JP2009059772A - Method of manufacturing solar battery - Google Patents

Method of manufacturing solar battery Download PDF

Info

Publication number
JP2009059772A
JP2009059772A JP2007223947A JP2007223947A JP2009059772A JP 2009059772 A JP2009059772 A JP 2009059772A JP 2007223947 A JP2007223947 A JP 2007223947A JP 2007223947 A JP2007223947 A JP 2007223947A JP 2009059772 A JP2009059772 A JP 2009059772A
Authority
JP
Japan
Prior art keywords
flexible substrate
applying
film
heat treatment
film substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007223947A
Other languages
Japanese (ja)
Other versions
JP5205874B2 (en
Inventor
Ryoichi Okamoto
良一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007223947A priority Critical patent/JP5205874B2/en
Publication of JP2009059772A publication Critical patent/JP2009059772A/en
Application granted granted Critical
Publication of JP5205874B2 publication Critical patent/JP5205874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a position shift during film formation of a flexible substrate without deteriorating the film quality of a solar battery. <P>SOLUTION: When the solar battery is manufactured, the film substrate 11 is heat-treated at a temperature higher than the glass transition point of the film substrate 11 while applying constant tension to the film substrate 11, and then subjected to a filming treatment while applying the same tension as the tension applied to the film substrate 11 during the heat treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は太陽電池の製造方法に関し、特に、フィルム基板上に太陽電池を形成する方法に適用して好適なものである。   The present invention relates to a method for manufacturing a solar cell, and is particularly suitable for application to a method for forming a solar cell on a film substrate.

薄膜光電変換素子を生産性よく製造する方法として、長尺の高分子材料あるいはステンレス鋼などの金属からなる可撓性基板上に、a−Siを主材料とした光電変換層を含む各層を形成する方法がある。ここで、長尺の可撓性基板上に複数の層を成膜する方式として、各成膜室内を移動する可撓性基板上に成膜するロールツーロール方式と、成膜室内で停止させた可撓性基板上に成膜した後、成膜の終わった可撓性基板部分を成膜室外へ送り出すステッピングロール方式とがある。そして、可撓性基板の自重により下方への撓みや位置ズレが発生するのを防止するため、可撓性基板に張力を与えながら可撓性基板を搬送するとともに、膜質を向上させるために、可撓性基板を加熱しながら、CVDやスパッタなどの成膜処理が行われる(特許文献1)。ここで、ポリイミドなどの高分子材料からなるフィルム基板の耐熱性は低く、成膜処理に必要な温度によっては塑性変形を起こすことが知られている。   As a method for producing a thin film photoelectric conversion element with high productivity, each layer including a photoelectric conversion layer mainly composed of a-Si is formed on a flexible substrate made of a long polymer material or a metal such as stainless steel. There is a way to do it. Here, as a method of forming a plurality of layers on a long flexible substrate, a roll-to-roll method of forming a film on a flexible substrate moving in each film formation chamber, and a stop in the film formation chamber are used. There is a stepping roll method in which after forming a film on a flexible substrate, the flexible substrate portion after film formation is sent out of the film formation chamber. And, in order to prevent the downward deflection and displacement due to the weight of the flexible substrate, in order to convey the flexible substrate while applying tension to the flexible substrate, and to improve the film quality, A film forming process such as CVD or sputtering is performed while heating the flexible substrate (Patent Document 1). Here, the heat resistance of a film substrate made of a polymer material such as polyimide is low, and it is known that plastic deformation occurs depending on the temperature required for the film forming process.

図4は、張力を加えながら熱処理した時のフィルム基板の塑性変形量を示す図である。
図4において、例えば、フィルム基板としてポリイミド(東レデュポン製カプトン200EN)を用いた場合、80gの張力をフィルム基板に与えながらフィルム基板の温度を室温から上昇させると、ガラス転移点でフィルム基板の伸び量が急激に上昇し、さらにフィルム基板の温度を室温に下降させても、フィルム基板の伸びは元には戻ることなく、フィルム基板に塑性変形が発生する。
FIG. 4 is a diagram showing the amount of plastic deformation of the film substrate when it is heat-treated while applying tension.
In FIG. 4, for example, when polyimide (Toray DuPont Kapton 200EN) is used as a film substrate, if the temperature of the film substrate is raised from room temperature while applying 80 g of tension to the film substrate, the elongation of the film substrate at the glass transition point. Even if the amount is rapidly increased and the temperature of the film substrate is lowered to room temperature, the elongation of the film substrate does not return to the original state, and plastic deformation occurs in the film substrate.

また、図5に示すように、塑性変形を一旦起こしたフィルム基板に対して((11)→(12))、張力を小さくしてフィルム基板の熱処理を再び行うと、フィルム基板が収縮し、フィルム基板の塑性変形量が小さくなる((13)→(14))。
特開平8−283491号公報
In addition, as shown in FIG. 5, when the film substrate once plastically deformed ((11) → (12)) is subjected to a heat treatment again with a reduced tension, the film substrate shrinks, The amount of plastic deformation of the film substrate is reduced ((13) → (14)).
JP-A-8-283491

しかしながら、図6に示すように、フィルム基板の塑性変形量はロットごとに一定になることはなく、変形量がロットごとにばらつきを示す。このため、フィルム基板の塑性変形量を予め見込んで位置合わせを行っても、成膜時の位置のずれを完全に解消することはできず、太陽電池の特性の劣化を招くというという問題があった。
また、従来の太陽電池の製造プロセスでは、フィルム基板に与えられる張力は工程ごとに個別に設定され、塑性変形量が工程ごとに変化するため、成膜時の位置ずれが工程ごとに発生するという問題があった。
そこで、本発明の目的は、膜質を劣化させることなく、可撓性基板の成膜時の位置ずれを抑制することが可能な太陽電池の製造方法を提供することである。
However, as shown in FIG. 6, the plastic deformation amount of the film substrate does not become constant for each lot, and the deformation amount varies for each lot. For this reason, even if alignment is performed in advance with the amount of plastic deformation of the film substrate taken into account, there is a problem in that the positional deviation during film formation cannot be completely eliminated and the characteristics of the solar cell are deteriorated. It was.
In addition, in the conventional solar cell manufacturing process, the tension applied to the film substrate is individually set for each process, and the amount of plastic deformation changes for each process. There was a problem.
Therefore, an object of the present invention is to provide a method for manufacturing a solar cell that can suppress a positional shift during film formation of a flexible substrate without deteriorating the film quality.

上述した課題を解決するために、請求項1記載の太陽電池の製造方法によれば、可撓性基板に一定の張力を与えながら前記可撓性基板のガラス転移点以上の温度で前記可撓性基板の第1の熱処理を行う工程と、前記第1の熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら前記可撓性基板の第2の熱処理を行う工程とを備えることを特徴とする。   In order to solve the above-described problem, according to the method for manufacturing a solar cell according to claim 1, the flexible substrate is heated at a temperature equal to or higher than a glass transition point of the flexible substrate while applying a constant tension to the flexible substrate. Performing a first heat treatment of the flexible substrate, and performing a second heat treatment of the flexible substrate while applying the same tension as that applied to the flexible substrate in the first heat treatment. It is characterized by providing.

これにより、可撓性基板が塑性変形を起こした状態で脱ガス処理などの第2の熱処理を行うことが可能となり、第2の熱処理におけるロットごとの可撓性基板の塑性変形量のばらつきを吸収することが可能となるとともに、第1の熱処理時に塑性変形を一旦起こした可撓性基板の塑性変形量が第2の熱処理時に変化しないようにすることができる。このため、第2の熱処理に必要な温度によっては可撓性基板が塑性変形を起こす場合においても、第2の熱処理に必要な温度を確保しつつ、可撓性基板の熱処理時の位置ずれを抑制することが可能となり、太陽電池の特性を向上させることができる。   This makes it possible to perform a second heat treatment such as a degassing process in a state in which the flexible substrate has undergone plastic deformation, and variations in the amount of plastic deformation of the flexible substrate for each lot in the second heat treatment. In addition to being able to absorb, it is possible to prevent the amount of plastic deformation of the flexible substrate that has once undergone plastic deformation during the first heat treatment from changing during the second heat treatment. For this reason, even when the flexible substrate undergoes plastic deformation depending on the temperature required for the second heat treatment, the positional deviation during the heat treatment of the flexible substrate is ensured while ensuring the temperature necessary for the second heat treatment. It becomes possible to suppress, and the characteristic of a solar cell can be improved.

また、請求項2記載の太陽電池の製造方法によれば、可撓性基板に一定の張力を与えながら前記可撓性基板のガラス転移点以上の温度で前記可撓性基板の熱処理を行う工程と、
前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら前記可撓性基板の成膜処理を行う工程とを備えることを特徴とする。
これにより、可撓性基板が塑性変形を起こした状態で成膜処理を行うことが可能となり、成膜処理におけるロットごとの可撓性基板の塑性変形量のばらつきを吸収することが可能となるとともに、熱処理時に塑性変形を一旦起こした可撓性基板の塑性変形量が成膜処理時に変化しないようにすることができる。このため、成膜処理に必要な温度によっては可撓性基板が塑性変形を起こす場合においても、成膜処理に必要な温度を確保しつつ、可撓性基板の成膜処理時の位置ずれを抑制することが可能となり、太陽電池の特性を向上させることができる。
According to the method for manufacturing a solar cell according to claim 2, the step of heat-treating the flexible substrate at a temperature equal to or higher than the glass transition point of the flexible substrate while applying a constant tension to the flexible substrate. When,
And performing a film forming process on the flexible substrate while applying the same tension as that applied to the flexible substrate in the heat treatment.
This makes it possible to perform the film forming process in a state where the flexible substrate is plastically deformed, and to absorb the variation in the amount of plastic deformation of the flexible substrate for each lot in the film forming process. In addition, the amount of plastic deformation of the flexible substrate that has once undergone plastic deformation during heat treatment can be prevented from changing during film formation. For this reason, even when the flexible substrate undergoes plastic deformation depending on the temperature required for the film forming process, the positional deviation during the film forming process of the flexible substrate is ensured while ensuring the temperature necessary for the film forming process. It becomes possible to suppress, and the characteristic of a solar cell can be improved.

また、請求項3記載の太陽電池の製造方法によれば、可撓性基板に一定の張力を与えながら前記可撓性基板のガラス転移点以上の温度で前記可撓性基板の熱処理を行う工程と、前記熱処理された可撓性基板に直列ホールを形成する工程と、前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら、前記直列ホールが形成された可撓性基板の脱ガス処理を行う工程と、前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら、前記脱ガス処理された可撓性基板に裏面電極および背面電極を形成する工程と、前記裏面電極および背面電極が形成された可撓性基板に集電ホールを形成する工程と、前記裏面電極を分割する第1溝を形成する工程と、前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら、前記裏面電極上に光電変換層および透明電極層を順次形成する工程と、前記第1溝と互い違いに配置されるようにして前記背面電極を分割する第2溝を形成する工程とを備えることを特徴とする。   According to the method for manufacturing a solar cell according to claim 3, the step of heat-treating the flexible substrate at a temperature equal to or higher than the glass transition point of the flexible substrate while applying a constant tension to the flexible substrate. A step of forming a series hole in the heat-treated flexible substrate, and a step of forming the series hole while applying the same tension as that applied to the flexible substrate in the heat treatment. A back-side electrode and a back-side electrode are formed on the degassed flexible substrate while applying the same tension as that applied to the flexible substrate in the heat treatment and a step of degassing the substrate. A step of forming current collecting holes in the flexible substrate on which the back electrode and the back electrode are formed, a step of forming a first groove for dividing the back electrode, and the heat treatment to form the flexible substrate. Give the same tension as given to , Sequentially forming a photoelectric conversion layer and a transparent electrode layer on the back electrode, and forming a second groove for dividing the back electrode so as to be alternately arranged with the first groove. It is characterized by.

これにより、脱ガス処理や成膜処理に必要な温度を確保しつつ、可撓性基板の脱ガス処理や成膜処理時の位置ずれを抑制することが可能となるとともに、複雑な配線プロセスを用いることなく、可撓性基板上に形成された光電変換層を直列接続することができる。このため、製造プロセスの煩雑化を抑制しつつ、太陽電池から出力される電圧を上げることが可能となるとともに、太陽電池の特性を向上させることができ、品質のよい太陽電池を安価に提供することができる。   As a result, it is possible to suppress the positional shift during the degassing process or the film forming process of the flexible substrate while securing the temperature necessary for the degassing process or the film forming process, and a complicated wiring process. Without being used, the photoelectric conversion layers formed on the flexible substrate can be connected in series. For this reason, while suppressing complication of the manufacturing process, it is possible to increase the voltage output from the solar cell, improve the characteristics of the solar cell, and provide a high-quality solar cell at low cost. be able to.

以上説明したように、本発明によれば、熱処理に必要な温度を確保しつつ、可撓性基板の熱処理時の位置ずれを抑制することが可能となり、太陽電池の特性を向上させることができる。   As described above, according to the present invention, it is possible to suppress misalignment during the heat treatment of the flexible substrate while ensuring the temperature necessary for the heat treatment, and to improve the characteristics of the solar cell. .

以下、本発明の実施形態に係る太陽電池の製造方法について図面を参照しながら説明する。
図1は、本発明の一実施形態に係る太陽電池の製造方法の概略構成を示すブロック図である。
図1において、フィルム基板11上には裏面電極層12を介して光電変換層13が積層され、光電変換層13上には透明電極層14が積層されている。また、フィルム基板11の裏面には背面電極層15が形成されている。なお、背面電極層15としては、例えば、Ag/ZnO積層構造およびNi層、裏面電極層12としては、例えば、Ag/ZnO積層構造、フィルム基板11としては、例えば、ポリイミドやポリエチレンなどの樹脂フィルム、光電変換層13としては、例えば、アモルファスシリコンからなるpin構造、透明電極層14としては、例えば、ITOを用いることができる。また、光電変換層13の厚みは、例えば、1μm程度、フィルム基板11の厚みは、例えば、50μm程度とすることができる。
Hereinafter, a method for manufacturing a solar cell according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of a method for manufacturing a solar cell according to an embodiment of the present invention.
In FIG. 1, a photoelectric conversion layer 13 is laminated on a film substrate 11 via a back electrode layer 12, and a transparent electrode layer 14 is laminated on the photoelectric conversion layer 13. A back electrode layer 15 is formed on the back surface of the film substrate 11. The back electrode layer 15 is, for example, an Ag / ZnO laminated structure and a Ni layer, the back electrode layer 12 is, for example, an Ag / ZnO laminated structure, and the film substrate 11 is, for example, a resin film such as polyimide or polyethylene. As the photoelectric conversion layer 13, for example, a pin structure made of amorphous silicon, and as the transparent electrode layer 14, for example, ITO can be used. Moreover, the thickness of the photoelectric converting layer 13 can be about 1 micrometer, for example, and the thickness of the film substrate 11 can be about 50 micrometers, for example.

そして、背面電極層15には、背面電極層15を分割する溝19が形成されるとともに、裏面電極層12、光電変換層13および透明電極層14には、裏面電極層12、光電変換層13および透明電極層14を分割する溝18が溝19と平行に互い違いに形成され、ユニットセルU1〜U4が構成されている。そして、フィルム基板11には、分割された光電変換層13を直列接続する直列ホール16がユニットセルU1〜U4ごとに形成され、フィルム基板11にて隔てられた背面電極層15と裏面電極層12とは直列ホール16を介して互いに接続されている。   The back electrode layer 15 has a groove 19 that divides the back electrode layer 15, and the back electrode layer 12, the photoelectric conversion layer 13, and the transparent electrode layer 14 have a back electrode layer 12 and a photoelectric conversion layer 13. And the groove | channel 18 which divides | segments the transparent electrode layer 14 is alternately formed in parallel with the groove | channel 19, and unit cell U1-U4 is comprised. In the film substrate 11, a series hole 16 for connecting the divided photoelectric conversion layers 13 in series is formed for each unit cell U <b> 1 to U <b> 4, and the back electrode layer 15 and the back electrode layer 12 separated by the film substrate 11. Are connected to each other via a series hole 16.

また、フィルム基板11、裏面電極層12および背面電極層15には、光電変換層13で発生した電荷を背面電極層15側に集電する集電ホール17がユニットセルU1〜U4ごとに形成され、光電変換層13および透明電極層14は集電ホール17を介して背面電極層15に接続されている。
ここで、各ユニットセルU1〜U4の直列ホール16がその直下の背面電極層15にそれぞれ接続されるとともに、直列ホール16が接続された背面電極層15にそれぞれ隣接する背面電極層15に各ユニットセルU1〜U4の集電ホール17が接続されるように、直列ホール16および集電ホール17の配置位置を決めることができる。
The film substrate 11, the back electrode layer 12, and the back electrode layer 15 are formed with current collecting holes 17 for collecting charges generated in the photoelectric conversion layer 13 on the back electrode layer 15 side for each of the unit cells U1 to U4. The photoelectric conversion layer 13 and the transparent electrode layer 14 are connected to the back electrode layer 15 through a current collecting hole 17.
Here, the series holes 16 of the unit cells U1 to U4 are respectively connected to the back electrode layer 15 immediately below the unit cells U1 to U4, and each unit is connected to the back electrode layer 15 adjacent to the back electrode layer 15 to which the series holes 16 are connected. The arrangement positions of the series holes 16 and the current collecting holes 17 can be determined so that the current collecting holes 17 of the cells U1 to U4 are connected.

これにより、フィルム基板11上で分割された光電変換層13を薄膜のみで直列接続することが可能となり、外部配線なしでインバータに適する電圧を得ることが可能となることから、並列接続のみでシステムを構成することができる。
また、図1の太陽電池を製造する場合、フィルム基板11に一定の張力を与えながらフィルム基板11のガラス転移点以上の温度でフィルム基板11の熱処理を行うとともに、その熱処理でフィルム基板11に与えられたのと同一の張力を与えながらフィルム基板11の成膜処理を行うことができる。
As a result, the photoelectric conversion layers 13 divided on the film substrate 11 can be connected in series only with a thin film, and a voltage suitable for an inverter can be obtained without external wiring. Can be configured.
When the solar cell of FIG. 1 is manufactured, the film substrate 11 is heat-treated at a temperature equal to or higher than the glass transition point of the film substrate 11 while applying a certain tension to the film substrate 11, and is given to the film substrate 11 by the heat treatment. The film forming process of the film substrate 11 can be performed while applying the same tension as that described above.

これにより、フィルム基板11が塑性変形を起こした状態で成膜処理を行うことが可能となり、成膜処理におけるロットごとのフィルム基板11の塑性変形量のばらつきを吸収することが可能となるとともに、熱処理時に塑性変形を一旦起こしたフィルム基板11の塑性変形量が成膜処理時に変化しないようにすることができる。このため、成膜処理に必要な温度によってはフィルム基板11が塑性変形を起こす場合においても、成膜処理に必要な温度を確保しつつ、フィルム基板11の成膜処理時の位置ずれを抑制することが可能となり、太陽電池の特性を向上させることができる。   Thereby, it becomes possible to perform the film forming process in a state where the film substrate 11 has undergone plastic deformation, and it becomes possible to absorb the variation in the amount of plastic deformation of the film substrate 11 for each lot in the film forming process, It is possible to prevent the amount of plastic deformation of the film substrate 11 that has undergone plastic deformation during the heat treatment from changing during the film formation process. For this reason, even when the film substrate 11 undergoes plastic deformation depending on the temperature required for the film forming process, the positional deviation during the film forming process of the film substrate 11 is suppressed while ensuring the temperature necessary for the film forming process. And the characteristics of the solar cell can be improved.

図2は、本発明の一実施形態に係る太陽電池の製造工程を示すブロック図である。
図2において、フィルム基板11に一定の張力を与えながらフィルム基板11のガラス転移点以上の温度でフィルム基板1のアニール処理を行う(K11)。なお、このアニール処理で与える張力は、それ以降の処理でフィルム基板1にかかる最も強い張力に設定することができる。例えば、フィルム基板11としてポリイミド(東レデュポン製カプトン200EN)を用いた場合、フィルム基板11のアニール処理の条件として、温度が20℃→350℃(2〜3分)→20℃、張力が16kg/1000mmとなるように設定することができる。
FIG. 2 is a block diagram showing a manufacturing process of the solar cell according to one embodiment of the present invention.
In FIG. 2, the film substrate 1 is annealed at a temperature equal to or higher than the glass transition point of the film substrate 11 while applying a constant tension to the film substrate 11 (K11). Note that the tension applied in this annealing process can be set to the strongest tension applied to the film substrate 1 in the subsequent processes. For example, when polyimide (Toray DuPont Kapton 200EN) is used as the film substrate 11, the temperature of the film substrate 11 is 20 ° C. → 350 ° C. (2 to 3 minutes) → 20 ° C., and the tension is 16 kg / It can be set to be 1000 mm.

次に、金型プレスなどの方法にて、フィルム基板11に直列ホール16を形成する(K12)。なお、この直列ホール16の形成と同時にフィルム基板11の位置を識別するためのマーク孔を形成することができる。
次に、アニール処理でフィルム基板11に与えられたのと同一の張力をフィルム基板11に与えながら、フィルム基板11の真空加熱を行うことにより、フィルム基板11の脱ガス処理を行う(K13)。例えば、フィルム基板11の脱ガス処理の条件として、温度が20℃→350℃→20℃、張力が16kg/1000mmとなるように設定することができる。
Next, a series hole 16 is formed in the film substrate 11 by a method such as a die press (K12). A mark hole for identifying the position of the film substrate 11 can be formed simultaneously with the formation of the series hole 16.
Next, the film substrate 11 is degassed by performing vacuum heating of the film substrate 11 while applying the same tension as that applied to the film substrate 11 in the annealing process (K13). For example, the conditions for degassing the film substrate 11 can be set such that the temperature is 20 ° C. → 350 ° C. → 20 ° C. and the tension is 16 kg / 1000 mm.

次に、アニール処理でフィルム基板11に与えられたのと同一の張力をフィルム基板11に与えながらスパッタ処理を行うことにより、Ag/ZnO積層構造からなる裏面電極12および背面電極15をフィルム基板11に形成する(K14)。なお、この時のスパッタ処理の条件として、例えば、温度が20℃→300℃→20℃、張力が16kg/1000mmとなるように設定することができる。
次に、金型プレスなどの方法にて、フィルム基板11に集電ホール17を形成する(K15)。
次に、レーザスクライブなどの方法にて、裏面電極12を分割する溝18を形成する(K16)。
Next, the back electrode 12 and the back electrode 15 having an Ag / ZnO laminated structure are made to be the film substrate 11 by performing a sputtering process while applying the same tension to the film substrate 11 as that applied to the film substrate 11 by the annealing process. (K14). In addition, as conditions for the sputtering process at this time, for example, the temperature can be set to 20 ° C. → 300 ° C. → 20 ° C., and the tension can be set to 16 kg / 1000 mm.
Next, current collecting holes 17 are formed in the film substrate 11 by a method such as a die press (K15).
Next, a groove 18 for dividing the back electrode 12 is formed by a method such as laser scribing (K16).

次に、アニール処理でフィルム基板11に与えられたのと同一の張力を与えながらCVDまたはスパッタ処理を行うことにより、a−Siからなる光電変換層13およびITOからなる透明電極層14をフィルム基板11の表面側に順次形成するとともに、フィルム基板11の裏面側にNi電極を形成する(K17)。なお、この時のCVDまたはスパッタ処理の条件として、例えば、温度が20℃→320℃→20℃、張力が16kg/1000mmとなるように設定することができる。   Next, by performing the CVD or sputtering process while applying the same tension as that applied to the film substrate 11 by the annealing process, the photoelectric conversion layer 13 made of a-Si and the transparent electrode layer 14 made of ITO are changed to the film substrate. 11 are sequentially formed on the front surface side of the film 11, and a Ni electrode is formed on the back surface side of the film substrate 11 (K17). The conditions for CVD or sputtering treatment at this time can be set so that, for example, the temperature is 20 ° C. → 320 ° C. → 20 ° C. and the tension is 16 kg / 1000 mm.

次に、フォトエッチングなどの方法にて、直列ホール16上の透明電極層14が除去されるように透明電極層14をパターニングする(K17)。
次に、溝18と平行に互い違いに配置されるようにして背面電極15を分割する溝19を形成する(K19)。
これにより、脱ガス処理や成膜処理に必要な温度を確保しつつ、フィルム基板11の脱ガス処理や成膜処理時の位置ずれを抑制することが可能となるとともに、複雑な配線プロセスを用いることなく、フィルム基板11上に形成された光電変換層13を直列接続することができる。このため、製造プロセスの煩雑化を抑制しつつ、太陽電池から出力される電圧を上げることが可能となるとともに、太陽電池の特性を向上させることができ、品質のよい太陽電池を安価に提供することができる。
Next, the transparent electrode layer 14 is patterned by a method such as photoetching so that the transparent electrode layer 14 on the series hole 16 is removed (K17).
Next, grooves 19 for dividing the back electrode 15 are formed so as to be alternately arranged in parallel with the grooves 18 (K19).
As a result, it is possible to suppress a positional shift during the degassing process or the film forming process of the film substrate 11 while securing a temperature necessary for the degassing process or the film forming process, and a complicated wiring process is used. The photoelectric conversion layer 13 formed on the film substrate 11 can be connected in series without any problem. For this reason, while suppressing complication of the manufacturing process, it is possible to increase the voltage output from the solar cell, improve the characteristics of the solar cell, and provide a high-quality solar cell at low cost. be able to.

図3は、本発明の一実施形態に係る太陽電池の製造工程における張力を加えながら熱処理した時のフィルム基板の塑性変形量を示す図である。
図3において、例えば、フィルム基板11としてポリイミド(東レデュポン製カプトン200EN)を用いた場合、16gの張力をフィルム基板11に与えながらフィルム基板の温度を20℃から350℃に上昇させ(1)、その後にフィルム基板11の温度を20℃に下降させると(2)、フィルム基板11に塑性変形が発生する。そして、そのフィルム基板11に16gの張力を与えながら、ガラス転移点以下の温度範囲内でフィルム基板11の温度を上下させても(3)、それ以降のフィルム基板11の塑性変形量Rは誤差の範囲内でほぼ0にすることができ、それ以降の工程におけるフィルム基板11の成膜処理時の位置ずれを抑制することが可能となる。
FIG. 3 is a diagram showing the amount of plastic deformation of the film substrate when heat treatment is performed while applying tension in the manufacturing process of the solar cell according to one embodiment of the present invention.
In FIG. 3, for example, when polyimide (Toray DuPont Kapton 200EN) is used as the film substrate 11, the temperature of the film substrate is increased from 20 ° C. to 350 ° C. while applying a tension of 16 g to the film substrate 11 (1), Thereafter, when the temperature of the film substrate 11 is lowered to 20 ° C. (2), plastic deformation occurs in the film substrate 11. And even if the temperature of the film substrate 11 is raised or lowered within a temperature range below the glass transition point while applying a tension of 16 g to the film substrate 11 (3), the plastic deformation amount R of the film substrate 11 thereafter is an error. In this range, it is possible to reduce the positional deviation during the film forming process of the film substrate 11 in the subsequent processes.

本発明の一実施形態に係る太陽電池の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る太陽電池の製造工程を示すブロック図である。It is a block diagram which shows the manufacturing process of the solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る太陽電池の製造工程における張力を加えながら熱処理した時のフィルム基板の塑性変形量を示す図である。It is a figure which shows the plastic deformation amount of a film substrate when heat-processing, applying the tension | tensile_strength in the manufacturing process of the solar cell which concerns on one Embodiment of this invention. 張力を加えながら熱処理した時のフィルム基板の塑性変形量を示す図である。It is a figure which shows the amount of plastic deformation of a film substrate when heat-processing, applying a tension | tensile_strength. 張力を変えながら熱処理した時のフィルム基板の塑性変形量を示す図である。It is a figure which shows the amount of plastic deformation of a film substrate when heat-processing, changing tension | tensile_strength. 張力を加えながら熱処理した時のフィルム基板の塑性変形量のロットごとのばらつきを示す図である。It is a figure which shows the dispersion | variation for every lot of the plastic deformation amount of a film substrate when heat-processing, applying a tension | tensile_strength.

符号の説明Explanation of symbols

U1〜U4 ユニットセル
11 フィルム基板
12 裏面電極層
13 光電変換層
14 透明電極層
15 背面電極層
16 直列ホール
17 集電ホール
18、19 溝
U1-U4 unit cell 11 film substrate 12 back electrode layer 13 photoelectric conversion layer 14 transparent electrode layer 15 back electrode layer 16 series hole 17 current collecting hole 18, 19 groove

Claims (3)

可撓性基板に一定の張力を与えながら前記可撓性基板のガラス転移点以上の温度で前記可撓性基板の第1の熱処理を行う工程と、
前記第1の熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら前記可撓性基板の第2の熱処理を行う工程とを備えることを特徴とする太陽電池の製造方法。
Performing a first heat treatment of the flexible substrate at a temperature equal to or higher than a glass transition point of the flexible substrate while applying a constant tension to the flexible substrate;
And a second heat treatment of the flexible substrate while applying the same tension as that applied to the flexible substrate in the first heat treatment.
可撓性基板に一定の張力を与えながら前記可撓性基板のガラス転移点以上の温度で前記可撓性基板の熱処理を行う工程と、
前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら前記可撓性基板の成膜処理を行う工程とを備えることを特徴とする太陽電池の製造方法。
Performing a heat treatment of the flexible substrate at a temperature equal to or higher than a glass transition point of the flexible substrate while applying a certain tension to the flexible substrate;
And a film forming process for the flexible substrate while applying the same tension as that applied to the flexible substrate by the heat treatment.
可撓性基板に一定の張力を与えながら前記可撓性基板のガラス転移点以上の温度で前記可撓性基板の熱処理を行う工程と、
前記熱処理された可撓性基板に直列ホールを形成する工程と、
前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら、前記直列ホールが形成された可撓性基板の脱ガス処理を行う工程と、
前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら、前記脱ガス処理された可撓性基板に裏面電極および背面電極を形成する工程と、
前記裏面電極および背面電極が形成された可撓性基板に集電ホールを形成する工程と、
前記裏面電極を分割する第1溝を形成する工程と、
前記熱処理で前記可撓性基板に与えられたのと同一の張力を与えながら、前記裏面電極上に光電変換層および透明電極層を順次形成する工程と、
前記第1溝と互い違いに配置されるようにして前記背面電極を分割する第2溝を形成する工程とを備えることを特徴とする太陽電池の製造方法。
Performing a heat treatment of the flexible substrate at a temperature equal to or higher than a glass transition point of the flexible substrate while applying a certain tension to the flexible substrate;
Forming serial holes in the heat treated flexible substrate;
Degassing the flexible substrate in which the series holes are formed while applying the same tension as that applied to the flexible substrate in the heat treatment;
Forming a back electrode and a back electrode on the degassed flexible substrate while applying the same tension as that applied to the flexible substrate in the heat treatment;
Forming a current collecting hole in the flexible substrate on which the back electrode and the back electrode are formed;
Forming a first groove for dividing the back electrode;
A step of sequentially forming a photoelectric conversion layer and a transparent electrode layer on the back electrode while applying the same tension as that applied to the flexible substrate in the heat treatment;
Forming a second groove that divides the back electrode so as to be alternately arranged with the first groove.
JP2007223947A 2007-08-30 2007-08-30 Manufacturing method of solar cell Expired - Fee Related JP5205874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223947A JP5205874B2 (en) 2007-08-30 2007-08-30 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223947A JP5205874B2 (en) 2007-08-30 2007-08-30 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2009059772A true JP2009059772A (en) 2009-03-19
JP5205874B2 JP5205874B2 (en) 2013-06-05

Family

ID=40555281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223947A Expired - Fee Related JP5205874B2 (en) 2007-08-30 2007-08-30 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP5205874B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386334A (en) * 2011-11-24 2012-03-21 深圳市创益科技发展有限公司 Solar cell photovoltaic building component and manufacturing method thereof
CN102386251A (en) * 2011-11-24 2012-03-21 李毅 Flexible solar cell photovoltaic component made with flexible substrate
CN102916067A (en) * 2011-08-05 2013-02-06 深圳市中航三鑫光伏工程有限公司 Building material type double-sided glass photovoltaic component and manufacturing method thereof
CN103337537A (en) * 2013-06-04 2013-10-02 中山大学 A curved-surface-BIPV-photovoltaic-assembly and a preparation technology thereof
CN117936655A (en) * 2024-03-21 2024-04-26 龙焱能源科技(杭州)有限公司 Curved battery and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284568A (en) * 1985-10-08 1987-04-18 Teijin Ltd Thin-film solar cell
JP2000299481A (en) * 1999-04-12 2000-10-24 Fuji Electric Co Ltd Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP2003031823A (en) * 2001-07-11 2003-01-31 Toppan Printing Co Ltd Thin-film solar cell
JP2003258280A (en) * 2002-03-05 2003-09-12 Fuji Electric Co Ltd Device for manufacturing thin film solar battery
JP2004068126A (en) * 2002-08-09 2004-03-04 Fuji Electric Holdings Co Ltd Thin film formation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284568A (en) * 1985-10-08 1987-04-18 Teijin Ltd Thin-film solar cell
JP2000299481A (en) * 1999-04-12 2000-10-24 Fuji Electric Co Ltd Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP2003031823A (en) * 2001-07-11 2003-01-31 Toppan Printing Co Ltd Thin-film solar cell
JP2003258280A (en) * 2002-03-05 2003-09-12 Fuji Electric Co Ltd Device for manufacturing thin film solar battery
JP2004068126A (en) * 2002-08-09 2004-03-04 Fuji Electric Holdings Co Ltd Thin film formation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916067A (en) * 2011-08-05 2013-02-06 深圳市中航三鑫光伏工程有限公司 Building material type double-sided glass photovoltaic component and manufacturing method thereof
CN102386334A (en) * 2011-11-24 2012-03-21 深圳市创益科技发展有限公司 Solar cell photovoltaic building component and manufacturing method thereof
CN102386251A (en) * 2011-11-24 2012-03-21 李毅 Flexible solar cell photovoltaic component made with flexible substrate
CN102386251B (en) * 2011-11-24 2013-08-21 李毅 Flexible solar cell photovoltaic component made with flexible substrate
US9029693B2 (en) 2011-11-24 2015-05-12 Shenzhen Trony Science & Technology Development Co., Ltd. Flexible solar cell photovoltaic assembly prepared with flexible substrate
CN103337537A (en) * 2013-06-04 2013-10-02 中山大学 A curved-surface-BIPV-photovoltaic-assembly and a preparation technology thereof
CN117936655A (en) * 2024-03-21 2024-04-26 龙焱能源科技(杭州)有限公司 Curved battery and preparation method thereof

Also Published As

Publication number Publication date
JP5205874B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5205874B2 (en) Manufacturing method of solar cell
JP2011162413A (en) Reinforced glass plate and method for producing the same
JP2006310798A (en) Solar cell module and method of manufacturing the same
JP2006054355A (en) Rectangular conductor for solar cell, its manufacturing method and lead wire for solar cell
JP2010016074A (en) Solar cell module, and its manufacturing method
CN101313410B (en) Interconnector, solar battery string using such interconnector, method for manufacturing such solar battery string and solar battery module using such solar battery string
JP2007109956A (en) Solar cell, solar cell string and solar cell module
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP5036545B2 (en) Method for producing electrode wire for solar cell
EP2302689A1 (en) Photovoltaic system and manufacturing method thereof
JP2006295087A (en) Photovoltaic module
US20230141617A1 (en) Ribbon and solar cell assembly
US20150349347A1 (en) Cladding material for battery collector and electrode
JP2009164204A (en) Photovoltaic cell device
JP2014192367A (en) Solar cell module and method of manufacturing the same
JP2009164320A (en) Solar cell, and solar cell module
US10511030B2 (en) Anti-corrosion structure and fuel cell employing the same
JP5316938B2 (en) Pure nickel sheet and method for producing pure nickel sheet
EP3057135A1 (en) Photovoltaic module and method for producing the same
KR20130101351A (en) Resistive memory device and fabrication method thereof
JP5652911B2 (en) Manufacturing method of solar cell module
KR101110915B1 (en) Ribbon wire for solar cell module
JP2018076590A (en) Aluminum alloy foil for electrode collector body and manufacturing method therefor
JP2013021242A (en) Semiconductor device manufacturing method
JP2011181619A (en) Solar cell module

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees