JP2009057215A - Joined article and its producing method - Google Patents

Joined article and its producing method Download PDF

Info

Publication number
JP2009057215A
JP2009057215A JP2007223009A JP2007223009A JP2009057215A JP 2009057215 A JP2009057215 A JP 2009057215A JP 2007223009 A JP2007223009 A JP 2007223009A JP 2007223009 A JP2007223009 A JP 2007223009A JP 2009057215 A JP2009057215 A JP 2009057215A
Authority
JP
Japan
Prior art keywords
sic
porous body
silicon
metal silicon
permeation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007223009A
Other languages
Japanese (ja)
Other versions
JP5009095B2 (en
Inventor
Tamotsu Harada
保 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007223009A priority Critical patent/JP5009095B2/en
Publication of JP2009057215A publication Critical patent/JP2009057215A/en
Application granted granted Critical
Publication of JP5009095B2 publication Critical patent/JP5009095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined article having satisfactory airtightness while assuring the function of a porous article even when a large-scale porous article having a large pore diameter and high porosity is used. <P>SOLUTION: The joined article comprises an SiC porous article, a penetrating layer where metal silicon is penetrated in the SiC porous body and a joining layer consisting of a silicon alloy contacting with the penetrating layer, and has an aluminum content in the silicon alloy of 1-20 wt.%. It is characterized that the aluminum content in the metal silicon in the penetrating layer is not more than that in the silicon alloy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車の排気ガス処理装置に使用されるハニカムや腐食下で使用される触媒担体やフィルターおよび半導体製造装置をはじめとする多孔体を使用する各産業分野に関わる。 The present invention relates to various industrial fields using porous bodies including honeycombs used in automobile exhaust gas treatment apparatuses, catalyst carriers and filters used under corrosion, and semiconductor manufacturing apparatuses.

SiCは耐熱性、耐食性に優れており、半導体製造装置部材や自動車部品として用いられている。SiCは焼結温度が高く、雰囲気も不活性ガス下で行うことから、大きさに制限があり、複雑形状品を作製することが困難であった。このような問題を解決するために、接合技術が種々提案されてきた。接合で特に問題となるのは接合材との熱膨張差による残留応力である。残留応力が大きい場合、接合後に残留ひずみが発生し、接合部の強度が低下するという問題が発生する。これまでそれを解決するためにSiCと熱膨張係数が近い金属シリコンが接合材として用いられてきた。金属シリコンは粉末や薄板など形状も多様で、容易に手に入る材料であり、SiC表面上に残留するカーボンと反応してSiCを形成するというメカニズムで接合するため、更に熱膨張差が緩和されやすい点でSiCの接合に適している。 SiC is excellent in heat resistance and corrosion resistance, and is used as a member for semiconductor manufacturing equipment and automobile parts. Since SiC has a high sintering temperature and the atmosphere is carried out under an inert gas, the size is limited and it is difficult to produce a complex shape product. In order to solve such a problem, various joining techniques have been proposed. What is particularly problematic in bonding is the residual stress due to the difference in thermal expansion from the bonding material. When the residual stress is large, there arises a problem that residual strain is generated after bonding and the strength of the bonded portion is lowered. In order to solve this problem, metallic silicon having a thermal expansion coefficient close to that of SiC has been used as a bonding material. Metallic silicon is a material that can be easily obtained in a variety of shapes, such as powder and thin plates, and because it joins with a mechanism that reacts with the carbon remaining on the SiC surface to form SiC, the thermal expansion difference is further alleviated. It is suitable for bonding SiC because it is easy.

近年、半導体製造装置部材および自動車部品としてSiCの用途は更なる広がりをみせ、SiCの緻密な焼結体とともに多孔体の要求も高まっている。SiCの多孔体は耐熱性、耐食性に優れているため、触媒担体やフィルターとして用いられている。その使用範囲は幅広く、様々な形状のSiC多孔体が要求されている。 In recent years, the use of SiC as a semiconductor manufacturing apparatus member and automobile parts has further expanded, and the demand for a porous body as well as a dense sintered body of SiC has increased. SiC porous bodies are excellent in heat resistance and corrosion resistance, and are therefore used as catalyst carriers and filters. The use range is wide, and various shapes of SiC porous bodies are required.

しかし、SiC多孔体も緻密体同様に製造できる形状に限界があり、所望の形状を作製するためにはSiC多孔体同士の接合やSiCの緻密体との接合が必要不可欠である。 However, there is a limit to the shape of SiC porous bodies that can be manufactured in the same manner as dense bodies, and joining of SiC porous bodies and joining with SiC dense bodies are indispensable for producing desired shapes.

このようなSiC多孔体に関する接合技術が種々提案されている。例えば、特許文献1には、含珪素セラミックからなる多孔質体の開放気孔中に、金属シリコンを含浸した複数のセラミック・金属複合体製の2つの基材からなるセラミック部材が開示されている。この基材同士は、金属シリコンからなる接合層を介して接合されている。
特開2002−11653号公報
Various joining techniques relating to such SiC porous bodies have been proposed. For example, Patent Document 1 discloses a ceramic member made of two substrates made of a plurality of ceramic / metal composites in which open pores of a porous body made of silicon-containing ceramic are impregnated with metal silicon. The base materials are bonded to each other through a bonding layer made of metal silicon.
JP 2002-11653 A

上述のように金属シリコンは、SiCとの熱膨張差が小さいだけでなく、SiC表面にある残留カーボンと反応するため、濡れ性が良く、接合材として良好にその特性を発揮する。しかし、SiCの多孔体の場合、その内部にも残留カーボンが多く存在するため、接合材の金属シリコンが接合面のみに留まらず、多孔体内部にまで過剰に浸透してしまい、気孔部分が埋まってしまうことがあった。そのため、フィルターとして使用する際など十分な連通部を確保できず、安定した流量を確保するのが困難であった。特にSiC多孔体の気孔径が大きい場合、接合材である金属シリコンの浸透が容易に進むため、気孔部分が金属シリコンで埋まり、逆に接合部の金属シリコンの量が不十分となり接合強度や接合部での気密性が得られない場合があった。したがって、流量を多く流すために気孔径が大きいものや気孔率が高い多孔体を金属シリコンで接合することは不可能であった。 As described above, metal silicon not only has a small difference in thermal expansion from SiC, but also reacts with residual carbon on the surface of SiC, so that it has good wettability and exhibits its properties well as a bonding material. However, in the case of a SiC porous body, since a large amount of residual carbon is also present inside the porous body, the metal silicon of the bonding material does not stay only on the bonding surface, but excessively penetrates into the porous body, filling the pores. There was a case. Therefore, it was difficult to secure a sufficient flow rate because it was not possible to secure a sufficient communication portion such as when used as a filter. In particular, when the pore size of the SiC porous body is large, the penetration of metallic silicon as a bonding material easily proceeds, so that the pore portion is filled with metallic silicon, and conversely, the amount of metallic silicon in the bonding portion becomes insufficient, resulting in the bonding strength and bonding. In some cases, airtightness at the part could not be obtained. Therefore, it was impossible to join a porous body having a large pore diameter or a high porosity with metallic silicon in order to flow a large flow rate.

また、特に大型のSiC多孔体を接合する場合、熱容量が大きいため、小型品と比較すると高温での保持時間が長くなる。そのため、接合材として金属シリコンを使用した場合、金属シリコンが揮発して多孔体に過剰に侵入するという問題があった。 In particular, when joining a large SiC porous body, the heat capacity is large, so that the holding time at a high temperature is longer than that of a small product. Therefore, when metal silicon is used as the bonding material, there is a problem that the metal silicon volatilizes and excessively enters the porous body.

さらに、多孔体同士を接合した接合体からなる半導体製造装置部材のなかには、接合層により隔離された両側を異なる雰囲気としたり、接合層を挟んで給気と排気を行ったりするものがあり、接合部の気密性が非常に重要視されている。したがって、接合強度だけでなく気密性への要求も厳しく、これを高めることが課題となっていた。 Furthermore, some semiconductor manufacturing apparatus members composed of joined bodies in which porous bodies are joined together have different atmospheres on both sides separated by the joining layer, or supply and exhaust air with the joining layer interposed therebetween. The airtightness of the department is very important. Therefore, not only the bonding strength but also the demand for airtightness is severe, and it has been a challenge to increase this.

本発明では気孔径が大きく、気孔率が高い大型の多孔体を用いた場合であっても、多孔体の機能を確保しつつ十分な気密性を有する接合体およびその製造方法を提供する。 In the present invention, even when a large porous body having a large pore diameter and a high porosity is used, a bonded body having sufficient airtightness while ensuring the function of the porous body and a method for producing the same are provided.

本発明者等は、これらの問題を解決するため、SiC多孔体にSiCの充填率が高い部分を設け、その部分に金属シリコンを浸透させて、浸透層を形成し、その後浸透層を加工することによりその厚みを制御し、さらに接合材の金属シリコンにアルミニウムを添加して融点を低下させることにより、浸透層の金属シリコンの揮発を低減し、SiC多孔体に金属シリコンが過剰に侵入することを抑制して接合する方法を見出し、本発明をするに至った。 In order to solve these problems, the present inventors provide a portion having a high SiC filling rate in a SiC porous body, infiltrate metal silicon into that portion, form an infiltration layer, and then process the infiltration layer By controlling the thickness of the material and further adding aluminum to the metal silicon of the bonding material to lower the melting point, the volatilization of the metal silicon of the permeation layer is reduced, and the metal silicon excessively penetrates the SiC porous body. As a result, the inventors have found a method for joining while suppressing the occurrence of the present invention.

すなわち本発明は、SiC多孔体と、該SiC多孔体に金属シリコンが浸透した浸透層と、該浸透層に接したシリコン合金からなる接合層とを含む接合体であって、前記シリコン合金のアルミニウム含有量は1〜20wt%であることを特徴とする接合体、を提供するものである。 That is, the present invention is a joined body including a SiC porous body, a permeation layer in which metallic silicon penetrates the SiC porous body, and a joining layer made of a silicon alloy in contact with the permeation layer, the aluminum alloy of the silicon alloy The present invention provides a joined body having a content of 1 to 20 wt%.

通常、金属シリコンにアルミニウムを添加して加熱溶融した後に冷却すると、凝固する際に収縮し、これが接合層に、いわゆる引け巣(隙間)、を発生させ、気密性が低下する。それを防止するために本発明では以下の手法を用いた。まず接合時に接合材が溶けると浸透層の金属シリコンと接触する。そこで接合材中のアルミニウムの拡散が起こり、接合材全体のアルミニウムの成分割合が接合前と比較して減少する。そのため、接合材の融点を下げるためにアルミニウムを添加しても凝固収縮は小さく抑えられて引け巣を低減することができる。しかも、浸透層の金属シリコンは、接合温度が低いために溶融をすることがなく、多孔体内部への過剰な侵入を抑制することができる。これにより、接合最高温度の保持時間が長い大型品に適用しても、金属シリコンの揮発が抑制され、SiC多孔体への金属シリコンの過剰な侵入を抑えることが出来る。 Usually, when aluminum is added to metal silicon and heated and melted and then cooled, it shrinks when solidifying, which causes a so-called shrinkage nest (gap) in the bonding layer, resulting in a decrease in airtightness. In order to prevent this, the following method is used in the present invention. First, when the bonding material melts at the time of bonding, it comes into contact with the metal silicon of the permeation layer. Accordingly, diffusion of aluminum in the bonding material occurs, and the proportion of aluminum in the entire bonding material is reduced as compared with that before bonding. Therefore, even if aluminum is added to lower the melting point of the bonding material, the shrinkage of solidification can be kept small, and shrinkage can be reduced. Moreover, since the metal silicon of the permeation layer has a low bonding temperature, it does not melt and can suppress excessive penetration into the porous body. Thereby, even if it applies to a large sized product with long holding time of junction maximum temperature, volatilization of metallic silicon is controlled and excessive penetration of metallic silicon into a SiC porous body can be controlled.

本発明における接合層のシリコン合金のアルミニウム含有量は1〜20wt%とすることが望ましい。シリコン合金に含まれるアルミニウムは、接合材として添加した量よりも減少する。これは、浸透層の金属シリコンに拡散するためである。また、加熱溶融時にアルミニウムが揮発するためである。シリコン合金のアルミニウムの含有量が上記範囲内であれば、適切な接合温度で接合でき、また、接合層の凝固収縮による引け巣の発生を抑えることができる。 The aluminum content of the silicon alloy of the bonding layer in the present invention is preferably 1 to 20 wt%. The aluminum contained in the silicon alloy is less than the amount added as a bonding material. This is because it diffuses into the metal silicon of the permeation layer. Moreover, it is because aluminum volatilizes at the time of heating and melting. When the aluminum content of the silicon alloy is within the above range, bonding can be performed at an appropriate bonding temperature, and generation of shrinkage cavities due to solidification shrinkage of the bonding layer can be suppressed.

また、本発明は、前記浸透層の金属シリコンは、前記シリコン合金のアルミニウム含有量以下のアルミニウムを含有することを特徴とする。 Further, the present invention is characterized in that the metal silicon of the permeation layer contains aluminum not more than the aluminum content of the silicon alloy.

浸透層の金属シリコンについて、接合層のシリコン合金のアルミニウム含有量以下のアルミニウムを含有する、としたのは、接合材のアルミニウムは浸透層の金属シリコンに拡散していくが、浸透層全部に拡散したとしても接合層のアルミニウム含有量と同等であり、浸透層の接合面近傍の一部に浸透した場合は、接合層のアルミニウム含有量よりも浸透層の金属シリコンのアルミニウム含有量が少ないからである。前述のように、このような構成とすることで、引け巣の発生が抑えられた接合体とすることができる。 The metal silicon in the permeation layer contains aluminum that is less than or equal to the aluminum content of the silicon alloy in the bonding layer. The aluminum in the bonding material diffuses into the metal silicon in the permeation layer, but diffuses throughout the permeation layer. Even if it is, it is equivalent to the aluminum content of the joining layer, and when it penetrates a part near the joining surface of the permeation layer, the aluminum content of the metal silicon of the permeation layer is less than the aluminum content of the joining layer. is there. As described above, with such a configuration, it is possible to obtain a bonded body in which the generation of shrinkage nests is suppressed.

さらに、本発明は、前記浸透層の厚みが50μm以下であることを特徴とする。 Furthermore, the present invention is characterized in that the thickness of the permeation layer is 50 μm or less.

通常のSiCの表面には未反応のカーボンや多孔体を作製する際のバインダーが残留している。金属シリコンはカーボンと容易に反応しSiCを形成する。その際の反応エネルギーによって金属シリコンはSiC多孔体の内部に浸透する。SiCと金属シリコンの濡れ性を改良することによりある程度金属シリコンの浸透を抑えることが出来るが、金属シリコンの浸透距離を短く制御することは困難であった。そこで、本発明では、一度金属シリコンを多孔体に浸透させて浸透層を形成し、加工により金属シリコン浸透層の厚みを小さくすることにより、接合体における多孔体の浸透層の厚みを50μm以下にできることを見出したものである。浸透層の厚みが50μm以下であれば、多孔体の大きさや形状に関わらず多孔体の機能を発揮することが容易になり、種々の製品に適用することが可能となる。浸透層の厚みの下限は特に限定されないが、20μm以上であることが好ましい。接合材が少なくとも20μm程度多孔体の内部に浸透することでアンカー効果により強固に接合できる。 Unreacted carbon and a binder for producing a porous body remain on the surface of ordinary SiC. Metallic silicon reacts easily with carbon to form SiC. Metal silicon permeates into the SiC porous body by the reaction energy at that time. Although the penetration of metal silicon can be suppressed to some extent by improving the wettability of SiC and metal silicon, it has been difficult to control the penetration distance of metal silicon to be short. Therefore, in the present invention, the thickness of the permeation layer of the porous body in the joined body is reduced to 50 μm or less by once penetrating metal silicon into the porous body to form a permeation layer and reducing the thickness of the metal silicon permeation layer by processing. This is what we can do. If the thickness of the osmotic layer is 50 μm or less, it becomes easy to exert the function of the porous body regardless of the size and shape of the porous body, and it can be applied to various products. Although the minimum of the thickness of a osmosis | permeation layer is not specifically limited, It is preferable that it is 20 micrometers or more. When the bonding material penetrates into the porous body at least about 20 μm, it can be firmly bonded by the anchor effect.

また、SiC多孔体の気孔率は40%以上であることが好ましい。本発明のSiC多孔体は、触媒担体やフィルター等として用いた場合に十分な流量を確保できる気孔率を有しており、上述のように浸透層の厚みを小さくすることで、多孔体の機能を発揮できるような接合体を得ることができる。 Moreover, it is preferable that the porosity of a SiC porous body is 40% or more. The SiC porous body of the present invention has a porosity capable of securing a sufficient flow rate when used as a catalyst carrier, a filter, etc., and the function of the porous body is reduced by reducing the thickness of the permeation layer as described above. It is possible to obtain a joined body that can exhibit the above.

金属シリコンが浸透した浸透層のSiC充填率は、多孔体のSiC充填率(100−多孔体の気孔率(%))よりも大きく、具体的な充填率としては50%以上であることが好ましく、60%以上がより好ましい。浸透層のSiC充填率を高めることで、多孔体内部への過剰な金属シリコンの浸透を防ぐことができ、気孔率が大きく、気孔率が高い多孔体を用いた場合であっても、その機能を損なうことなく接合体を得ることができる。浸透層のSiC充填率の上限は特に限定されないが、現実的には70%まで高めることが可能である。 The SiC filling rate of the permeation layer into which metallic silicon has penetrated is larger than the SiC filling rate of the porous body (100-porosity (%) of the porous body), and the specific filling rate is preferably 50% or more. 60% or more is more preferable. By increasing the SiC filling rate of the permeation layer, it is possible to prevent excessive metal silicon from penetrating into the porous body, and even when a porous body having a high porosity and a high porosity is used, its function A joined body can be obtained without impairing the resistance. Although the upper limit of the SiC filling rate of the osmotic layer is not particularly limited, it can be practically increased to 70%.

また、本発明では、接合層の厚みが100μm以下の接合体を得ることができる。本発明の接合体では、多孔体内部への過剰な金属シリコンの浸透が抑制されているので、接合層の厚みが小さくても、気密性良く接合することが可能である。したがって、多孔体として機能しない浸透層および接合層の部分が少ない接合体を得ることができる。 Moreover, in this invention, the joined body whose thickness of a joining layer is 100 micrometers or less can be obtained. In the joined body of the present invention, since excessive metal silicon permeation into the porous body is suppressed, it is possible to join with good airtightness even if the thickness of the joining layer is small. Therefore, it is possible to obtain a joined body with few portions of the permeation layer and the joining layer that do not function as a porous body.

本発明の接合体は、SiC多孔体の少なくとも一部に金属シリコンを浸透させて、浸透層を形成する工程と、該浸透層を50μm以下の厚みに加工して接合面を形成する工程と、金属シリコンにアルミニウムを5〜30wt%添加した接合材を使用し、金属シリコンの融点以下であって接合材が溶融する温度に加熱することにより、接合材に含まれるアルミニウムを前記浸透層の金属シリコンに拡散させる工程と、を含むことを特徴とする接合体の製造方法、により得られる。 The joined body of the present invention includes a step of allowing metal silicon to permeate at least part of the SiC porous body to form a permeation layer, a step of processing the permeation layer to a thickness of 50 μm or less, and forming a joining surface; A bonding material obtained by adding 5 to 30 wt% of aluminum to metal silicon is heated to a temperature equal to or lower than the melting point of the metal silicon and the bonding material melts, whereby the aluminum contained in the bonding material is converted into the metal silicon of the permeation layer. And a step of diffusing in a bonded structure.

上述のように、SiC多孔体について金属シリコンを用いて接合する場合は、金属シリコンが多孔体内部に浸透するため、多孔体としての機能を保持したまま接合体とすることは困難であった。しかしながら、金属シリコンの浸透層を形成し、その浸透層を50μm以下に加工して接合面を形成する方法を採用することにより、浸透距離を制御することができることがわかった。 As described above, when bonding SiC porous bodies using metal silicon, metal silicon permeates into the porous body, so that it was difficult to form a bonded body while maintaining the function as the porous body. However, it has been found that the permeation distance can be controlled by forming a metal silicon permeation layer and processing the permeation layer to 50 μm or less to form a joint surface.

接合材のアルミニウムの添加量は5〜30wt%の範囲が好ましい。添加量が5wt%より少ない場合は、接合材の融点を十分に下げることが出来ず、SiC多孔体の浸透層の金属シリコンの揮発が起こる可能性があり、それによってSiC多孔体の連通部に金属シリコンが侵入してしまう。また、添加量が30wt%より多い場合は、上記機構によるアルミニウムの拡散が起こってもアルミニウムの濃度が十分低下せず、凝固収縮の影響が強く発生し、接合部に発生した引け巣により、気密性や強度に問題が生じる。 The amount of aluminum added to the bonding material is preferably in the range of 5 to 30 wt%. When the addition amount is less than 5 wt%, the melting point of the bonding material cannot be lowered sufficiently, and there is a possibility that the metal silicon in the permeation layer of the SiC porous body may volatilize, thereby causing a connection portion of the SiC porous body. Metallic silicon invades. In addition, when the addition amount is more than 30 wt%, the aluminum concentration is not sufficiently lowered even if aluminum diffusion occurs due to the above mechanism, and the influence of solidification shrinkage is strongly generated, and the shrinkage nest generated in the joint causes airtightness. Problems arise in properties and strength.

また、本発明は、SiC多孔体の少なくとも一部にSiC粉末のスラリーを含侵させて含侵部を形成する工程と、該含侵部に金属シリコンを浸透させて、浸透層を形成する工程と、を含む接合体の製造方法を提供する。 The present invention also includes a step of impregnating at least a part of the SiC porous body with a slurry of SiC powder to form an impregnated portion, and a step of infiltrating the metal impregnated portion into the impregnated portion to form an infiltrated layer. And a method for producing a joined body.

金属シリコンを浸透させる際、多孔体の接合面に微粉のSiC粉末を含侵させて含侵部を形成し、SiCの充填率を高くする。したがって、当然のことながら、含侵部のSiC充填率は、多孔体のSiC充填率よりも大きくなる。これにより接合材である金属シリコンが過剰に多孔体内部に浸透することを防止する。
含侵部のSiC充填率は、50%以上が好ましく、60%以上がより好ましい。50%に満たない充填率では金属シリコンの浸透を十分に防ぐことが出来ず、多孔体全体に金属シリコンが浸透してしまうおそれがあるからである。
When metal silicon is infiltrated, fine SiC powder is impregnated on the joint surface of the porous body to form an impregnated portion, and the filling rate of SiC is increased. Therefore, as a matter of course, the SiC filling rate of the impregnated portion is larger than the SiC filling rate of the porous body. This prevents metal silicon as a bonding material from penetrating into the porous body excessively.
The SiC filling rate of the impregnated part is preferably 50% or more, and more preferably 60% or more. This is because if the filling rate is less than 50%, the penetration of metallic silicon cannot be sufficiently prevented, and the metallic silicon may penetrate into the entire porous body.

このようにSiC多孔体の接合面におけるSiCの充填率を高めた含侵部を形成し、その箇所に金属シリコンを一度浸透させることにより、金属シリコンの過剰な浸透を防ぐことが出来る。 In this way, by forming an impregnated portion having an increased SiC filling rate at the joint surface of the SiC porous body and allowing the metal silicon to permeate the portion once, excessive permeation of the metal silicon can be prevented.

さらに、本発明では、浸透層を50μm以下の厚みに加工して接合面を形成するので、多孔体として機能しない浸透層の部分が少ない接合体を得ることができる。 Furthermore, in the present invention, since the permeation layer is processed to a thickness of 50 μm or less to form a joining surface, a joined body with few permeation layer portions that do not function as a porous body can be obtained.

上述のように、SiC多孔体にSiCの充填率が高い部分を設け、その部分に金属シリコンを浸透させて、浸透層を形成し、その後浸透層を加工して、その厚みを制御し接合することにより、気孔径が大きく、気孔率が高い多孔体を用いた場合であっても、多孔体の機能を十分に確保しつつ接合された接合体が得られる。 As described above, a portion having a high SiC filling rate is provided in the SiC porous body, and metal silicon is infiltrated into the portion to form a permeation layer, and then the permeation layer is processed, and the thickness is controlled and bonded. Accordingly, even when a porous body having a large pore diameter and a high porosity is used, a joined body can be obtained that is joined while sufficiently ensuring the function of the porous body.

本発明のSiC多孔体としては、気孔率40%以上のものが好適に用いられる。気孔率が40%以上であれば、触媒担体やフィルター等の多孔体として機能させることができる。気孔率の上限は特に限定されないが、70%以下とすることが望ましい。気孔率が70%よりも大きな多孔体では多孔体自体の強度が著しく低下するため好ましくない。また、SiC多孔質体の気孔径は、10〜100μmが好ましい。このような範囲であれば、触媒担体やフィルター等の多孔体として好適に機能させることができる。 As the SiC porous body of the present invention, those having a porosity of 40% or more are preferably used. If the porosity is 40% or more, it can function as a porous body such as a catalyst carrier or a filter. The upper limit of the porosity is not particularly limited, but is preferably 70% or less. A porous body having a porosity of more than 70% is not preferable because the strength of the porous body itself is significantly reduced. Moreover, as for the pore diameter of a SiC porous body, 10-100 micrometers is preferable. If it is such a range, it can be made to function suitably as porous bodies, such as a catalyst support | carrier and a filter.

SiC多孔体は、公知の製法により作製したものを用いることができる。例えば、SiC粉末に造孔材を加えて成形したものを焼結する方法や、ポリウレタン等の樹脂製の多孔質体に金属シリコンを浸透させて作製する方法により得ることができる。 As the SiC porous body, one produced by a known manufacturing method can be used. For example, it can be obtained by a method of sintering a powder obtained by adding a pore former to SiC powder, or a method of making metal silicon permeate a resin porous body such as polyurethane.

SiC多孔体に含侵させる微粉のSiC粉末は、平均粒径5μm以下のものを用いることが好ましい。このような範囲の粒径のものを用いれば、上述の気孔径のSiC多孔体に適切に含侵させることができる。 The fine SiC powder impregnated in the SiC porous body is preferably one having an average particle diameter of 5 μm or less. If a particle having a particle size in such a range is used, the SiC porous body having the above pore diameter can be appropriately impregnated.

SiC粉末のスラリーを含侵させる方法としては、含侵部を形成しようとする面に刷毛等で塗布しても良いし、所定深さだけスラリーに浸漬しても良い。含侵部の厚みについては、スラリーの粘性や塗布回数、浸漬深さ等により調整することができる。 As a method of impregnating the slurry of SiC powder, it may be applied to the surface on which the impregnated portion is to be formed with a brush or the like, or may be immersed in the slurry by a predetermined depth. About the thickness of an impregnation part, it can adjust with the viscosity of slurry, the frequency | count of application | coating, immersion depth, etc.

接合材である金属シリコンとアルミニウムの形態としては、粉末、板、箔等を用いることができる。金属シリコン粉末およびアルミニウム粉末に樹脂バインダーを加えて、シート状に成形したものを用いても良い。 As the form of metallic silicon and aluminum as the bonding material, powder, plate, foil or the like can be used. You may use what added the resin binder to the metal silicon powder and the aluminum powder, and shape | molded in the sheet form.

接合面の加工は、平面研削やマシニングセンタ等、作製しようとする接合体の形状に応じて種々の方法を採用することができる。 Various methods can be employed for processing the joint surface depending on the shape of the joined body to be manufactured, such as surface grinding or a machining center.

金属シリコンの浸透は、真空または不活性ガス下、1410〜1500℃で行うことが好ましい。金属シリコンの融点である1410℃以下では金属シリコンが熔融しないため浸透できない。また、1500℃以上では金属シリコンの揮発が著しいため好ましくない。 The infiltration of the metal silicon is preferably performed at 1410 to 1500 ° C. under vacuum or inert gas. If the melting point of the metallic silicon is 1410 ° C. or lower, the metallic silicon does not melt and cannot penetrate. Moreover, since the volatilization of metallic silicon is remarkable at 1500 ° C. or higher, it is not preferable.

接合時の加熱は、真空または不活性ガス下、1270〜1390℃で行うことが好ましい。これは、本発明の所定範囲のアルミニウムが添加された接合材を用いて接合する際の好適な温度範囲であり、この温度範囲であれば、多孔体への金属シリコンの過剰な侵入が起きることなく、接合することが可能となる。 Heating at the time of bonding is preferably performed at 1270 to 1390 ° C. under vacuum or inert gas. This is a suitable temperature range when joining using the joining material to which aluminum in the predetermined range of the present invention is added, and excessive penetration of metal silicon into the porous body occurs within this temperature range. It becomes possible to join.

以下、実施例と比較例を示して、本発明を説明する。
[実施例1〜10、比較例1〜4]
SiCの多孔体として気孔率65%で平均気孔径30μmのものを使用した。これらの形状はΦ200mm×t15mmの円板形状である。またこれらと同形状のSiC緻密体(相対密度98%)と多孔体との接合も行った。なお、気孔率はアルキメデス法により、平均気孔径は、水銀圧入法により求めた。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[Examples 1 to 10, Comparative Examples 1 to 4]
A SiC porous body having a porosity of 65% and an average pore diameter of 30 μm was used. These shapes are disk shapes of Φ200 mm × t15 mm. In addition, a SiC dense body (relative density 98%) having the same shape and a porous body were also joined. The porosity was determined by the Archimedes method, and the average pore diameter was determined by the mercury intrusion method.

SiC多孔体へのSiC粉末の含侵は、市販のSiC粉末にイソプロピルアルコールを添加したスラリーを作製し、これをSiC多孔体の接合面に塗布することにより行った。使用したSiC粉末の平均粒径は3.4μmである。SiC粉末を塗布した後、100℃で5時間乾燥させた。なお、平均粒径(d50)は、レーザ回折/散乱式粒度分布計(堀場製作所(登録商標)製LA−920)を用いた測定値である。 The impregnation of the SiC porous body with the SiC porous body was performed by preparing a slurry obtained by adding isopropyl alcohol to a commercially available SiC powder and applying this to the joint surface of the SiC porous body. The SiC powder used has an average particle size of 3.4 μm. After applying the SiC powder, it was dried at 100 ° C. for 5 hours. The average particle size (d50) is a measured value using a laser diffraction / scattering particle size distribution meter (LA-920 manufactured by Horiba, Ltd. (registered trademark)).

SiC粉末含侵部への金属シリコン(純度99.99%)の浸透は、真空カーボン炉を使用し、Ar中で1450℃-1.5hr(昇温速度100℃/hr)の条件で行った。 The penetration of metallic silicon (purity 99.99%) into the SiC powder-impregnated portion was performed using a vacuum carbon furnace in Ar at 1450 ° C. to 1.5 hr (temperature increase rate 100 ° C./hr). .

別途SiC粉末を多孔体内部まで含侵させた50×50×t3の多孔体に金属シリコンを完全に浸透させ、その密度からSiCの充填率を求めたところ、すべて多孔体の充填率が60%以上であったことから、接合体における浸透層のSiC充填率も60%以上ある根拠とした。 Separately, metallic silicon was completely infiltrated into a 50 × 50 × t3 porous body impregnated with SiC powder to the inside of the porous body, and the filling rate of SiC was determined from the density. Based on the above, it was assumed that the SiC filling rate of the permeation layer in the joined body was 60% or more.

接合面の加工は、多孔体の金属シリコンの浸透層を#600番の砥石を用いて研削し、浸透層の平均厚さを20〜40μmとした。 The joint surface was processed by grinding a porous metal silicon permeation layer using a # 600 grindstone and setting the average thickness of the permeation layer to 20 to 40 μm.

接合は、金属シリコン粉末(純度99.99%)とアルミニウム粉末(純度99.9%)を表1の添加量で乾式混合し、これを有機バインダーで固めた厚さ300μmのシートを接合材とし、Ar中で表1の条件で接合を行った。接合温度についてはアルミニウムの添加量により融点が変化するため、これを考慮した。ただし、金属シリコンの融点は1414℃であり、接合温度はこれより低い温度で行った。また、接合が良好に行なわれるように荷重をかけた。具体的には、SiCの焼結体を2000gのせた。 Bonding is performed by dry-mixing metal silicon powder (purity 99.99%) and aluminum powder (purity 99.9%) with the addition amount shown in Table 1, and using a sheet of 300 μm thickness solidified with an organic binder as a bonding material. Bonding was performed in Ar under the conditions shown in Table 1. Regarding the bonding temperature, the melting point changes depending on the amount of aluminum added, and this is taken into account. However, the melting point of metal silicon was 1414 ° C., and the bonding temperature was lower than this. Further, a load was applied so that the bonding was performed satisfactorily. Specifically, 2000 g of a SiC sintered body was placed.

<評価方法>
接合後の評価は浸透層の厚さをマイクロスコープで観察し、その平均値で評価を行った。なお、浸透層の厚さについては、多孔体同士の場合は、両多孔体の浸透層厚さの平均を用いた。また、引け巣状態の評価は、各接合体について、四半円状に四等分した接合体の切断面を観察し、切断面に現れた接合層の長さ(100mm×4箇所)に対して隙間の長さが10%以下ならば○、20%以下ならば△、20%より大きいものについては×とした。この評価値については事前に行った気体のリークテストにより、接合層に発生した隙間の長さが20%以下であれば接合部からのリークが問題のない程度であることが確認されたことから判定した。また、接合層のアルミニウムの含有量はX線マイクロアナライザー(EPMA)による元素マッピングから検量線を用いて測定した。
<Evaluation method>
For the evaluation after bonding, the thickness of the permeation layer was observed with a microscope, and the average value was evaluated. In addition, about the thickness of the osmosis | permeation layer, in the case of porous bodies, the average of the osmosis | permeation layer thickness of both porous bodies was used. In addition, the evaluation of the shrinkage nest state is performed by observing the cut surface of the joined body divided into quarters for each joined body, and with respect to the length of the joining layer (100 mm × 4 locations) appearing on the cut surface. When the length of the gap is 10% or less, it is marked as ◯, when it is 20% or less, Δ, and when it is larger than 20%, it is marked as x. As for this evaluation value, it was confirmed by a gas leak test conducted in advance that the leakage from the joint is not problematic if the length of the gap generated in the joint layer is 20% or less. Judged. Further, the aluminum content of the bonding layer was measured using a calibration curve from elemental mapping by an X-ray microanalyzer (EPMA).

Figure 2009057215
Figure 2009057215

実施例1〜10の浸透層の厚さは、すべて50μm以下であった、また、また、引け巣状態についてはアルミニウム添加量が20wt%以下についての評価はすべて○であった。25〜30wt%になると引け巣はやや増加したが、△の基準値である20%以下であった。なお、実施例1〜10の接合層の厚さについて観察したところいずれの接合体も100μm以下であった。 The thicknesses of the osmotic layers in Examples 1 to 10 were all 50 μm or less. Also, in the shrinkage state, all the evaluations for the aluminum addition amount of 20 wt% or less were ◯. When it became 25-30 wt%, the shrinkage nest increased slightly, but it was 20% or less which is the reference value of Δ. In addition, when it observed about the thickness of the joining layer of Examples 1-10, all joined bodies were 100 micrometers or less.

アルミニウム含有量の少ない比較例1、2については浸透層の厚さが100μm以上となっており、実施例と比較して金属シリコンが多量に多孔体に侵入していた。引け巣状態の観察により隙間を調べたところ、アルミニウムの添加量が少ないので引け巣の影響は小さいものの、本来接合層にあるべき金属シリコンが多量に多孔体に侵入したため、隙間が多く発生していた。また、アルミニウム含有量の多い比較例3、4については浸透層の厚さは小さかったが、引け巣が20%以上発生し、気密性に問題が生じた。 In Comparative Examples 1 and 2 with a small aluminum content, the thickness of the permeation layer was 100 μm or more, and a larger amount of metal silicon entered the porous body than in the Examples. When the gap was examined by observing the shrinkage state, the effect of the shrinkage nest was small because the amount of aluminum added was small, but a large amount of gaps were generated because a large amount of metal silicon that should originally be in the bonding layer entered the porous body. It was. Further, in Comparative Examples 3 and 4 having a large aluminum content, the thickness of the permeation layer was small, but a shrinkage nest was generated by 20% or more, resulting in a problem of airtightness.

以上より、SiC多孔体に所定厚みの金属シリコンの浸透層を形成し、その後、所定のアルミニウムを含有するシリコン合金からなる接合層を形成して接合することで、気孔径が大きく、気孔率が高い多孔体を用いた場合であっても、多孔体の機能を十分に確保しつつ気密性に優れた接合体が得られることが確認された。 As described above, by forming a permeation layer of metallic silicon having a predetermined thickness on the SiC porous body, and then forming and bonding a bonding layer made of a silicon alloy containing a predetermined aluminum, the pore diameter is large and the porosity is Even when a high porous body was used, it was confirmed that a bonded body excellent in airtightness could be obtained while sufficiently securing the function of the porous body.

Claims (5)

SiC多孔体と、該SiC多孔体に金属シリコンが浸透した浸透層と、該浸透層に接したシリコン合金からなる接合層とを含む接合体であって、前記シリコン合金のアルミニウム含有量は1〜20wt%であることを特徴とする接合体。 A joined body comprising a SiC porous body, a permeation layer in which metallic silicon permeates the SiC porous body, and a joining layer made of a silicon alloy in contact with the permeation layer, wherein the silicon alloy has an aluminum content of 1 to 1 A joined body characterized by being 20 wt%. 前記浸透層の金属シリコンは、前記シリコン合金のアルミニウム含有量以下のアルミニウムを含有することを特徴とする請求項1記載の接合体。 The joined body according to claim 1, wherein the metal silicon of the permeation layer contains aluminum having an aluminum content equal to or less than that of the silicon alloy. 前記浸透層の厚みが50μm以下である請求項1、2記載の接合体。 The joined body according to claim 1, wherein a thickness of the permeation layer is 50 μm or less. SiC多孔体の少なくとも一部に金属シリコンを浸透させて、浸透層を形成する工程と、
該浸透層を50μm以下の厚みに加工して接合面を形成する工程と、
金属シリコンにアルミニウムを5〜30wt%添加した接合材を使用し、金属シリコンの融点以下であって接合材が溶融する温度に加熱することにより、接合材に含まれるアルミニウムを前記浸透層の金属シリコンに拡散させる工程と、
を含むことを特徴とする接合体の製造方法。
Infiltrating metal silicon into at least part of the SiC porous body to form a permeation layer;
Processing the permeation layer to a thickness of 50 μm or less to form a joint surface;
A bonding material obtained by adding 5 to 30 wt% of aluminum to metal silicon is heated to a temperature equal to or lower than the melting point of the metal silicon and the bonding material is melted. Diffusing into
The manufacturing method of the conjugate | zygote characterized by including.
SiC多孔体の少なくとも一部にSiC粉末のスラリーを含侵させて含侵部を形成する工程と、
該含侵部に金属シリコンを浸透させて、浸透層を形成する工程と、
を含む請求項4記載の接合体の製造方法。
A step of impregnating at least a part of the SiC porous body with a slurry of SiC powder to form an impregnated portion;
A step of infiltrating the metal silicon into the impregnated portion to form a permeation layer;
The manufacturing method of the conjugate | zygote of Claim 4 containing this.
JP2007223009A 2007-08-29 2007-08-29 JOINT BODY AND MANUFACTURING METHOD THEREOF Expired - Fee Related JP5009095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223009A JP5009095B2 (en) 2007-08-29 2007-08-29 JOINT BODY AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223009A JP5009095B2 (en) 2007-08-29 2007-08-29 JOINT BODY AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2009057215A true JP2009057215A (en) 2009-03-19
JP5009095B2 JP5009095B2 (en) 2012-08-22

Family

ID=40553306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223009A Expired - Fee Related JP5009095B2 (en) 2007-08-29 2007-08-29 JOINT BODY AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP5009095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318131B2 (en) 2021-03-26 2023-07-31 楽天グループ株式会社 Service providing system, service providing method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314974A (en) * 1998-05-01 1999-11-16 Ngk Insulators Ltd Production of joined body
JP2002011653A (en) * 2000-04-26 2002-01-15 Ibiden Co Ltd Ceramic member and its manufacturing method, and table for wafer polishing device
JP2003338356A (en) * 2002-05-20 2003-11-28 Sumitomo Osaka Cement Co Ltd Mounting structure of heating element and metallic electrode
JP2005015317A (en) * 2003-06-30 2005-01-20 Sumitomo Electric Ind Ltd Bonded body of ceramic-metal composite, bonding method, and apparatus for manufacturing liquid crystal or semiconductor using the bonded body
JP2006282419A (en) * 2005-03-31 2006-10-19 Toshiba Ceramics Co Ltd Ceramic joined body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314974A (en) * 1998-05-01 1999-11-16 Ngk Insulators Ltd Production of joined body
JP2002011653A (en) * 2000-04-26 2002-01-15 Ibiden Co Ltd Ceramic member and its manufacturing method, and table for wafer polishing device
JP2003338356A (en) * 2002-05-20 2003-11-28 Sumitomo Osaka Cement Co Ltd Mounting structure of heating element and metallic electrode
JP2005015317A (en) * 2003-06-30 2005-01-20 Sumitomo Electric Ind Ltd Bonded body of ceramic-metal composite, bonding method, and apparatus for manufacturing liquid crystal or semiconductor using the bonded body
JP2006282419A (en) * 2005-03-31 2006-10-19 Toshiba Ceramics Co Ltd Ceramic joined body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318131B2 (en) 2021-03-26 2023-07-31 楽天グループ株式会社 Service providing system, service providing method, and program

Also Published As

Publication number Publication date
JP5009095B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5497041B2 (en) Material for multilayer structure and contact with liquid silicon
KR20120014825A (en) Open-porous metal foam body and a method of fabricating the same
JP4115521B2 (en) Method of coating, method of manufacturing ceramic-metal structure, bonding method, and structure formed by them
JP3987201B2 (en) Manufacturing method of joined body
JP2005524766A (en) Method for producing porous titanium material article
JP2015232173A (en) Porous aluminum sintered body and manufacturing method of porous aluminum sintered body
JP5773331B2 (en) Manufacturing method of ceramic joined body
FI91491C (en) Method of forming a metal matrix composite body using dip molding technique
JP5009095B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP6405892B2 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
US4526826A (en) Foam semiconductor dopant carriers
JP5798429B2 (en) B4C / Si composite body bonding method
JP5320132B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP5009072B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP4827511B2 (en) Joining method and joining member of porous silicon carbide ceramics
JP5069050B2 (en) Joining method and joined body
EP0156055B1 (en) Foam semiconductor dopant carriers
JP4942038B2 (en) Joining method and joined body
JP5258700B2 (en) Porous body with coating
RU2633861C1 (en) Method of metalizing diamond while sintering with impregnated copper of diamond-containing carbide matrix
JP6890239B2 (en) Method for manufacturing inorganic porous sintered body and inorganic porous sintered body
JP2013199689A (en) Method for producing metal-ceramics composite material
JP2002275557A (en) Ceramic/metal composite body and method for manufacturing the same
JP2001122682A (en) SiC/Cu COMPOSITE MATERIAL AND METHOD OF PRODUCING THE SAME
JP2021050134A (en) Porous inorganic sintered body and method of producing porous inorganic sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees