JPS6164388A - Removal of phosphorus in water - Google Patents

Removal of phosphorus in water

Info

Publication number
JPS6164388A
JPS6164388A JP18448484A JP18448484A JPS6164388A JP S6164388 A JPS6164388 A JP S6164388A JP 18448484 A JP18448484 A JP 18448484A JP 18448484 A JP18448484 A JP 18448484A JP S6164388 A JPS6164388 A JP S6164388A
Authority
JP
Japan
Prior art keywords
phosphorus
adsorbent
water
phosphoric acid
chemical adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18448484A
Other languages
Japanese (ja)
Inventor
Kohei Urano
紘平 浦野
Kenzo Hanano
花野 健蔵
Masao Takahashi
正男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP18448484A priority Critical patent/JPS6164388A/en
Publication of JPS6164388A publication Critical patent/JPS6164388A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently adsorb the phosphorus component in water by a specific adsorbent, by contacting water with a chemical adsorbent wherein a specific amount of Al2O3 is contained and a specific amount of an Al-salt or iron salt is supported by an inorg. porous substrate having a specific pore size. CONSTITUTION:At least one of an Al-salt (e.g., aluminum sulfate) or iron salt (e.g., ferric sulfate) is supported by an inorg. porous substrate (e.g., activated alumina), wherein the content of Al2O3 is 30wt% or more and the volume of fine pores with a pore size of 2-30nm is 0.15ml/g or more, in an amount of 5X10<-5>-1X10<-3>mol per 1g of the substrate to prepare a chemical adsorbent. This chemical adsorbent is contacted with water containing a phosphorus component to adsorb said phosphorus component. As a result, phosphorus can be removed in a wide concn. range without requiring complicated control. This adsorbent is especially suitable for removing phosphorus from an intermediate and small scale living waste water and industrial waste water.

Description

【発明の詳細な説明】 発明の分野 本発明は排水などの水中からリンを除去するための新し
い方法に関し、より詳細には、家庭下水、産業排水およ
び産業用水などの水中から、リン酸分をアルミニウム或
いは鉄を含む化学吸着剤によって除去し、また吸着除去
されたリン酸分を脱離回収し、吸着剤を繰り返し再生使
用する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a new method for removing phosphorus from water such as wastewater, and more particularly to a new method for removing phosphorus from water such as domestic sewage, industrial wastewater and industrial water. The present invention relates to a method of removing phosphoric acid using a chemical adsorbent containing aluminum or iron, desorbing and recovering the adsorbed phosphoric acid, and repeatedly reusing the adsorbent.

従来の技術及び発明の技術的課題 湖沼、内湾などに流入する栄養塩類、とくにリンが増加
したために、富栄養化が進み、藻類の異常増殖による種
々の被害が生じている。このため、排水中のリンを除去
する災れた方法の開発が求められている。また、産業用
水などにおいてもリンを除去することによって装置およ
び配管などにおける微生物スライムの発生を抑制する優
れた方法の開発が求められている。さらに1.リン資源
は世界的に不足傾向にあり、日本においては、はぼ全量
を輸入に依存しているため、排水などの中からりンな回
収する優れた方法の開発が求められている。
Prior Art and Technical Problems of the Invention Due to an increase in nutrients, especially phosphorus, flowing into lakes, internal bays, etc., eutrophication progresses, and various damages are caused by abnormal growth of algae. Therefore, there is a need to develop a method for removing phosphorus from wastewater. Furthermore, there is a need to develop an excellent method for suppressing the generation of microbial slime in equipment, piping, etc. by removing phosphorus from industrial water. Furthermore 1. Phosphorus resources are in short supply worldwide, and Japan is almost entirely dependent on imports, so there is a need to develop an excellent method for recovering phosphorus from wastewater.

従来、水中からリンを除去する方法としては、アルミニ
ウム塩、鉄塩、またはカルシウム塩を加えてリン酸分を
下洛性リン酸塩として凝轡させ、沈澱分離する凝集沈澱
法、活性汚泥等の微生物にリンを取り込ませてから微生
物を沈澱分離する生物税リン法、及び粒状リン酸カルシ
ウムなどにリン酸分をヒドロキシアパタイトとして析出
させる晶析法および陰イオン交換樹脂にリン酸分を交換
吸着させるイオン交換法などの実用化が試みられている
Conventional methods for removing phosphorus from water include the coagulation-sedimentation method, which involves adding aluminum salts, iron salts, or calcium salts to coagulate the phosphoric acid content as phlegmatic phosphates, and separating it by sedimentation, activated sludge, etc. The biological tax phosphorus method involves introducing phosphorus into microorganisms and then separating the microorganisms by precipitation, the crystallization method in which phosphoric acid is precipitated as hydroxyapatite on granular calcium phosphate, and the ion exchange method in which phosphoric acid is exchanged and adsorbed on an anion exchange resin. Attempts are being made to put the law into practical use.

しかしながら、これらの方法にはそれぞれ基本的な問題
点があり、とくに中小規模の水処理に経済−的に適用す
ることは難しい。すなわち、凝集沈澱法では、大きな設
備を要し、また含水率の高い多量の沈澱汚泥を生じ、そ
の後処理や処分が難しいだけでなく、リンを回収するこ
とも難しい。生物脱リン法では活性汚泥等によって有様
汚濁物質の除去を行なっている場合以外には適用が難し
く、また大きな設備と複雑な制御が必要であるだけでな
く、リンを回収することも難しい。晶析法では、酸添加
による脱炭酸及びカルシウム添加による過飽和度の向上
などの複雑な前処理を必要とし、条件の制御が難しく、
また低濃度のリンが除去できない。イオン交換法では共
存する他の無機イオンや有機物の妨害が大きく、安定し
た処理が難しく、また吸着容量が小さいために高価な樹
脂を用いても少量の水しか処理できない。
However, each of these methods has fundamental problems and is difficult to economically apply, especially to small and medium scale water treatment. That is, the coagulation-sedimentation method requires large equipment and produces a large amount of settled sludge with a high moisture content, which is not only difficult to process and dispose of afterwards, but also difficult to recover phosphorus. The biological dephosphorization method is difficult to apply except when specific pollutants are being removed using activated sludge, etc., and not only does it require large equipment and complicated control, but it is also difficult to recover phosphorus. The crystallization method requires complex pretreatments such as decarboxylation by adding acid and increasing the degree of supersaturation by adding calcium, making it difficult to control the conditions.
Also, low concentrations of phosphorus cannot be removed. In the ion exchange method, there is a large interference with other coexisting inorganic ions and organic substances, making stable treatment difficult, and because the adsorption capacity is small, only a small amount of water can be treated even if expensive resins are used.

発明の目的及び作用効果 本発明は、かかる現状にかんがみてなされたものであり
、本発明のリン除去方法によれば、簡易な装置で、化学
吸着剤とリン酸分を含む水とを接触せしめるだけで広い
濃度範囲のリンを複雑な制御を必要とせずに除去できる
特徴があり、特に中小規模の生活排水や産業排水等の中
からリンを除去するのに好゛適である。また、吸着剤に
吸着したリンは塩基性溶液によって脱離され、濃厚なリ
ン溶液として回収でき、吸着剤は繰り返し再生使用でき
る特徴がある。また、後処理の必要な汚泥をほとんど生
成しないことも大きな特徴である。
Purpose and Effect of the Invention The present invention has been made in view of the current situation, and according to the phosphorus removal method of the present invention, a chemical adsorbent and water containing phosphoric acid are brought into contact with each other using a simple device. It has the characteristic of being able to remove phosphorus in a wide range of concentrations without requiring complicated control, and is particularly suitable for removing phosphorus from small and medium-sized domestic wastewater, industrial wastewater, etc. In addition, phosphorus adsorbed on the adsorbent can be desorbed by a basic solution and recovered as a concentrated phosphorus solution, and the adsorbent can be repeatedly recycled and used. Another major feature is that it generates almost no sludge that requires post-treatment.

発明の要約 すなわち、本発明のリン除去方法は、リン酸分を化学吸
着する作用のある酸化アルミニウムの含有率が高く、か
つ、吸着及び薬剤の担持に有効な微細な孔を多くもつ天
然または合成の多孔質固体を基材とし、これにリン[夜
分と反応して下洛性基を生成するアルミニウム塩或いは
鉄塩を適量添着、担持性しめた化学吸着剤を用い、また
、この吸着剤を適当な0度の塩基性浴液によって脱離、
再生することを特徴とする。
Summary of the Invention In other words, the method for removing phosphorus of the present invention uses a natural or synthetic material that has a high content of aluminum oxide, which has the effect of chemically adsorbing phosphoric acid, and has many fine pores that are effective for adsorption and drug loading. The porous solid of is desorbed using a suitable basic bath solution at 0 degrees,
It is characterized by being regenerated.

発明の構成 ′本発明によれば、ば化アルミニウム含有率が50重量
%以上であり、且つ細孔直径2nm以上で30am以下
の細孔の容積が1g当り0.15.y以上である無機多
孔質基材に、基材1g当り5×10−5研以上で1 x
 10−’モル以下の量のアルミニウム塩或いは鉄塩の
少なくとも1種を担持させた化学吸着剤を、リン酸分を
含有する水と接触させて、水中のリン酸分を該吸着剤に
吸着させることを特徴とする水中のリン除去方法が提供
される。
Structure of the Invention According to the present invention, the aluminum bride content is 50% by weight or more, and the volume of pores with a pore diameter of 2 nm or more and 30 am or less is 0.15% per 1 g. y or more, 1 x at least 5 x 10-5 per gram of base material.
A chemical adsorbent carrying at least one type of aluminum salt or iron salt in an amount of 10-' mole or less is brought into contact with water containing phosphoric acid, and the phosphoric acid in the water is adsorbed onto the adsorbent. A method for removing phosphorus in water is provided.

また本発明によれば、上記方法において、リン酸分が吸
着された化学吸着剤をI X 10−2規定以上の塩基
性溶液と接触させて吸着されたリン酸分を脱離させ、再
生処理された化学吸着剤をリン酸分の吸着処理に反復使
用することを特徴とする水中のリン除去方法が提供され
る。
Further, according to the present invention, in the above method, the chemical adsorbent on which phosphoric acid has been adsorbed is brought into contact with a basic solution of I x 10-2 normal or higher to remove the adsorbed phosphoric acid, and the regeneration treatment is performed. Provided is a method for removing phosphorus from water, which is characterized in that the chemical adsorbent thus prepared is repeatedly used for adsorption treatment of phosphoric acid components.

発明の好適態様 本発明について以下に洋細に説明する。Preferred embodiments of the invention The present invention will be explained in detail below.

基    材 本発明において使用する化学吸着剤の基材について次に
述べる。土損中のある種の粘土鉱物はリン酸分を吸着す
るが、このような粘土鉱物のリン吸着能力は、粘土鉱1
勿を(79成する多孔質で活性な酸化アルミニウムがリ
ン1綬分を化学的に吸着するためと考えられる。
Substrate The substrate of the chemical adsorbent used in the present invention will be described below. Certain clay minerals in soil damage adsorb phosphoric acid, but the phosphorus adsorption ability of such clay minerals is
This is thought to be due to the fact that the porous and active aluminum oxide that forms the surface chemically adsorbs 1 liter of phosphorus.

代表的な粘土鉱物であるカオリナイト、モンモリロナイ
ト、ベントナイト、2種類のアロフェン及び3fm’l
Aの合成アルミナについて、リン叡2水素ナトリウム水
tミ液からのリン吸着性能を試験した結果を吸着剤1g
当りのリン原子換算吸着量として第1表に示す。また、
これらの基材の直径6orLrrL以下の細孔′8積分
布を第1図に示し、化学、ff1.6及び、吸着と薬剤
の担持に有効と考えられる直径2−nm以上、50 a
/n以下の細孔容積を第2−表に示す。
Typical clay minerals kaolinite, montmorillonite, bentonite, two types of allophane and 3fm'l
The results of testing the phosphorus adsorption performance of synthetic alumina A from sodium phosphorus dihydrogen solution (1 g of adsorbent) are as follows:
Table 1 shows the adsorption amount in terms of phosphorus atoms per unit. Also,
Figure 1 shows the volume distribution of pores with a diameter of 6 or LrrL or less for these base materials, and shows that pores with a diameter of 2 nm or more and 50 a, which are considered effective for adsorption and drug loading, are shown in Figure 1.
Table 2 shows the pore volume of /n or less.

カオリナイト         0.2以下モンモリロ
ナイト      0.2以下ベントナイト     
    0.2以下アロフエンA        10
.0アロフェンB1.5 C古註アルミナA      、17.5活性アルミナ
B       14.8アルミナC1,9 第   2   表 カオリナイト   40,5   45.9   0.
03モンモリロナイト  21.9   58.0  
  0.08ベントナイト   15.4   69.
5   0.167oフェ:yA  39.4  3a
1   0j1アoフェ:、yB   35.5  2
a8   0.08活性アルミナA   80.4  
 1g.6   0.25活性アルミナB   93.
7    0.3   0.30アルミf C9a5 
 0.0  0.0畳直径2nrn以上、3 Q nm
以下の細孔容積第1表に示す通り、基材のうちで酸化ア
ルミニウム含有率が30チよりも小さいモンモリロナイ
ト及びベントナイトはほとんどリンを吸着しない。
Kaolinite 0.2 or less Montmorillonite 0.2 or less Bentonite
0.2 or less Allofen A 10
.. 0 Allophane B1.5 C Old Notes Alumina A, 17.5 Activated Alumina B 14.8 Alumina C1,9 Table 2 Kaolinite 40,5 45.9 0.
03 Montmorillonite 21.9 58.0
0.08 bentonite 15.4 69.
5 0.167o Fe:yA 39.4 3a
1 0j1 aofe:,yB 35.5 2
a8 0.08 activated alumina A 80.4
1g. 6 0.25 Activated Alumina B 93.
7 0.3 0.30 aluminum f C9a5
0.0 0.0 tatami diameter 2nrn or more, 3Q nm
As shown in pore volume Table 1 below, among the base materials, montmorillonite and bentonite, which have an aluminum oxide content of less than 30 inches, hardly adsorb phosphorus.

また、酸化アルミニウム含有率が30%以上であっても
直径2rLrnから30rLrILの細孔容積が1gあ
たり0.15−以下であるカオリナイト、アロフェンB
及びアルミナCはリンをわずかしか吸着しない。これに
対して酸化アルミニウム含有率が高く、細孔容積の大き
いアロフエ/A、活性アルミナA及び活性アルミナBは
リン吸着性能が著しく高いことが見い出された。すなわ
ち、酸化アルミニウム含有率が30チ以上であり、かつ
直径2rLm以上で301扉以下のA’lB孔容積が1
.9あたり0.15−以上である多孔質固体は水中から
リン酸分をよく吸着除去することが見い出された。
In addition, even if the aluminum oxide content is 30% or more, the pore volume with a diameter of 2rLrn to 30rLrIL is 0.15- or less per gram, allophane B
and alumina C adsorbs only a small amount of phosphorus. On the other hand, it was found that Alofue/A, activated alumina A, and activated alumina B, which have a high aluminum oxide content and a large pore volume, have significantly high phosphorus adsorption performance. That is, the aluminum oxide content is 30 inches or more, and the A'lB hole volume is 1 with a diameter of 2rLm or more and 301 doors or less.
.. It has been found that a porous solid having a ratio of 0.15 to 9 or more adsorbs and removes phosphoric acid from water well.

アルミニウム声 いは C1g□ このようなリン吸着性能が侵れている多孔質基材の性能
をさらに向上させる方法について次に述べる。上述のア
ロフエ/A及び活性アルミナAに、リン酸分と反応して
下拵性の塩?生成するカルシウム、マグネシウム、アル
ミニウムまたは鉄の塩化物または硫j波塩の水溶液を1
Jあたり1.5x10−’当量だけ含浸し、添着、担持
せしめたもつについて、リン識塩溶液からのリン吸着性
能を試験した結果を第6表に示す。
Aluminum Voice C1g□ Next, we will discuss how to further improve the performance of porous substrates whose phosphorus adsorption performance has deteriorated. Is there a salt that reacts with phosphoric acid to the above-mentioned Alofe/A and activated alumina A? The resulting aqueous solution of calcium, magnesium, aluminum or iron chloride or sulfur salt is
Table 6 shows the results of testing the phosphorus adsorption performance from a phosphorus salt solution for motsu impregnated, impregnated, and supported in an amount of 1.5 x 10 -' equivalent per J.

第   6   表 第6表に示す通り、カルシウム塩及びマグネシウム塩を
添着したものはわずかしかりン吸着性能が向上しなかっ
たが、アルミニウム塩および鉄塩とくに硫酸アルミニウ
ムおよび硫酸第2鉄を添着したものは著しくリン吸着性
能が向上することが見い出された。
Table 6 As shown in Table 6, those impregnated with calcium salts and magnesium salts showed only a slight improvement in phosphorus adsorption performance, but those impregnated with aluminum salts and iron salts, especially aluminum sulfate and ferric sulfate, did not improve. It was found that the phosphorus adsorption performance was significantly improved.

のリン吸着性能を試、験した倍果を第4表に示す。Table 4 shows the results obtained by testing the phosphorus adsorption performance of

第4表 第4表に示す通り、硫酸アルミニウムまたは硫酸鉄の添
着量が5×10−5モル/g以下では添着量が不足して
リン吸着性能の向上が少なく、また1 x 10−5モ
ル/y以上では添着物によって、基材の細孔がふさがれ
て内部まで反応しにくくなるために、リン吸着性能の向
上がかえって小さくなることが見い出された。更に吸着
溶液に約500I′n9/lの塩化物イオン及び硫酸イ
オンを共存させても吸着性能はほとんど変化はなく、こ
れらのイオンによってリン酸分の吸着がほとんど妨害さ
れないことカー確認された。
Table 4 As shown in Table 4, if the impregnated amount of aluminum sulfate or iron sulfate is less than 5 x 10-5 mol/g, the impregnated amount is insufficient and the improvement in phosphorus adsorption performance is small; It has been found that when /y or more, the pores of the base material are blocked by the impregnated material, making it difficult to react to the inside, so that the improvement in phosphorus adsorption performance is rather reduced. Furthermore, even when approximately 500 I'n9/l of chloride ions and sulfate ions were present in the adsorption solution, there was almost no change in the adsorption performance, and it was confirmed that the adsorption of phosphoric acid was hardly hindered by these ions.

また、トリポリリン酸ナトリウム水浴液な用いても同様
のリン吸着性能を示した。なお、ベントナイトに3.4
x10−’モル/yの硫酸アルミニウムを添着してもリ
ン吸着性能は5m9/9以下であった。
In addition, similar phosphorus adsorption performance was shown when a sodium tripolyphosphate water bath solution was used. In addition, bentonite contains 3.4
Even when x10-'mol/y of aluminum sulfate was impregnated, the phosphorus adsorption performance was 5m9/9 or less.

水処理 本発明の処理法は、リン酸分を含有する任意の水、例え
ば都市下水、化学工場排水、食品工業排水等に適用でき
る。用いる化学吸着剤は、粉末或いは粒状物等の任意の
剤型で用いることができるが、処理水との分離や再生処
理の見地からは粒状物であることが望ましく、特に径が
0.5乃至5闘の粒状物の形で用いることが望ましい。
Water Treatment The treatment method of the present invention can be applied to any water containing phosphoric acid, such as urban sewage, chemical factory wastewater, food industry wastewater, etc. The chemical adsorbent used can be used in any form such as powder or granules, but from the standpoint of separation from treated water and regeneration treatment, granules are preferable, especially those with a diameter of 0.5 to 0. It is preferable to use it in the form of 5-ounce granules.

水と化学吸着剤との接触処理は、例えば処理すべき水と
化学吸着剤とを混合し、リン酸分を吸着した吸着剤を沈
降等により分離する方法や、吸着剤の充填層に処理すべ
き水を通して水中のリン酸分を吸着させる方法等により
行うことができる。
Contact treatment of water and chemical adsorbent can be carried out, for example, by mixing the water to be treated with the chemical adsorbent and separating the adsorbent that has adsorbed phosphoric acid by sedimentation, or by treating it in a packed bed of adsorbent. This can be carried out by a method of adsorbing the phosphoric acid content in the water by passing it through the water.

後者の処理法では、吸着剤を固定床として用いることも
できるし、また移動床や流動床として用いることもでき
る。更に、化学吸着剤の複数の充填層を使用し、一方を
吸着処理に、また他方を後述する再生処理に用いること
もできる。第6図は前者の混合−沈澱分離方式による工
程図であり、第4図は後者の充填層方式による工程図で
ある。
In the latter process, the adsorbent can be used as a fixed bed or as a moving or fluidized bed. Additionally, multiple packed beds of chemical adsorbent may be used, one for the adsorption process and the other for the regeneration process described below. FIG. 6 is a process diagram for the former mixing-precipitation separation method, and FIG. 4 is a process diagram for the latter packed bed method.

水と化学吸着剤との接触処理は、常温で十分に進行する
ので、加熱等の格別の操作は不必要であるが、勿論、本
発明は高温の水にも適用できる。
Since the contact treatment between water and the chemical adsorbent proceeds satisfactorily at room temperature, special operations such as heating are unnecessary, but of course the present invention can also be applied to high temperature water.

水と化学吸着剤との接触時間は、温度や所望とするリン
酸分の除去の程度によっても相違するが、一般に10分
乃至10時間の内から適当な接触時間を選ぶ。
The contact time between water and the chemical adsorbent varies depending on the temperature and the desired degree of phosphoric acid removal, but is generally selected from a range of 10 minutes to 10 hours.

吸着剤の再生及びリンの回収 化学吸着剤に吸着したリン酸分を脱離回収し、吸着剤を
再生する方法について次に述べる。リン酸アルミニウム
はpHが高い塩基性溶液中またはpHが低い酸性溶液中
では溶解しやすくなることが知られている。そこで活性
アルミナA1gあたり、1訛鼠アルミニウムを3.4x
10− モルまたは硫酸第2鉄を2.5 x 10−4
モル担持させた化学吸着剤について、リンの吸着性のp
Hによる変化を調べた結果を第2図に示す。これからP
H9以下またはpH1以下ではリンの吸着性が著しく小
さくなり、pH9以上の塩基性溶液またはPH1以下の
酸性溶液でリンの脱離が可能であると考えられたが、酸
より塩基のほうが、低儂度で脱離率が高くなると考えら
れた。
Regeneration of adsorbent and recovery of phosphorus A method for desorbing and recovering the phosphoric acid adsorbed on the chemical adsorbent and regenerating the adsorbent will be described below. It is known that aluminum phosphate is easily dissolved in a basic solution with a high pH or in an acidic solution with a low pH. Therefore, 1 g of activated alumina A contains 3.4x of aluminum.
10-mol or 2.5 x 10-4 ferric sulfate
For a chemical adsorbent with molar loading, the phosphorus adsorption p
The results of examining changes due to H are shown in Figure 2. From now on P
At H9 or below or pH1 or below, the adsorption of phosphorus becomes extremely small, and it was thought that phosphorus could be removed using a basic solution with a pH of 9 or above or an acidic solution with a pH of 1 or below. It was thought that the desorption rate would increase at higher temperatures.

ただし、吸着したリンをほぼ完全に脱離するためには、
吸着したリンと置換するのに十分な量の塩基を加える必
要がある。すなわち、本発明で用いる化学吸着剤は、1
gあたり約1 x 10−’モルのリン、すなわち約3
 x 10”−’当量ものリンを吸着するので、これ以
上の塩基を加える必要がある。
However, in order to almost completely desorb the adsorbed phosphorus,
It is necessary to add a sufficient amount of base to replace the adsorbed phosphorus. That is, the chemical adsorbent used in the present invention has 1
about 1 x 10-' moles of phosphorus per g, or about 3
Since x 10''-' equivalents of phosphorus are adsorbed, more base needs to be added.

すなわち、α規定の塩基では、1gあたり3/cゴ以上
の溶液を用いる必要がある。しかし、あまり希薄な溶液
を使用したのでは、脱離液量が多くなり、脱離液中のリ
ン濃度が低くなってしまう。
That is, in the case of an α-defined base, it is necessary to use a solution of 3/c or more per 1 g. However, if a too dilute solution is used, the amount of desorbed liquid will be large and the phosphorus concentration in the desorbed liquid will be low.

1gあたり3/c−の塩基溶液を用いた場合、脱離液中
のリン0度は約64モル/l、すなわち約1×10 α
n9 / I!となるが、一般に脱離lyの後処理及び
リンの回収利用を適切に行うには、少なくとも脱離液中
のリン濃度は102m9/1以上とする必要がある。し
たがって、脱離には10−2規定以上の塩基性情l夜を
用いる必要があることになる。
When using a base solution of 3/c-/g, the 0 degree phosphorus in the desorbed solution is approximately 64 mol/l, or approximately 1×10 α
n9/I! However, in general, in order to properly perform the post-treatment of the desorbed ly and the recovery and utilization of phosphorus, the phosphorus concentration in the desorbed liquid must be at least 102m9/1 or higher. Therefore, it is necessary to use a basic temperature of 10-2 normal or more for desorption.

そこで、活性アルミナA1gあたり、硫酸アルミニウム
を3.4x10−’モル添着した化学吸着剤にリンを6
1m9吸着せしめた後、0.5規定の水酸化ナトリウム
水溶i’fl[kl、Fあたり10rnt加えてリンの
脱離試験を行ったところ、吸着したリンの約98%以上
が脱離され約6ooom9/zの濃厚なリンを含む溶液
が、回収されることが見い出された。また、リンを脱離
した後の吸着剤に、再び硫酸酸性硫酸アルミニウムな含
浸、担持させて繰り返しリンを吸着せしめたところ、新
しい吸着剤の96%以上の吸着性能があることが確認さ
れた。
Therefore, 6 phosphorus was added to a chemical adsorbent impregnated with 3.4 x 10-' moles of aluminum sulfate per gram of activated alumina A.
After adsorption of 1 m9, a phosphorus desorption test was performed by adding 10 rnt per 0.5N sodium hydroxide aqueous i'fl [kl, F], and as a result, more than 98% of the adsorbed phosphorus was desorbed, approximately 6ooom9 It was found that a phosphorus-rich solution of /z was recovered. In addition, when the adsorbent after desorbing phosphorus was again impregnated with sulfuric acid acidic aluminum sulfate and supported on it to adsorb phosphorus repeatedly, it was confirmed that the adsorbent had an adsorption performance of 96% or more of the new adsorbent.

本発明においては、上述のように酸化アルミニウム含有
率が高く、かつ細孔が多く、リン吸着性能が優れ、また
薬剤担持性能も優れた多孔質基材にリン酸分と反応する
適量のアルミニウム塩または鉄塩を添着、担持せしめた
化学吸着剤を用いることによって、水中のリンを効率よ
(除去せしめることができる。また、多量に吸着したリ
ンは適切な濃度の塩基性溶液によって濃厚なリンを含む
液として脱離回収され、リン吸着剤は再びアルミニウム
塩または鉄塩を添着することによって繰り返し使用する
ことができる。
In the present invention, as described above, an appropriate amount of aluminum salt that reacts with phosphoric acid is applied to a porous base material that has a high aluminum oxide content, has many pores, has excellent phosphorus adsorption performance, and has excellent drug support performance. Alternatively, by using a chemical adsorbent impregnated and supported with iron salt, phosphorus in water can be efficiently removed.In addition, a large amount of phosphorus can be removed by using a basic solution with an appropriate concentration. The phosphorus adsorbent is desorbed and recovered as a containing liquid, and the phosphorus adsorbent can be used repeatedly by impregnating it with aluminum salt or iron salt.

実施例 以下、本発明の実施例について述べる。Example Examples of the present invention will be described below.

実施例1゜ アロフェンA1ゆあたり、0.15モル/I!の硫酸ア
ルミニウム水溶液を21加え、十分混合したー後、12
0℃で1時間乾燥して製造した化学吸着剤を第6図のフ
ローのように配置した装置2において、リンを平均3.
2 my / を含む某食品工場排水の活性汚泥処理水
に、80mg/zだけ加え、2時間混合後に装置ろで沈
澱せしめたところ、リン濃度は1.0rn9/z以下と
なり、吸着剤は速やかに沈澱し、生成汚泥体積は、硫酸
アルミニウムによる凝集沈澱を行った場合に比べて約3
0分の1以下となった。また、沈澱吸着剤を分離後、装
置6で0.4規定の水酸化ナトリウムを10倍量加えて
6時間混合したところ、約2000m9/I!のリンを
含む液が回収された。さらに吸着剤を分離後、硫酸酸硫
酸アルミニウムを2倍量加え、新しい吸着剤を約10%
加えて再び排水処理に用いたところ、十分なリン除去が
行われた。
Example 1゜Allophane A per unit amount, 0.15 mol/I! After adding 21 ml of aluminum sulfate aqueous solution and mixing thoroughly, 12
In apparatus 2, in which a chemical adsorbent prepared by drying at 0° C. for 1 hour was arranged as shown in the flowchart of FIG. 6, phosphorus was absorbed on average by 3.
When 80 mg/z was added to activated sludge treated water from a certain food factory wastewater containing 2 my/z and mixed for 2 hours, it was allowed to precipitate in a device filter.The phosphorus concentration was 1.0rn9/z or less, and the adsorbent was quickly released. The volume of sludge produced is approximately 3 times smaller than that of coagulation and sedimentation using aluminum sulfate.
It became less than 1/0. In addition, after separating the precipitated adsorbent, 10 times the amount of 0.4 N sodium hydroxide was added in apparatus 6 and mixed for 6 hours, resulting in approximately 2000 m9/I! A liquid containing phosphorus was recovered. Furthermore, after separating the adsorbent, double the amount of aluminum sulfate sulfate is added, and about 10% of the new adsorbent is added.
In addition, when it was used again for wastewater treatment, sufficient phosphorus removal was achieved.

実施例2゜ 直径約2〜6同の活性アルミナA1に9あたり、0.2
モル/lの硫酸アルミニウム溶液を1.51!加え、十
分混合、担持せしめて製造した化学吸着剤を第4図のフ
ローのように配置した装置8に充填し、リンを平均4.
1m9/l含む某化学工場排水の凝集沈澱処理水を空間
速度約5/時で通水したところ、充填体積の約7000
倍通水するまで処理水中のリン濃度は1■/l以下であ
った。また、リンを多量に除去した吸着剤に0.6規定
の水酸化ナトリウム、・容液を空間速度約1/時で通液
したところ、充填体積の約5倍量の通液によって、吸着
したリンの約90%が、約3000m9/I!の濃厚な
リンを含む液として脱離回収された。また、脱離後に残
った水酸化す) IJウム溶液を抜き出した後、硫酸酸
性硫酸アルミニウム溶液を満して、含浸、担持せしめ、
再び排水を通したところ、繰り返しリンを除去すること
ができた。
Example 2゜ Diameter of about 2 to 6 0.2 per 9 to the same activated alumina A1
1.51 mol/l of aluminum sulfate solution! In addition, the chemical adsorbent produced by sufficiently mixing and supporting the chemical adsorbent was filled into the device 8 arranged as shown in the flowchart of FIG.
When coagulation-sedimentation treated water of a certain chemical factory wastewater containing 1m9/l was passed through at a space velocity of about 5/hour, the filling volume was about 7000.
The phosphorus concentration in the treated water was below 1 .mu./l until the water flow was doubled. In addition, when a 0.6 N sodium hydroxide solution was passed through the adsorbent from which a large amount of phosphorus had been removed at a space velocity of approximately 1/hour, the amount of adsorption was approximately 5 times the filling volume. Approximately 90% of phosphorus is approximately 3000m9/I! It was desorbed and recovered as a liquid containing concentrated phosphorus. In addition, after extracting the IJium hydroxide solution remaining after desorption, it is filled with a sulfuric acid acidic aluminum sulfate solution to impregnate and support it.
When the wastewater was passed through again, the phosphorus could be removed repeatedly.

実施例6゜ 実施例2と同様の化学吸着剤を、同様の装置に充填し、
リンを平均3.27#/を含む某団地下水の浄化槽処理
水をf過後に空間速度約6/時で通水したところ、充填
体積の約8000倍通水するまで処理水中のリン濃度は
1〜/を以下であった。このリンを除去した吸着剤は、
定期的に抜き出し、再生した吸着剤と入れかえた。抜き
出した吸着剤は、他の排水のリン除去に用いられた吸着
剤とともに集め、0.5規定の水酸化ナトリウム溶液を
約7倍量加え、約4000■/lのリンを含む液を回収
し、吸着剤は硫酸で中和後、硫酸アルミニウムを再び添
着、担持せしめて繰り返し使用に供した。さらに脱離回
収液に水酸化カルシウムを加えたところ、リンの大部分
はリン酸カルシウムとして沈澱分離され、残った濃厚な
水酸化ナトリウムの溶液は再び脱離液として使用できた
Example 6゜The same chemical adsorbent as in Example 2 was filled into the same apparatus,
When treated water from a septic tank for underground water containing 3.27 #/hr of phosphorus on average was passed through the water at a space velocity of about 6/hour after 5 hours, the phosphorus concentration in the treated water remained at 1 until about 8,000 times the filling volume was passed. ~/ was below. The adsorbent that removed this phosphorus is
The adsorbent was periodically removed and replaced with regenerated adsorbent. The extracted adsorbent was collected together with other adsorbents used to remove phosphorus from wastewater, and about 7 times the amount of 0.5 N sodium hydroxide solution was added to collect the liquid containing about 4000 μ/L of phosphorus. After the adsorbent was neutralized with sulfuric acid, aluminum sulfate was again impregnated and supported, and the adsorbent was used repeatedly. Furthermore, when calcium hydroxide was added to the desorption recovery solution, most of the phosphorus was precipitated and separated as calcium phosphate, and the remaining concentrated sodium hydroxide solution could be used again as a desorption solution.

実施例4゜ 実施例2と同様の化学吸着剤を、同様の小型の装置に充
填し、リンを平均0.07m9/を含む茶入薬品工業用
水を空間速度約6/時で通水したところ、充填体積の約
30000倍通水するまで処理水中のリン濃度は0.0
1■/を以下であり、貯留槽における細菌等の微生物の
発生が著しく減少した。なお、使用後の化学吸着剤は廃
棄し、新しい化学吸着剤と入れかえた。
Example 4 The same chemical adsorbent as in Example 2 was filled in a similar small device, and tea-based chemical industrial water containing an average of 0.07 m/h of phosphorus was passed through it at a space velocity of about 6/h. The phosphorus concentration in the treated water remains 0.0 until approximately 30,000 times the filling volume is passed through.
1/cm or less, and the occurrence of microorganisms such as bacteria in the storage tank was significantly reduced. The used chemical adsorbent was discarded and replaced with a new chemical adsorbent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で用いた化学吸着剤基材の累攬細孔容
積分布曲線、 第2図は、本発明の化学吸着剤のリン吸着性能のpHに
よる変化の例、 第6図は、本発明の化学吸着剤を粉状で用いて排水中の
リンを除去する工程図の例、 第4図は、本発明の化学吸着剤を粒子状で用いて排水中
のリンを除去する工程図の例である。 引照数字1は排水、2は吸着剤混合槽、3は沈澱分離槽
、4は濾過塔、5は処理水、6は吸着剤脱離再生槽、7
はリン回収槽、8は吸着剤充填吸着脱離装置、9は水酸
化す) IJウム溶液槽、10は硫酸酸性硫酸アルミニ
ウム溶液槽を夫々示す。
Figure 1 shows the cumulative pore volume distribution curve of the chemical adsorbent base material used in the present invention, Figure 2 shows an example of the change in phosphorus adsorption performance of the chemical adsorbent of the present invention due to pH, and Figure 6 shows , an example of a process diagram for removing phosphorus from wastewater using the chemical adsorbent of the present invention in powder form; FIG. This is an example of a diagram. Reference number 1 is waste water, 2 is adsorbent mixing tank, 3 is sedimentation separation tank, 4 is filtration tower, 5 is treated water, 6 is adsorbent desorption regeneration tank, 7
8 is a phosphorus recovery tank, 8 is an adsorption/desorption device filled with an adsorbent, 9 is a hydroxide (IJ) solution tank, and 10 is a sulfuric acid acidic aluminum sulfate solution tank.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化アルミニウム含有率が30重量%以上であり
、且つ細孔直径2nm以上で30nm以下の細孔の容積
が19当り0.15ml以上である無機多孔質基材に、
基材1g当り5×10^−5^モル以上で1×10^−
^3モル以下の量のアルミニウム塩或いは鉄塩の少なく
とも1種を担持させた化学吸着剤を、リン酸分を含有す
る水と接触させて、水中のリン酸分を該吸着剤に吸着さ
せることを特徴とする水中のリン除去方法。
(1) An inorganic porous base material in which the aluminum oxide content is 30% by weight or more and the volume of pores with a pore diameter of 2 nm or more and 30 nm or less is 0.15 ml or more per 19,
5 x 10^-5^mol or more per 1g of base material, 1 x 10^-
A chemical adsorbent carrying at least one type of aluminum salt or iron salt in an amount of 3 moles or less is brought into contact with water containing phosphoric acid, and the phosphoric acid in the water is adsorbed by the adsorbent. A method for removing phosphorus from water.
(2)酸化アルミニウム含有率が30重量%以上であり
、且つ細孔直径2nm以上で30nm以下の細孔の容積
が1g当り0.15ml以上である無機多孔質基材に、
基材1g当り5×10^−^5モル以上で1×10^−
^3モル以下の量のアルミニウム塩或いは鉄塩の少なく
とも1種を担持させた化学吸着剤を、リン酸分を含有す
る水と接触させて、水中のリン酸分を該吸着剤に吸着さ
せ、リン酸分が吸着された化学吸着剤を1×10^−^
2規定以上の塩基性溶液と接触させて吸着されたリン酸
分を脱離させ、再生処理された化学吸着剤をリン酸分の
吸着処理に反復使用することを特徴とする水中のリン除
去方法。
(2) An inorganic porous base material having an aluminum oxide content of 30% by weight or more and a volume of pores with a pore diameter of 2 nm or more and 30 nm or less of 0.15 ml or more per 1 g;
5 x 10^-^5 moles or more per 1g of base material, 1 x 10^-
A chemical adsorbent carrying at least one type of aluminum salt or iron salt in an amount of 3 moles or less is brought into contact with water containing a phosphoric acid content, and the phosphoric acid content in the water is adsorbed onto the adsorbent, 1 x 10 ^-^ chemical adsorbent with phosphoric acid adsorbed
A method for removing phosphorus from water, which comprises contacting with a basic solution of 2N or more to remove adsorbed phosphoric acid, and repeatedly using the regenerated chemical adsorbent for adsorption treatment of phosphoric acid. .
JP18448484A 1984-09-05 1984-09-05 Removal of phosphorus in water Pending JPS6164388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18448484A JPS6164388A (en) 1984-09-05 1984-09-05 Removal of phosphorus in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18448484A JPS6164388A (en) 1984-09-05 1984-09-05 Removal of phosphorus in water

Publications (1)

Publication Number Publication Date
JPS6164388A true JPS6164388A (en) 1986-04-02

Family

ID=16153980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18448484A Pending JPS6164388A (en) 1984-09-05 1984-09-05 Removal of phosphorus in water

Country Status (1)

Country Link
JP (1) JPS6164388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823401A3 (en) * 1996-08-07 1998-03-18 Tomita Pharmaceutical Co., Ltd. Method for treating waste water
FR3062849A1 (en) * 2017-02-15 2018-08-17 IFP Energies Nouvelles METHOD OF TREATING WATER BY ADSORPTION ON REGENERABLE FILTER MATERIAL
CN112341244A (en) * 2020-11-18 2021-02-09 合肥工业大学 Method for preparing phosphorus removing agent by using mine waste residues

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823401A3 (en) * 1996-08-07 1998-03-18 Tomita Pharmaceutical Co., Ltd. Method for treating waste water
US5976401A (en) * 1996-08-07 1999-11-02 Tomita Pharmaceutical Co., Ltd. Agent for removing phosphates, nitrates and nitrites from wastewater
US6132624A (en) * 1996-08-07 2000-10-17 Tomita Pharmaceutical Co. Ltd Method for treating waste water
EP1342697A3 (en) * 1996-08-07 2004-05-06 Tomita Pharmaceutical Co., Ltd. Method for treating waste water
FR3062849A1 (en) * 2017-02-15 2018-08-17 IFP Energies Nouvelles METHOD OF TREATING WATER BY ADSORPTION ON REGENERABLE FILTER MATERIAL
CN112341244A (en) * 2020-11-18 2021-02-09 合肥工业大学 Method for preparing phosphorus removing agent by using mine waste residues

Similar Documents

Publication Publication Date Title
Xu et al. Adsorption and removal of arsenic (V) from drinking water by aluminum-loaded Shirasu-zeolite
US20110155669A1 (en) Method for trace phosphate removal from water using composite resin
US20100243571A1 (en) Method for adsorption of phosphate contaminants from water solutions and its recovery
JP5319192B2 (en) Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorous compound adsorbent
Hodi et al. Removal of pollutants from drinking water by combined ion exchange and adsorption methods
CN102247799B (en) Method for removing humic acid in water by utilizing surfactant modified attapulgite
Kim et al. Adsorption of organic compounds by synthetic resins
KR101415656B1 (en) adsorbent for adsorption treatment of anion in waste water, and method for manufacturing the adsorbent
Gisvold et al. Enhanced removal of ammonium by combined nitrification/adsorption in expanded clay aggregate filters
CN115041152B (en) Resin-based neodymium-loaded nanocomposite, preparation method thereof and application thereof in deep removal of phosphate in water
JP5360764B2 (en) Method and system for simultaneous recovery of ammonia and phosphorus components in water to be treated
TWI672273B (en) Adsorption method
US10752522B2 (en) Compositions and methods for selenium removal
JPS6164388A (en) Removal of phosphorus in water
JP2000342962A (en) Heavy metal adsorbent and production thereof
JP2002177770A (en) Heavy metal adsorbent and method of preparing the same
CN105152267A (en) Method for deeply removing phosphorus in water by using calcined limonite
CN101928048B (en) Method for purifying humic acid pollutants in water by utilizing polyaniline
JP2012254408A (en) Production of scavenger of phosphorus in wastewater, and method for treating phosphorus-containing wastewater
CA1085978A (en) Process for the removal of phosphates from aqueous solutions
JP2005205368A (en) Adsorbent and water treatment method
CN1485281A (en) Process of treating ammonia nitrogen waste water by 13X molecular sieve
JPH0568969A (en) Adsorption and removal of phosphate ion
Foster et al. Application of weak base ion-exchange resins for removal of proteins
CN103894139A (en) Preparation method of carrying type laminated hydroxyl magnesium oxide composite material