JP2009055507A - Method of driving solid-state image pickup device and imaging apparatus driven by the method - Google Patents

Method of driving solid-state image pickup device and imaging apparatus driven by the method Download PDF

Info

Publication number
JP2009055507A
JP2009055507A JP2007222194A JP2007222194A JP2009055507A JP 2009055507 A JP2009055507 A JP 2009055507A JP 2007222194 A JP2007222194 A JP 2007222194A JP 2007222194 A JP2007222194 A JP 2007222194A JP 2009055507 A JP2009055507 A JP 2009055507A
Authority
JP
Japan
Prior art keywords
charge transfer
vertical charge
photoelectric conversion
solid
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007222194A
Other languages
Japanese (ja)
Inventor
Makoto Kobayashi
誠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007222194A priority Critical patent/JP2009055507A/en
Publication of JP2009055507A publication Critical patent/JP2009055507A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of driving a solid-state image pickup element capable of reducing occurrence of white scratch in a state that a dynamic range is extended, and to provide an imaging apparatus driven by the method. <P>SOLUTION: During a term for exposure to photoelectric conversion elements, when reading signal charges from a photoelectric conversion unit to a vertical charge transfer unit while controlling an exposure time by applying a read pulse to a vertical charge transfer electrode that becomes a read electrode for partial photoelectric conversion elements, driving is performed in such a way that the number of vertical charge transfer electrodes for accumulating signal charges read by the read pulse in a vertical charge transfer channel becomes less than the number of vertical charge transfer electrodes for accumulating signal charges in the vertical charge transfer channel when transferring signal charges by the vertical charge transfer unit after the end of the exposure term. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体撮像素子の駆動方法およびこれにより駆動される撮像装置に関する。   The present invention relates to a driving method of a solid-state imaging device and an imaging device driven by the driving method.

図11に固体撮像素子の一例としてのCCD型固体撮像素子の概略構成図を示した。このCCD型固体撮像素子1は、半導体基板上で水平方向および垂直方向に所定ピッチで配置され、入射光に応じた信号電荷を発生する複数の光電変換部3と、光電変換部3から読み出した信号電荷をそれぞれ垂直方向に転送する複数の垂直電荷転送部5と、垂直電荷転送部5から転送された信号電荷を水平方向に転送する水平電荷転送部7とを備えている。そして、水平電荷転送部7の電荷転送方向下流側にはフローティングデフュージョン部にて信号電荷を検出して、出力信号を生成する出力部9が接続されている。   FIG. 11 shows a schematic configuration diagram of a CCD solid-state image sensor as an example of the solid-state image sensor. The CCD type solid-state imaging device 1 is arranged at a predetermined pitch in the horizontal and vertical directions on a semiconductor substrate, and reads out from the photoelectric conversion unit 3 and a plurality of photoelectric conversion units 3 that generate signal charges according to incident light. A plurality of vertical charge transfer units 5 that respectively transfer signal charges in the vertical direction, and a horizontal charge transfer unit 7 that transfers signal charges transferred from the vertical charge transfer unit 5 in the horizontal direction are provided. An output unit 9 that detects a signal charge in the floating diffusion unit and generates an output signal is connected to the downstream side of the horizontal charge transfer unit 7 in the charge transfer direction.

図12に一つの画素の拡大平面図を示すように、垂直電荷転送部5は、光電変換部3に近接して図中垂直方向に沿って形成され信号電荷を蓄積するn型半導体層からなる垂直電荷転送チャネル11、および垂直電荷転送チャネル11の上方に配置された複数の垂直電荷転送電極13を有する。各垂直電荷転送電極13には、電荷転送用の駆動パルス、例えばφV1〜φV4が印加される。ここで、φVi(iは1〜4)が印加される電極をViと表記するが、場合により垂直電荷転送電極とも表記する。   As shown in the enlarged plan view of one pixel in FIG. 12, the vertical charge transfer unit 5 is formed of an n-type semiconductor layer that is formed along the vertical direction in the drawing in the vicinity of the photoelectric conversion unit 3 and accumulates signal charges. It has a vertical charge transfer channel 11 and a plurality of vertical charge transfer electrodes 13 arranged above the vertical charge transfer channel 11. A drive pulse for charge transfer, for example, φV1 to φV4, is applied to each vertical charge transfer electrode 13. Here, an electrode to which φVi (i is 1 to 4) is applied is expressed as Vi, but in some cases, it is also expressed as a vertical charge transfer electrode.

図13に図12に示すA1−A2断面図をポテンシャル電位分布図と併せて(a)に、B1−B2断面図をポテンシャル電位分布図と併せて(b)に示した。図示したように、シリコン基板15上にゲート絶縁膜17を形成し、さらにゲート絶縁膜17の上に垂直電荷転送電極(V3電極:読み出し電極、V4電極)13を形成している。シリコン基板15とゲート絶縁膜17との界面にはダングリングボンドが存在し、これが発生−再結合することを中心として電子を発生させる。この発生した電子がフォトダイオードである光電変換部3に入ると、白傷の発生原因となる。そのため現在では、白傷を低減させるために、フォトダイオードの表面をP層で覆う構成にすることが多い。これにより、界面付近でのホール密度を増加させ、界面で発生した電子を速やかにホールと再結合させることが可能となる。したがって、光電変換部3表面のP層が十分に機能していれば、白傷を招く電子の主な発生源は光電変換部3と垂直電荷転送部5との間の領域(図中×印で示す)となる。なお、垂直電荷転送部5でも同様にダングリングボンドが存在するが、これについては、ここでは言及しない。 FIG. 13 is a cross-sectional view along A1-A2 shown in FIG. 12 together with the potential potential distribution diagram, and FIG. 13B is a cross-sectional view along B1-B2 along with the potential potential distribution diagram. As shown in the figure, a gate insulating film 17 is formed on the silicon substrate 15, and a vertical charge transfer electrode (V3 electrode: readout electrode, V4 electrode) 13 is formed on the gate insulating film 17. There is a dangling bond at the interface between the silicon substrate 15 and the gate insulating film 17, and electrons are generated mainly by the generation and recombination thereof. When the generated electrons enter the photoelectric conversion unit 3 that is a photodiode, it causes white scratches. Therefore, at present, in order to reduce white scratches, the photodiode surface is often covered with a P + layer. As a result, the hole density near the interface is increased, and electrons generated at the interface can be quickly recombined with the holes. Therefore, if the P + layer on the surface of the photoelectric conversion unit 3 is sufficiently functioning, the main source of electrons causing white scratches is the region between the photoelectric conversion unit 3 and the vertical charge transfer unit 5 (× in the figure). (Shown with a mark). It should be noted that dangling bonds exist in the vertical charge transfer portion 5 as well, but this is not mentioned here.

図13(a)のポテンシャル電位図に示すように、V3電極にミディアムレベルの電圧VM(0V等)を印加する場合には、シリコン基板とゲート絶縁膜17との界面でのダングリングボンドの発生−再結合を中心として発生した電子が光電変換部3に入り込み、白傷が発生しやすくなる。一方、図13(b)のポテンシャル電位図に示すように、V4電極に電圧VMを印加しても、白傷の発生は特に問題とならない。   As shown in the potential potential diagram of FIG. 13A, when a medium level voltage VM (0 V or the like) is applied to the V3 electrode, dangling bonds are generated at the interface between the silicon substrate and the gate insulating film 17. -Electrons generated centering on recombination enter the photoelectric conversion unit 3 and white scratches are likely to occur. On the other hand, as shown in the potential potential diagram of FIG. 13B, even if the voltage VM is applied to the V4 electrode, the occurrence of white scratches is not particularly problematic.

V4電極は読み出し電極ではないため、光電変換部3から離れて配置されており、そのために、読み出しゲート部19に相当する部分の電位は低い。したがって、読み出しゲート部19には若干のホールが蓄積された状態となり、この部分に存在するダングリングボンドから発生する電子はホールと再結合することで、白傷の発生がある程度抑制される。   Since the V4 electrode is not a readout electrode, it is arranged away from the photoelectric conversion unit 3, and therefore, the potential of the portion corresponding to the readout gate unit 19 is low. Therefore, the readout gate portion 19 is in a state where some holes are accumulated, and electrons generated from dangling bonds existing in this portion are recombined with the holes, so that the occurrence of white scratches is suppressed to some extent.

図14は、光電変換部3の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。このチャートは、ダイナミックレンジ(飽和信号量)を拡大するために、V1電極で読み出される画素を高感度画素として、また、V3電極で読み出される画素を低感度画素として用いた構成としている(特許文献1と同様の駆動)。メカシャッタの解放時で信号電荷の掃き捨てを行うφOFDのシャッタパルス21印加後から、メカシャッタを閉じるまでの間が高感度画素の露光期間t1となる。この露光期間t1では、垂直電荷転送電極13への印加電圧信号、φV1〜φV4は、φV3,φV4をミディアムレベルの電圧VMとし、他はローレベルの電圧VL(−8V等)としている。   FIG. 14 is a chart showing drive signals for the solid-state imaging device during exposure and vertical charge transfer of the photoelectric conversion unit 3. In this chart, in order to expand the dynamic range (saturation signal amount), the pixel read by the V1 electrode is used as a high sensitivity pixel, and the pixel read by the V3 electrode is used as a low sensitivity pixel (Patent Document). 1). The exposure period t1 of the high-sensitivity pixel is from the application of the φOFD shutter pulse 21 that sweeps out signal charges when the mechanical shutter is released until the mechanical shutter is closed. In this exposure period t1, the voltage signals applied to the vertical charge transfer electrodes 13, φV1 to φV4, are set to φV3 and φV4 as medium level voltages VM, and the others as low level voltages VL (−8 V or the like).

そして、低感度画素の露光期間は、高感度画素の不要信号を垂直電荷転送部5に排出する排出パルス23の印加が終了してからメカシャッタを閉じるまでの期間t2である。図示例では、露光期間の比t1/t2を3としており、ダイナミックレンジを3倍に拡大している。メカシャッタを閉じた後は、高感度画素から排出された信号を水平電荷転送部7を介して出力部9まで転送する高速掃き出し動作を行う。その後、低感度画素から読み出し(V3電極にVHパルス25の印加)を行う。この場合には、水平電荷転送部7を動作させ、出力部9から信号を出力する期間中に、高感度画素の読み出し電極に負電圧VLを印加する構成としているため、図13(a)に示す状態とは異なり、読み出しゲート部19にホールが蓄積され、発生する電子がホールと再結合する。これにより、高感度画素には白傷が発生しにくくなっている。
特開2005−72966号公報 特許第2507027号公報
The exposure period of the low-sensitivity pixel is a period t2 from when the application of the discharge pulse 23 for discharging the unnecessary signal of the high-sensitivity pixel to the vertical charge transfer unit 5 is completed until the mechanical shutter is closed. In the illustrated example, the exposure period ratio t1 / t2 is set to 3, and the dynamic range is expanded three times. After the mechanical shutter is closed, a high-speed sweeping operation for transferring the signal discharged from the high sensitivity pixel to the output unit 9 through the horizontal charge transfer unit 7 is performed. Thereafter, reading from the low-sensitivity pixel (application of the VH pulse 25 to the V3 electrode) is performed. In this case, since the horizontal charge transfer unit 7 is operated and a signal is output from the output unit 9, the negative voltage VL is applied to the readout electrode of the high-sensitivity pixel. Unlike the state shown, holes are accumulated in the read gate portion 19 and the generated electrons recombine with the holes. As a result, white scratches are less likely to occur in the high sensitivity pixels.
JP-A-2005-72966 Japanese Patent No. 25007027

しかしながら、上記の低感度画素に対しては、露光期間t2の間は負電圧よりも高い0Vまたは正電圧のVMが読み出し電極に印加されるので、図13(a)に示すように、ゲート絶縁膜17とシリコン基板との界面で発生した電子が光電変換部3に入り込み、白傷が発生しやすくなってしまう問題があった。
つまり、読み出し電極にローレベルの電圧VLが印加されると白傷は発生しにくくなるが、VL以上の0Vまたは正電圧VMが印加されると、不要電荷が光電変換部3に入り込み、白傷が発生しやすくなる。したがって、VM以上の電圧が印加される電極の数(面積)が増える程、白傷が発生しやすくなる。図15は露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図で、(a)は4相駆動の場合、(b)は8相駆動の場合を示す。図15(a)に示す4相駆動の場合は、図14に4相駆動の波形例を示すように、露光期間においてはV3、V4電極にVMが印加される。また、図15(b)に示す8相駆動の場合は、V2〜V7電極にVMが印加される。したがって、図中斜線部分で示されるVMの印加電極の数、つまりはVMの印加される総電極面積が増加して、白傷の発生頻度が増大してしまう。
However, for the above-described low-sensitivity pixels, 0V or positive VM, which is higher than the negative voltage, is applied to the readout electrode during the exposure period t2, so that gate insulation is provided as shown in FIG. There is a problem that electrons generated at the interface between the film 17 and the silicon substrate enter the photoelectric conversion unit 3 and white defects are likely to occur.
That is, when a low level voltage VL is applied to the readout electrode, white scratches are less likely to occur, but when 0 V or a positive voltage VM equal to or higher than VL is applied, unnecessary charges enter the photoelectric conversion unit 3 and white scratches occur. Is likely to occur. Therefore, white scratches are more likely to occur as the number (area) of electrodes to which a voltage of VM or higher is applied increases. 15A and 15B are schematic diagrams showing the state of the voltage applied to the vertical charge transfer electrode during the exposure period. FIG. 15A shows the case of four-phase driving, and FIG. 15B shows the case of eight-phase driving. In the case of the four-phase drive shown in FIG. 15A, VM is applied to the V3 and V4 electrodes during the exposure period, as shown in the example of the waveform of the four-phase drive in FIG. In the case of 8-phase driving shown in FIG. 15B, VM is applied to the V2 to V7 electrodes. Therefore, the number of VM application electrodes indicated by the hatched portion in the drawing, that is, the total electrode area to which the VM is applied increases, and the frequency of white scratches increases.

また、特許文献2では、垂直電荷転送部の全ての転送電極に負電圧を印加し、電荷転送チャネルの表面を非空乏状態とすることで、暗電流の発生を低減する方法が提案されている。この方法によれば、垂直電荷転送部の暗電流発生の低減のみならず、画素の白傷の低減にも効果がある。しかし、垂直電荷転送部内に電位段差を設けるという特殊な構成であるため、製造工程数の増加や垂直電荷転送部の最大電荷蓄積量が減少するなどの問題がある。垂直電荷転送部内に電位段差を設けない構成とした場合は、ダイナミックレンジを拡大する駆動を行った場合に、低感度画素の不要電荷を蓄積するための電極にVM電圧を印加する必要がある。そのため、全ての電荷転送電極に負電圧を印加することはできない。このように、ダイナミックレンジ拡大駆動と、特許文献2の暗電流発生の低減方法とを同時に行うことができなかった。
本発明は上記状況に鑑みてなされたもので、ダイナミックレンジを拡大した状態で白傷の発生を低減させる固体撮像素子の駆動方法およびこれにより駆動される撮像装置を提供することを目的としている。
Patent Document 2 proposes a method of reducing the generation of dark current by applying a negative voltage to all the transfer electrodes of the vertical charge transfer unit to make the surface of the charge transfer channel non-depleted. . This method is effective not only in reducing the generation of dark current in the vertical charge transfer section, but also in reducing white scratches on the pixels. However, there are problems such as an increase in the number of manufacturing steps and a decrease in the maximum charge accumulation amount in the vertical charge transfer unit because of the special configuration in which a potential step is provided in the vertical charge transfer unit. When a configuration in which no potential step is provided in the vertical charge transfer unit is required, when driving to expand the dynamic range, it is necessary to apply a VM voltage to the electrode for accumulating unnecessary charges in the low-sensitivity pixels. Therefore, a negative voltage cannot be applied to all charge transfer electrodes. Thus, the dynamic range expansion drive and the dark current generation reduction method of Patent Document 2 cannot be performed simultaneously.
The present invention has been made in view of the above situation, and an object thereof is to provide a driving method of a solid-state imaging device that reduces the occurrence of white scratches in a state where the dynamic range is expanded, and an imaging device driven thereby.

本発明の上記目的は、下記構成により達成される。
(1) 水平方向および垂直方向に所定ピッチで配置され、入射光に応じた信号電荷を発生する複数の光電変換部と、前記光電変換部から読み出した信号電荷をそれぞれ垂直方向に転送する複数の垂直電荷転送部と、該垂直電荷転送部から転送された信号電荷を水平方向に転送する水平電荷転送部とを備え、前記垂直電荷転送部は、前記光電変換部に近接して垂直方向に沿って形成され信号電荷を蓄積する垂直電荷転送チャネル、および該垂直電荷転送チャネルの上方に配置された複数の垂直電荷転送電極を有する固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、一部の前記光電変換素子に対して、読み出し電極となる垂直電荷転送電極に読み出しパルスを印加することで露光時間を制御して前記光電変換部から信号電荷を前記垂直電荷転送部に読み出す際、
前記読み出しパルスによって読み出した信号電荷を前記垂直電荷転送チャネルに蓄積させる前記垂直電荷転送電極の数が、前記露光期間終了後の前記垂直電荷転送部による信号電荷の転送時に、信号電荷を前記垂直電荷転送チャネルに蓄積させる垂直電荷転送電極の数よりも少なくなるように駆動する固体撮像素子の駆動方法。
The above object of the present invention is achieved by the following configurations.
(1) A plurality of photoelectric conversion units arranged at a predetermined pitch in the horizontal direction and the vertical direction and generating signal charges according to incident light, and a plurality of signal charges read from the photoelectric conversion units respectively in the vertical direction A vertical charge transfer unit; and a horizontal charge transfer unit that transfers a signal charge transferred from the vertical charge transfer unit in a horizontal direction. The vertical charge transfer unit is close to the photoelectric conversion unit and extends in a vertical direction. A solid-state imaging device having a vertical charge transfer channel that stores signal charges and a plurality of vertical charge transfer electrodes that are arranged above the vertical charge transfer channel.
During the exposure period to the photoelectric conversion elements, the exposure time is controlled by applying a readout pulse to a vertical charge transfer electrode serving as a readout electrode for a part of the photoelectric conversion elements, and signals from the photoelectric conversion unit When reading the charge to the vertical charge transfer unit,
The number of the vertical charge transfer electrodes for accumulating the signal charge read by the read pulse in the vertical charge transfer channel is equal to the signal charge when the signal charge is transferred by the vertical charge transfer unit after the exposure period ends. A method for driving a solid-state imaging device, wherein the number of vertical charge transfer electrodes stored in a transfer channel is less than the number of vertical charge transfer electrodes.

この固体撮像素子の駆動方法によれば、読み出しパルスによって読み出した信号電荷を垂直電荷転送チャネルに蓄積させる垂直電荷転送電極の数が、露光期間終了後の垂直電荷転送部による信号電荷の転送時に、信号電荷を垂直電荷転送チャネルに蓄積させる垂直電荷転送電極の数よりも少なくなるように駆動される。これにより、ダイナミックレンジ拡大と、白傷の発生の低減とを両立させることができる。   According to this solid-state imaging device driving method, the number of vertical charge transfer electrodes for accumulating the signal charge read by the read pulse in the vertical charge transfer channel is determined when the signal charge is transferred by the vertical charge transfer unit after the exposure period ends. Driving is performed so that the number of the vertical charge transfer electrodes for accumulating the signal charge in the vertical charge transfer channel is smaller. As a result, it is possible to achieve both expansion of the dynamic range and reduction of the occurrence of white scratches.

(2) 水平方向および垂直方向に所定ピッチで配置され、入射光に応じた信号電荷を発生する複数の光電変換部と、前記光電変換部から読み出した信号電荷をそれぞれ垂直方向に転送する複数の垂直電荷転送部と、該垂直電荷転送部から転送された信号電荷を水平方向に転送する水平電荷転送部とを備え、前記垂直電荷転送部は、前記光電変換部に近接して垂直方向に沿って形成され信号電荷を蓄積する垂直電荷転送チャネル、および該垂直電荷転送チャネルの上方に配置された複数の垂直電荷転送電極を有する固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、一部の前記光電変換素子に対して、読み出し電極となる垂直電荷転送電極に読み出しパルスを印加することで露光時間を制御して前記光電変換部から信号電荷を前記垂直電荷転送部に読み出す際、
前記読み出しパルスによって読み出した信号電荷を前記垂直電荷転送チャネルに蓄積させる前記垂直電荷転送電極の数が、1つになるように駆動する固体撮像素子の駆動方法。
(2) A plurality of photoelectric conversion units arranged at a predetermined pitch in the horizontal direction and the vertical direction and generating signal charges corresponding to incident light, and a plurality of signal charges read from the photoelectric conversion units respectively in the vertical direction A vertical charge transfer unit; and a horizontal charge transfer unit that transfers a signal charge transferred from the vertical charge transfer unit in a horizontal direction. The vertical charge transfer unit is close to the photoelectric conversion unit and extends in a vertical direction. A solid-state imaging device having a vertical charge transfer channel that stores signal charges and a plurality of vertical charge transfer electrodes that are arranged above the vertical charge transfer channel.
During the exposure period to the photoelectric conversion elements, the exposure time is controlled by applying a readout pulse to a vertical charge transfer electrode serving as a readout electrode for a part of the photoelectric conversion elements, and signals from the photoelectric conversion unit When reading the charge to the vertical charge transfer unit,
A method for driving a solid-state imaging device, wherein the number of the vertical charge transfer electrodes for accumulating the signal charges read by the read pulse in the vertical charge transfer channel is one.

この固体撮像素子の駆動方法によれば、ダングリングボンドにより発生する電子の影響を受けることを、必要最小限の電極のみに限定でき、負電圧を印加する電極数を増加させることができる。その結果、白傷の発生を大幅に低減することができる。   According to this solid-state imaging device driving method, the influence of electrons generated by dangling bonds can be limited to only the minimum necessary electrodes, and the number of electrodes to which a negative voltage is applied can be increased. As a result, the occurrence of white scratches can be greatly reduced.

(3) (1)または(2)記載の固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、前記読み出しパルスが印加される垂直電荷転送電極を除く他の垂直電荷転送電極に対して、負電圧を印加する固体撮像素子の駆動方法。
(3) A method for driving a solid-state imaging device according to (1) or (2),
A method for driving a solid-state imaging device, wherein a negative voltage is applied to other vertical charge transfer electrodes excluding the vertical charge transfer electrode to which the readout pulse is applied during an exposure period for the photoelectric conversion device.

この固体撮像素子の駆動方法によれば、電荷蓄積を行う必要最小限の垂直電荷転送電極に負電圧より高い0Vまたは正電圧を印加し、読み出し電極以外の垂直電荷転送電極に負電圧を印加することで、白傷の発生をより低減することができる。   According to this solid-state imaging device driving method, 0 V or a positive voltage higher than the negative voltage is applied to the minimum necessary vertical charge transfer electrode for charge accumulation, and a negative voltage is applied to the vertical charge transfer electrodes other than the readout electrode. Thus, the occurrence of white scratches can be further reduced.

(4) (1)または(2)記載の固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、前記読み出しパルスが印加される垂直電荷転送電極に対して負電圧を印加する固体撮像素子の駆動方法。
(4) A method for driving a solid-state imaging device according to (1) or (2),
A solid-state imaging element driving method in which a negative voltage is applied to a vertical charge transfer electrode to which the readout pulse is applied during an exposure period for the photoelectric conversion element.

この固体撮素子の駆動方法によれば、負電圧より高い電圧を印加しても読み出しゲート部にホールが蓄積される垂直電荷転送電極、すなわち、読み出しパルスが印加されない垂直電荷転送電極に対して、負電圧より高い0Vまたは正電圧を印加するので、読み出し電極において不要電荷が光電変換部に流れ込むことを防止できる。   According to this solid-state imaging device driving method, a vertical charge transfer electrode in which holes are accumulated in the read gate portion even when a voltage higher than a negative voltage is applied, that is, a vertical charge transfer electrode to which no read pulse is applied, Since 0 V or a positive voltage higher than the negative voltage is applied, unnecessary charges can be prevented from flowing into the photoelectric conversion portion in the readout electrode.

(5) (1)または(2)記載の固体撮像素子の駆動方法であって、
前記光電変換部は、高感度画素に対応する長時間露光用の第1の光電変換素子と低感度画素に対応する短時間露光用の第2の光電変換素子とが混在配置されてなり、前記第1の光電変換素子の露光開始後から前記第2の光電変換素子の実質的な露光開始までの間は、前記垂直電荷転送電極の全てに対して、負電圧を印加する固体撮像素子の駆動方法。
(5) A method for driving a solid-state imaging device according to (1) or (2),
The photoelectric conversion unit is a mixture of a first photoelectric conversion element for long exposure corresponding to high sensitivity pixels and a second photoelectric conversion element for short exposure corresponding to low sensitivity pixels. During the period from the start of exposure of the first photoelectric conversion element to the start of substantial exposure of the second photoelectric conversion element, driving of the solid-state imaging element that applies a negative voltage to all of the vertical charge transfer electrodes Method.

この固体撮像素子の駆動方法によれば、第1の光電変換素子の露光開始後から第2の光電変換素子の実質的な露光開始までの期間内は、垂直電荷転送電極の全てに対して負電圧が印加されるので、その期間内に不要電荷が光電変換部に流れ込むことを防止できる。   According to this solid-state imaging device driving method, the negative charge transfer electrode is negatively applied to all the vertical charge transfer electrodes during the period from the start of exposure of the first photoelectric conversion device to the start of substantial exposure of the second photoelectric conversion device. Since the voltage is applied, unnecessary charges can be prevented from flowing into the photoelectric conversion portion within the period.

(6) 固体撮像素子と、
前記固体撮像素子に光学像を結像させる光学系と、
前記固体撮像素子を、(1)〜(5)のいずれか1項記載の固体撮像素子の駆動方法に基づいて駆動する撮像素子駆動部と、
を備えた撮像装置。
(6) a solid-state image sensor;
An optical system for forming an optical image on the solid-state imaging device;
An image sensor driving unit that drives the solid-state image sensor based on the driving method of the solid-state image sensor according to any one of (1) to (5);
An imaging apparatus comprising:

この撮像装置によれば、ダイナミックレンジが拡大され、白傷の発生が低減されることにより、高品位の画像を撮像できる。   According to this imaging apparatus, it is possible to capture a high-quality image by expanding the dynamic range and reducing the occurrence of white scratches.

本発明の固体撮像素子の駆動方法およびこれにより駆動される撮像装置によれば、ダイナミックレンジを拡大した状態で、白傷の発生を低減することができる。   According to the driving method of the solid-state imaging device and the imaging device driven thereby according to the present invention, it is possible to reduce the occurrence of white scratches in the state where the dynamic range is expanded.

以下、本発明に係る固体撮像素子の駆動方法およびこれにより駆動される撮像装置の好適な実施の形態について、図面を参照して詳細に説明する。
<第1実施形態>
本実施形態の固体撮像素子は、図11、図12に示す構成と同様であって、このCCD型固体撮像素子1は、半導体基板上で水平方向および垂直方向に所定ピッチで配置され、入射光に応じた信号電荷を発生する複数の光電変換部3と、光電変換部3から読み出した信号電荷をそれぞれ垂直方向に転送する複数の垂直電荷転送部5と、垂直電荷転送部5から転送された信号電荷を水平方向に転送する水平電荷転送部7とを備えている。そして、水平電荷転送部7の電荷転送方向下流側にはフローティングデフュージョン部にて信号電荷を検出して、出力信号を生成する出力部9が接続されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a solid-state imaging device driving method and an imaging apparatus driven by the driving method according to the invention will be described in detail with reference to the drawings.
<First Embodiment>
The solid-state imaging device of this embodiment has the same configuration as that shown in FIGS. 11 and 12, and the CCD solid-state imaging device 1 is arranged at a predetermined pitch in the horizontal direction and the vertical direction on the semiconductor substrate, and incident light. Are transferred from the vertical charge transfer unit 5, the plurality of vertical charge transfer units 5 that transfer the signal charges read from the photoelectric conversion unit 3 in the vertical direction, and the vertical charge transfer unit 5. A horizontal charge transfer section 7 for transferring the signal charge in the horizontal direction. An output unit 9 that detects a signal charge in the floating diffusion unit and generates an output signal is connected to the downstream side of the horizontal charge transfer unit 7 in the charge transfer direction.

また、垂直電荷転送部5は、図12に示すように、光電変換部3に近接して図中垂直方向に沿って形成され信号電荷を蓄積するn型半導体層からなる垂直電荷転送チャネル11、および垂直電荷転送チャネル11の上方に配置された複数の垂直電荷転送電極13を有する。各垂直電荷転送電極13には、電荷転送用の駆動パルス、例えばφV1〜φV4が印加される。   Further, as shown in FIG. 12, the vertical charge transfer unit 5 is formed in the vertical direction in the drawing in the vicinity of the photoelectric conversion unit 3 and is formed of an n-type semiconductor layer for accumulating signal charges. And a plurality of vertical charge transfer electrodes 13 disposed above the vertical charge transfer channel 11. A drive pulse for charge transfer, for example, φV1 to φV4, is applied to each vertical charge transfer electrode 13.

図1は本実施形態の光電変換部の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。
本駆動信号は、長時間露光を行う高感度画素(第1の光電変換素子)と短時間露光を行う低感度画素(第2の光電変換素子)とが混在配置された固体撮像素子から、低感度画素からの信号を第1フレーム、高感度画素からの信号を第2フレームに取り込む場合の駆動信号である。高感度画素は、垂直電荷転送電極V1を読み出し電極として信号電荷が垂直電荷転送部5に読み出され、低感度画素は、垂直電荷転送電極V3を読み出し電極として信号電荷が垂直電荷転送部5に読み出される。
FIG. 1 is a chart showing drive signals for a solid-state imaging device during exposure and vertical charge transfer of the photoelectric conversion unit of the present embodiment.
This drive signal is generated from a solid-state image sensor in which high-sensitivity pixels (first photoelectric conversion elements) that perform long-time exposure and low-sensitivity pixels (second photoelectric conversion elements) that perform short-time exposure are mixedly arranged. This is a drive signal when a signal from the sensitivity pixel is taken into the first frame and a signal from the high sensitivity pixel is taken into the second frame. In the high sensitivity pixel, the signal charge is read out to the vertical charge transfer unit 5 by using the vertical charge transfer electrode V1 as a readout electrode, and in the low sensitivity pixel, the signal charge is transferred to the vertical charge transfer unit 5 by using the vertical charge transfer electrode V3 as a readout electrode. Read out.

メカシャッタを開いた後、φOFDにシャッタパルス21が印加されると、各光電変換部3の蓄積電荷がリセットされて、露光が開始される。ここで、垂直電荷転送電極V3には電圧VMが印加され、他の電極V1,V2,V4には負電圧VLが印加される。垂直電荷転送電極V1を介して信号電荷が読み出される高感度画素は、メカシャッタが閉じるまでの期間t1が露光期間となる。また、垂直電荷転送電極V3を介して信号電荷が読み出される低感度画素は、φV3の排出パルス23を印加した後に露光が開始され、t2が露光期間となる。したがって、露光期間t1においては1電極に対して信号電荷が蓄積され、垂直転送期間中は2電極に対して信号電荷が蓄積されることになる。   When the shutter pulse 21 is applied to φOFD after the mechanical shutter is opened, the accumulated charge in each photoelectric conversion unit 3 is reset and exposure is started. Here, the voltage VM is applied to the vertical charge transfer electrode V3, and the negative voltage VL is applied to the other electrodes V1, V2, and V4. In the high-sensitivity pixel from which the signal charge is read out through the vertical charge transfer electrode V1, the period t1 until the mechanical shutter is closed is the exposure period. Further, the low-sensitivity pixel from which the signal charge is read out through the vertical charge transfer electrode V3 starts exposure after the φV3 discharge pulse 23 is applied, and t2 is an exposure period. Therefore, signal charges are accumulated for one electrode during the exposure period t1, and signal charges are accumulated for two electrodes during the vertical transfer period.

ここで、露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図を図2に示した。図2に示すように、露光期間において、負電圧VLより高い電圧VMが印加される垂直電荷転送電極はV3のみであり、他のV1、V2,V4には負電圧VLが印加される。   Here, a schematic diagram showing the state of the voltage applied to the vertical charge transfer electrode during the exposure period is shown in FIG. As shown in FIG. 2, the vertical charge transfer electrode to which the voltage VM higher than the negative voltage VL is applied is only V3 in the exposure period, and the negative voltage VL is applied to the other V1, V2, and V4.

図3は、前述の図12に示すA1−A2断面図をポテンシャル電位分布図と併せて(a)に、B1−B2断面図をポテンシャル電位分布図と併せて(b)に示す説明図である。図示したように、シリコン基板15上にゲート絶縁膜17を形成し、さらにゲート絶縁膜17の上に垂直電荷転送電極(V3電極:読み出し電極、V4電極)13を形成している。
図3(a)に示すように、光電変換部3と垂直電荷転送部5との間の領域(図中×印で示す)でタングリングボンドにより発生する電子は、その領域、すなわちゲート部19に蓄積されるホール(図中に+印で示す)と再結合して、タングリングボンドにより発生した電子が光電変換部に入り込むことがなくなる。これにより、白傷の発生は抑制される。
FIG. 3 is an explanatory diagram showing the A1-A2 cross-sectional view shown in FIG. 12 together with the potential potential distribution diagram (a) and the B1-B2 cross-sectional view together with the potential potential distribution diagram (b). . As shown in the figure, a gate insulating film 17 is formed on the silicon substrate 15, and a vertical charge transfer electrode (V3 electrode: readout electrode, V4 electrode) 13 is formed on the gate insulating film 17.
As shown in FIG. 3A, electrons generated by a tangling bond in a region (indicated by x in the figure) between the photoelectric conversion unit 3 and the vertical charge transfer unit 5 are the region, that is, the gate unit 19. Recombination with holes accumulated in (represented by + in the figure) prevents electrons generated by tangling bonds from entering the photoelectric conversion portion. Thereby, the occurrence of white scratches is suppressed.

一方、図3(b)に示すように、読み出し電極ではないV4電極では、光電変換部3がV4電極と離れて形成されているため、ゲート部19に相当する部分の電位は低く、若干のホールが蓄積している状態にある。そのため、ダングリングボンドにより発生した電子はホールと再結合するため、白傷の発生が抑制される。また、V4電極には負電圧VLが印加されるため、ホールが蓄積されやすくなり、より白傷の発生が抑制される。   On the other hand, as shown in FIG. 3B, in the V4 electrode that is not the readout electrode, the photoelectric conversion unit 3 is formed away from the V4 electrode, so the potential of the portion corresponding to the gate unit 19 is low, Holes are accumulating. For this reason, electrons generated by dangling bonds recombine with holes, so that the occurrence of white scratches is suppressed. Further, since the negative voltage VL is applied to the V4 electrode, holes are easily accumulated, and the occurrence of white scratches is further suppressed.

上記のように、本実施形態の固体撮像素子の駆動方法では、読み出しパルスによって読み出した信号電荷を垂直電荷転送チャネルに蓄積させる垂直電荷転送電極の数が、露光期間終了後の垂直電荷転送部による信号電荷の転送時に、信号電荷を垂直電荷転送チャネルに蓄積させる垂直電荷転送電極の数よりも少なくなるように駆動される。これにより、ダングリングボンドにより発生する電子をホールに再結合させることができ、ダイナミックレンジ拡大と、白傷の発生の低減とを両立させることができる。
また、読み出しパルスが印加される垂直電荷転送電極を除く他の垂直電荷転送電極に対して、負電圧を印加し、読み出しパルスによって読み出した信号電荷を垂直電荷転送チャネルに蓄積させる垂直電荷転送電極の数が、1つになるように駆動するので、ダングリングボンドにより発生する電子の影響を受けることを、必要最小限の電極のみに限定することでき、画像全体として白傷を大幅に低減することができる。
As described above, in the solid-state imaging device driving method of the present embodiment, the number of vertical charge transfer electrodes for accumulating the signal charges read by the read pulse in the vertical charge transfer channel is determined by the vertical charge transfer unit after the exposure period ends. When the signal charge is transferred, the signal charge is driven to be smaller than the number of vertical charge transfer electrodes for accumulating the signal charge in the vertical charge transfer channel. Thereby, the electrons generated by the dangling bonds can be recombined with the holes, and both the expansion of the dynamic range and the reduction of the occurrence of white scratches can be achieved.
Further, a negative voltage is applied to the other vertical charge transfer electrodes other than the vertical charge transfer electrode to which the read pulse is applied, and the vertical charge transfer electrode for accumulating the signal charge read by the read pulse in the vertical charge transfer channel. Since it is driven so that the number is one, it is possible to limit the influence of electrons generated by dangling bonds to only the minimum necessary electrodes, and greatly reduce white scratches as a whole image. Can do.

<第2実施形態>
次に、本発明に係る固体撮像素子の駆動方法の第2実施形態を説明する。
図4は本実施形態の光電変換部の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。
第1実施形態の図1との相違点は、φV3の排出パルス23Aを階段状とするとともに排出パルス23A印加前の電圧をVMからVLにして、φV4の電圧をVLからVMとした点である。本駆動例では、図5にV3、V4電極の信号電荷の様子を示すように、V3電極の電圧をVLとした状態(a)からVH(+15V等)として信号電荷を読み出し(b)、その後にV3電極をVMにしてV4電極と同電位とする(c)。この状態で信号電荷はV3とV4の位置に蓄積される。そして、V3電極をVLとすることで、信号電荷はV4電極による電位ポケットに蓄積されて、(b)の状態から信号電荷が転送されることになる(d)。
Second Embodiment
Next, a second embodiment of the solid-state image sensor driving method according to the present invention will be described.
FIG. 4 is a chart showing drive signals for the solid-state imaging device at the time of exposure and vertical charge transfer of the photoelectric conversion unit of the present embodiment.
1 differs from FIG. 1 in that the φV3 discharge pulse 23A is stepped, the voltage before the discharge pulse 23A is applied is changed from VM to VL, and the voltage of φV4 is changed from VL to VM. . In this driving example, as shown in FIG. 5, the signal charges of the V3 and V4 electrodes are read from the state (a) where the voltage of the V3 electrode is VL (a) to VH (+15 V, etc.) (b), and thereafter The V3 electrode is set to VM so as to have the same potential as the V4 electrode (c). In this state, signal charges are accumulated at positions V3 and V4. Then, by setting the V3 electrode to VL, the signal charge is accumulated in the potential pocket formed by the V4 electrode, and the signal charge is transferred from the state (b) (d).

この場合の露光期間における垂直電荷転送電極の印加電圧の状態は、図6のようになる。すなわち、露光期間において、負電圧VLより高い電圧VMが印加される垂直電荷転送電極はV4のみであり、他のV1、V2,V3には負電圧VLが印加される。したがって、読み取り電極ではない垂直電荷転送電極V4のみに電圧VMが印加されるので、先述の図13(b)にも示すように、光電変換部3と垂直電荷転送部5との間の領域(図中×印で示す)でタングリングボンドにより発生する電子は、その領域、すなわちゲート部(電位ポテンシャル図に示す)19に蓄積されるホール(図中に+印で示す)と再結合して、タングリングボンドにより発生した電子が光電変換部に入り込むことがなくなる。これにより、白傷の発生は抑制される。   The state of the voltage applied to the vertical charge transfer electrode during the exposure period in this case is as shown in FIG. That is, in the exposure period, the vertical charge transfer electrode to which the voltage VM higher than the negative voltage VL is applied is only V4, and the negative voltage VL is applied to the other V1, V2, and V3. Therefore, since the voltage VM is applied only to the vertical charge transfer electrode V4 that is not the read electrode, as shown in FIG. 13B, the region between the photoelectric conversion unit 3 and the vertical charge transfer unit 5 ( The electrons generated by the tangling bonds in the figure (represented by x) are recombined with the holes (shown by + in the figure) accumulated in the region, that is, the gate part (shown in the potential potential diagram) 19. The electrons generated by the tangling bonds do not enter the photoelectric conversion part. Thereby, the occurrence of white scratches is suppressed.

また、読み出し電極ではないV4電極では、光電変換部3がV4電極と離れて形成されているため、ゲート部19に相当する部分の電位は低く、若干のホールが蓄積している状態にある。そのため、ダングリングボンドにより発生した電子はホールと再結合するため、白傷の発生が抑制される。
このように、光電変換素子への露光期間中に、読み出しパルスが印加される垂直電荷転送電極に対して負電圧を印加することにより、負電圧より高い電圧を印加しても読み出しゲート部にホールが蓄積される垂直電荷転送電極、すなわち、読み出しパルスが印加されない垂直電荷転送電極に対して、負電圧より高い0Vまたは正電圧を印加するので、読み出し電極において不要電荷が光電変換部に流れ込むことを防止できる。
Further, in the V4 electrode that is not the readout electrode, the photoelectric conversion portion 3 is formed away from the V4 electrode, so that the potential of the portion corresponding to the gate portion 19 is low and some holes are accumulated. For this reason, electrons generated by dangling bonds recombine with holes, so that the occurrence of white scratches is suppressed.
In this way, by applying a negative voltage to the vertical charge transfer electrode to which the readout pulse is applied during the exposure period of the photoelectric conversion element, a hole higher than the negative voltage is applied to the readout gate portion. Since 0 V or a positive voltage higher than the negative voltage is applied to the vertical charge transfer electrode in which the charge is accumulated, that is, the vertical charge transfer electrode to which no read pulse is applied, the unnecessary charge flows into the photoelectric conversion unit in the read electrode. Can be prevented.

<第3実施形態>
次に、本発明に係る固体撮像素子の駆動方法の第3実施形態を説明する。
図7は本実施形態の光電変換部の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。
第2実施形態の図4との相違点は、φV4の電位をVMからVLとした点である。本駆動例では、図5(b),(c)に示すように、V3電極の電圧VH印加までの間は、V4電極に対しては電位パケットを形成できればよく、VMに保持する必要はない。そこで、V4電極の電位をVLにして信号電荷を読み込むようにしている。
<Third Embodiment>
Next, a third embodiment of the solid-state image sensor driving method according to the present invention will be described.
FIG. 7 is a chart showing drive signals for the solid-state imaging device during exposure and vertical charge transfer of the photoelectric conversion unit of the present embodiment.
The difference of the second embodiment from FIG. 4 is that the potential of φV4 is changed from VM to VL. In this driving example, as shown in FIGS. 5B and 5C, until the voltage VH of the V3 electrode is applied, it is only necessary to form a potential packet with respect to the V4 electrode, and it is not necessary to hold it at VM. . Therefore, the signal charge is read by setting the potential of the V4 electrode to VL.

つまり、高感度画素に対応する長時間露光用の第1の光電変換素子と低感度画素に対応する短時間露光用の第2の光電変換素子とが混在配置された場合に、第1の光電変換素子の露光開始後から第2の光電変換素子の実質的な露光開始までの間は、垂直電荷転送電極の全てに対して、負電圧を印加する。
この場合の露光期間における垂直電荷転送電極の印加電圧の状態は、排出パルス23Aの印加前で図8のようになる。すなわち、露光処理はピニング露光となり、殆どの露光期間において、負電圧VLより高い電圧VMが印加される垂直電荷転送電極は存在しなくなる。その結果、露光期間内に不要電荷が光電変換部に流れ込むことを防止でき、白傷発生の抑制効果が増大する。
That is, when the first photoelectric conversion element for long exposure corresponding to the high sensitivity pixel and the second photoelectric conversion element for short exposure corresponding to the low sensitivity pixel are arranged together, the first photoelectric conversion element is arranged. A negative voltage is applied to all of the vertical charge transfer electrodes from the start of exposure of the conversion element to the start of substantial exposure of the second photoelectric conversion element.
In this case, the state of the voltage applied to the vertical charge transfer electrode during the exposure period is as shown in FIG. 8 before the discharge pulse 23A is applied. That is, the exposure process is pinning exposure, and there is no vertical charge transfer electrode to which the voltage VM higher than the negative voltage VL is applied during most exposure periods. As a result, it is possible to prevent unnecessary charges from flowing into the photoelectric conversion portion within the exposure period, and the effect of suppressing the occurrence of white scratches is increased.

以上の説明では4相駆動の場合で説明してきたが、次に垂直電荷転送部が8相駆動の場合を説明する。
図9は8相駆動時の露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図で、(a)はV2電極にのみVM電圧を印加した場合、(b)はV2,V4,V6電極の3電極にVM電圧を印加した場合を示している。
図9(a)に示す場合は、露光期間中はV2電極にのみVM電圧を印加し、不要電荷をV2電極下へ蓄積する。これにより、画素に発生するV2,V5,V7電極に隣接する光電変換部の白傷を最小限にすることができ、また、V2電極に隣接する光電変換部の白傷は先述の図15(b)に示す場合と比べて大幅に軽減することができる。
In the above description, the case of four-phase driving has been described. Next, the case where the vertical charge transfer unit is of eight-phase driving will be described.
FIG. 9 is a schematic diagram showing the state of the voltage applied to the vertical charge transfer electrode during the exposure period during 8-phase driving. FIG. 9A shows the case where the VM voltage is applied only to the V2 electrode, and FIG. 9B shows V2, V4 and V6. The case where a VM voltage is applied to three electrodes is shown.
In the case shown in FIG. 9A, the VM voltage is applied only to the V2 electrode during the exposure period, and unnecessary charges are accumulated below the V2 electrode. As a result, white spots in the photoelectric conversion units adjacent to the V2, V5, and V7 electrodes generated in the pixel can be minimized, and white spots in the photoelectric conversion units adjacent to the V2 electrode are as shown in FIG. Compared with the case shown in b), it can be greatly reduced.

図9(b)に示す場合は、読み出し電極ではない電極のうち、V2,V4,V6電極の3電極にVM電圧を印加する。これにより、図9(a)に示す場合と比べて、不要電荷を保持する面積が大きくなるため、不要電荷が光電変換部に逆流しにくい構成となる。光電変換部で発生する白傷については図9(a)に比べて大きくなるが、読み出し電極(V1,V3,V5,V7電極)には全てVL電圧を印加しているため、図15(b)に示す場合と比べて白傷を大幅に軽減することができる。   In the case shown in FIG. 9B, the VM voltage is applied to the three electrodes V2, V4, and V6 among the electrodes that are not readout electrodes. As a result, compared to the case shown in FIG. 9A, the area for holding the unnecessary charge is increased, so that the unnecessary charge hardly flows back to the photoelectric conversion unit. Although white scratches generated in the photoelectric conversion unit are larger than those in FIG. 9A, since the VL voltage is applied to all the readout electrodes (V1, V3, V5, and V7 electrodes), FIG. Compared with the case shown in (3), white scratches can be greatly reduced.

<第4実施形態>
次に、上記の固体撮像素子の駆動方法を用いた撮像装置の実施形態を説明する。
図10は本発明に係る撮像装置のブロック構成図である。
図示する撮像装置としてのデジタルカメラ200は、撮像レンズ41と、上記した固体撮像素子100と、この両者の間に設けられた絞り43と、赤外線カットフィルタ45と、光学ローパスフィルタ47とを備える。撮像レンズ41、絞り43、赤外線カットフィルタ45、光学ローパスフィルタ47は固体撮像素子100に光学像を結像させる光学系として機能する。デジタルカメラの全体を統括制御するCPU49は、フラッシュ発光部51および受光部53を制御し、レンズ駆動部55を制御して撮像レンズ41の位置をフォーカス位置に調整し、絞り駆動部57を介し絞り43の開口量を制御して露光量調整を行う。
<Fourth embodiment>
Next, an embodiment of an imaging apparatus using the above-described solid-state imaging element driving method will be described.
FIG. 10 is a block diagram of the imaging apparatus according to the present invention.
A digital camera 200 as an imaging apparatus shown in the figure includes an imaging lens 41, the above-described solid-state imaging device 100, a diaphragm 43 provided therebetween, an infrared cut filter 45, and an optical low-pass filter 47. The imaging lens 41, the diaphragm 43, the infrared cut filter 45, and the optical low-pass filter 47 function as an optical system that forms an optical image on the solid-state imaging device 100. A CPU 49 that performs overall control of the entire digital camera controls the flash light emitting unit 51 and the light receiving unit 53, controls the lens driving unit 55 to adjust the position of the imaging lens 41 to the focus position, and controls the aperture via the aperture driving unit 57. The amount of opening 43 is controlled to adjust the exposure amount.

また、CPU49は、撮像素子駆動部59を介して固体撮像素子100を駆動し、撮像レンズ41を通して撮像した被写体画像を色信号として出力させる。CPU49には、操作部61を通してユーザからの指示信号が入力され、CPU49はこの指示にしたがって各種制御を行う。   Further, the CPU 49 drives the solid-state image sensor 100 via the image sensor driving unit 59 and outputs the subject image captured through the imaging lens 41 as a color signal. An instruction signal from the user is input to the CPU 49 through the operation unit 61, and the CPU 49 performs various controls according to the instruction.

デジタルカメラ200の電気制御系は、固体撮像素子100の出力に接続されたアナログ信号処理部67と、このアナログ信号処理部67から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路69とを備え、これらはCPU49によって制御される。   The electric control system of the digital camera 200 includes an analog signal processing unit 67 connected to the output of the solid-state imaging device 100, and an A / D conversion that converts RGB color signals output from the analog signal processing unit 67 into digital signals. The circuit 69 is provided and these are controlled by the CPU 49.

さらに、このデジタルカメラ200の電気制御系は、メインメモリ(フレームメモリ)71に接続されたメモリ制御部73と、ガンマ補正演算,RGB/YC変換処理,画像合成処理等の画像処理を行うデジタル信号処理部75と、撮像画像をJPEG画像に圧縮したり圧縮画像を伸張したりする圧縮伸張処理部77と、測光データを積算しデジタル信号処理部75が行うホワイトバランス補正のゲインを求める積算部79と、着脱自在の記録媒体81が接続される外部メモリ制御部83と、カメラ背面等に搭載された液晶表示部85が接続される表示制御部87とを備え、これらは、制御バス89およびデータバス91によって相互に接続され、CPU49からの指令によって制御される。   Furthermore, the electric control system of the digital camera 200 includes a memory control unit 73 connected to a main memory (frame memory) 71 and a digital signal for performing image processing such as gamma correction calculation, RGB / YC conversion processing, and image composition processing. A processing unit 75, a compression / expansion processing unit 77 that compresses the captured image into a JPEG image or expands the compressed image, and an integration unit 79 that integrates photometric data and obtains the gain of white balance correction performed by the digital signal processing unit 75. An external memory control unit 83 to which a detachable recording medium 81 is connected, and a display control unit 87 to which a liquid crystal display unit 85 mounted on the rear surface of the camera is connected. These include a control bus 89 and data They are connected to each other by a bus 91 and controlled by a command from the CPU 49.

本実施の形態によるデジタルカメラ200で被写体画像を撮像する場合、図11に示す固体撮像素子1の各光電変換部3が受光量に応じた信号電荷を蓄積し、この信号電荷を先ず垂直電荷転送部5に読み出し、垂直電荷転送部5に沿って水平電荷転送部7の方向に転送する。   When a subject image is captured by the digital camera 200 according to the present embodiment, each photoelectric conversion unit 3 of the solid-state imaging device 1 shown in FIG. 11 accumulates signal charges corresponding to the amount of received light, and the signal charges are first transferred by vertical charge transfer. The data is read to the unit 5 and transferred in the direction of the horizontal charge transfer unit 7 along the vertical charge transfer unit 5.

各信号電荷を垂直電荷転送部5に読み出す直前のタイミングでは、各垂直電荷転送部5や水平電荷転送部7は掃き出し動作によって空の状態になっている。注入された所定電荷量の上記読出処理後に、各光電変換部3の受光量に応じた信号電荷を固体撮像素子100から読み出し、デジタル信号処理部75は、被写体画像データを生成する。   At the timing immediately before each signal charge is read out to the vertical charge transfer unit 5, each vertical charge transfer unit 5 and horizontal charge transfer unit 7 are in an empty state by the sweeping-out operation. After the readout process of the injected predetermined charge amount, the signal charge corresponding to the received light amount of each photoelectric conversion unit 3 is read from the solid-state imaging device 100, and the digital signal processing unit 75 generates subject image data.

このデジタルカメラ200によれば、ダイナミックレンジが拡大され高コントラストの画像が得られるとともに、白傷の影響のない高品位な画像を得ることができる。   According to the digital camera 200, a dynamic range is expanded and a high-contrast image can be obtained, and a high-quality image that is not affected by white scratches can be obtained.

本発明は、CCD型の固体撮像素子に対して、ダイナミックレンジを拡大した状態で、白傷の発生を低減させる駆動方法として適用でき、高品位が画像の取得を可能とし、例えば、電子カメラやビデオカメラ、或いは携帯端末などへの利用に有効となる。   The present invention can be applied to a CCD type solid-state imaging device as a driving method for reducing the occurrence of white scratches in a state where the dynamic range is expanded, and enables high-quality image acquisition, for example, an electronic camera, This is effective for use with a video camera or a portable terminal.

光電変換部の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。It is a chart figure which shows the drive signal of a solid-state image sensor at the time of exposure of a photoelectric conversion part, and vertical charge transfer. 図1に示す露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図である。It is a schematic diagram which shows the state of the applied voltage of the vertical charge transfer electrode in the exposure period shown in FIG. 図12に示すA1−A2断面図をポテンシャル電位分布図と併せて(a)に、B1−B2断面図をポテンシャル電位分布図と併せて(b)に示す説明図であるFIG. 13 is an explanatory view showing the A1-A2 cross-sectional view shown in FIG. 12 together with the potential potential distribution diagram in FIG. 12A and the B1-B2 cross-sectional view showing in FIG. 光電変換部の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。It is a chart figure which shows the drive signal of a solid-state image sensor at the time of exposure of a photoelectric conversion part, and vertical charge transfer. V3、V4電極の信号電荷の様子を(a)〜(d)の段階毎に示す説明図である。It is explanatory drawing which shows the mode of the signal charge of V3 and V4 electrode for every step of (a)-(d). 図5に示す露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図である。It is a schematic diagram which shows the state of the applied voltage of the vertical charge transfer electrode in the exposure period shown in FIG. 光電変換部の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。It is a chart figure which shows the drive signal of a solid-state image sensor at the time of exposure of a photoelectric conversion part, and vertical charge transfer. 図7に示す露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図である。It is a schematic diagram which shows the state of the applied voltage of the vertical charge transfer electrode in the exposure period shown in FIG. 8相駆動時の露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図で、(a)はV2電極にのみVM電圧を印加した場合、(b)はV2,V4,V6電極の3電極にVM電圧を印加した場合を示す模式図である。FIG. 6 is a schematic diagram showing the state of the voltage applied to the vertical charge transfer electrode during the exposure period in 8-phase driving, where (a) shows the case where the VM voltage is applied only to the V2 electrode, and (b) shows 3 of the V2, V4 and V6 electrodes. It is a schematic diagram which shows the case where VM voltage is applied to an electrode. 撮像装置のブロック構成図である。It is a block block diagram of an imaging device. 固体撮像素子の一例としてのCCD型固体撮像素子の概略構成図である。It is a schematic block diagram of the CCD type solid-state image sensor as an example of a solid-state image sensor. 図11に示す一つの画素の拡大平面図である。FIG. 12 is an enlarged plan view of one pixel shown in FIG. 11. 図12に示すA1−A2断面図をポテンシャル電位分布図と併せて(a)に、B1−B2断面図をポテンシャル電位分布図と併せて(b)に示した説明図である。FIG. 13 is an explanatory diagram showing the A1-A2 cross-sectional view shown in FIG. 12 together with the potential potential distribution diagram (a) and the B1-B2 cross-sectional view together with the potential potential distribution diagram (b). 従来の光電変換部の露光時および垂直電荷転送時における固体撮像素子の駆動信号を示すチャート図である。It is a chart figure which shows the drive signal of the solid-state image sensor at the time of exposure of the conventional photoelectric conversion part, and vertical charge transfer. 従来の露光期間における垂直電荷転送電極の印加電圧の状態を示す模式図で、(a)は4相駆動の場合、(b)は8相駆動の場合を示す模式図である。It is a schematic diagram which shows the state of the applied voltage of the vertical charge transfer electrode in the conventional exposure period, (a) is a schematic diagram which shows the case of 4 phase drive, (b) is the case of 8 phase drive.

符号の説明Explanation of symbols

1 固体撮像素子
3 光電変換部
5 垂直電荷転送部
7 水平電荷転送部
9 出力部
11 垂直電荷転送チャネル
13 垂直電荷転送電極
17 ゲート絶縁膜
19 読み出しゲート部
21 シャッタパルス
23,23A 排出パルス
25 VHパルス
100 固体撮像素子
200 デジタルカメラ(撮像装置)
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 3 Photoelectric conversion part 5 Vertical charge transfer part 7 Horizontal charge transfer part 9 Output part 11 Vertical charge transfer channel 13 Vertical charge transfer electrode 17 Gate insulating film 19 Read-out gate part 21 Shutter pulse 23, 23A Discharge pulse 25 VH pulse 100 Solid-state imaging device 200 Digital camera (imaging device)

Claims (6)

水平方向および垂直方向に所定ピッチで配置され、入射光に応じた信号電荷を発生する複数の光電変換部と、前記光電変換部から読み出した信号電荷をそれぞれ垂直方向に転送する複数の垂直電荷転送部と、該垂直電荷転送部から転送された信号電荷を水平方向に転送する水平電荷転送部とを備え、前記垂直電荷転送部は、前記光電変換部に近接して垂直方向に沿って形成され信号電荷を蓄積する垂直電荷転送チャネル、および該垂直電荷転送チャネルの上方に配置された複数の垂直電荷転送電極を有する固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、一部の前記光電変換素子に対して、読み出し電極となる垂直電荷転送電極に読み出しパルスを印加することで露光時間を制御して前記光電変換部から信号電荷を前記垂直電荷転送部に読み出す際、
前記読み出しパルスによって読み出した信号電荷を前記垂直電荷転送チャネルに蓄積させる前記垂直電荷転送電極の数が、前記露光期間終了後の前記垂直電荷転送部による信号電荷の転送時に、信号電荷を前記垂直電荷転送チャネルに蓄積させる垂直電荷転送電極の数よりも少なくなるように駆動する固体撮像素子の駆動方法。
A plurality of photoelectric conversion units that are arranged at a predetermined pitch in the horizontal direction and the vertical direction and generate signal charges according to incident light, and a plurality of vertical charge transfers that respectively transfer signal charges read from the photoelectric conversion units in the vertical direction And a horizontal charge transfer unit that transfers the signal charge transferred from the vertical charge transfer unit in the horizontal direction, and the vertical charge transfer unit is formed along the vertical direction in the vicinity of the photoelectric conversion unit. A method for driving a solid-state imaging device having a vertical charge transfer channel for accumulating signal charges, and a plurality of vertical charge transfer electrodes arranged above the vertical charge transfer channel,
During the exposure period to the photoelectric conversion elements, the exposure time is controlled by applying a readout pulse to a vertical charge transfer electrode serving as a readout electrode for a part of the photoelectric conversion elements, and signals from the photoelectric conversion unit When reading the charge to the vertical charge transfer unit,
The number of the vertical charge transfer electrodes for accumulating the signal charge read by the read pulse in the vertical charge transfer channel is equal to the signal charge when the signal charge is transferred by the vertical charge transfer unit after the exposure period ends. A method for driving a solid-state imaging device, wherein the number of vertical charge transfer electrodes stored in a transfer channel is less than the number of vertical charge transfer electrodes.
水平方向および垂直方向に所定ピッチで配置され、入射光に応じた信号電荷を発生する複数の光電変換部と、前記光電変換部から読み出した信号電荷をそれぞれ垂直方向に転送する複数の垂直電荷転送部と、該垂直電荷転送部から転送された信号電荷を水平方向に転送する水平電荷転送部とを備え、前記垂直電荷転送部は、前記光電変換部に近接して垂直方向に沿って形成され信号電荷を蓄積する垂直電荷転送チャネル、および該垂直電荷転送チャネルの上方に配置された複数の垂直電荷転送電極を有する固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、一部の前記光電変換素子に対して、読み出し電極となる垂直電荷転送電極に読み出しパルスを印加することで露光時間を制御して前記光電変換部から信号電荷を前記垂直電荷転送部に読み出す際、
前記読み出しパルスによって読み出した信号電荷を前記垂直電荷転送チャネルに蓄積させる前記垂直電荷転送電極の数が、1つになるように駆動する固体撮像素子の駆動方法。
A plurality of photoelectric conversion units that are arranged at a predetermined pitch in the horizontal direction and the vertical direction and generate signal charges according to incident light, and a plurality of vertical charge transfers that respectively transfer signal charges read from the photoelectric conversion units in the vertical direction And a horizontal charge transfer unit that transfers the signal charge transferred from the vertical charge transfer unit in the horizontal direction, and the vertical charge transfer unit is formed along the vertical direction in the vicinity of the photoelectric conversion unit. A method for driving a solid-state imaging device having a vertical charge transfer channel for accumulating signal charges, and a plurality of vertical charge transfer electrodes arranged above the vertical charge transfer channel,
During the exposure period to the photoelectric conversion elements, the exposure time is controlled by applying a readout pulse to a vertical charge transfer electrode serving as a readout electrode for a part of the photoelectric conversion elements, and signals from the photoelectric conversion unit When reading the charge to the vertical charge transfer unit,
A method for driving a solid-state imaging device, wherein the number of the vertical charge transfer electrodes for accumulating the signal charges read by the read pulse in the vertical charge transfer channel is one.
請求項1または請求項2記載の固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、前記読み出しパルスが印加される垂直電荷転送電極を除く他の垂直電荷転送電極に対して、負電圧を印加する固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 1 or 2,
A method for driving a solid-state imaging device, wherein a negative voltage is applied to other vertical charge transfer electrodes excluding the vertical charge transfer electrode to which the readout pulse is applied during an exposure period for the photoelectric conversion device.
請求項1または請求項2記載の固体撮像素子の駆動方法であって、
前記光電変換素子への露光期間中に、前記読み出しパルスが印加される垂直電荷転送電極に対して負電圧を印加する固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 1 or 2,
A solid-state imaging element driving method in which a negative voltage is applied to a vertical charge transfer electrode to which the readout pulse is applied during an exposure period for the photoelectric conversion element.
請求項1または請求項2記載の固体撮像素子の駆動方法であって、
前記光電変換部は、高感度画素に対応する長時間露光用の第1の光電変換素子と低感度画素に対応する短時間露光用の第2の光電変換素子とが混在配置されてなり、前記第1の光電変換素子の露光開始後から前記第2の光電変換素子の実質的な露光開始までの間は、前記垂直電荷転送電極の全てに対して、負電圧を印加する固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 1 or 2,
The photoelectric conversion unit is a mixture of a first photoelectric conversion element for long exposure corresponding to high sensitivity pixels and a second photoelectric conversion element for short exposure corresponding to low sensitivity pixels. During the period from the start of exposure of the first photoelectric conversion element to the start of substantial exposure of the second photoelectric conversion element, driving of the solid-state imaging element that applies a negative voltage to all of the vertical charge transfer electrodes Method.
固体撮像素子と、
前記固体撮像素子に光学像を結像させる光学系と、
前記固体撮像素子を、請求項1〜請求項5のいずれか1項記載の固体撮像素子の駆動方法に基づいて駆動する撮像素子駆動部と、
を備えた撮像装置。
A solid-state image sensor;
An optical system for forming an optical image on the solid-state imaging device;
An image sensor driving unit that drives the solid-state image sensor based on the solid-state image sensor driving method according to any one of claims 1 to 5,
An imaging apparatus comprising:
JP2007222194A 2007-08-29 2007-08-29 Method of driving solid-state image pickup device and imaging apparatus driven by the method Withdrawn JP2009055507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222194A JP2009055507A (en) 2007-08-29 2007-08-29 Method of driving solid-state image pickup device and imaging apparatus driven by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222194A JP2009055507A (en) 2007-08-29 2007-08-29 Method of driving solid-state image pickup device and imaging apparatus driven by the method

Publications (1)

Publication Number Publication Date
JP2009055507A true JP2009055507A (en) 2009-03-12

Family

ID=40506133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222194A Withdrawn JP2009055507A (en) 2007-08-29 2007-08-29 Method of driving solid-state image pickup device and imaging apparatus driven by the method

Country Status (1)

Country Link
JP (1) JP2009055507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790025A (en) * 2010-03-12 2010-07-28 清华大学 Method for adjusting integration time of charge coupled device (CCD) without electronic shutter based on alternative variable-frequency driving technique
CN112075073A (en) * 2018-09-14 2020-12-11 松下知识产权经营株式会社 Image pickup apparatus and image pickup method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790025A (en) * 2010-03-12 2010-07-28 清华大学 Method for adjusting integration time of charge coupled device (CCD) without electronic shutter based on alternative variable-frequency driving technique
CN112075073A (en) * 2018-09-14 2020-12-11 松下知识产权经营株式会社 Image pickup apparatus and image pickup method

Similar Documents

Publication Publication Date Title
US7768561B2 (en) Image sensing apparatus and its control method
JP4834345B2 (en) IMAGING DEVICE, ITS CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP2008228265A (en) Imaging apparatus
JP4350924B2 (en) Solid-state imaging device and driving method thereof
JP2011055351A (en) Photographing device and control method thereof
JP2002209146A (en) Driving method for solid-state image sensing device
JP3113406B2 (en) Image sensor control device for still video camera
US7659933B2 (en) Imaging device and driving method for solid-state imaging device
JP4314693B2 (en) Solid-state imaging device driving method, solid-state imaging device, and imaging system
JP2006270593A (en) Driving method of solid-state image sensor
JP2002320143A (en) Imaging device
US20090086073A1 (en) Imaging apparatus and method of driving solid-state imaging device
JP2009055507A (en) Method of driving solid-state image pickup device and imaging apparatus driven by the method
JP2000350091A (en) Image pickup device and signal processing method therefor
JP2005286470A (en) Imaging unit
JP2008072512A (en) Photographing apparatus and its control method, and photographing system
JPH0698227A (en) Variable system clock type digital electronic still camera
US20090086078A1 (en) Imaging device driving method and imaging apparatus
JP4587161B2 (en) Imaging device
JP2010114654A (en) Imaging apparatus and charge transferring method of solid-state imaging element
US8134627B2 (en) Digital photographing apparatus and method of operating image pickup device
JP2010166396A (en) Method of driving image sensor
JP2009141558A (en) Ccd solid-state imaging element, imaging apparatus, and driving method of ccd solid-state imaging element
JP4367831B2 (en) Color imaging apparatus and solid-state imaging apparatus drive control method
JP2006174337A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606