JP2009056457A - Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorus compound adsorbent - Google Patents

Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorus compound adsorbent Download PDF

Info

Publication number
JP2009056457A
JP2009056457A JP2008190800A JP2008190800A JP2009056457A JP 2009056457 A JP2009056457 A JP 2009056457A JP 2008190800 A JP2008190800 A JP 2008190800A JP 2008190800 A JP2008190800 A JP 2008190800A JP 2009056457 A JP2009056457 A JP 2009056457A
Authority
JP
Japan
Prior art keywords
phosphorus compound
adsorbent
nitrogen
compound adsorbent
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008190800A
Other languages
Japanese (ja)
Other versions
JP5319192B2 (en
Inventor
Akiko Suzuki
昭子 鈴木
Ryuko Kono
龍興 河野
Shinetsu Fujieda
新悦 藤枝
Toshihide Takahashi
利英 高橋
Katsuya Yamamoto
勝也 山本
Mari Iwashita
真理 岩下
Nobuyuki Ashikaga
伸行 足利
Hidetake Shiire
英武 仕入
Satoshi Haraguchi
智 原口
Tokusuke Hayami
徳介 早見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008190800A priority Critical patent/JP5319192B2/en
Priority to US12/184,278 priority patent/US8258076B2/en
Priority to CN200810145001XA priority patent/CN101357326B/en
Publication of JP2009056457A publication Critical patent/JP2009056457A/en
Application granted granted Critical
Publication of JP5319192B2 publication Critical patent/JP5319192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphorus compound adsorbent, a phosphorus compound adsorption system wherein the phosphorus compound adsorbed can be desorbed in a neutral solvent, and a method of using the phosphorus compound adsorbent. <P>SOLUTION: A phosphorus compound adsorption system using a phosphorus compound adsorbent and a method of using the phosphorus compound adsorbent are provided. The phosphorus compound adsorbent includes a nitrogen-containing compound having an amino group at an end of the molecular structure, a support carrying the nitrogen-containing compound, and at least one metal ion selected from the group consisting of a zinc ion, a copper ion, an iron ion, and a zirconium ion, which is fixed to the nitrogen-containing compound. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リン化合物吸着材、リン化合物吸着システムおよびリン化合物吸着材の使用方法に係り、特に吸着したリン化合物を中性溶媒により脱着することができるリン化合物吸着材、リン化合物吸着システムおよび当該リン化合物吸着材の使用方法に関する。   The present invention relates to a phosphorus compound adsorbent, a phosphorus compound adsorption system, and a method for using the phosphorus compound adsorbent, and in particular, a phosphorus compound adsorbent, a phosphorus compound adsorption system, and the like that can desorb an adsorbed phosphorus compound with a neutral solvent. The present invention relates to a method for using a phosphorus compound adsorbent.

化学工業、食品工業、医薬工業、肥料工業、下水処理場、し尿処理場等の施設から排出される排水に含まれているリン化合物、例えばリン酸イオンを除去することを目的にした場合、鉄、マグネシウム、アルミニウム、カルシウム等の多価金属のイオンを排水中に供給し、これとリン酸イオンとを反応させることにより固体化または粒子化して沈殿、浮上又はろ過等によって除去する、反応凝集法が多く用いられている。   When the purpose is to remove phosphorus compounds, such as phosphate ions, contained in wastewater discharged from facilities such as chemical industry, food industry, pharmaceutical industry, fertilizer industry, sewage treatment plant, human waste treatment plant, etc. Reactive agglomeration method in which ions of polyvalent metals such as magnesium, aluminum and calcium are fed into waste water and reacted with phosphate ions to be solidified or granulated and removed by precipitation, flotation or filtration, etc. Is often used.

多価金属イオンを排水中に供給する方法としては、塩化第二鉄、ポリ硫酸第二鉄、ポリ塩化アルミニウム等の水溶液状の凝集剤を注入ポンプにより供給する凝集剤添加法がある(特許文献1参照)。
このような薬剤添加による凝集法の他にはイオン交換樹脂、ハイドロタルサイト様粘土鉱物、酸化ジルコニウム等を使用した吸着法等が知られている。
特開2001−48791公報
As a method for supplying polyvalent metal ions into wastewater, there is a coagulant addition method in which an aqueous coagulant such as ferric chloride, polyferric sulfate, or polyaluminum chloride is supplied by an injection pump (Patent Document). 1).
In addition to the agglomeration method by addition of such chemicals, adsorption methods using ion exchange resins, hydrotalcite-like clay minerals, zirconium oxide and the like are known.
JP 2001-48791 A

これらの吸着材は、再生利用のために脱着操作を行うために一般に高濃度塩基性溶媒を使用する。高濃度塩基性溶媒は吸着材の構造体を攻撃し、これにより吸着材が構造的に劣化する問題点を有する。   These adsorbents generally use high-concentration basic solvents to perform desorption operations for recycling. The high-concentration basic solvent attacks the adsorbent structure, thereby causing the adsorbent to structurally deteriorate.

本発明は係る問題点を解決するためになされたものであり、中性溶媒を用いた状態で吸着済みのリン化合物を脱着可能にしたリン化合物吸着材、リン化合物吸着システムおよび当該リン化合物吸着材の使用方法を提供することを目的とする。   The present invention has been made to solve such problems, and a phosphorus compound adsorbent, a phosphorus compound adsorption system, and the phosphorus compound adsorbent capable of desorbing a phosphorus compound that has been adsorbed in a state using a neutral solvent The purpose of this is to provide a method of use.

本発明のリン化合物吸着材は、分子構造の一端にアミノ基を有する窒素含有化合物と、この窒素含有化合物を担持する担体と、前記窒素含有化合物に固定化された、亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンの群から選ばれる少なくとも一つの金属イオンと、を有することを特徴とする。     The phosphorus compound adsorbent of the present invention comprises a nitrogen-containing compound having an amino group at one end of a molecular structure, a carrier carrying the nitrogen-containing compound, and zinc ions, copper ions, iron immobilized on the nitrogen-containing compound. And at least one metal ion selected from the group of ions and zirconium ions.

本発明のリン化合物吸着システムは、前記リン化合物吸着材を含んだ吸着手段と、前記吸着手段へリン化合物を含有する被処理媒体を供給する供給手段と、前記吸着手段の供給側または排出側の少なくとも一方に被処理媒体のリン化合物の含有量を測定する測定手段と、前記測定手段からの情報に基づき前記供給手段から前記吸着手段への被処理媒体の供給量を調整する制御手段と、を有することを特徴とする。   The phosphorus compound adsorption system of the present invention includes an adsorption means including the phosphorus compound adsorbent, a supply means for supplying a treatment medium containing a phosphorus compound to the adsorption means, a supply side or a discharge side of the adsorption means. Measuring means for measuring the content of the phosphorus compound in the medium to be treated at least on one side, and control means for adjusting the supply amount of the medium to be treated from the supply means to the adsorption means based on information from the measuring means; It is characterized by having.

本発明のリン化合物吸着材の使用方法は、前記リン化合物吸着材にリン化合物含有媒体中のリン化合物を吸着させる吸着工程と、pH調整または過剰塩の添加により前記吸着工程で前記リン化合物吸着材に吸着したリン化合物を脱着させる再生工程と、を有することを特徴とする。   The method for using the phosphorus compound adsorbent of the present invention includes an adsorption step of adsorbing the phosphorus compound in the phosphorus compound-containing medium to the phosphorus compound adsorbent, and the phosphorus compound adsorbent in the adsorption step by adjusting pH or adding excess salt. And a regeneration step for desorbing the phosphorus compound adsorbed on the surface.

本発明により、中性溶媒を用いた状態で吸着済みのリン化合物を脱着可能にしたリン化合物吸着材、リン化合物吸着システムおよび当該リン化合物吸着材の使用方法を提供できる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a phosphorus compound adsorbing material, a phosphorus compound adsorbing system, and a method for using the phosphorus compound adsorbing material that can desorb a phosphorus compound that has been adsorbed in a neutral solvent.

以下、本発明の実施の形態に係るリン化合物吸着材、リン化合物吸着システムおよび当該リン化合物吸着材の使用方法について説明する。   Hereinafter, a phosphorus compound adsorbing material, a phosphorus compound adsorbing system, and a method of using the phosphorus compound adsorbing material according to an embodiment of the present invention will be described.

〔リン化合物吸着材〕
まず、本発明に係るリン化合物吸着材について説明する。
[Phosphorus compound adsorbent]
First, the phosphorus compound adsorbent according to the present invention will be described.

〔窒素含有化合物〕
本発明に係る、分子構造の一端にアミノ基を有する窒素含有化合物とは、アミノ基を一または二以上その構造の一端に有している有機系高分子(単独のアミノ基のみも含む)をいう。
[Nitrogen-containing compounds]
The nitrogen-containing compound having an amino group at one end of the molecular structure according to the present invention refers to an organic polymer (including only a single amino group) having one or more amino groups at one end of the structure. Say.

〔担体〕
これら窒素含有化合物を担持するための担体としては、シリカゲル、アルミナ、ガラス、カオリン、マイカ、タルク、クレイ、水和アルミナ、ウォラストナイト、鉄粉、チタン酸カリウム、酸化チタン、酸化亜鉛、炭化珪素、窒化珪素、炭酸カルシウム、炭素、硫酸バリウム、ボロン、フェライトなどを用いることができる。
[Carrier]
Supports for supporting these nitrogen-containing compounds include silica gel, alumina, glass, kaolin, mica, talc, clay, hydrated alumina, wollastonite, iron powder, potassium titanate, titanium oxide, zinc oxide, silicon carbide Silicon nitride, calcium carbonate, carbon, barium sulfate, boron, ferrite, and the like can be used.

この中、フェライトなどの磁性を担体に用いると、磁気を用いた応用が可能である。例えば、攪拌装置を別途設けることなく、リン化合物吸着材自体を磁気攪拌を行うことでリン化合物吸着材を被処理媒体と積極的に接触させることができる。これにより吸着処理時間短縮を図ることができる。また、リン化合物吸着材を回収する際、磁気を使って容易に回収できる。これによりシステム簡素化、メンテナンス性向上等を図ることができる。   Among these, if magnetism such as ferrite is used for the carrier, application using magnetism is possible. For example, the phosphorus compound adsorbent can be positively brought into contact with the medium to be treated by magnetically stirring the phosphorus compound adsorbent itself without providing a stirrer. Thereby, the adsorption processing time can be shortened. Moreover, when recovering the phosphorus compound adsorbent, it can be easily recovered using magnetism. As a result, it is possible to simplify the system and improve the maintainability.

リン化合物吸着材の処理量はその表面積によって吸着量が異なる。システムの小型化が必要な場合などには単位体積当たりまたは単位重量当たりの吸着量が大きい方が好ましく、細孔構造を持つ担体を使用することが推奨される。   The treatment amount of the phosphorus compound adsorbent varies depending on the surface area. When it is necessary to reduce the size of the system, it is preferable that the amount of adsorption per unit volume or unit weight is large, and it is recommended to use a support having a pore structure.

〔担体への結合試薬〕
担体に前記窒素含有化合物を担持するためは、担体の表面水酸基と反応する官能基を有する結合試薬で処理する必要がある。担体の表面水酸基と反応する官能基を持つ結合試薬として下記化学式6乃至化学式9が例示される。

Figure 2009056457
[Reagent binding to carrier]
In order to carry the nitrogen-containing compound on the carrier, it is necessary to treat with a binding reagent having a functional group that reacts with the surface hydroxyl group of the carrier. Examples of the binding reagent having a functional group that reacts with the surface hydroxyl group of the carrier include the following chemical formulas 6 to 9.
Figure 2009056457

ここで、化学式6乃至化学式9のRは炭素数1〜3のアルキル基である。具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基が挙げられる。化学式6乃至化学式9は少なくとも一つが使われることが好ましいが、その場合、アルキル基Rは全て同種であっても、あるいは異種を含んでもよい。また、lは0〜2の整数、mは1〜3の整数、nは0〜3の整数をそれぞれ表している。   Here, R in Chemical Formulas 6 to 9 is an alkyl group having 1 to 3 carbon atoms. Specific examples include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. At least one of the chemical formulas 6 to 9 is preferably used. In this case, all the alkyl groups R may be the same or different. L represents an integer of 0 to 2, m represents an integer of 1 to 3, and n represents an integer of 0 to 3, respectively.

化学式6乃至化学式9中のアルコキシシランの具体例としてはN−2−(アミノエチル)−3―アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシラン、3−アミノプロピルジメチルエトキシシラン等が挙げられる。   Specific examples of the alkoxysilane in Chemical Formula 6 to Chemical Formula 9 include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3- Examples include aminopropyltrimethoxysilane, 3-aminopropyltrimethoxylane, 3-aminopropyldimethylethoxysilane.

〔アルコキシシリル修飾〕
担体にアルコキシランを結合する、いわゆるアルコキシシリル修飾の一連の反応は溶媒の存在下に行うことができる。溶媒としては水、エタノールを用いるのが一般的であり、混合溶媒であってもよい。また、ドライトルエン、ドライテトラヒドロフラン(ドライTHF)中で担体及びアルコキシシラン類を還流することにより無水条件で反応を進行させることも可能である。
[Alkoxysilyl modification]
A series of so-called alkoxysilyl modification reactions for bonding alkoxylane to the support can be carried out in the presence of a solvent. As the solvent, water or ethanol is generally used, and a mixed solvent may be used. It is also possible to proceed the reaction under anhydrous conditions by refluxing the carrier and alkoxysilanes in dry toluene or dry tetrahydrofuran (dry THF).

また、化学気相成長(CVD)を使用しても同様の処理を行うことができる。アルコキシシランを適当な溶媒(トルエンなど)に溶解させ、約100℃の電気炉に入れると、担体表面をアルコキシシランで修飾することができる。   A similar process can be performed using chemical vapor deposition (CVD). When the alkoxysilane is dissolved in a suitable solvent (such as toluene) and placed in an electric furnace at about 100 ° C., the support surface can be modified with the alkoxysilane.

具体的には0.1〜20wt%濃度に調整したアルコキシシラン溶液(水、エタノール混合溶媒)に処理前の担体を浸し、15分から3時間(好ましくは30分から1時間)攪拌した後にろ過を行い、純水で洗浄する方法を適用することができる。   Specifically, the carrier before treatment is immersed in an alkoxysilane solution (water / ethanol mixed solvent) adjusted to a concentration of 0.1 to 20 wt%, and after stirring for 15 minutes to 3 hours (preferably 30 minutes to 1 hour), filtration is performed. A method of washing with pure water can be applied.

リン化合物吸着材の窒素含有量はアルコキシシランの処理濃度および処理量に依存する。処理量は担体の比表面積およびアルコキシシランの最小被覆面積を用いて下記式1を用いて算出される。

Figure 2009056457
The nitrogen content of the phosphorus compound adsorbent depends on the treatment concentration and treatment amount of the alkoxysilane. The treatment amount is calculated using the following formula 1 using the specific surface area of the carrier and the minimum coating area of the alkoxysilane.
Figure 2009056457

ここで前記アルコキシシランは種類により各1分子が被覆可能な面積は異なるので、式1を用いるに際してはそれぞれの種類に応じた最小被覆面積を適用することが好ましい。また、アルコキシシリル修飾を行うアルコキシシランの処理濃度は1wt%〜10wt%が好ましい。1wt%より小さいと担体の単位面積当たりのアルコキシシランが少なくなり、単位面積当たりのリン化合物吸着量が低下する。また10wt%より大きいとアルコキシシラン同士の縮合によりゲル化を生じる。   Here, since the area of each alkoxysilane that can be covered by each molecule varies depending on the type, it is preferable to apply the minimum coverage according to each type when using Equation 1. In addition, the treatment concentration of alkoxysilane for alkoxysilyl modification is preferably 1 wt% to 10 wt%. If it is less than 1 wt%, the amount of alkoxysilane per unit area of the carrier will decrease, and the phosphorus compound adsorption amount per unit area will decrease. On the other hand, if it exceeds 10 wt%, gelation occurs due to condensation of alkoxysilanes.

最後に50℃〜150℃(好ましくは80℃〜120℃)で乾燥させると窒素化合物含有担持担体が得られる。なお、乾燥操作は真空雰囲気下で行ってもよい。   Finally, when dried at 50 ° C. to 150 ° C. (preferably 80 ° C. to 120 ° C.), a nitrogen compound-containing carrier is obtained. The drying operation may be performed in a vacuum atmosphere.

〔亜鉛イオン、銅イオン、鉄イオン、ジルコニウムイオンおよびその固定化〕
亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンの群から選択される少なくとも1つの金属イオン(以下、亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンの群から選択される少なくとも1つの金属イオンを単に金属イオンとする)には、これら金属イオンの塩化物、臭化物、硫酸塩、硝酸塩、リン酸塩などの無機塩を出発材料として用いることができる。ここで無機塩の対イオンは特に限定されるものではない。
[Zinc ion, copper ion, iron ion, zirconium ion and immobilization]
At least one metal ion selected from the group of zinc ion, copper ion, iron ion and zirconium ion (hereinafter simply referred to as at least one metal ion selected from the group of zinc ion, copper ion, iron ion and zirconium ion) In this case, inorganic salts such as chlorides, bromides, sulfates, nitrates, and phosphates of these metal ions can be used as starting materials. Here, the counter ion of the inorganic salt is not particularly limited.

これら無機塩を適切な溶媒に溶解させ、これを窒素含有化合物を担持した担体(以下、「窒素含有化合物担持担体」という)に接触させることにより窒素含有化合物に固定することができる。なお、溶媒は蒸留水やイオン交換水を用いることができるが、エタノール等のアルコール溶媒やその混合溶媒を使用することもできる。本発明の効果を適切に発揮するためには、窒素含有化合物および無機塩と親和性の高い溶媒が好ましい。   These inorganic salts can be fixed in a nitrogen-containing compound by dissolving them in a suitable solvent and bringing them into contact with a carrier carrying a nitrogen-containing compound (hereinafter referred to as “nitrogen-containing compound-carrying carrier”). In addition, although distilled water and ion-exchange water can be used for a solvent, alcohol solvents, such as ethanol, and its mixed solvent can also be used. In order to appropriately exert the effects of the present invention, a solvent having a high affinity for the nitrogen-containing compound and the inorganic salt is preferable.

金属イオンを含む溶液の濃度調整方法としては、使用するシランカップリング剤のモル数1に対して、同等以上のモル数の金属イオンを添加すればよい。具体的には上記式1で求めたアルコキシシランの処理量の等モル以上の金属イオンを、水溶液濃度が0.1〜20wt%になるように調整する。5〜10wt%がより好ましい。   As a method for adjusting the concentration of a solution containing metal ions, metal ions having a mole number equal to or greater than that of moles 1 of the silane coupling agent to be used may be added. Specifically, the equimolar amount or more of the metal ions of the alkoxysilane throughput determined by the above formula 1 is adjusted so that the aqueous solution concentration is 0.1 to 20 wt%. 5-10 wt% is more preferable.

なお、ここで「固定する」とは担体に担持された窒素含有化合物に金属イオンを担持することをいう。この場合、担持された金属イオンの一部または全部が錯イオンとして窒素含有化合物担持担体との間で全体として錯体を形成するように担持されてもよい。   Here, “fix” means that a metal ion is supported on a nitrogen-containing compound supported on a carrier. In this case, some or all of the supported metal ions may be supported as complex ions so as to form a complex with the nitrogen-containing compound-supported carrier as a whole.

このような製造方法により球形の担体に窒素含有化合物を担持し、さらに亜鉛、銅、鉄またはジルコニウムの群から選択される少なくとも1つの金属元素を固定したリン化合物吸着材の断面模式図を図1に示す。ここで図1(A)は本発明に係るリン化合物吸着材の構造を説明するための断面模式図、図1(B)は本発明に係るリン化合物吸着材の構造を説明するために図1(A)の一部10を拡大した断面模式図を示している。ここで図1(B)におけるX2+は金属イオンのいずれかを表している。 FIG. 1 is a schematic cross-sectional view of a phosphorus compound adsorbent in which a nitrogen-containing compound is supported on a spherical carrier by such a manufacturing method and at least one metal element selected from the group of zinc, copper, iron, or zirconium is fixed. Shown in 1A is a schematic cross-sectional view for explaining the structure of the phosphorus compound adsorbent according to the present invention, and FIG. 1B is a diagram for explaining the structure of the phosphorus compound adsorbent according to the present invention. The cross-sectional schematic diagram which expanded the part 10 of (A) is shown. Here, X 2+ in FIG. 1B represents one of metal ions.

このようなリン化合物吸着材は、リン化合物吸着材1g当たりの窒素原子のモル量をN、前記リン化合物吸着剤1g当たりの亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンのモル量の総和をMとした時に、1≦(N/M)≦20を満たすことが好ましい。1より小さいと金属イオンが流出する虞があり、20より大きいと過剰の窒素により他のイオンを吸着してしまう虞があるが、この範囲にある場合には、pHが3以上10以下の範囲においてリン化合物吸着能がピークを有することがその理由である。また、1≦(N/M)≦4のとき、窒素と金属が最も効率よく錯形成しており、金属が溶出する虞もなく耐久性の良い吸着材である。   In such a phosphorus compound adsorbent, the molar amount of nitrogen atoms per gram of phosphorus compound adsorbent is N, and the sum of the molar amounts of zinc ions, copper ions, iron ions and zirconium ions per gram of the phosphorus compound adsorbent is M. It is preferable that 1 ≦ (N / M) ≦ 20 is satisfied. If it is smaller than 1, metal ions may flow out, and if it is larger than 20, other ions may be adsorbed by excess nitrogen, but in this range, the pH is in the range of 3 to 10. The reason is that the phosphorus compound adsorption ability has a peak. Further, when 1 ≦ (N / M) ≦ 4, nitrogen and metal are complexed most efficiently, and the adsorbent has good durability without fear of metal elution.

また5≦(N/M)≦20のときはアミノ基の量が多くなる。遊離したアミノ基は塩酸塩を形成することができ、吸着材をアルカリ水から保護する。つまり金属の酸化を抑制することができる。   When 5 ≦ (N / M) ≦ 20, the amount of amino groups increases. The liberated amino groups can form hydrochloride and protect the adsorbent from alkaline water. That is, metal oxidation can be suppressed.

すなわち、用途や条件に応じて1≦(N/M)≦4、或いは5≦(N/M)≦20の範囲でそれぞれ特有の効果を発揮させることが可能である。また、1≦(N/M)≦4のとき、鉄の場合はpH3−5の処理水が特に適しており、亜鉛の場合はpH3−7 が特に適している。5≦(N/M)≦20のとき、鉄の場合はpH5−7の処理水に適しており、亜鉛の場合はpH5−9が適している。これは吸着材の窒素量および金属イオンの溶液中での安定性に依存するものである。
また、リン化合物吸着材は、リン化合物吸着材1g当たりの窒素原子のモル量をN、前記リン化合物吸着剤1g当たりの珪素のモル量をZとした時に3≦(Z/N)≦35を満たすことが好ましい。3より小さいと担体強度が弱まるため耐久性が悪くなり、35より大きいと単位体積あたりの吸着容量が減少するが、この範囲にある場合には、担体強度も強く、単位堆積あたりの吸着容量も適当であることがその理由である。
That is, it is possible to exhibit specific effects in the range of 1 ≦ (N / M) ≦ 4 or 5 ≦ (N / M) ≦ 20 depending on applications and conditions. Further, when 1 ≦ (N / M) ≦ 4, treated water of pH 3-5 is particularly suitable for iron, and pH 3-7 is particularly suitable for zinc. When 5 ≦ (N / M) ≦ 20, iron is suitable for treated water at pH 5-7, and zinc is suitable for pH 5-9. This depends on the nitrogen content of the adsorbent and the stability of the metal ions in the solution.
The phosphorus compound adsorbent satisfies 3 ≦ (Z / N) ≦ 35, where N is the molar amount of nitrogen atoms per gram of phosphorus compound adsorbent and Z is the molar amount of silicon per gram of the phosphorus compound adsorbent. It is preferable to satisfy. If it is smaller than 3, the strength of the carrier is weakened, resulting in poor durability. If it is larger than 35, the adsorption capacity per unit volume decreases. However, if it is within this range, the carrier strength is also strong, and the adsorption capacity per unit deposition is also low. The reason is that it is appropriate.

〔リン化合物〕
このようにして製造されるリン化合物吸着材はリン化合物を含有する被処理対象に対して良好な吸着性能を示す。ここで「リン化合物」とは無機および/または有機の形態であって、リン元素を含有するアニオンを意味する。例えばリン酸(HPO4)は条件により3つの電離状態、すなわちHPO 、HPO 2−、PO 3−を含むが、リン化合物とはこれら電離状態による違いも含めたアニオンを包括する概念である。
[Phosphorus compounds]
The phosphorus compound adsorbent produced in this way exhibits good adsorption performance for the object to be treated containing the phosphorus compound. Here, the “phosphorus compound” means an anion containing an element of phosphorus in an inorganic and / or organic form. For example, phosphoric acid (H 3 PO 4 ) includes three ionized states depending on conditions, that is, H 2 PO 4 , HPO 4 2− , and PO 4 3− , but the phosphorus compound is an anion including differences due to these ionized states. It is a concept that encompasses

〔リン化合物吸着システム〕
次に、本発明に係るリン化合物吸着システムおよびその操作について説明する。なお、まず、ここではリン化合物吸着システムの構成および操作について説明し、リン化合物吸着材そのものへの吸着および脱着については後述説明する。
[Phosphorus compound adsorption system]
Next, the phosphorus compound adsorption system and its operation according to the present invention will be described. First, the configuration and operation of the phosphorus compound adsorption system will be described here, and the adsorption and desorption on the phosphorus compound adsorbent itself will be described later.

〔吸着手段、供給手段〕
図2は2系統の吸着手段を備えたリン化合物吸着システムの概念図である。
[Adsorption means, supply means]
FIG. 2 is a conceptual diagram of a phosphorus compound adsorption system provided with two systems of adsorption means.

T1、T2はリン化合物吸着材を充填したリン化合物吸着手段である。図2に図示した状態はT1で吸着、T2で脱着をそれぞれ行っている状態を示している。   T1 and T2 are phosphorus compound adsorption means filled with a phosphorus compound adsorbent. The state shown in FIG. 2 shows a state where adsorption is performed at T1 and desorption is performed at T2.

W1はリン化合物を含む被処理媒体が貯留されているタンクである。被処理媒体は供給手段(例えばポンプP1)により供給ラインL1、L2を通じて吸着手段T1に供給される。被処理媒体中のリン化合物は吸着手段T1の内部に具備されているリン化合物吸着材で吸着される。吸着された後の被処理媒体は排出ラインL3、L6を通じて系外に排出される。   W1 is a tank in which a medium to be treated containing a phosphorus compound is stored. The medium to be processed is supplied to the adsorption means T1 through supply lines L1 and L2 by a supply means (for example, pump P1). The phosphorus compound in the medium to be treated is adsorbed by the phosphorus compound adsorbent provided inside the adsorbing means T1. The medium to be treated after being adsorbed is discharged out of the system through the discharge lines L3 and L6.

なお、図2には図示していないが、被処理媒体が相当量のサスペンデッド・ソリッド成分(SS成分)を含んでいる場合にはこれらを予め除去するために除去手段を吸着手段T1の上流側に設けてもよい。   Although not shown in FIG. 2, when the medium to be processed contains a considerable amount of suspended solid component (SS component), the removal means is arranged upstream of the suction means T1 in order to remove these components in advance. May be provided.

〔測定手段、制御手段〕
被処理媒体は吸着手段T1の供給側および排出側において、測定手段(M2、M3)により被処理媒体中のリン化合物含有量が測定される。具体的には濃度計、流量計、電気伝導度計、pH計などの物理的または化学的な測定手段を単独あるいは併用して用いることができる。もちろん、リン化合物含有量が測定可能であればこれらの手段に限定されるものではない。以下、本実施の形態の説明においては測定手段に濃度計を採用したものとして説明する。濃度計を採用した場合、測定手段からの情報に基づき求められる値は当該濃度計により得られる電圧値等により与えられる。この測定手段からの情報に基づき、供給手段P1から吸着手段T1への供給量を制御手段C1により制御する。
[Measuring means, control means]
In the medium to be treated, the phosphorus compound content in the medium to be treated is measured by the measuring means (M2, M3) on the supply side and the discharge side of the adsorption means T1. Specifically, physical or chemical measuring means such as a concentration meter, a flow meter, an electric conductivity meter, and a pH meter can be used alone or in combination. Of course, it is not limited to these means as long as the phosphorus compound content can be measured. In the following description of this embodiment, it is assumed that a densitometer is employed as the measuring means. When a densitometer is adopted, a value obtained based on information from the measuring means is given by a voltage value obtained by the densitometer. Based on the information from the measurement means, the supply amount from the supply means P1 to the adsorption means T1 is controlled by the control means C1.

具体的にリン化合物吸着システムの制御は以下のように行われる。   Specifically, the phosphorus compound adsorption system is controlled as follows.

まず、吸着手段T1が初期状態(あるいは飽和まで吸着する余裕がある状態)にある場合、被処理媒体をタンクW1から供給手段P1により供給ラインL1、L2を通じて吸着手段T1に供給する。リン化合物はT1に吸着され、吸着後の被処理媒体は排出ラインL3、L6を通じて外部に排出される。   First, when the suction unit T1 is in an initial state (or in a state where there is a room for suction until saturation), the medium to be processed is supplied from the tank W1 to the suction unit T1 by the supply unit P1 through supply lines L1 and L2. The phosphorus compound is adsorbed by T1, and the treated medium after the adsorption is discharged to the outside through the discharge lines L3 and L6.

ここで、供給側に設置された測定手段M2と排出側に設置された測定手段M3によりT1の吸着状態を観測する。吸着が順調に行われている場合、M3により測定されるリン化合物の濃度はM2よりも低い値を示す。しかし、吸着が次第に進行し、飽和に近くなるにつれ、吸着後の被処理媒体のリン化合物含有量が次第に増加する様子がM3により測定される。M3が予め設定した値に達した時、測定手段M2および/またはM3からの情報に基づき、制御手段C1が供給手段P1を減じる方向あるいは一旦停止する方向に供給手段P1の供給量を制御する。吸着を終了し、脱着を行う場合にはバルブV2、V3を閉め、吸着手段T1を被処理媒体の供給状態から隔離する(この状態Aとする)。   Here, the adsorption state of T1 is observed by the measuring means M2 installed on the supply side and the measuring means M3 installed on the discharge side. When the adsorption is performed smoothly, the concentration of the phosphorus compound measured by M3 is lower than that of M2. However, the state in which the phosphorus compound content of the medium to be treated after the adsorption gradually increases as the adsorption gradually proceeds and approaches saturation is measured by M3. When M3 reaches a preset value, based on the information from the measuring means M2 and / or M3, the control means C1 controls the supply amount of the supply means P1 in the direction of decreasing the supply means P1 or in the direction of temporarily stopping. When the adsorption is completed and desorption is performed, the valves V2 and V3 are closed, and the adsorption means T1 is isolated from the supply state of the medium to be processed (referred to as state A).

なお、予め設定した値は、予め測定手段M2、M3および/または制御手段C1に設定してもよいし、吸着を開始した当初のM1、M2またはM3の値および/または吸着手段T1の吸着可能量から算出してもよいし、これらの値から予め設けたテーブル等を用いて設定してもよい。   The preset value may be set in advance in the measuring means M2, M3 and / or the control means C1, or the value of M1, M2 or M3 at the beginning of the adsorption and / or the adsorption of the adsorption means T1 is possible. It may be calculated from the amount, or may be set using a table provided in advance from these values.

上記は供給される被処理媒体のリン化合物含有量が変動する場合について説明したが、供給される被処理媒体のリン化合物含有量が予め分かっている場合などには測定手段M2は省略することもできる。   The above describes the case where the phosphorus compound content of the supplied processing medium varies, but the measuring means M2 may be omitted when the phosphorus compound content of the supplied processing medium is known in advance. it can.

一方、被処理媒体のpHが変動する場合、あるいはpHが強酸性あるいは強塩基性であって本発明に係る吸着材に適したpH領域を外れている場合には、図2には図示していないが、測定手段M1または/およびM2により被処理媒体のpHを測定し、制御手段C1を通じて被処理媒体のpHを調整してもよい。例えば、本発明に係る実施の形態の一例としてpHが4乃至9の範囲で良好に吸着するリン化合物吸着材を用いた場合に、被処理媒体のpHがこの範囲を逸脱していれば、pH調整手段としてpH調整媒体を、例えばタンクW1に添加して被処理媒体と混合することにより、被処理媒体のpHを4乃至9の範囲に調整することにより、適切にリン化合物を適切に吸着させることができる。   On the other hand, when the pH of the medium to be treated fluctuates, or when the pH is strongly acidic or strongly basic and outside the pH range suitable for the adsorbent according to the present invention, it is shown in FIG. However, the pH of the medium to be treated may be measured by the measuring means M1 and / or M2 and the pH of the medium to be treated may be adjusted through the control means C1. For example, when a phosphorus compound adsorbent that adsorbs well in a pH range of 4 to 9 is used as an example of an embodiment according to the present invention, the pH of the medium to be treated deviates from this range. For example, by adding a pH adjusting medium as the adjusting means to the tank W1 and mixing with the medium to be processed, the pH of the medium to be processed is adjusted to the range of 4 to 9, thereby appropriately adsorbing the phosphorus compound appropriately. be able to.

次にリン化合物の回収操作について、吸着手段T2を用いて説明する。   Next, the phosphorus compound recovery operation will be described using the adsorption means T2.

D1は吸着したリン化合物を脱着するための脱着媒体を貯留するタンクである。脱着媒体はタンクD1から供給手段P2により供給ラインL11、L12を通じて吸着手段T2に供給される。吸着手段T2に吸着されているリン化合物は、脱着媒体により媒体中に溶出(脱着)し、排出ラインL13、L16を通じて吸着手段T2の外部に排出される。このとき、例えば、回収タンクR1に回収してもよいし、条件によっては析出したリン化合物を濾別して回収してもよい。   D1 is a tank for storing a desorption medium for desorbing the adsorbed phosphorus compound. The desorption medium is supplied from the tank D1 by the supply means P2 to the adsorption means T2 through supply lines L11 and L12. The phosphorus compound adsorbed by the adsorption means T2 is eluted (desorbed) into the medium by the desorption medium, and is discharged to the outside of the adsorption means T2 through the discharge lines L13 and L16. At this time, for example, it may be collected in the collection tank R1, or the precipitated phosphorus compound may be collected by filtration depending on conditions.

ここで、タンクD1に設置された測定手段M11と排出側に設置された測定手段M12によりT2の脱着状態を測定する。脱着が順調に行われている場合、M12により測定されるリン化合物の濃度はM11よりも高い値を示す。しかし、リン化合物の脱着が進むと、脱着後の脱着液の濃度が次第に低減する様子がM12により示される。M12が予め設定した所定の値に達した時、M11、M12からの情報に基づき、制御手段C1がP2を一旦停止し、バルブV13、V14を閉め、T2を脱着媒体の供給ラインから隔離する(状態Bとする)。   Here, the desorption state of T2 is measured by the measuring means M11 installed in the tank D1 and the measuring means M12 installed on the discharge side. When desorption is performed smoothly, the phosphorus compound concentration measured by M12 is higher than M11. However, as the desorption of the phosphorus compound proceeds, M12 indicates that the concentration of the desorption solution after desorption gradually decreases. When M12 reaches a predetermined value set in advance, based on information from M11 and M12, the control means C1 temporarily stops P2, closes the valves V13 and V14, and isolates T2 from the desorption medium supply line ( State B).

状態Aと状態Bとが双方揃ったら、双方のラインを切り替える。すなわち、吸着手段T1はバルブV11、V12を開き、脱着を開始する。また、吸着手段T2はバルブV4、V5を開いて吸着を開始する。   When both state A and state B are ready, both lines are switched. That is, the adsorbing means T1 opens the valves V11 and V12 and starts desorption. Further, the suction means T2 opens the valves V4 and V5 and starts the suction.

なお、吸着手段T1、T2の吸着、脱着において、リン化合物吸着材と被処理媒体あるいは脱着媒体との接触効率を上げるため、促進手段X1、X2を併用してもよい。具体的には、攪拌装置による機械的攪拌、磁気による非接触攪拌などが例示される。特にリン化合物吸着材の担体がフェライト等の磁性体である場合には、機械的な攪拌装置を用いることなく、リン化合物吸着材そのものを攪拌子として用いることができるため、装置小型化、接触効率向上に有効である。   In the adsorption and desorption of the adsorption means T1 and T2, the promotion means X1 and X2 may be used in combination in order to increase the contact efficiency between the phosphorus compound adsorbent and the medium to be treated or the desorption medium. Specifically, mechanical stirring by a stirring device, non-contact stirring by magnetism, etc. are exemplified. In particular, when the carrier of the phosphorus compound adsorbent is a magnetic substance such as ferrite, the phosphorus compound adsorbent itself can be used as a stirrer without using a mechanical stirrer. It is effective for improvement.

なお、上記はあくまでも一実施の形態であり、これらに限定されるものではない。   The above is only an embodiment, and the present invention is not limited to these.

〔リン化合物吸着材の使用方法〕
さらに本発明に係るリン化合物吸着材の使用方法について説明する。
[How to use phosphorus compound adsorbent]
Furthermore, the usage method of the phosphorus compound adsorption material which concerns on this invention is demonstrated.

〔吸着〕
まず、吸着の作用・操作について説明する。
〔adsorption〕
First, the action and operation of adsorption will be described.

例えば一般家庭や家畜の生活排水のようなリン化合物を含む被処理媒体と、第1の実施の形態で説明したリン化合物吸着材とを接触させる。具体的には、最も簡便な方法として被処理媒体にリン化合物吸着材を添加し、撹拌してリン化合物を分散させつつ、被処理媒体とリン化合物吸着材とを接触させる方法が例示される。また、リン化合物吸着材が粒状の場合にはカラム塔(充填塔)などを使用しても良い。   For example, a medium to be treated containing a phosphorus compound such as domestic household or livestock wastewater is brought into contact with the phosphorus compound adsorbent described in the first embodiment. Specifically, a method of adding the phosphorus compound adsorbing material to the medium to be treated as the simplest method and bringing the phosphorus compound adsorbing material into contact while stirring to disperse the phosphorus compound is exemplified. Further, when the phosphorus compound adsorbent is granular, a column tower (packed tower) or the like may be used.

このとき、被処理媒体中のリン化合物(例えば上述のリン酸イオン、リン酸水素イオン)がリン化合物吸着材の表面に吸着する。この吸着は固定化された金属イオンのカウンターアニオンと、それよりも親和性の高いリン化合物が交換しているものと推測される。   At this time, the phosphorus compound (for example, the above-mentioned phosphate ion and hydrogen phosphate ion) in the medium to be treated is adsorbed on the surface of the phosphorus compound adsorbent. This adsorption is presumed that the counter anion of the immobilized metal ion and the phosphorus compound having higher affinity are exchanged.

被処理媒体に添加するリン化合物吸着材量は、その窒素含有化合物担持担体の比表面積に依存する。これには最大吸着量を予め試験しておく方法、単位重量当たりの吸着量とリン化合物吸着材添加量から算出する方法などを用いることができる。   The amount of the phosphorus compound adsorbent added to the medium to be treated depends on the specific surface area of the nitrogen-containing compound support. For this, a method of testing the maximum adsorption amount in advance, a method of calculating from the adsorption amount per unit weight and the addition amount of the phosphorus compound adsorbent can be used.

〔脱着〕
次に脱着の作用・操作について説明する。
[Desorption]
Next, the action / operation of desorption will be described.

リン化合物を吸着した後のリン化合物吸着材からリン化合物を脱着し、これを回収することができる。   The phosphorus compound can be desorbed from the phosphorus compound adsorbent after adsorbing the phosphorus compound and recovered.

リン化合物を吸着後のリン化合物吸着材に対し、脱着媒体として、例えば中性溶媒である塩化ナトリウム水溶液を用いることができる。この場合、液体に溶解した状態のリン化合物を回収することができる。脱着時に必要となる脱着媒体の量はリン化合物吸着材を充填した充填層の容積に対して2倍以上10倍以下必要であるが、リン化合物吸着材が当該水溶液と効率よく接触できる量であればよい。2倍以下だと接触しない吸着材表面がある可能性があり、10倍以上だと薬剤コストが高くなり、タンクの大型化が予測され、非効率的である。   For the phosphorus compound adsorbent after adsorbing the phosphorus compound, for example, a sodium chloride aqueous solution that is a neutral solvent can be used as a desorption medium. In this case, the phosphorus compound dissolved in the liquid can be recovered. The amount of the desorption medium required at the time of desorption needs to be 2 to 10 times the volume of the packed bed filled with the phosphorus compound adsorbent, but it should be an amount that allows the phosphorus compound adsorbent to efficiently contact the aqueous solution. That's fine. If it is 2 times or less, there is a possibility that there is an adsorbent surface that does not come into contact.

また、塩化カルシウムまたは炭酸カルシウムのようなカルシウム塩を含む溶媒を用いることができる。このような脱着媒体にリン化合物吸着材を接触させることにより、リン化合物吸着材に吸着したリン化合物とカルシウムとが反応し、例えばリン酸カルシウムの形態でリン化合物を析出させ、固体として回収することができる。この場合、カルシウム塩の濃度は、0.1mol/L以上3mol/L以下が好ましく、0.5mol/L以上1.5mol/Lがさらに好ましい。0.5mol/Lより小さいとリン酸カルシウムの析出が遅く、3mol/Lより大きいと塩濃度が高くなりすぎるためリン化合物吸着材を再使用するときに洗浄操作が必要となる。   A solvent containing a calcium salt such as calcium chloride or calcium carbonate can also be used. By bringing the phosphorus compound adsorbent into contact with such a desorption medium, the phosphorus compound adsorbed on the phosphorus compound adsorbent reacts with calcium. For example, the phosphorus compound can be precipitated in the form of calcium phosphate and recovered as a solid. . In this case, the concentration of the calcium salt is preferably from 0.1 mol / L to 3 mol / L, more preferably from 0.5 mol / L to 1.5 mol / L. If it is less than 0.5 mol / L, the precipitation of calcium phosphate is slow, and if it is more than 3 mol / L, the salt concentration becomes too high, so that a washing operation is required when the phosphorus compound adsorbent is reused.

また、塩基性溶媒として水酸化ナトリウム水溶液などの塩基性水溶液にリン化合物吸着材を接触させてリン化合物を脱着させる方法も適用することができる。この場合、水酸化ナトリウム水溶液は0.05mol/L以上1.5mol/L以下が好ましく、0.1mol/L以上1.0mol/L以下がさらに好ましい。0.05mol/Lより小さいとリン化合物の脱着効率が悪く、1.5mol/Lより大きいと強塩基性の影響によりリン化合物吸着材の劣化を早める。   Further, a method in which a phosphorus compound adsorbent is brought into contact with a basic aqueous solution such as an aqueous sodium hydroxide solution as a basic solvent to desorb the phosphorus compound can also be applied. In this case, the sodium hydroxide aqueous solution is preferably 0.05 mol / L or more and 1.5 mol / L or less, and more preferably 0.1 mol / L or more and 1.0 mol / L or less. If it is less than 0.05 mol / L, the desorption efficiency of the phosphorus compound is poor, and if it is more than 1.5 mol / L, the deterioration of the phosphorus compound adsorbent is accelerated by the influence of strong basicity.

水酸化ナトリウム水溶液または塩化ナトリウム水溶液を使用した場合には、リン化合物を脱離した水溶液に、水酸化ナトリウムまたは塩化カルシウムを過剰量添加すると、リン酸イオンがリン酸ナトリウム塩またはリン酸カルシウムとして析出する。これをろ過することによってリン化合物を回収することが可能である。   When an aqueous sodium hydroxide solution or an aqueous sodium chloride solution is used, when an excessive amount of sodium hydroxide or calcium chloride is added to the aqueous solution from which the phosphorus compound has been eliminated, phosphate ions are precipitated as sodium phosphate salt or calcium phosphate. By filtering this, it is possible to recover the phosphorus compound.

このようにリン化合物吸着材は塩基性溶媒のみならず中性溶媒を用いても脱着することができるため、リン化合物吸着材の構造体の劣化を防止することができる。なお、ここで「中性」とは25℃でpHを測定した時に6乃至8の範囲をいう。   Thus, since the phosphorus compound adsorbent can be desorbed not only with a basic solvent but also with a neutral solvent, the structure of the phosphorus compound adsorbent can be prevented from deteriorating. Here, “neutral” means a range of 6 to 8 when pH is measured at 25 ° C.

次に、実施例により本発明を更に詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

(実施例1)
分子構造の一端にアミノ基を有する窒素含有化合物としてγ−アミノプロピルトリエトキシシラノール2.1gとエタノール20mLおよび水1mLを含む溶液を調整し、担体としてシリカゲル(粒径1.7−4.0mm、比表面積74m/g)10gを加えた。これを1時間攪拌後、ろ過、純水で洗浄後、100℃で乾燥しシランカップリング剤を表面に担持したシリカゲル(窒素含有化合物担持担体)を得た。
(Example 1)
A solution containing 2.1 g of γ-aminopropyltriethoxysilanol as a nitrogen-containing compound having an amino group at one end of the molecular structure, 20 mL of ethanol and 1 mL of water was prepared, and silica gel (particle size 1.7-4.0 mm, 10 g of a specific surface area of 74 m 2 / g) was added. This was stirred for 1 hour, filtered, washed with pure water, and dried at 100 ° C. to obtain silica gel (nitrogen-containing compound-supported carrier) carrying a silane coupling agent on the surface.

得られた組成物(窒素含有化合物担持担体)のうちの5gを、塩化亜鉛2gを含む水溶液20mLに浸漬し、1時間攪拌後、ろ過、純水で洗浄後、再度100℃で乾燥してリン化合物吸着材が得られた。   5 g of the obtained composition (nitrogen-containing compound-supported carrier) was immersed in 20 mL of an aqueous solution containing 2 g of zinc chloride, stirred for 1 hour, filtered, washed with pure water, dried again at 100 ° C., and then rinsed. A compound adsorbent was obtained.

次に得られたリン化合物吸着材の吸着性能評価を行った。具体的には、図2に示す実験装置を製作して行った。吸着手段T1の容器内に上記で得たリン化合物吸着材0.5gを入れた。被処理媒体貯留タンクW1内にNaHPOの形態で20mg/Lのリン元素を含む水溶液を被吸着媒体として準備した。この水溶液50mLを供給手段P1により吸着手段T1に供給した。付設されている攪拌機X1で攪拌し、リン化合物(リン酸アニオン)とリン化合物吸着材を接触させた。20分間攪拌後、処理後の被処理媒体を排出ラインL3、L6から排出し、この液のろ過を行った。このろ液について誘導結合プラズマ発光分析装置(ICP)でろ液中のリン化合物残留濃度の測定を行ないリン化合物の吸着量を求めた。結果を表1に示す。

Figure 2009056457
Next, adsorption performance evaluation of the obtained phosphorus compound adsorbent was performed. Specifically, the experimental apparatus shown in FIG. 2 was manufactured. In the container of the adsorption means T1, 0.5 g of the phosphorus compound adsorbent obtained above was put. An aqueous solution containing 20 mg / L of phosphorus element in the form of Na 2 HPO 4 was prepared as an adsorbed medium in the treated medium storage tank W1. 50 mL of this aqueous solution was supplied to the adsorption means T1 by the supply means P1. The mixture was stirred with an attached stirrer X1, and the phosphorus compound (phosphate anion) and the phosphorus compound adsorbent were brought into contact with each other. After stirring for 20 minutes, the treated medium after treatment was discharged from the discharge lines L3 and L6, and the liquid was filtered. With respect to this filtrate, the residual concentration of the phosphorus compound in the filtrate was measured with an inductively coupled plasma optical emission spectrometer (ICP), and the adsorption amount of the phosphorus compound was determined. The results are shown in Table 1.
Figure 2009056457

(実施例2)
γ−アミノプロピルトリエトキシシラノール19gとエタノール20mLおよび水1mLを含む溶液を調整し、シリカゲル(粒径100−210μm、比表面積600−700m/g)10gを加えた。実施例1と同様に処理した組成物(窒素含有化合物担持担体)5gを、塩化亜鉛9gを含む水溶液20mLに浸漬し、1時間攪拌後、ろ過、エタノールで洗浄後、再度100℃で乾燥してリン化合物吸着材が得られた。
(Example 2)
A solution containing 19 g of γ-aminopropyltriethoxysilanol, 20 mL of ethanol and 1 mL of water was prepared, and 10 g of silica gel (particle size 100-210 μm, specific surface area 600-700 m 2 / g) was added. 5 g of the composition (nitrogen-containing compound-supported carrier) treated in the same manner as in Example 1 was immersed in 20 mL of an aqueous solution containing 9 g of zinc chloride, stirred for 1 hour, filtered, washed with ethanol, and dried again at 100 ° C. A phosphorus compound adsorbent was obtained.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例3)
担体をフェライト10gとした以外は実施例2と同様の方法でリン化合物吸着材を得た。
(Example 3)
A phosphorus compound adsorbent was obtained in the same manner as in Example 2 except that the carrier was 10 g of ferrite.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。フェライトは磁性体であり、磁気攪拌が可能であり、吸着性能にも効果が認められた。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1. Ferrite is a magnetic substance, can be magnetically stirred, and has an effect on adsorption performance.

(実施例4)
実施例1に示した表面担持後の組成物(窒素含有化合物担持担体)3.8gを塩化鉄0.5gを含む水溶液10mLに浸漬し、1時間攪拌後、ろ過、エタノールで洗浄後、再度100℃で乾燥してリン化合物吸着材が得られた。
Example 4
3.8 g of the surface-supported composition (nitrogen-containing compound-supported carrier) shown in Example 1 was immersed in 10 mL of an aqueous solution containing 0.5 g of iron chloride, stirred for 1 hour, filtered, washed with ethanol, and then 100 again. The phosphorus compound adsorbent was obtained by drying at ° C.

このリン化合物吸着材について実施例1と同様の方法で吸着性能評価を行った。この結果を表1に示す。   The adsorption performance of this phosphorus compound adsorbent was evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
実施例2に示した表面担持後の組成物(窒素含有化合物担持担体)2.4gを塩化鉄1.5gを含む水溶液10mLに浸漬し、1時間攪拌後、ろ過、エタノールで洗浄後、再度100℃で乾燥してリン化合物吸着材が得られた。
(Example 5)
2.4 g of the surface-supported composition (nitrogen-containing compound-supported carrier) shown in Example 2 was immersed in 10 mL of an aqueous solution containing 1.5 g of iron chloride, stirred for 1 hour, filtered, washed with ethanol, and then 100 again. The phosphorus compound adsorbent was obtained by drying at ° C.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例6)
ドライトルエン30mLを2時間還流後、アミノプロピルジメチルエトキシシランを2gとあらかじめ100℃で2時間乾燥させておいたシリカゲル(粒径100−210μm、比表面積600−700m2/g)2gを加えた。4時間還流後、シリカゲルをろ過し、エタノール洗浄した。100℃で12時間乾燥後、塩化鉄1gを含む10mLの水溶液に浸漬させた。これを80℃で12時間乾燥し、リン化合物吸着材を得た。
(Example 6)
After refluxing 30 mL of dry toluene for 2 hours, 2 g of aminopropyldimethylethoxysilane and 2 g of silica gel (particle size 100-210 μm, specific surface area 600-700 m2 / g) previously dried at 100 ° C. for 2 hours were added. After refluxing for 4 hours, the silica gel was filtered and washed with ethanol. After drying at 100 ° C. for 12 hours, it was immersed in a 10 mL aqueous solution containing 1 g of iron chloride. This was dried at 80 ° C. for 12 hours to obtain a phosphorus compound adsorbent.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例7)
N―2―(アミノエチル)−3―アミノプロピルメチルジメトキシシラン3.73gを純水6mLとエタノール30mLを調整し、シリカゲル2g(粒径100−210μm、比表面積600−700m/g)を加えた。
(Example 7)
N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (3.73 g) was adjusted with 6 mL of pure water and 30 mL of ethanol, and 2 g of silica gel (particle size 100-210 μm, specific surface area 600-700 m 2 / g) was added. It was.

実施例1と同様に、1時間攪拌後、ろ過、純水で洗浄後、100℃で乾燥しシランカップリング剤を表面に担持したシリカゲル(窒素含有化合物担持担体)を得た。この表面担持後の組成物(窒素含有化合物担持担体)を1gの塩化鉄を含む水溶液10mLに浸漬し、1時間攪拌後、ろ過、純水で洗浄後、再度100℃で乾燥してリン化合物吸着材を得た。   In the same manner as in Example 1, after stirring for 1 hour, filtration, washing with pure water, and drying at 100 ° C., silica gel (nitrogen-containing compound-supported carrier) carrying a silane coupling agent on the surface was obtained. This surface-supported composition (nitrogen-containing compound-supported carrier) is immersed in 10 mL of an aqueous solution containing 1 g of iron chloride, stirred for 1 hour, filtered, washed with pure water, and dried again at 100 ° C. to adsorb the phosphorus compound. The material was obtained.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例8)
アルコキシシランとしてN−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン4.02g使用した以外は実施例7と同様の方法でリン化合物吸着材を得た。
(Example 8)
A phosphorus compound adsorbent was obtained in the same manner as in Example 7 except that 4.02 g of N-2- (aminoethyl) -3-aminopropyltriethoxysilane was used as the alkoxysilane.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例9)
QuadraPureTM BZA(ポリスチレン担体)(Reaxa社製)2gを塩化鉄(III)600mgを含む水溶液10mLに浸漬させた。1時間後、ろ過、純水洗浄を行い、70℃で乾燥させ、リン化合物吸着材を得た。
Example 9
2 g of QuadraPure BZA (polystyrene carrier) (manufactured by Reaxa) was immersed in 10 mL of an aqueous solution containing 600 mg of iron (III) chloride. After 1 hour, filtration and pure water washing were performed, followed by drying at 70 ° C. to obtain a phosphorus compound adsorbent.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例10)
QuadraPureTM EDA(ポリスチレン担体)(Reaxa社製)2gを塩化鉄(III)600mgを含む水溶液10mLに浸漬させた。1時間後、ろ過、純水洗浄を行い、70℃で乾燥させ、リン化合物吸着材を得た。
(Example 10)
2 g of QuadraPure EDA (polystyrene carrier) (manufactured by Reaxa) was immersed in 10 mL of an aqueous solution containing 600 mg of iron (III) chloride. After 1 hour, filtration and pure water washing were performed, followed by drying at 70 ° C. to obtain a phosphorus compound adsorbent.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例11)
QuadraSilTM TA(シリカゲル担体)(Reaxa社製)2gを塩化鉄(III)600mgを含む水溶液10mLに浸漬させた。1時間後、ろ過、純水洗浄を行い、70℃で乾燥させ、リン化合物吸着材を得た。
(Example 11)
2 g of QuadraSil TA (silica gel carrier) (manufactured by Reaxa) was immersed in 10 mL of an aqueous solution containing 600 mg of iron (III) chloride. After 1 hour, filtration and pure water washing were performed, followed by drying at 70 ° C. to obtain a phosphorus compound adsorbent.

このリン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。   The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of this phosphorus compound adsorbent was used. The results are shown in Table 1.

(実施例12)
被処理媒体貯留タンクW1の容器内にNaHPOの形態で20mg/L−P、NaNOの形態で20mg/L−NO、NaSOの形態で20mg/L−SO、NaClの形態で20mg/L−Cl、NaCOの形態で20mg/L−COおよびKBrの形態で20mg/L−Brが共存する水溶液を調整した。実施例5で得たリン化合物吸着材0.05g を吸着手段T1の容器内に入れ、攪拌機X1で攪拌し、被処理媒体50mLを供給手段P1により吸着手段T1の容器に供給し、容器中のリン化合物吸着材と接触させた。攪拌機X1にて20分間攪拌し、ろ過した後、ろ過液中の残留リン化合物濃度をICPによりを測定した。
Example 12
Target medium storage container to the Na 2 HPO 4 in the form at 20 mg / L-P of the tank W1, forms at 20mg / L-NO 3 of NaNO 3, Na 2 SO 4 forms at 20mg / L-SO 4, NaCl form at 20mg / L-Cl, 20mg / L-Br was adjusted with an aqueous solution coexisting in the form of 20mg / L-CO 3 and KBr in the form of Na 2 CO 3. 0.05 g of the phosphorus compound adsorbent obtained in Example 5 is placed in the container of the adsorbing means T1, stirred with the stirrer X1, and 50 mL of the medium to be treated is supplied to the container of the adsorbing means T1 by the supplying means P1. Contact with a phosphorus compound adsorbent. After stirring for 20 minutes with the stirrer X1 and filtering, the residual phosphorus compound concentration in the filtrate was measured by ICP.

また、濾過液中の残留した多種アニオン濃度をイオンクロマトグラフィーで測定した。結果を表2に示す。このように本実施例に係るリン化合物吸着材はリン化合物に対して高い選択性を示す。なお、表2においてClはリン化合物吸着材のカウンターアニオンであるため、吸着と共に放出されたと考えられる。また、COは安定的に測定できないため測定していない。

Figure 2009056457
Further, the concentration of the remaining various anions in the filtrate was measured by ion chromatography. The results are shown in Table 2. Thus, the phosphorus compound adsorbent according to the present example shows high selectivity for the phosphorus compound. In Table 2, since Cl is a counter anion of the phosphorus compound adsorbent, it is considered that it was released along with the adsorption. CO 3 is not measured because it cannot be measured stably.
Figure 2009056457

(実施例13)
被処理媒体貯留タンクW1の溶液内にNaHPOの形態で120mg/L−Pのリン元素を含む水溶液を収容した。実施例5で得たリン化合物吸着材0.5gを吸着手段T1の容器内に入れ、被処理媒体50mLを供給手段P1により供給し、攪拌機X1で20分間攪拌後、ろ過し、純水洗浄し、70℃で2時間乾燥した。
(Example 13)
An aqueous solution containing 120 mg / L-P of phosphorus element in the form of Na 2 HPO 4 was accommodated in the solution of the medium to be treated storage tank W1. 0.5 g of the phosphorus compound adsorbent obtained in Example 5 is placed in the container of the adsorption means T1, 50 mL of the medium to be treated is supplied by the supply means P1, stirred for 20 minutes with the stirrer X1, filtered, and washed with pure water. And dried at 70 ° C. for 2 hours.

こうして得たリン化合物吸着後のリン化合物吸着材150mgに対し、脱着媒体供給タンクD1に準備した0.1mol/Lの水酸化ナトリウム水溶液(pH11.4)50mLを脱着媒体供給手段P2により吸着手段T1の容器に供給し、1時間攪拌後、ICPによりリン化合物溶出量を測定した。結果を表3に示す。

Figure 2009056457
50 mL of 0.1 mol / L sodium hydroxide aqueous solution (pH 11.4) prepared in the desorption medium supply tank D1 is adsorbed by the desorption medium supply means P2 with respect to 150 mg of the phosphorus compound adsorbent after adsorption of the phosphorus compound thus obtained. After stirring for 1 hour, the phosphorus compound elution amount was measured by ICP. The results are shown in Table 3.
Figure 2009056457

(実施例14)
実施例13と同様にリン化合物吸着後のリン化合物吸着材を調整した。こうして得たリン化合物吸着後のリン化合物吸着材150mgに対し、脱着媒体供給タンクD1に準備した1mol/Lの塩化ナトリウム水溶液50mLを脱着媒体供給手段P2により吸着手段T1の容器に供給し、攪拌機X1で1時間攪拌後、ICPによりリン化合物溶出量を測定した。結果を表3に示す。
(Example 14)
The phosphorus compound adsorbent after the phosphorus compound adsorption was prepared in the same manner as in Example 13. 50 mL of 1 mol / L sodium chloride aqueous solution prepared in the desorption medium supply tank D1 is supplied to the container of the adsorption means T1 by the desorption medium supply means P2 with respect to 150 mg of the phosphorus compound adsorbent thus obtained after the phosphorus compound adsorption, and the stirrer X1 After stirring for 1 hour, the phosphorus compound elution amount was measured by ICP. The results are shown in Table 3.

(実施例15)
実施例13と同様にリン化合物吸着後のリン化合物吸着材を調整した。こうして得たリン化合物吸着後のリン化合物吸着材300mgに対し、脱着媒体供給タンクD1に準備した1mol/Lの塩化カルシウム水溶液50mLを脱着媒体供給手段P2により吸着手段T1の容器に供給し、2時間攪拌後、静置すると白色の固形物が析出した。固形物を含んだ処理後の液を脱着媒体回収タンクR1に回収した。この固形物について組成分析を行ったところ、ヒドロキシアパタイトであることがわかった。
(Example 15)
The phosphorus compound adsorbent after the phosphorus compound adsorption was prepared in the same manner as in Example 13. 50 mL of a 1 mol / L calcium chloride aqueous solution prepared in the desorption medium supply tank D1 is supplied to the container of the adsorption means T1 by the desorption medium supply means P2 with respect to 300 mg of the phosphorus compound adsorbent thus obtained after adsorption of the phosphorus compound, for 2 hours. After stirring, the mixture was allowed to stand to precipitate a white solid. The treated liquid containing solid matter was recovered in the desorption medium recovery tank R1. Composition analysis of this solid was found to be hydroxyapatite.

(実施例16)
実施例14で得たリン化合物脱離後のリン化合物吸着材を純水洗浄し、ろ過後、70℃で2時間乾燥した。こうして得た再生リン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。
(Example 16)
The phosphorus compound adsorbent after desorption of the phosphorus compound obtained in Example 14 was washed with pure water, filtered, and dried at 70 ° C. for 2 hours. The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of the regenerated phosphorus compound adsorbent thus obtained was used. The results are shown in Table 1.

(実施例17)
実施例15で得たリン化合物脱離後のリン化合物吸着材を純水洗浄し、ろ過後、70℃で2時間乾燥した。こうして得た再生リン化合物吸着材を0.05g用いた以外は実施例1と同様の方法にて吸着性能評価を行った。この結果を表1に示す。
(Example 17)
The phosphorus compound adsorbent after desorption of the phosphorus compound obtained in Example 15 was washed with pure water, filtered, and dried at 70 ° C. for 2 hours. The adsorption performance was evaluated in the same manner as in Example 1 except that 0.05 g of the regenerated phosphorus compound adsorbent thus obtained was used. The results are shown in Table 1.

(実施例18)
分子構造の一端にアミノ基を有する窒素含有化合物としてγ−アミノプロピルトリエトキシシラノール1.2gとエタノール15mLおよび水3mLを含む溶液を調整し、担体としてシリカゲル(ナカライテスク社製、粒径100−200μm、比表面積600−700m/g)2gを加えた。これを1時間攪拌後、ろ過、純水で洗浄後、100℃で乾燥しシランカップリング剤を表面に担持したシリカゲル(窒素含有化合物担持担体)を得た。
(Example 18)
A solution containing 1.2 g of γ-aminopropyltriethoxysilanol, 15 mL of ethanol and 3 mL of water as a nitrogen-containing compound having an amino group at one end of the molecular structure was prepared, and silica gel (manufactured by Nacalai Tesque, particle size 100-200 μm) as a carrier. 2 g of a specific surface area of 600-700 m < 2 > / g). This was stirred for 1 hour, filtered, washed with pure water, and dried at 100 ° C. to obtain silica gel (nitrogen-containing compound-supported carrier) carrying a silane coupling agent on the surface.

得られた組成物(窒素含有化合物担持担体)を、塩化鉄1gを含む水溶液10mLに浸漬し、1時間攪拌後、ろ過、エタノールで洗浄後、再度100℃で乾燥してリン化合物吸着材が得られた。元素分析を行った結果、N/Mは11.1であった。   The obtained composition (nitrogen-containing compound-supported carrier) is immersed in 10 mL of an aqueous solution containing 1 g of iron chloride, stirred for 1 hour, filtered, washed with ethanol, and dried again at 100 ° C. to obtain a phosphorus compound adsorbent. It was. As a result of elemental analysis, N / M was 11.1.

次に得られたリン化合物吸着材の吸着性能評価を行った。具体的には、図2に示す実験装置を製作して行った。吸着手段T1の容器内に上記で得たリン化合物吸着材0.05gを入れた。被処理媒体貯留タンクW1内にNaHPOの形態で20mg/Lのリン元素を含む水溶液を被吸着媒体として準備した。この水溶液20mLを供給手段P1により吸着手段T1に供給した。付設されている攪拌機X1で攪拌し、リン化合物(リン酸アニオン)とリン化合物吸着材を接触させた。20分間攪拌後、処理後の被処理媒体を排出ラインL3、L6から排出し、この液のろ過を行った。このろ液について誘導結合プラズマ発光分析装置(ICP)でろ液中のリン化合物残留濃度の測定を行ないリン化合物の吸着量を求めた。結果を表4に示す。

Figure 2009056457
Next, adsorption performance evaluation of the obtained phosphorus compound adsorbent was performed. Specifically, the experimental apparatus shown in FIG. 2 was manufactured. In the container of the adsorption means T1, 0.05 g of the phosphorus compound adsorbent obtained above was put. An aqueous solution containing 20 mg / L of phosphorus element in the form of Na 2 HPO 4 was prepared as an adsorbed medium in the treated medium storage tank W1. 20 mL of this aqueous solution was supplied to the adsorption means T1 by the supply means P1. The mixture was stirred with an attached stirrer X1, and the phosphorus compound (phosphate anion) and the phosphorus compound adsorbent were brought into contact with each other. After stirring for 20 minutes, the treated medium after treatment was discharged from the discharge lines L3 and L6, and the liquid was filtered. With respect to this filtrate, the residual concentration of the phosphorus compound in the filtrate was measured with an inductively coupled plasma optical emission spectrometer (ICP), and the adsorption amount of the phosphorus compound was determined. The results are shown in Table 4.
Figure 2009056457

(実施例19)
γ−アミノプロピルトリエトキシシラノール1.2gをγ−アミノプロピルトリエトキシシラノール2gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
Example 19
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1.2 g of γ-aminopropyltriethoxysilanol was changed to 2 g of γ-aminopropyltriethoxysilanol.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例20)
γ−アミノプロピルトリエトキシシラノール1.2gをγ−アミノプロピルトリエトキシシラノール4gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 20)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1.2 g of γ-aminopropyltriethoxysilanol was changed to 4 g of γ-aminopropyltriethoxysilanol.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例21)
γ−アミノプロピルトリエトキシシラノール1.2gをγ−アミノプロピルトリエトキシシラノール8gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 21)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1.2 g of γ-aminopropyltriethoxysilanol was changed to 8 g of γ-aminopropyltriethoxysilanol.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例22)
金属種Mとして塩化鉄1gを塩化銅1gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 22)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1 g of iron chloride was changed to 1 g of copper chloride as the metal species M.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表2に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 2.

(実施例23)
金属種Mとして塩化鉄1gを塩化ジルコニウム1gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 23)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1 g of iron chloride as the metal species M was changed to 1 g of zirconium chloride.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例24)
金属種Mとして塩化鉄1gを塩化亜鉛1gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 24)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1 g of iron chloride was changed to 1 g of zinc chloride as the metal species M.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例25)
シランカップリング剤としてγ−アミノプロピルトリエトキシシラノール1.2gをN−(2−アミノエチル)−3アミノプロピルメチルジメトキシシラン3.7gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 25)
Phosphorus compound adsorbent in the same manner as in Example 18 except that 1.2 g of γ-aminopropyltriethoxysilanol was changed to 3.7 g of N- (2-aminoethyl) -3aminopropylmethyldimethoxysilane as a silane coupling agent. Got.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例26)
シランカップリング剤としてγ−アミノプロピルトリエトキシシラノール1.2gをN−(2−アミノエチル)−3アミノプロピルメチルジメトキシシラン4gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 26)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1.2 g of γ-aminopropyltriethoxysilanol was changed to 4 g of N- (2-aminoethyl) -3aminopropylmethyldimethoxysilane as a silane coupling agent. It was.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例27)
シランカップリング剤としてγ−アミノプロピルトリエトキシシラノール1.2gを3アミノプロピルジメチルトリメトキシシラン2gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Example 27)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1.2 g of γ-aminopropyltriethoxysilanol was changed to 2 g of 3 aminopropyldimethyltrimethoxysilane as a silane coupling agent.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例28)
QuadraSilTM TA(シリカゲル担体)(Reaxa社製)2gを塩化鉄(III)600mgを含む水溶液10mLに浸漬させた。1時間後、ろ過、純水洗浄を行い、100℃で乾燥させ、リン化合物吸着材を得た。
(Example 28)
2 g of QuadraSil TA (silica gel carrier) (manufactured by Reaxa) was immersed in 10 mL of an aqueous solution containing 600 mg of iron (III) chloride. After 1 hour, filtration and washing with pure water were performed and dried at 100 ° C. to obtain a phosphorus compound adsorbent.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例29)
QuadraSilTM TA(シリカゲル担体)(Reaxa社製)2gの代わりにQuadraPureTM BZA(ポリスチレン担体)(Reaxa社製)2gとした以外は実施例28と同様の方法でリン化合物吸着材を得た。
(Example 29)
A phosphorus compound adsorbent was obtained in the same manner as in Example 28 except that 2 g of QuadraPure BZA (polystyrene carrier) (manufactured by Reaxa) was used instead of 2 g of QuadraSil TA (silica gel carrier) (manufactured by Reaxa).

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例30)
QuadraSilTM TA(シリカゲル担体)(Reaxa社製)2gの代わりにQuadraPureTM EDA(ポリスチレン担体)(Reaxa社製)2gとした以外は実施例28と同様の方法でリン化合物吸着材を得た。
(Example 30)
A phosphorus compound adsorbent was obtained in the same manner as in Example 28 except that 2 g of QuadraPure EDA (polystyrene carrier) (made by Reaxa) was used instead of 2 g of QuadraSil TA (silica gel carrier) (made by Reaxa).

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例30)
QuadraSilTM TA(シリカゲル担体)(Reaxa社製)2gの代わりにQuadraPureTM IDA(ポリスチレン担体)(Reaxa社製)2gとした以外は実施例28と同様の方法でリン化合物吸着材を得た。
(Example 30)
A phosphorus compound adsorbent was obtained in the same manner as in Example 28 except that 2 g of QuadraPure IDA (polystyrene carrier) (made by Reaxa) was used instead of 2 g of QuadraSil TA (silica gel carrier) (made by Reaxa).

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(比較例1)
シランカップリング剤としてγ−アミノプロピルトリエトキシシラノール1.2gをN−フェニルアミノプロピルトリメトキシシラン4.6gとした以外は実施例18と同様の方法でリン化合物吸着材を得た。
(Comparative Example 1)
A phosphorus compound adsorbent was obtained in the same manner as in Example 18 except that 1.2 g of γ-aminopropyltriethoxysilanol was changed to 4.6 g of N-phenylaminopropyltrimethoxysilane as a silane coupling agent.

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(比較例2)
QuadraSilTM TA(シリカゲル担体)(Reaxa社製)2gの代わりにQuadraPureTM AEA(ポリスチレン担体)(Reaxa社製)2gとした以外は実施例28と同様の方法でリン化合物吸着材を得た。
(Comparative Example 2)
A phosphorus compound adsorbent was obtained in the same manner as in Example 28 except that 2 g of QuadraPure AEA (polystyrene carrier) (manufactured by Reaxa) was used instead of 2 g of QuadraSil TA (silica gel carrier) (manufactured by Reaxa).

このリン化合物吸着材を0.05gについて実施例18と同様の方法にて吸着性能評価を行った。この結果を表4に示す。   The adsorption performance was evaluated in the same manner as in Example 18 for 0.05 g of this phosphorus compound adsorbent. The results are shown in Table 4.

(実施例32)
実施例19および実施例24で得られたリン化合物吸着材のpH依存性を以下の方法で評価した。すなわち、塩化水溶液または水酸化ナトリウム水溶液でpHを調整した水溶液にNaHPOを加え、20mg−P/Lを含む水溶液を調整後、pHをpHメーターで確認した。所定のpHでリン吸着性能の評価については実施例18と同様の方法にて行った。この結果を図3に示す。このように実施例19、実施例24で得られた吸着材はpHが3以上10以下の領域でリン化合物の吸着能力が高く、中でもpHが3以上8以下の範囲において安定した吸着能力を有する効果があることが認められた。pH3乃至pH8の領域においては金属の酸化が抑制され、水酸化物を形成することがなく、リン化合物を安定に吸着することができる。また、この領域においてケイ素および酸素の結合が安定であるため、吸着材の耐久性が良好である。
(Example 32)
The pH dependency of the phosphorus compound adsorbents obtained in Example 19 and Example 24 was evaluated by the following method. That is, Na 2 HPO 4 was added to an aqueous solution whose pH was adjusted with an aqueous chloride solution or an aqueous sodium hydroxide solution to prepare an aqueous solution containing 20 mg-P / L, and then the pH was confirmed with a pH meter. Evaluation of phosphorus adsorption performance at a predetermined pH was performed in the same manner as in Example 18. The result is shown in FIG. As described above, the adsorbents obtained in Example 19 and Example 24 have a high adsorption capacity for phosphorus compounds in the pH range of 3 to 10, and have a stable adsorption capacity in the pH range of 3 to 8. It was found to be effective. In the pH 3 to pH 8 region, metal oxidation is suppressed, no hydroxide is formed, and the phosphorus compound can be adsorbed stably. Further, since the bond between silicon and oxygen is stable in this region, the durability of the adsorbent is good.

本発明の一実施形態に係るリン化合物吸着材の構造を説明するための断面模式図。The cross-sectional schematic diagram for demonstrating the structure of the phosphorus compound adsorption material which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリン化合物吸着システムの概念図。The conceptual diagram of the phosphorus compound adsorption system which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリン化合物吸着のpHに対するリン吸着性能の関係を示すグラフ。The graph which shows the relationship of the phosphorus adsorption | suction performance with respect to pH of the phosphorus compound adsorption | suction which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 担体
2 リン化合物吸着材表面
3 金属イオン
4 窒素含有化合物
5 シランカップリング剤
6 担体基材
10 リン化合物吸着材の拡大断面模式図
20 リン化合物吸着システム
T1、T2 吸着手段
P1 被処理媒体供給手段(ポンプ)
P2 脱着媒体供給手段(ポンプ)
M1、M2、M3、M11、M12、M13 測定手段
C1 制御手段
D1 脱着媒体供給タンク
R1 脱着媒体回収タンク
W1 被処理媒体貯留タンク
L1、L2、L4 被処理媒体供給ライン
L3、L5、L6 被処理媒体排出ライン
L11、L12、L14 脱着媒体供給ライン
L13、L15、L16 脱着媒体排出ライン
V1、V2、V3、V4、V5、V11、V12、V13、V14、V15 バルブ
X1、X2 接触効率促進手段
DESCRIPTION OF SYMBOLS 1 Support | carrier 2 Phosphorus compound adsorption material surface 3 Metal ion 4 Nitrogen-containing compound 5 Silane coupling agent 6 Carrier base material 10 Expanded cross-sectional schematic diagram of phosphorus compound adsorption material 20 Phosphorus compound adsorption system T1, T2 Adsorption means P1 Processed medium supply means (pump)
P2 Desorption medium supply means (pump)
M1, M2, M3, M11, M12, M13 Measuring means C1 Control means D1 Desorption medium supply tank R1 Desorption medium recovery tank W1 Processed medium storage tanks L1, L2, L4 Processed medium supply lines L3, L5, L6 Processed media Discharge lines L11, L12, L14 Desorption medium supply lines L13, L15, L16 Desorption medium discharge lines V1, V2, V3, V4, V5, V11, V12, V13, V14, V15 Valves X1, X2 Contact efficiency promoting means

Claims (6)

分子構造の一端にアミノ基を有する窒素含有化合物と、
この窒素含有化合物を担持する担体と、
前記窒素含有化合物に固定化された、亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンの群から選ばれる少なくとも一つの金属イオンと、
を有することを特徴とするリン化合物吸着材。
A nitrogen-containing compound having an amino group at one end of the molecular structure;
A carrier carrying the nitrogen-containing compound;
At least one metal ion selected from the group of zinc ions, copper ions, iron ions and zirconium ions, immobilized on the nitrogen-containing compound;
A phosphorus compound adsorbent characterized by comprising:
前記リン化合物吸着材1g当たりの窒素原子のモル量をN、前記リン化合物吸着剤1g当たりの亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンのモル量の総和をMとした時に、1≦(N/M)≦20を満たすことを特徴とする請求項1に記載のリン化合物吸着材。   When the molar amount of nitrogen atoms per gram of the phosphorus compound adsorbent is N, and the total molar amount of zinc ions, copper ions, iron ions and zirconium ions per gram of the phosphorus compound adsorbent is M, 1 ≦ (N / M) ≦ 20 is satisfied, The phosphorus compound adsorbent according to claim 1. 前記窒素含有化合物が下記化学式1乃至化学式5のうちから選ばれる少なくとも一を含むことを特徴とする請求項1または請求項2に記載のリン化合物吸着材。

(CHNH ・・・ (化学式1)
(CHNH(CHNH ・・・ (化学式2)
(CHNH(CHNH(CHNH ・・・ (化学式3)
NH(CHNH ・・・ (化学式4)
(CHNH ・・・ (化学式5)
(ここで、nは0〜3の整数、mは1〜3の整数。)
The phosphorus compound adsorbent according to claim 1 or 2, wherein the nitrogen-containing compound contains at least one selected from the following chemical formulas 1 to 5.
(CH 2 ) n NH 2 (Chemical formula 1)
(CH 2 ) n NH (CH 2 ) m NH 2 ... (Chemical formula 2)
(CH 2 ) n NH (CH 2 ) m NH (CH 2 ) m NH 2 (Chemical Formula 3)
NH (CH 2 ) m NH 2 (Formula 4)
(CH 2 ) n C 6 H 4 NH 2 (Chemical formula 5)
(Here, n is an integer from 0 to 3, and m is an integer from 1 to 3.)
前記担体がシリカゲルおよびシランカップリング剤と、
を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載のリン化合物吸着材。
The carrier is silica gel and a silane coupling agent;
The phosphorus compound adsorbent according to any one of claims 1 to 3, wherein the phosphorus compound adsorbent is provided.
分子構造の一端にアミノ基を有する窒素含有化合物、この窒素含有化合物を担持する担体、および前記窒素含有化合物に固定化された、亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンの群から選ばれる少なくとも一つの金属イオンとを有するリン化合物吸着材を具備する吸着手段と、
前記吸着手段へリン化合物を含有する被処理媒体を供給する供給手段と、
前記吸着手段から被処理媒体を排出する排出手段と、
前記吸着手段の供給側または排出側の少なくとも一方に設けられた被処理媒体中のリン化合物の含有量を測定するための測定手段と、
前記測定手段からの情報に基づき求められる値が予め設定した値に達した時に前記供給手段から前記吸着手段への被処理媒体の供給量を減じるための制御手段と、
を有することを特徴とするリン化合物吸着システム。
A nitrogen-containing compound having an amino group at one end of the molecular structure, a carrier carrying the nitrogen-containing compound, and at least selected from the group consisting of zinc ions, copper ions, iron ions and zirconium ions immobilized on the nitrogen-containing compound Adsorbing means comprising a phosphorus compound adsorbent having one metal ion;
Supply means for supplying a medium to be treated containing a phosphorus compound to the adsorption means;
Discharging means for discharging the medium to be treated from the suction means;
Measurement means for measuring the content of the phosphorus compound in the medium to be treated provided on at least one of the supply side or the discharge side of the adsorption means;
A control means for reducing the supply amount of the medium to be processed from the supply means to the suction means when a value obtained based on information from the measurement means reaches a preset value;
A phosphorus compound adsorption system characterized by comprising:
分子構造の一端にアミノ基を有する窒素含有化合物、この窒素含有化合物を担持する担体、および前記窒素含有化合物に固定化された、亜鉛イオン、銅イオン、鉄イオンおよびジルコニウムイオンの群から選ばれる少なくとも一つの金属イオンとを有するリン化合物吸着材にリン化合物含有媒体中のリン化合物を吸着させる吸着工程と、
pH調整または過剰塩の添加により前記吸着工程で前記リン化合物吸着材に吸着したリン化合物を脱着させる再生工程と、
を有することを特徴とする請求項1乃至請求項4記載のいずれか1項に記載のリン化合物吸着材の使用方法。
A nitrogen-containing compound having an amino group at one end of the molecular structure, a carrier carrying the nitrogen-containing compound, and at least selected from the group consisting of zinc ions, copper ions, iron ions and zirconium ions immobilized on the nitrogen-containing compound An adsorption step of adsorbing a phosphorus compound in a phosphorus compound-containing medium to a phosphorus compound adsorbent having one metal ion;
a regeneration step of desorbing the phosphorus compound adsorbed on the phosphorus compound adsorbent in the adsorption step by adjusting pH or adding excess salt;
The method for using a phosphorus compound adsorbent according to any one of claims 1 to 4, wherein the phosphorus compound adsorbent is used.
JP2008190800A 2007-08-03 2008-07-24 Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorous compound adsorbent Expired - Fee Related JP5319192B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008190800A JP5319192B2 (en) 2007-08-03 2008-07-24 Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorous compound adsorbent
US12/184,278 US8258076B2 (en) 2007-08-03 2008-08-01 Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorus compound adsorbent
CN200810145001XA CN101357326B (en) 2007-08-03 2008-08-01 Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorus compound adsorbent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007202662 2007-08-03
JP2007202662 2007-08-03
JP2008190800A JP5319192B2 (en) 2007-08-03 2008-07-24 Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorous compound adsorbent

Publications (2)

Publication Number Publication Date
JP2009056457A true JP2009056457A (en) 2009-03-19
JP5319192B2 JP5319192B2 (en) 2013-10-16

Family

ID=40330010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190800A Expired - Fee Related JP5319192B2 (en) 2007-08-03 2008-07-24 Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorous compound adsorbent

Country Status (2)

Country Link
JP (1) JP5319192B2 (en)
CN (1) CN101357326B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274226A (en) * 2009-05-29 2010-12-09 Toshiba Corp Water treatment apparatus
JP2010274227A (en) * 2009-05-29 2010-12-09 Toshiba Corp Water treatment apparatus
JP2010284607A (en) * 2009-06-12 2010-12-24 Toshiba Corp Phosphorus adsorbent and system for recovering phosphorus
JP2011056343A (en) * 2009-09-07 2011-03-24 Toshiba Corp Valuable resource recovery system and method for operation thereof
WO2013054697A1 (en) * 2011-10-12 2013-04-18 ソニー株式会社 Adsorbent, method for producing same, adsorbent for water purification, mask and adsorptive sheet
JP2013078724A (en) * 2011-10-04 2013-05-02 Kochi Prefecture Oxyacid ion adsorbent, method of producing the same, and method of adsorbing oxyacid ion present in raw liquid to be treated using the adsorbent
KR101267311B1 (en) * 2010-10-08 2013-05-24 주식회사 부강테크 Wastewater treatment system using absorption and filtration and method thereof
JP2013103215A (en) * 2011-11-16 2013-05-30 Toshiba Corp Oil adsorbent, oil field associated water treatment system and method for removing oil
CN110302760A (en) * 2019-07-16 2019-10-08 衡阳师范学院 A kind of amino-carbon hydroxyapatite composite material and its preparation method and application

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804320A (en) * 2010-05-04 2010-08-18 中国科学院生态环境研究中心 Nano-level iron adsorbent for efficient dephosphorization
CN102806070B (en) * 2011-06-03 2015-07-15 华东理工大学 Material and method for separating heavy metals from traditional Chinese medicine extract and food
CN103071458A (en) * 2013-01-25 2013-05-01 北京化工大学 Silane-functionalized delaminated hydrotalcite, and preparation method and application of hydrotalcite
JP2015003295A (en) * 2013-06-20 2015-01-08 株式会社東芝 Adsorbent, water treatment tank, method for producing adsorbent and water treatment system
CN104192993A (en) * 2014-09-25 2014-12-10 王伟 Biological affinitive hydrophilic modified magnetic filler
US10961130B2 (en) * 2016-07-22 2021-03-30 University Of South Florida Systems and methods for nutrient recovery and use
CN106345429B (en) * 2016-11-10 2019-07-23 武汉工程大学 A kind of bagasse base anion adsorbent and its preparation method and application
CN109896574B (en) * 2018-09-30 2021-10-22 福建省农业科学院农业工程技术研究所 Carbon ferrite-titanium oxide multifunctional water purification material and preparation method thereof
CN109867364B (en) * 2019-03-08 2021-10-08 上海海洋大学 In-situ combined control system and method for releasing endogenous pollutants in aquaculture water body
CN112973635B (en) * 2021-03-23 2023-08-18 江苏嘉盛旺环境科技有限公司 Preparation process of sewage dephosphorization activated carbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771697A (en) * 1980-10-20 1982-05-04 Unitika Ltd Method for treatment of phosphate-containing sludge
JP2004275839A (en) * 2003-03-13 2004-10-07 Tosoh Corp Porous material, production method therefor, and its application
JP2005144420A (en) * 2003-11-13 2005-06-09 Unylec:Kk Water cleaning agent
JP2007216214A (en) * 2006-01-17 2007-08-30 Hiroshima Univ Phosphorus collecting material, its manufacturing method and method for collecting phosphorus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3904575A1 (en) * 1989-02-15 1990-08-16 Nalco Chemical Co METHOD FOR ELIMINATING PHOSPHATES AND ORGANICALLY BONDED PHOSPHORUS FROM WASTEWATERS AND ACCUMULATORS
CN1162337C (en) * 2002-03-18 2004-08-18 浙江大学 Process for preparing Fe-modified montmorillonite used to remove phosphorus and nitrous-state nitrogen from culturing water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771697A (en) * 1980-10-20 1982-05-04 Unitika Ltd Method for treatment of phosphate-containing sludge
JP2004275839A (en) * 2003-03-13 2004-10-07 Tosoh Corp Porous material, production method therefor, and its application
JP2005144420A (en) * 2003-11-13 2005-06-09 Unylec:Kk Water cleaning agent
JP2007216214A (en) * 2006-01-17 2007-08-30 Hiroshima Univ Phosphorus collecting material, its manufacturing method and method for collecting phosphorus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012004863; Toshiyuki Yokoi, Takashi Tatsumi, and Hideaki Yoshitake: 'Fe3+ coordinated to amino-functionalized MCM-41: an adsorbent for the toxic oxyanions with high capa' Journal of Colloid and Interface Science Volume 274, Issue 2, 20040615, pp. 451-457 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274226A (en) * 2009-05-29 2010-12-09 Toshiba Corp Water treatment apparatus
JP2010274227A (en) * 2009-05-29 2010-12-09 Toshiba Corp Water treatment apparatus
US8877049B2 (en) 2009-05-29 2014-11-04 Kabushiki Kaisha Toshiba Water treatment equipment
US8394267B2 (en) 2009-05-29 2013-03-12 Kabushiki Kaisha Toshiba Water treatment equipment for recovering phosphorus from water
JP2010284607A (en) * 2009-06-12 2010-12-24 Toshiba Corp Phosphorus adsorbent and system for recovering phosphorus
US8574439B2 (en) 2009-09-07 2013-11-05 Kabushiki Kaisha Toshiba Valuable resource recovery system and operation method thereof
JP2011056343A (en) * 2009-09-07 2011-03-24 Toshiba Corp Valuable resource recovery system and method for operation thereof
KR101267311B1 (en) * 2010-10-08 2013-05-24 주식회사 부강테크 Wastewater treatment system using absorption and filtration and method thereof
JP2013078724A (en) * 2011-10-04 2013-05-02 Kochi Prefecture Oxyacid ion adsorbent, method of producing the same, and method of adsorbing oxyacid ion present in raw liquid to be treated using the adsorbent
WO2013054697A1 (en) * 2011-10-12 2013-04-18 ソニー株式会社 Adsorbent, method for producing same, adsorbent for water purification, mask and adsorptive sheet
JP2013103215A (en) * 2011-11-16 2013-05-30 Toshiba Corp Oil adsorbent, oil field associated water treatment system and method for removing oil
CN110302760A (en) * 2019-07-16 2019-10-08 衡阳师范学院 A kind of amino-carbon hydroxyapatite composite material and its preparation method and application
CN110302760B (en) * 2019-07-16 2022-03-15 衡阳师范学院 Amino carbon hydroxyapatite composite material and preparation method and application thereof

Also Published As

Publication number Publication date
CN101357326B (en) 2012-10-10
JP5319192B2 (en) 2013-10-16
CN101357326A (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5319192B2 (en) Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorous compound adsorbent
US8258076B2 (en) Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorus compound adsorbent
Zhan et al. Role of zeolite's exchangeable cations in phosphate adsorption onto zirconium-modified zeolite
Li et al. Surfactant modified zeolite as adsorbent for removal of humic acid from water
Warchoł et al. Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides
Avdibegović et al. Recovery of scandium (III) from diluted aqueous solutions by a supported ionic liquid phase (SILP)
Saha et al. A mechanistic insight into enhanced and selective phosphate adsorption on a coated carboxylated surface
Ling et al. Synergistic co-removal of zinc (II) and cefazolin by a Fe/amine-modified chitosan composite
Ohe et al. Adsorption behavior of arsenic (III) and arsenic (V) using magnetite
AU2009289077B2 (en) Adsorbents
US5668079A (en) Chemically active ceramic compositions with an hydroxyquinoline moiety
US20130187086A1 (en) Phosphorus-adsorbing material and phosphorus recovery system
Sang et al. Na@ La-modified zeolite particles for simultaneous removal of ammonia nitrogen and phosphate from rejected water: performance and mechanism
JP2007196170A (en) Adsorbent
JP2006305551A (en) Adsorbent
KR101909431B1 (en) Method for selectively adsorbing hazardous pollutants using mesoporous silica coated with thermo-responsive polymer
AU2009289076B2 (en) Adsorbents
Belaye et al. Preparation and Adsorption Behavior of Ce (III)-MOF for Phosphate and Fluoride Ion Removal from Aqueous Solutions
JP2004066161A (en) Water treatment method
EP3154675B1 (en) Method for reducing arsenic concentration in aqueous solutions
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same
JP2013103207A (en) Ion adsorbent, method for producing ion adsorbent, adsorption system, and method for using adsorbent
JPS6164388A (en) Removal of phosphorus in water
EP2943501B1 (en) Compositions for binding and separating of proteins
Singh Sorbent Management of Mercury Water Pollution.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

LAPS Cancellation because of no payment of annual fees