化部分510より結晶性が劣り、トランジスタ素子Trの活性層として用いられない。したがって、基板500上において、多結晶部分521aが形成された非素子形成領域421a、及び非素子形成領域420bが本発明の「非素子形成領域」の他の例になる。
図11及び図12において、基板500上においてX方向に沿って相互に隣接して照射される線状レーザ光Rが各々のビーム部分B2が相互に接することなく、即ち、X方向に沿って隣り合うように半導体層501に照射される線状レーザ光Rの間に全くレーザ光Rが照射されない半導体部分423が存在している場合には、X方向に沿って並んで形成された多結晶化部分510に挟まれた多結晶部分520bと、半導体部分423との夫々は、多結晶化部分510より結晶性が劣り、トランジスタ素子Trの活性層として用いられない。したがって、基板500上において、半導体部分423が形成された領域を含む非素子形成領域422a、及び非素子形成領域420bが本発明の「非素子形成領域」の他の例になる。
次に、図13及び図17を参照しながら、液晶装置用基板600の特徴、即ち、液晶装置用基板600に形成された複数のトランジスタ素子Trの配列状態を説明する。
先ず、図14を参照しながら、本実施形態に係る液晶装置1の比較例における複数の画素PXと、トランジスタ素子Trとの夫々の配列状態を説明する。
図14(a)に示すように、比較例に係る液晶装置では、画像表示面における画像表示領域10aは、X方向及びY方向の夫々に沿って一定のピッチで配列された複数の画素PXから構成されている。図14(b)に示すように、TFTアレイ基板10上において画像表示領域10aに重なり、トランジスタ素子Trを含む画素回路が形成される画素回路形成領域10bでは、複数の画素PXのピッチと同様のピッチで各画素PXに対応してトランジスタ素子Trが配列されている。
ここで、上述したように、画像表示面における複数の画素PXのピッチは一定であるため、複数の画素PXと同様のピッチでトランジスタ素子Trを基板500上に配列した場合、基板500及びその上に形成された半導体層501からなるマザー基板から形成可能な液晶装置用基板のサイズは、均一な照射強度を有するビーム部分B1の照射されることによって形成された多結晶化部分510が基板500に存在する領域、即ち、素子形成領域401のサイズに限定されてしまう。何故なら、図4乃至図12に示した多結晶部分520、520a、520b、521a、及び結晶化されていない半導体部分423は、半導体層501のうちビーム部分B2が照射された部分、或いはビーム部分B2が照射された部分及び全くレーザ光が照射されなかった部分であり、多結晶層部分510に比べて、トランジスタ素子Trの活性層としての使用に耐えうる程度まで均一、且つ十分に成長した結晶粒から構成されておらず、トランジスタ素子Trの活性層として用いることができないためである。つまり、複数の画素PXがX方向に沿って一定のピッチでこれら多結晶部分520等が形成された非素子形成領域420a、420b、及び422aに重なるように配列されたとしても、これら複数の画素PXに対応するトランジスタ素子Trを基板500上における各画素PXに重なる領域に形成できないのである。このため、比較例に係る液晶装置が備える液晶装置用基板の製造時に、ビーム部分B2を各々有する複数のレーザ光Rを半導体層501に照射することによってポリシリコン層等の多結晶層を形成した場合には、大型基板500上において多結晶化部分510が形成された領域のサイズ、より具体的には、多結晶化部分510における図4中X方向に沿ったサイズに応じて大型基板500から形成可能な液晶装置用基板のサイズが制限されてしまう。
そこで、図13を参照しながら、ビーム部分B1のサイズに限定されることなく、所望のサイズで製造されることが可能な本実施形態に係る液晶装置用基板に特有の構造を説明する。
図13(a)に示すように、液晶装置1における画像表示面において、画像表示領域10aは、X方向及びY方向の夫々に沿って一定のピッチで配列された複数の画素PXから構成されている。
図13(b)に示すように、複数の画素PXは、非素子形成領域420a、420b、及び422a等の領域を含む非素子形成領域425に重ねて設けられている。TFTアレイ基板10上における画像表示領域10aに重なる画素回路形成領域10bのうち非素子形成領域425によって互いに隔てられた複数の素子形成領域401、即ちビーム部分B1によって半導体層501が多結晶化されてなる複数の多結晶化部分510の夫々が形成された領域に、複数の画素PXの夫々に対応するトランジスタ素子Trが形成されている。即ち、非素子形成領域425にトランジスタ素子Trが形成されることを避けつつ、素子形成領域401より広い領域に画像表示領域10aが形成されている。より具体的には、液晶装置用基板600は、素子形成領域401のX方向に沿った幅L1より大きいサイズに形成可能となっている。
次に、図15乃至図17を参照しながら、液晶装置1の構造を詳細に説明する。図15は、図13中のXV−XV´断面図である。図16は、トランジスタ素子の具体的構造を示した断面図である。図17は、マトリクス状に配列された画素スイッチング用素子として用いられるトランジスタ素子Trのうち任意の行における配列状態を図式的に示した平面図である。尚、図15では、説明の便宜上、X方向に沿って配列された11個の画素PXi(i=1〜11)、これら画素に対応してTFTアレイ基板10上に配列されたトランジスタ素子Tri(i=1〜11)、及び各画素Pxに設けられた画素電極9aの配列状態に注目して説明する。
図15に示すように、複数の画素PXiは、TFTアレイ基板10においてX方向に沿って一定のピッチp1で配列されており、複数の画素電極9aの夫々は、各画素PXiに応じてピッチp1で配列されている。トランジスタ素子Triは、TFTアレイ基板10上においてX方向に沿って素子形成領域401に配列されている。
図16に示すように、トランジスタ素子Triは、ソース領域1s、チャネル領域1c及びドレイン領域1dを含んで構成される活性層1aと、ゲート絶縁膜41、ゲート電極3a1とを備えて構成されており、ソース領域1s及びドレイン領域1dの夫々に電気的に接続されたコンタクトホール81及び82、並びにこれらコンタクトホールの夫々に電気的に接続された端子83及び84を介してデータ線6a及び画素電極9aに電気的に接続されている。
図15及び図16に示すように、活性層1aは、液晶装置1を製造する製造プロセスの途中において、X方向に沿ってピッチp1より広い幅を有し、且つトランジスタ素子Triが設けられない非素子形成領域425によって互いに隔てられた複数の素子形成領域401に形成された多結晶化部分510(図7乃至図11参照)をトランジスタ素子Triの配列及びサイズ、並びに素子形状に応じてパターニングすることによって形成されている。
加えて、液晶装置1では、TFTアレイ基板10上の画像表示領域10aにおいて複数の画素PXの夫々の配列状態に対応させて複数のトランジスタ素子Triが配列されているのではなく、複数の多結晶化部分510の夫々が形成された複数の素子形成領域401の夫々に限定して複数のトランジスタ素子Triが形成されている。したがって、素子形成領域401では、X方向に沿って複数のトランジスタ素子Triのピッチが、複数の画素PXのピッチp1と一致しない部分が生じる。
そこで、液晶装置1では、複数の素子形成領域401の夫々において、複数のトランジスタ素子Triのうち素子形成領域401及び非素子形成領域425の境界430からX方向に沿って素子形成領域401に向かって並ぶ所定の個数のトランジスタ素子、より具体的には、トランジスタ素子Tr2乃至Tr6が、ピッチp1より狭いピッチt2で配列されており、トランジスタ素子Tr7乃至Tr11がピッチp1と同様のピッチt1で配列されている。したがって、複数の素子形成領域401の夫々に限定して複数のトランジスタ素子Triが形成されていても、複数の画素PXの夫々に対応する個数のトランジスタ素子がTFTアレイ基板10上に形成されていることになる。
図17に示すように、本実施形態では、特に、ピッチp1が100μmであり、且つX方向に沿った非素子形成領域425の幅、即ち、トランジスタ素子Tr1が形成された領域及びトランジスタ素子Tr2が形成された領域間の幅であるピッチt3を500μmにする場合、非素子形成領域425によって相互に隔てられた複数の素子形成領域401の夫々では、各素子形成領域401のうち非素子形成領域425に近い側の領域401aにおいて5列分だけトランジスタ素子のピッチt2を100μmから50μmに短くすることによって、即ち、ピッチt1を100μmとし、且つピッチt2を50μmにすることによって、X方向に沿って500μmの幅を有する非素子形成領域425をTFTアレイ基板10上に確保できる。
言い換えれば、元々複数の画素PXのピッチp1と同様のピッチt1で配列されるべき複数のトランジスタ素子Triのピッチを部分的に縮めることによって、即ち、トランジスタ素子Tr2乃至Tr6のピッチt2をピッチt1より短いピッチに設定することによって、画像表示領域10aに設けられた複数の画素PXの夫々に対応する複数のトランジスタ素子Triの全てが、多結晶化部分510が形成された素子形成領域401に作り込まれているのである。
したがって、液晶装置1によれば、画素スイッチング用TFT等のトランジスタ素子Trの動作特性は、不均一、或いは全く結晶化されていない半導体層501の一部を活性層1aとして用いる場合に比べて高められているため、照射強度が均一なビーム部分B1のサイズを超えて液晶装置用基板600のサイズを大型化できる。即ち、ポリシリコン層等の多結晶化部分510を形成する際に半導体層501に照射される線状レーザ光Rにおけるビーム部分B1のサイズに限定されることなく、各画素PXに対応するとトランジスタ素子TrがTFTアレイ基板10上に形成されていることになり、液晶装置用基板600のサイズを所望のサイズに設定することができ、大型のマザー基板から製造可能な液晶装置用基板600のサイズの自由度を高めることが可能である。
(変形例)
次に、図18及び図19を参照しながら、本実施形態に係る液晶装置用基板600の一変形を具備してなる液晶装置を説明する。図18は、本例に係る液晶装置を、画像表示面(図18(a))と、その下層側における画素回路形成面(図18(b))とに分けて夫々図式的に示した平面図である。図19は、図18中のIXX−IXX´断面図である。
図18(a)に示すように、本例に係る液晶装置では、上述の液晶装置と同様に、画像表示面における画像表示領域10aが、X方向及びY方向の夫々に沿って一定のピッチで配列された複数の画素PXから構成されている。図18(b)に示すように、TFTアレイ基板10上における素子形成領域401に設けられた複数の画素スイッチング用TFTの夫々として動作する複数のトランジスタ素子Trのうち所定の個数のトランジスタ素子Trが、X方向に沿って素子形成領域401の中央から、素子形成領域401及び非素子形成領域425の境界430に向かうほどピッチが狭くなるように配列されている。
より具体的には、図19に示すように、素子形成領域401に配列されたトランジスタ素子Tr2乃至Tr11のうちトランジスタ素子Tr2乃至Tr7までの夫々のトランジスタ素子相互のピッチは、素子形成領域401の中央から境界430に向かってピッチt16、t15、t14、t13、t12の順で狭くなっている。ここで、ピッチt12、t13、t14、t15、t16の夫々が本発明の「第2ピッチ」の一例である。トランジスタ素子Tr1乃至Tr11の夫々は、これらトランジスタ素子の上層側で一定のピッチp1で配列された画素電極9aの夫々に不図示の配線及び中継配線等の電気的接続手段を介して電気的に接続されており、各画素電極9aに画像信号に応じた電位を供給することによって画素毎に液晶素子50aを駆動でき、この駆動に応じて画像表示領域10aに所望の画像が表示される。
このように、トランジスタ素子Trが素子形成領域401の中央に向かってピッチが徐々に大きくなるように配列されていることによって、上述したピッチt2で複数のトランジスタ素子Tr1乃至Tr6を配列する場合に比べて、これらトランジスタ素子Tr2乃至Tr6の夫々に対応する画素電極9aと、これらトランジスタ素子との平面的な距離を近づけることができるため、各トランジスタ素子Tr及び画素電極9aを相互に電気的に接続する配線等の電気的接続手段の引き回し、及び形成が容易になる。
よって、本例に係る液晶装置が具備する液晶装置用基板によれば、上述の液晶装置用基板600と同様に、大型のマザー基板から製造可能な液晶装置用基板をサイズの設計における自由度が広がると共に、液晶装置における配線等のレイアウトの自由度が増え、液晶装置の製造が容易になる。
<2:液晶装置用基板の製造方法>
次に、図20乃至図23を参照しながら、上述の液晶装置が具備する液晶装置用基板60を製造するための液晶装置用基板の製造方法を説明する。図20及び図21は、本実施形態に係る液晶装置用基板の製造方法の主要な工程を順に示した工程平面図である。図22及び23は、図20及び図21の夫々におけるXXII−XXII´断面図、及びXXIII−XXIII´断面図である。尚、以下では、液晶装置用基板600を製造するための用いられるガラス基板等の大型サイズの基板500の一部、即ち、最終的に液晶装置用基板600のなる部分に注目して説明する。したがって、本実施形態に係る液晶装置用基板の製造方法によれば、大型のマザー基板を構成する複数の基板部分の夫々が最終的に液晶装置用基板となってもよいし、一枚のマザー基板から一枚の液晶装置用基板を製造することも可能である。
図20(a)及び図22(a)に示すように、先ず、本発明の「第1工程」の一例として、TFTアレイ基板10上に半導体製造プロセスで汎用される薄膜形成方法を用いてシリコン層等の半導体層501を形成する。
次に、図20(b)及び図22(b)に示すように、図中X方向に沿って長軸を有する複数の線状レーザ光Rを、X方向に沿って互いにずらして同時に、又は相前後してY方向に走査しながら、或いは順次、半導体層501に照射する。本発明の「複数の線状エネルギービーム」の一例である複数の線状レーザ光Rを半導体層501に照射することによって、不均一或いは十分に結晶成長が進んでいない結晶化部分530によって相互に隔てられた複数の多結晶化部分510を形成する。この工程が、本発明の「第2工程」の一例である。
次に、図21(c)及び図23(c)に示すように、TFTアレイ基板10上の画素回路形成面における素子形成領域401に形成された多結晶化部分510を活性層として、画素スイッチング用TFTとしての複数のトランジスタ素子Trを形成する。この工程が、本発明の「第3工程」の一例である。
次に、図21(d)及び図23(d)に示すように、TFTアレイ基板10上の画像表示領域10aにX方向及びY方向の夫々の方向に沿って一定のピッチで配列された複数の画素電極9aを形成する。このような画素電極9aは、例えば、ITO等の透明導電材料を用いて、画像表示領域10aを構成する複数の画素PXの夫々に形成される。この工程が、本発明の「第4工程」の一例である。
その後、画素電極9aに配向膜16を形成することによって液晶装置用基板600が製造される。
以上の工程を経て製造される液晶装置用基板によれば、既に説明したように、液晶装置用基板を製造するための元になる大型のマザー基板に、線状レーザ光Rにおけるビーム部分B1のサイズに限定されることなく、所望のサイズで液晶装置用基板が製造可能になっている。そして、このようにして製造された液晶装置用基板と、対向基板20との間に液晶層50を封止し、所望のサイズの画像表示領域10aを備えた液晶装置1が製造される。
<3:電子機器>
次に、図24及び図25を参照しながら、上述の液晶装置を具備してなる電子機器の例を説明する。
図24は、上述した液晶装置が適用されたモバイル型のパーソナルコンピュータの斜視図である。図24において、コンピュータ1200は、キーボード1202を備えた本体部1204と、上述した液晶装置を含んでなる液晶表示ユニット1206とから構成されている。液晶表示ユニット1206は、液晶パネル1005の背面にバックライトを付加することにより構成されており、高品位の画像表示が可能である。
次に、上述した液晶装置1を携帯電話に適用した例について説明する。図25は、電子機器の一例である携帯電話の斜視図である。図25において、携帯電話1300は、複数の操作ボタン1302とともに、反射型の表示形式を採用し、且つ上述した液晶装置と同様の構成を有する液晶装置1005を備えている。したがって、携帯電話1300によれば、高品位の画像表示が可能である。
本実施形態に係る液晶装置の平面図である。 図1のII−II´断面図である。 本実施形態に係る液晶装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。 本実施形態に係る液晶装置用基板を製造するための液晶装置用基板の製造方法の一部の工程を示した工程平面図の一例である。 図4のV−V´断面図である。 ポリシリコン層等の多結晶層を形成するために用いられる線状レーザ光の強度分布を図式的に示したグラフである。 図4中の一部の領域を詳細に示した部分平面図である。 線状レーザ光の照射強度分布(図中太線)及びこれによって形成されるポリシリコン層等の多結晶層の形成領域の関係を示す概念図であって、図7のVIII−VIII´断面図と共に、線状レーザ光の照射強度分布を示した図である。 図4における領域400を詳細に示した部分平面図の他の例である。 線状レーザ光の照射強度分布(図中太線)及びこれによって形成されるポリシリコン層の形成領域の関係を示す概念図であって、図9のX−X´断面図と共に、線状レーザ光の照射強度分布を示した図である。 図4における領域400を詳細に示した部分平面図の他の例である。 線状レーザ光の照射強度分布(図中太線)及びこれによって形成されるポリシリコン層の形成領域の関係を示す概念図であって、図11のXII−XII´断面図と共に、線状レーザ光の照射強度分布を示した図である。 本実施形態に係る液晶装置を、画像表示面と、画素回路形成面とに分けて夫々を図式的に示した平面図である。 本実施形態に係る液晶装置の比較例に係る液晶装置を、画像表示面と、画素回路形成面とに分けて夫々図式的に示した平面図である。 図13中のXV−XV´断面図である。 トランジスタ素子の具体的構造を示した断面図である。 マトリクス状に配列された画素スイッチング用素子として用いられるトランジスタ素子Trのうち任意の行における配列状態を図式的に示した平面図である。 本実施形態に係る液晶装置の変形例に係る液晶装置を、画像表示面と、その下層側における画素回路形成面とに分けて夫々図式的に示した平面図である。 図18中のIXX−IXX´断面図である。 本実施形態に係る液晶装置用基板の製造方法の主要な工程を示した工程平面図(その1)である。 本実施形態に係る液晶装置の製造方法の主要な工程を示した工程平面図(その2)である。 本実施形態に係る液晶装置の製造方法の主要な工程を示した工程断面図(その1)である。 本実施形態に係る液晶装置の製造方法の主要な工程を示した工程断面図(その2)である。 本実施形態に係る液晶装置を具備してなる電子機器の一例を示した斜視図である。 本実施形態に係る液晶装置を具備してなる電子機器の他の例を示した斜視図である。
符号の説明
1・・・液晶装置、画素電極・・・9a、10・・・TFTアレイ基板、401・・・素子形成領域、425・・・非素子形成領域、500・・・大型基板、501・・・半導体層、510・・・結晶化部分、画素・・・PX、Tr・・・トランジスタ素子

Claims (5)

  1. 基板と、
    前記基板上の表示領域を構成し、且つ前記基板上の一の方向に沿って第1ピッチで配列される複数の画素の夫々に各々設けられており、前記複数の画素の夫々に対応して前記基板上に設けられる複数の表示素子を各々駆動する複数の駆動電極と、
    前記一の方向に沿った長軸を各々有し、且つ前記一の方向に沿って相互にずらして前記基板上の半導体層に照射された複数の線状エネルギービームのうち前記一の方向に沿って各々の照射強度が均一である複数のビーム部分の夫々によって前記半導体層を多結晶化してなる複数の多結晶化部分の夫々を活性層として各々用い、且つ前記複数の駆動電極の夫々に各々電気的に接続されており、前記複数の表示素子の夫々の駆動を各々制御する複数のトランジスタ素子と
    を備えたことを特徴とする電気光学装置用基板。
  2. 前記複数の多結晶化部分は、前記一の方向に沿って前記第1ピッチより広い幅を有し、且つ前記トランジスタ素子が設けられない非素子形成領域によって互いに隔てられた複数の素子形成領域に形成されており、
    前記複数のトランジスタ素子は、前記複数の素子形成領域において前記一の方向に沿って配列されており、
    前記複数のトランジスタ素子のうち前記素子形成領域及び前記非素子形成領域の境界から前記一の方向に沿って前記素子形成領域に向かって並ぶ所定の個数のトランジスタ素子は、前記第1ピッチより狭い第2ピッチで配列されていること
    を特徴とする請求項1に記載の電気光学装置用基板。
  3. 前記第2ピッチは、前記一の方向に沿って前記素子形成領域の中央から前記境界に近いほど狭いこと
    を特徴とする請求項2に記載の電気光学装置用基板。
  4. 請求項1から3の何れか一項に記載の電気光学装置用基板を具備してなること
    を特徴とする電気光学装置。
  5. 基板上に半導体層を形成する第1工程と、
    前記基板上の一の方向に沿った長軸を各々有する複数の線状エネルギービームを前記一の方向に沿って相互にずらして前記半導体層に照射することによって、前記半導体層のうち前記複数の線状エネルギービームの夫々の照射強度が前記一の方向に沿って均一である複数の照射領域の夫々に重なる複数の半導体部分の夫々を多結晶化する第2工程と、
    該第2工程によって形成された複数の多結晶化部分の夫々を活性層として各々用いた複数のトランジスタ素子を形成する第3工程と、
    前記複数の多結晶化部分を前記一の方向に沿って相互に隔てる領域の幅より狭い第1ピッチで前記一の方向に沿って配列され、且つ前記基板上の表示領域を構成する複数の画素の夫々に対応して設けられており、前記複数の画素の夫々に対応して前記基板上に各々設けられる複数の表示素子を各々駆動可能なように前記複数のトランジスタ素子の夫々に電気的に接続された複数の駆動電極を形成する第4工程と
    を備えたことを特徴とする電気光学装置用基板の製造方法。
JP2007227381A 2007-09-03 2007-09-03 電気光学装置用基板及び電気光学装置、並びに電気光学装置用基板の製造方法 Withdrawn JP2009059988A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227381A JP2009059988A (ja) 2007-09-03 2007-09-03 電気光学装置用基板及び電気光学装置、並びに電気光学装置用基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227381A JP2009059988A (ja) 2007-09-03 2007-09-03 電気光学装置用基板及び電気光学装置、並びに電気光学装置用基板の製造方法

Publications (1)

Publication Number Publication Date
JP2009059988A true JP2009059988A (ja) 2009-03-19

Family

ID=40555440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227381A Withdrawn JP2009059988A (ja) 2007-09-03 2007-09-03 電気光学装置用基板及び電気光学装置、並びに電気光学装置用基板の製造方法

Country Status (1)

Country Link
JP (1) JP2009059988A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008103A1 (ja) * 2010-07-16 2012-01-19 パナソニック株式会社 結晶性半導体膜の製造方法及び結晶性半導体膜の製造装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008103A1 (ja) * 2010-07-16 2012-01-19 パナソニック株式会社 結晶性半導体膜の製造方法及び結晶性半導体膜の製造装置
CN102473606A (zh) * 2010-07-16 2012-05-23 松下电器产业株式会社 结晶性半导体膜的制造方法以及结晶性半导体膜的制造装置
JP5411292B2 (ja) * 2010-07-16 2014-02-12 パナソニック株式会社 結晶性半導体膜の製造方法及び結晶性半導体膜の製造装置
US8716113B2 (en) 2010-07-16 2014-05-06 Panasonic Corporation Crystalline semiconductor film manufacturing method and crystalline semiconductor film manufacturing apparatus

Similar Documents

Publication Publication Date Title
EP2249199B1 (en) Display device
US7495737B2 (en) Horizontal stripe liquid crystal display device
TWI444735B (zh) 液晶顯示面板及其製造方法
JP5590764B2 (ja) 液晶表示装置
US20210132455A1 (en) Array substrate and method of manufacturing the same, liquid crystal display panel, display device and method of driving the same
US20070268423A1 (en) Structure of LCD pane and method of manufacturing the same
WO1994002880A1 (en) Liquid crystal display
KR20010069091A (ko) 액정표시장치용 어레이기판 제조방법
KR101650197B1 (ko) 액정 표시 장치 및 제조방법
KR20070105245A (ko) 전기 광학 장치 및 이를 구비한 전자 기기
US9261734B2 (en) Display apparatus with uniform cell gap
JPH08328036A (ja) 液晶表示装置
KR100781104B1 (ko) 전기 광학 장치 및 그 제조 방법, 및 전자 기기
KR102076841B1 (ko) 보조 공통 배선을 구비한 평판 표시장치용 박막 트랜지스터 기판
JP2010151865A (ja) 表示装置および表示装置の製造方法
JP4198485B2 (ja) 表示装置用電極基板
JP3800184B2 (ja) 電気光学装置及び電子機器
KR100963032B1 (ko) 히터용 공통전극을 구비한 액정표시장치 및 그 제조방법
JP2009059988A (ja) 電気光学装置用基板及び電気光学装置、並びに電気光学装置用基板の製造方法
US20120086900A1 (en) Common electrode panel and method for manufacturing the same
KR20060135091A (ko) 액정표시장치 및 그 제조방법
JP2004240436A (ja) 液晶ディスプレイパネル
KR102175279B1 (ko) 액정표시장치
US9117703B2 (en) Liquid crystal display device
JP2006126772A (ja) 液晶ディスプレイ装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207